Biodiesel, renewable diesel, bio-jet fuels, bio-naphtha, biomethanol, ethanol, biobutanol, biogas, biosyngas, biohydrogen, biofuel from plastic waste & used tires, biofuels from carbon capture, chemical recycling based biofuels, electrofuels, bio-oils, algae-derived biofuels, green ammonia, refuse-derived biofuels.
- Published: February 2024
- Pages: 426
- Tables: 96
- Figures: 114
The biofuels market has grown significantly as nations and companies pursue renewable, low carbon alternatives for replacing petroleum across transportation applications like passenger vehicles, aviation, marine and heavy freight, while serving broader circular economy sustainability aims. Continued growth is forecast driven by supportive government policies, rising adoption of biofuels blends in Asia and Americas markets, innovations in feedstocks and production methods, and increasing cost-competitiveness in light of petroleum volatility and environmental motivations.
The Global Market for Biofuels 2024-2035 provides a comprehensive analysis of the global biofuels market and emerging alternatives through 2035. It benchmarks over 15 industry drivers including energy security, emissions compliance, new revenue opportunities, rural development, landfill diversion and waste monetization, promoting adoption of various solid, liquid and gaseous biofuels derived from diverse biomass, waste, algal and carbon capture technologies. Granular feedstock, process technology and application assessments provide insights for stakeholders to position across the evolving biofuels value chain. The report analyses over a dozen types of biofuels utilizing distinct feedstocks and production methods suitable for specific applications spanning road transport, aviation, marine, rail, off-road vehicles, power generation and more.
Granular 11-year volume forecasts are provided as well as detailed impact analysis of circular economy transition, feedstock, process innovation, policy, pricing outlooks and competing energy technologies affecting biofuels growth. Types covered include:
Market analysis including key players, end use markets, production processes, costs, production capacities, market demand for biofuels including:
- biodiesel
- renewable diesel
- bio-jet fuels
- bio-naphtha
- biomethanol
- ethanol
- biobutanol
- biogas
- biosyngas
- biohydrogen
- biofuel from plastic waste & used tires
- biofuels from carbon capture
- chemical recycling based biofuels
- electrofuels
- bio-oils
- algae-derived biofuels
- green ammonia
- refuse-derived biofuels.
Report contents include:
- Industry Developments 2022-2024: Key mergers, partnerships, funding, policy updates, pricing shifts
- Biofuels Market Outlook: Definition, role, types - solid, liquid, gaseous; blends, performance relative to petrol/diesel
- Feedstocks Analysis: Wide range assessed - Energy crops, lignocellulosic waste, algae, municipal waste, forestry residue etc.
- Production Pathways: - anaerobic digestion, gasification, pyrolysis, Fischer-Tropsch, hydrocracking etc creating variety of biofuels
- Biodiesel/Renewable Diesel: Leading liquid biofuels currently. Market drivers, regional dynamics, forecast to 2035
- Emerging Options: Biojet fuel, biomethanol, bio-oils, biosyngas, electrofuels etc – industry status, challenges, future demand potential
- Sector Applications: Detailed biofuel use in road transport, aviation, marine, off-road vehicles, power generation – outlook by vertical
- Regional Market Analysis: Historic and forecasted biofuels demand from 2020-2035 across America, Asia, Europe, ROW
- Prices Trends: Biofuels pricing benchmarking - current vs projections by type through 2035 – impact on adoption economics
- Sustainability Metrics: Life cycle emissions, circularity - comparison vs alternatives like solar, wind, EVs, hydrogen
- Company Profiles: 200+ leading biofuels producers and technology providers. Companies profiled include BTG Bioliquids, Byogy Renewables, Caphenia, Enerkem, Electro-Active Technologies Inc., Eni S.p.A., Ensyn, FORGE Hydrocarbons Corporation, Fulcrum Bioenergy, Genecis Bioindustries, Gevo, Haldor Topsoe, Infinium Electrofuels, Kvasir Technologies, Opera Bioscience, Reverion GmbH, Steeper Energy, SunFire GmbH, Vertus Energy, Viridos, Inc. and WasteFuel. (Full list of companies profiled in table of contents).
- Conclusions: Key findings, trends 2025-2035 outlook, commercialization roadmaps, opportunities by biofuel type and geography.
