2D MATERIALS BEYOND GRAPHENE: Properties, Markets, Applications and Opportunity

0

Published February 2018 | 70 pages | Table of contents

Graphene has brought to the world’s attention the exceptional properties of two-dimensional (2D) nanosheet materials. Due to its exceptional transport, mechanical and thermal properties, graphene has been at the forefront of nanomaterials research over the past few years. Its development has enabled researchers to explore other 2D layered materials, such as the transition metal dichalcogenides, a wide variety of oxides and nitrides and clays. Graphene has a major problem for novel 2D semiconductor applications as it lacks an energy gap between its conduction and valence bands, which makes it difficult to achieve low power dissipation in the OFF state. It therefore requires extensive modification (strain or other gap-opening engineering) to create one.

Researchers have therefore looked beyond graphene in recent years to other layered 2D materials, such as molybdenum disulfide (MoS2), hexagonal boron nitride (h-BN) and phosphorene. These materials possess the intrinsic properties of graphene, such as high electrical conductivity, insulating and semi-conducting properties, high thermal conductivity, high mechanical strength, gas diffusion barriers, high chemical stability and radiation shielding, but crucially also possess a semiconductor band gap. Theoretical and experimental works on these materials have rapidly increased in the past couple of years and they are now commercially available from several advanced materials producers.

2D materials beyond graphene covered in this report include:

  • molybdenum disulfide (MoS2).
  • hexagonal boron nitride (h-BN).
  • phosphorene.
  • graphitic carbon nitride.
  • germanene.
  • graphane.
  • graphdiyne.
  • stanene/tinene.
  • tungsten diselenide.
  • rhenium disulfide.
  • diamene.
  • silicene.
  • antimonene.
  • indium selenide.

Markets these materials could significantly impact and are covered in this report include:

  • Electronics.
  • Batteries (Lithium-ion, sodium-ion, lithium-sulfur, lithium-oxygen).
  • Sensors.
  • Separation membranes.
  • Photocatalysts.
  • Thermoelectrics.
  • Photovoltaics.
2D MATERIALS BEYOND GRAPHENE
2D MATERIALS BEYOND GRAPHENE
PDF download.
2D MATERIALS BEYOND GRAPHENE
2D MATERIALS BEYOND GRAPHENE
Print edition (including tracked postage).
2D MATERIALS BEYOND GRAPHENE
2D MATERIALS BEYOND GRAPHENE
PDF and print edition.

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com.

TABLE OF CONTENTS

1    MARKET OPPORTUNITY ANALYSIS FOR 2D MATERIALS………. 13

2    2D MATERIALS…………………………………………………………………….. 15

  • 2.1    Beyond moore’s law……………………………………………………………………………………………………….. 17
  • 2.2    Batteries…………………………………………………………………………………………………………………………. 17

3    PHOSPHORENE……………………………………………………………………. 19

  • 3.1    Properties……………………………………………………………………………………………………………………….. 19
    • 3.1.1     Fabrication methods………………………………………………………………………………………………. 21
    • 3.1.2     Challenges for the use of phosphorene in devices…………………………………………………. 21
  • 3.2    Applications……………………………………………………………………………………………………………………. 22
    • 3.2.1     Electronics……………………………………………………………………………………………………………… 22
      • 3.2.1.1       Field effect transistors……………………………………………………………………………………. 22
    • 3.2.2     Thermoelectrics……………………………………………………………………………………………………… 23
    • 3.2.3     Batteries…………………………………………………………………………………………………………………. 23
      • 3.2.3.1       Lithium-ion batteries (LIB)……………………………………………………………………………… 23
      • 3.2.3.2       Sodium-ion batteries……………………………………………………………………………………… 24
      • 3.2.3.3       Lithium–sulfur batteries………………………………………………………………………………….. 24
    • 3.2.4     Supercapacitors……………………………………………………………………………………………………… 24
    • 3.2.5     Photodetectors……………………………………………………………………………………………………….. 25
    • 3.2.6     Sensors………………………………………………………………………………………………………………….. 25
  • 3.3    Market opportunity assessment……………………………………………………………………………………… 26

4    GRAPHITIC CARBON NITRIDE (g-C3N4)………………………………… 27

  • 4.1    Properties……………………………………………………………………………………………………………………….. 27
    • 4.1.1     Synthesis……………………………………………………………………………………………………………….. 27
    • 4.1.2     C2N………………………………………………………………………………………………………………………… 28
  • 4.2    Applications……………………………………………………………………………………………………………………. 28
    • 4.2.1     Electronics……………………………………………………………………………………………………………… 28
    • 4.2.2     Filtration membranes……………………………………………………………………………………………… 28
    • 4.2.3     Photocatalysts………………………………………………………………………………………………………… 29
    • 4.2.4     Batteries (LIBs)………………………………………………………………………………………………………. 29
    • 4.2.5     Sensors………………………………………………………………………………………………………………….. 29
  • 4.3    Market opportunity assessment……………………………………………………………………………………… 30