Download table of contents (PDF)
1 RESEARCH METHODOLOGY 24
2 EXECUTIVE SUMMARY 25
- 2.1 Comparison to fossil fuels 25
- 2.2 Role in the circular economy 26
- 2.3 Market drivers 26
- 2.4 Market challenges 27
- 2.5 Liquid biofuels market 28
- 2.5.1 Liquid biofuel production and consumption (in thousands of m3), 2000-2022 28
- 2.5.2 Liquid biofuels market 2020-2035, by type and production. 29
3 INDUSTRY DEVELOPMENTS 2022-2024 31
4 BIOFUELS 34
- 4.1 Overview 34
- 4.2 The global biofuels market 35
- 4.2.1 Diesel substitutes and alternatives 36
- 4.2.2 Gasoline substitutes and alternatives 37
- 4.3 SWOT analysis: Biofuels market 38
- 4.4 Comparison of biofuel costs 2023, by type 39
- 4.5 Types 40
- 4.5.1 Solid Biofuels 40
- 4.5.2 Liquid Biofuels 41
- 4.5.3 Gaseous Biofuels 41
- 4.5.4 Conventional Biofuels 42
- 4.5.5 Advanced Biofuels 43
- 4.6 Feedstocks 44
- 4.6.1 First-generation (1-G) 46
- 4.6.2 Second-generation (2-G) 47
- 4.6.2.1 Lignocellulosic wastes and residues 48
- 4.6.2.2 Biorefinery lignin 49
- 4.6.3 Third-generation (3-G) 53
- 4.6.3.1 Algal biofuels 53
- 4.6.3.1.1 Properties 54
- 4.6.3.1.2 Advantages 54
- 4.6.3.1 Algal biofuels 53
- 4.6.4 Fourth-generation (4-G) 56
- 4.6.5 Advantages and disadvantages, by generation 56
- 4.6.6 Energy crops 58
- 4.6.6.1 Feedstocks 58
- 4.6.6.2 SWOT analysis 58
- 4.6.7 Agricultural residues 59
- 4.6.7.1 Feedstocks 59
- 4.6.7.2 SWOT analysis 60
- 4.6.8 Manure, sewage sludge and organic waste 61
- 4.6.8.1 Processing pathways 61
- 4.6.8.2 SWOT analysis 62
- 4.6.9 Forestry and wood waste 63
- 4.6.9.1 Feedstocks 63
- 4.6.9.2 SWOT analysis 64
- 4.6.10 Feedstock costs 65
5 HYDROCARBON BIOFUELS 66
- 5.1 Biodiesel 66
- 5.1.1 Biodiesel by generation 67
- 5.1.2 SWOT analysis 68
- 5.1.3 Production of biodiesel and other biofuels 70
- 5.1.3.1 Pyrolysis of biomass 70
- 5.1.3.2 Vegetable oil transesterification 73
- 5.1.3.3 Vegetable oil hydrogenation (HVO) 74
- 5.1.3.3.1 Production process 75
- 5.1.3.4 Biodiesel from tall oil 76
- 5.1.3.5 Fischer-Tropsch BioDiesel 76
- 5.1.3.6 Hydrothermal liquefaction of biomass 78
- 5.1.3.7 CO2 capture and Fischer-Tropsch (FT) 79
- 5.1.3.8 Dymethyl ether (DME) 79
- 5.1.4 Prices 80
- 5.1.5 Global production and consumption 81
- 5.2 Renewable diesel 84
- 5.2.1 Production 84
- 5.2.2 SWOT analysis 85
- 5.2.3 Global consumption 86
- 5.2.4 Prices 88
- 5.3 Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel) 89
- 5.3.1 Description 89
- 5.3.2 SWOT analysis 89
- 5.3.3 Global production and consumption 90
- 5.3.4 Production pathways 91
- 5.3.5 Prices 93
- 5.3.6 Bio-aviation fuel production capacities 94
- 5.3.7 Challenges 94
- 5.3.8 Global consumption 95
- 5.4 Bio-naphtha 97
- 5.4.1 Overview 97
- 5.4.2 SWOT analysis 98
- 5.4.3 Markets and applications 99
- 5.4.4 Prices 100
- 5.4.5 Production capacities, by producer, current and planned 101
- 5.4.6 Production capacities, total (tonnes), historical, current and planned 102
6 ALCOHOL FUELS 103
- 6.1 Biomethanol 103
- 6.1.1 SWOT analysis 103
- 6.1.2 Methanol-to gasoline technology 104
- 6.1.2.1 Production processes 105
- 6.1.2.1.1 Anaerobic digestion 106
- 6.1.2.1.2 Biomass gasification 106
- 6.1.2.1.3 Power to Methane 107
- 6.1.2.1 Production processes 105
- 6.2 Ethanol 108
- 6.2.1 Technology description 108
- 6.2.2 1G Bio-Ethanol 109
- 6.2.3 SWOT analysis 109
- 6.2.4 Ethanol to jet fuel technology 110
- 6.2.5 Methanol from pulp & paper production 111
- 6.2.6 Sulfite spent liquor fermentation 111
- 6.2.7 Gasification 112
- 6.2.7.1 Biomass gasification and syngas fermentation 112
- 6.2.7.2 Biomass gasification and syngas thermochemical conversion 112
- 6.2.8 CO2 capture and alcohol synthesis 113
- 6.2.9 Biomass hydrolysis and fermentation 113
- 6.2.9.1 Separate hydrolysis and fermentation 113
- 6.2.9.2 Simultaneous saccharification and fermentation (SSF) 114
- 6.2.9.3 Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF) 114
- 6.2.9.4 Simultaneous saccharification and co-fermentation (SSCF) 115
- 6.2.9.5 Direct conversion (consolidated bioprocessing) (CBP) 115
- 6.2.10 Global ethanol consumption 116
- 6.3 Biobutanol 117
- 6.3.1 Production 119
- 6.3.2 Prices 119
7 BIOMASS-BASED GAS 120
- 7.1 Feedstocks 122
- 7.1.1 Biomethane 122
- 7.1.2 Production pathways 124
- 7.1.2.1 Landfill gas recovery 124
- 7.1.2.2 Anaerobic digestion 125
- 7.1.2.3 Thermal gasification 126
- 7.1.3 SWOT analysis 126
- 7.1.4 Global production 127
- 7.1.5 Prices 128
- 7.1.5.1 Raw Biogas 128
- 7.1.5.2 Upgraded Biomethane 128
- 7.1.6 Bio-LNG 128
- 7.1.6.1 Markets 128
- 7.1.6.1.1 Trucks 128
- 7.1.6.1.2 Marine 128
- 7.1.6.2 Production 129
- 7.1.6.3 Plants 129
- 7.1.6.1 Markets 128
- 7.1.7 bio-CNG (compressed natural gas derived from biogas) 130
- 7.1.8 Carbon capture from biogas 130
- 7.2 Biosyngas 131
- 7.2.1 Production 131
- 7.2.2 Prices 132
- 7.3 Biohydrogen 133
- 7.3.1 Description 133
- 7.3.2 SWOT analysis 134
- 7.3.3 Production of biohydrogen from biomass 134
- 7.3.3.1 Biological Conversion Routes 135
- 7.3.3.1.1 Bio-photochemical Reaction 135
- 7.3.3.1.2 Fermentation and Anaerobic Digestion 136
- 7.3.3.1 Biological Conversion Routes 135
- 7.3.3.2 Thermochemical conversion routes 136
-
- 7.3.3.2.1 Biomass Gasification 136
- 7.3.3.2.2 Biomass Pyrolysis 136
- 7.3.3.2.3 Biomethane Reforming 137
-
- 7.3.4 Applications 137
- 7.3.5 Prices 138
- 7.4 Biochar in biogas production 138
- 7.5 Bio-DME 139
8 CHEMICAL RECYCLING FOR BIOFUELS 139
- 8.1 Plastic pyrolysis 140
- 8.2 Used tires pyrolysis 140
- 8.2.1 Conversion to biofuel 142
- 8.3 Co-pyrolysis of biomass and plastic wastes 143
- 8.4 Gasification 144
- 8.4.1 Syngas conversion to methanol 145
- 8.4.2 Biomass gasification and syngas fermentation 149
- 8.4.3 Biomass gasification and syngas thermochemical conversion 149
- 8.5 Hydrothermal cracking 150