5    GERMANENE……………………………………………………………………….. 31

  • 5.1    Properties……………………………………………………………………………………………………………………….. 31
  • 5.2    Applications……………………………………………………………………………………………………………………. 32
    • 5.2.1     Electronics……………………………………………………………………………………………………………… 32
    • 5.2.2     Batteries…………………………………………………………………………………………………………………. 32
  • 5.3    Market opportunity assessment……………………………………………………………………………………… 32

6    GRAPHDIYNE……………………………………………………………………….. 33

  • 6.1    Properties……………………………………………………………………………………………………………………….. 33
  • 6.2    Applications……………………………………………………………………………………………………………………. 34
    • 6.2.1     Electronics……………………………………………………………………………………………………………… 34
    • 6.2.2     Batteries…………………………………………………………………………………………………………………. 34
      • 6.2.2.1       Lithium-ion batteries (LIB)……………………………………………………………………………… 34
      • 6.2.2.2       Sodium ion batteries………………………………………………………………………………………. 34
    • 6.2.3     Separation membranes………………………………………………………………………………………….. 34
    • 6.2.4     Water filtration………………………………………………………………………………………………………… 35
    • 6.2.5     Photocatalysts………………………………………………………………………………………………………… 35
    • 6.2.6     Photovoltaics………………………………………………………………………………………………………….. 35
  • 6.3    Market opportunity assessment……………………………………………………………………………………… 35

7    GRAPHANE………………………………………………………………………….. 37

  • 7.1    Properties……………………………………………………………………………………………………………………….. 37
  • 7.2    Applications……………………………………………………………………………………………………………………. 37
    • 7.2.1     Electronics……………………………………………………………………………………………………………… 38
    • 7.2.2     Hydrogen storage…………………………………………………………………………………………………… 38
  • 7.3    Market opportunity assessment……………………………………………………………………………………… 38

8    HEXAGONAL BORON-NITRIDE……………………………………………… 39

  • 8.1    Properties……………………………………………………………………………………………………………………….. 39
  • 8.2    Applications……………………………………………………………………………………………………………………. 40
    • 8.2.1     Electronics……………………………………………………………………………………………………………… 40
    • 8.2.2     Fuel cells………………………………………………………………………………………………………………… 40
    • 8.2.3     Adsorbents…………………………………………………………………………………………………………….. 41
    • 8.2.4     Photodetectors……………………………………………………………………………………………………….. 41
    • 8.2.5     Textiles…………………………………………………………………………………………………………………… 41
    • 8.2.6     Biomedical……………………………………………………………………………………………………………… 41
  • 8.3    Market opportunity assessment……………………………………………………………………………………… 42

9    MOLYBDENUM DISULFIDE (MoS2)…………………………………………. 43

  • 9.1    Properties……………………………………………………………………………………………………………………….. 43
  • 9.2    Applications……………………………………………………………………………………………………………………. 44
    • 9.2.1     Electronics……………………………………………………………………………………………………………… 44
    • 9.2.2     Photovoltaics………………………………………………………………………………………………………….. 45
    • 9.2.3     Piezoelectrics…………………………………………………………………………………………………………. 45
    • 9.2.4     Sensors………………………………………………………………………………………………………………….. 45
    • 9.2.5     Filtration…………………………………………………………………………………………………………………. 46
    • 9.2.6     Batteries…………………………………………………………………………………………………………………. 46
    • 9.2.7     Fiber lasers…………………………………………………………………………………………………………….. 46
  • 9.3    Market opportunity assessment……………………………………………………………………………………… 47

10 RHENIUM DISULFIDE (ReS2) AND DISELENIDE (ReSe2)…………. 48

  • 10.1      Properties…………………………………………………………………………………………………………………… 48
  • 10.2      Applications………………………………………………………………………………………………………………… 48
    • 10.2.1        Electronics…………………………………………………………………………………………………………. 48
  • 10.3      Market opportunity assessment…………………………………………………………………………………. 49

11 SILICENE……………………………………………………………………………… 50

  • 11.1      Properties…………………………………………………………………………………………………………………… 50
  • 11.2      Applications………………………………………………………………………………………………………………… 51
    • 11.2.1        Electronics…………………………………………………………………………………………………………. 51
    • 11.2.2        Photovoltaics……………………………………………………………………………………………………… 52
    • 11.2.3        Thermoelectrics…………………………………………………………………………………………………. 52
    • 11.2.4        Batteries…………………………………………………………………………………………………………….. 52
    • 11.2.5        Sensors……………………………………………………………………………………………………………… 52
  • 11.3      Market opportunity assessment…………………………………………………………………………………. 53

12 STANENE/TINENE…………………………………………………………………. 54

  • 12.1      Properties…………………………………………………………………………………………………………………… 54
  • 12.2      Applications………………………………………………………………………………………………………………… 55
    • 12.2.1        Electronics…………………………………………………………………………………………………………. 55
  • 12.3      Market opportunity assessment…………………………………………………………………………………. 56