- 8.6 SWOT analysis 151
9 ELECTROFUELS (E-FUELS) 152
- 9.1 Introduction 152
- 9.1.1 Benefits of e-fuels 154
- 9.2 Feedstocks 155
- 9.2.1 Hydrogen electrolysis 155
- 9.2.2 CO2 capture 156
- 9.3 SWOT analysis 156
- 9.4 Production 157
- 9.4.1 eFuel production facilities, current and planned 159
- 9.5 Electrolysers 160
- 9.5.1 Commercial alkaline electrolyser cells (AECs) 162
- 9.5.2 PEM electrolysers (PEMEC) 162
- 9.5.3 High-temperature solid oxide electrolyser cells (SOECs) 162
- 9.6 Prices 162
- 9.7 Market challenges 165
- 9.8 Companies 166
10 ALGAE-DERIVED BIOFUELS 167
- 10.1 Technology description 167
- 10.2 Conversion pathways 167
- 10.3 SWOT analysis 168
- 10.4 Production 169
- 10.5 Market challenges 170
- 10.6 Prices 171
- 10.7 Producers 171
11 GREEN AMMONIA 172
- 11.1 Production 172
- 11.1.1 Decarbonisation of ammonia production 174
- 11.1.2 Green ammonia projects 175
- 11.2 Green ammonia synthesis methods 175
- 11.2.1 Haber-Bosch process 175
- 11.2.2 Biological nitrogen fixation 176
- 11.2.3 Electrochemical production 177
- 11.2.4 Chemical looping processes 177
- 11.3 SWOT analysis 177
- 11.4 Blue ammonia 178
- 11.4.1 Blue ammonia projects 178
- 11.5 Markets and applications 179
- 11.5.1 Chemical energy storage 179
- 11.5.1.1 Ammonia fuel cells 179
- 11.5.2 Marine fuel 180
- 11.5.1 Chemical energy storage 179
- 11.6 Prices 182
- 11.7 Estimated market demand 184
- 11.8 Companies and projects 184
12 BIOFUELS FROM CARBON CAPTURE 186
- 12.1 Overview 187
- 12.2 CO2 capture from point sources 189
- 12.3 Production routes 190
- 12.4 SWOT analysis 191
- 12.5 Direct air capture (DAC) 192
- 12.5.1 Description 192
- 12.5.2 Deployment 194
- 12.5.3 Point source carbon capture versus Direct Air Capture 194
- 12.5.4 Technologies 195
- 12.5.4.1 Solid sorbents 196
- 12.5.4.2 Liquid sorbents 198
- 12.5.4.3 Liquid solvents 198
- 12.5.4.4 Airflow equipment integration 199
- 12.5.4.5 Passive Direct Air Capture (PDAC) 199
- 12.5.4.6 Direct conversion 200
- 12.5.4.7 Co-product generation 200
- 12.5.4.8 Low Temperature DAC 200
- 12.5.4.9 Regeneration methods 201
- 12.5.5 Commercialization and plants 201
- 12.5.6 Metal-organic frameworks (MOFs) in DAC 202
- 12.5.7 DAC plants and projects-current and planned 202
- 12.5.8 Markets for DAC 209
- 12.5.9 Costs 210
- 12.5.10 Challenges 215
- 12.5.11 Players and production 216
- 12.6 Carbon utilization for biofuels 216
- 12.6.1 Production routes 220
- 12.6.1.1 Electrolyzers 221
- 12.6.1.2 Low-carbon hydrogen 221
- 12.6.2 Products & applications 223
- 12.6.2.1 Vehicles 223
- 12.6.2.2 Shipping 223
- 12.6.2.3 Aviation 224
- 12.6.2.4 Costs 225
- 12.6.2.5 Ethanol 225
- 12.6.2.6 Methanol 226
- 12.6.2.7 Sustainable Aviation Fuel 230
- 12.6.2.8 Methane 230
- 12.6.2.9 Algae based biofuels 231
- 12.6.2.10 CO₂-fuels from solar 232
- 12.6.3 Challenges 234
- 12.6.4 SWOT analysis 235
- 12.6.5 Companies 236
- 12.6.1 Production routes 220
13 BIO-OILS (PYROLYSIS OIL) 238
- 13.1 Description 238
- 13.1.1 Advantages of bio-oils 239
- 13.2 Production 240
- 13.2.1 Fast Pyrolysis 240
- 13.2.2 Costs of production 241
- 13.2.3 Upgrading 241
- 13.3 SWOT analysis 242
- 13.4 Applications 243
- 13.5 Bio-oil producers 243
- 13.6 Prices 244
14 REFUSE-DERIVED FUELS (RDF) 245
- 14.1 Overview 245
- 14.2 Production 246
- 14.2.1 Production process 246
- 14.2.2 Mechanical biological treatment 246
- 14.3 Markets 247
15 COMPANY PROFILES 248
- 15.1 Aduro Clean Technologies, Inc. 248
- 15.2 Aemetis, Inc. 249
- 15.3 Agilyx 250
- 15.4 Air Company 251
- 15.5 Agra Energy 251
- 15.6 Aircela Inc 252
- 15.7 Algenol 252
- 15.8 Alpha Biofuels (Singapore) Pte Ltd 253
- 15.9 Andritz AG 254
- 15.10 APChemi Pvt. Ltd. 255
- 15.11 Apeiron Bioenergy 256
- 15.12 Aperam BioEnergia 257
- 15.13 Applied Research Associates, Inc. (ARA) 257
- 15.14 Arcadia eFuels 258
- 15.15 ASB Biodiesel Limited 259
- 15.16 Atmonia 259
- 15.17 Avantium B.V. 260
- 15.18 BASF 261
- 15.19 BBCA Biochemical & GALACTIC Lactic Acid Co., Ltd. 262
- 15.20 BDI-BioEnergy International GmbH 263
- 15.21 BEE Biofuel 264
- 15.22 Benefuel Inc. 264
- 15.23 Bio2Oil ApS 264
- 15.24 Bio-Oils 265
- 15.25 BIOD Energy 266
- 15.26 Biofy 266
- 15.27 Biofine Technology, LLC 266
- 15.28 BiogasClean A/S 267
- 15.29 Biojet AS 268
- 15.30 Bloom Biorenewables SA 268
- 15.31 BlueAlp Technology 269
- 15.32 Blue BioFuels, Inc. 269
- 15.33 Braven Environmental, LLC 270
- 15.34 Brightmark Energy 271
- 15.35 bse Methanol GmbH 272
- 15.36 BTG Bioliquids B.V. 273
- 15.37 Byogy Renewables, Inc. 274
- 15.38 C1 Green Chemicals AG 274
- 15.39 Caphenia GmbH 275
- 15.40 Carbonade 275
- 15.41 Carbon Collect Limited 276
- 15.42 Carbon Engineering Ltd. 277
- 15.43 Carbon Infinity Limited 278
- 15.44 Carbon Recycling International 279
- 15.45 Carbon Sink LLC 280
- 15.46 Carbyon BV 281
- 15.47 Cargill 282
- 15.48 Cassandra Oil AB 282
- 15.49 Casterra Ag Ltd. 283
- 15.50 Celtic Renewables Ltd. 284
- 15.51 CERT Systems, Inc. 284
- 15.52 CF Industries Holdings, Inc. 285
- 15.53 Chitose Bio Evolution Pte Ltd. 286
- 15.54 Circla Nordic 286
- 15.55 Climeworks 287
- 15.56 CNF Biofuel AS 288
- 15.57 Cool Planet Energy Systems 289
- 15.58 Corsair Group International 289
- 15.59 Coval Energy B.V. 290
- 15.60 Crimson Renewable Energy LLC 291
- 15.61 C-Zero Inc. 291
- 15.62 D-CRBN 292
- 15.63 Diamond Green Diesel LLC 293
- 15.64 Dimensional Energy 293
- 15.65 Royal DSM N.V 294
- 15.66 Dioxide Materials 295
- 15.67 Dioxycle 296
- 15.68 Domsjö Fabriker AB 297
- 15.69 DuPont 299
- 15.70 EcoCeres, Inc. 300
- 15.71 Eco Environmental 301
- 15.72 Eco Fuel Technology, Inc 301
- 15.73 Electro-Active Technologies Inc. 302
- 15.74 Emerging Fuels Technology (EFT) 303
- 15.75 Encina Development Group, LLC 304
- 15.76 Enerkem, Inc. 305
- 15.77 Eneus Energy 305
- 15.78 Enexor BioEnergy 306