13 TUNGSTEN DISELENIDE……………………………………………………….. 57

  • 13.1      Properties…………………………………………………………………………………………………………………… 57
  • 13.2      Applications………………………………………………………………………………………………………………… 58
    • 13.2.1        Electronics…………………………………………………………………………………………………………. 58
  • 13.3      Market opportunity assessment…………………………………………………………………………………. 58

14 OTHER 2D MATERIALS…………………………………………………………. 59

  • 14.1      ANTIMONENE…………………………………………………………………………………………………………… 59
    • 14.1.1        Properties…………………………………………………………………………………………………………… 59
    • 14.1.2        Applications……………………………………………………………………………………………………….. 59
  • 14.2      DIAMENE…………………………………………………………………………………………………………………… 60
    • 14.2.1        Properties…………………………………………………………………………………………………………… 60
    • 14.2.2        Applications……………………………………………………………………………………………………….. 60
  • 14.3      INDIUM SELENIDE……………………………………………………………………………………………………. 60
    • 14.3.1        Properties…………………………………………………………………………………………………………… 60
    • 14.3.2        Applications……………………………………………………………………………………………………….. 61
      • 14.3.2.1     Electronics……………………………………………………………………………………………………… 61

15 COMPARATIVE ANALYSIS OF GRAPHENE AND OTHER 2D MATERIALS……………………………………………………………………………… 62

16 2D MATERIALS PRODUCERS………………………………………………… 64-68

17 REFERENCES………………………………………………………………………. 69

TABLES

  • Table 1: 2D materials types………………………………………………………………………………………………………… 15
  • Table 2: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2. 20
  • Table 3: Market opportunity assessment for phosphorene applications……………………………………… 26
  • Table 4: Market opportunity assessment for graphitic carbon nitride applications………………………. 30
  • Table 5: Market opportunity assessment for germanene applications………………………………………… 32
  • Table 6: Market opportunity assessment for graphdiyne applications………………………………………… 35
  • Table 7: Market opportunity assessment for graphane applications…………………………………………… 38
  • Table 8: Market opportunity assessment for hexagonal boron nitride applications…………………….. 42
  • Table 10: Market opportunity assessment for molybdenum disulfide applications……………………… 47
  • Table 11: Market opportunity assessment for Rhenium disulfide (ReS2) and diselenide (ReSe2) applications…………………………………………………………………………………………………………………………… 49
  • Table 12: Market opportunity assessment for silicene applications…………………………………………….. 53
  • Table 13: Market opportunity assessment for stanine/tinene applications………………………………….. 56
  • Table 14: Market opportunity assessment for tungsten diselenide applications…………………………. 58
  • Table 15: Comparative analysis of graphene and other 2-D nanomaterials……………………………….. 62

FIGURES

  • Figure 1: Schematic of 2-D materials………………………………………………………………………………………….. 16
  • Figure 2: Black phosphorus structure…………………………………………………………………………………………. 19
  • Figure 3: Black Phosphorus crystal…………………………………………………………………………………………….. 20
  • Figure 4: Bottom gated flexible few-layer phosphorene transistors with the hydrophobic dielectric encapsulation……………………………………………………………………………………………………………………….. 23
  • Figure 5: Graphitic carbon nitride……………………………………………………………………………………………….. 27
  • Figure 6: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal…………………………………………………………………………………………………………………………………… 28
  • Figure 7: Schematic of germanene…………………………………………………………………………………………….. 31
  • Figure 8: Graphdiyne structure…………………………………………………………………………………………………… 33
  • Figure 9: Schematic of Graphane crystal……………………………………………………………………………………. 37
  • Figure 10: Structure of hexagonal boron nitride………………………………………………………………………….. 39
  • Figure 11: BN nanosheet textiles application……………………………………………………………………………… 41
  • Figure 12: Structure of 2D molybdenum disulfide……………………………………………………………………….. 43
  • Figure 13: SEM image of MoS2…………………………………………………………………………………………………… 44
  • Figure 14: Atomic force microscopy image of a representative MoS2 thin-film transistor…………… 45
  • Figure 15: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge……………………………………………………………………………….. 46
  • Figure 16: Schematic of a monolayer of rhenium disulfide…………………………………………………………. 48
  • Figure 17: Silicene structure……………………………………………………………………………………………………….. 50
  • Figure 18: Monolayer silicene on a silver (111) substrate…………………………………………………………… 51
  • Figure 19: Silicene transistor………………………………………………………………………………………………………. 51
  • Figure 20: Crystal structure for stanene……………………………………………………………………………………… 54
  • Figure 21: Atomic structure model for the 2D stanene on Bi2Te3(111)………………………………………. 55
  • Figure 22: Schematic of tungsten diselenide………………………………………………………………………………. 57
  • Figure 23: Schematic of Indium Selenide (InSe)…………………………………………………………………………. 61