- 15.79 Eni Sustainable Mobility 306
- 15.80 Ensyn Corporation 307
- 15.81 Euglena Co., Ltd. 308
- 15.82 EnviTec Biogas AG 308
- 15.83 Firefly Green Fuels 309
- 15.84 Forge Hydrocarbons Corporation 310
- 15.85 FuelPositive Corp. 311
- 15.86 Fuenix Ecogy 312
- 15.87 Fulcrum BioEnergy, Inc. 313
- 15.88 Galp Energia, SGPS, S.A. 313
- 15.89 GenCell Energy 314
- 15.90 Genecis Bioindustries, Inc. 315
- 15.91 Gevo, Inc 316
- 15.92 GIDARA Energy B.V. 316
- 15.93 Graforce Hydro GmbH 317
- 15.94 Granbio Technologies 318
- 15.95 Green COP Pte Ltd 320
- 15.96 Green Earth Institute 320
- 15.97 Green Fuel 321
- 15.98 Hago Energetics 321
- 15.99 Haldor Topsoe A/S 322
- 15.100 Handerek Technologies 322
- 15.101 Hero BX 323
- 15.102 Honeywell 324
- 15.103 Hyundai Oilbank 325
- 15.104 Oy Hydrocell Ltd. 326
- 15.105 Hy2Gen AG 326
- 15.106 HYCO1, Inc. 327
- 15.107 HydGene Renewables 328
- 15.108 Ineratec GmbH 328
- 15.109 Infinitree LLC 330
- 15.110 Infinium Electrofuels 331
- 15.111 Innoltek 332
- 15.112 Jilin COFCO Biomaterial Corporation 332
- 15.113 Jupiter Ionics Pty Ltd 333
- 15.114 Kaidi 334
- 15.115 Kanteleen Voima 335
- 15.116 Khepra 335
- 15.117 Klean Industries 336
- 15.118 Krajete GmbH 336
- 15.119 Kvasir Technologies 338
- 15.120 LanzaJet, Inc. 338
- 15.121 Lanzatech 339
- 15.122 Lectrolyst LLC 341
- 15.123 Licella 342
- 15.124 Liquid Wind AB 343
- 15.125 Lummus Technology LLC 343
- 15.126 LXP Group GmbH 344
- 15.127 Manta Biofuel, LLC 345
- 15.128 Mash Energy ApS 346
- 15.129 Mercurius Biorefining Inc 346
- 15.130 MOFWORX 347
- 15.131 Mote, Inc. 347
- 15.132 NeoZeo AB 348
- 15.133 Neste 349
- 15.134 New Hope Energy 349
- 15.135 NewEnergyBlue LLC 350
- 15.136 Nexus Fuels, LLC 351
- 15.137 Nordic ElectroFuel 352
- 15.138 Nordsol 352
- 15.139 Norsk e-Fuel AS 353
- 15.140 Nova Pangaea Technologies (UK) Ltd. 354
- 15.141 Novozymes A/S 354
- 15.142 Obeo Biogas 355
- 15.143 Oberon Fuels Inc. 356
- 15.144 Obrist Group 356
- 15.145 O.C.O 357
- 15.146 Opus 12, Inc. 357
- 15.147 ORLEN Południe 358
- 15.148 OxEon Energy, LLC 358
- 15.149 Phillips 66 359
- 15.150 Phoenix BioPower 360
- 15.151 Photanol B.V. 360
- 15.152 Phycobloom 361
- 15.153 Phytonix Corporation 362
- 15.154 Plastic2Oil, Inc. 362
- 15.155 Plastogaz SA 363
- 15.156 Polycycl 364
- 15.157 Praj Industries Ltd. 365
- 15.158 Preem AB 367
- 15.159 Prometheus Fuels, Inc. 367
- 15.160 Proton Power, Inc. 368
- 15.161 Provectus Algae 368
- 15.162 Pure Lignin Environmental Technology 368
- 15.163 Pyrochar 369
- 15.164 Qairos Energies 370
- 15.165 Quadrise PLC 371
- 15.166 QuantaFuel ASA 372
- 15.167 RenFuel 373
- 15.168 Renmatix 373
- 15.169 Renovare Fuels 376
- 15.170 Repsol 377
- 15.171 Resilient Energi 378
- 15.172 Resynergi, Inc. 378
- 15.173 Reverion GmbH 379
- 15.174 RISE Research Institutes of Sweden AB 380
- 15.175 SABIC 380
- 15.176 Sainc Energy Limited 381
- 15.177 SBI BioEnergy Inc. 382
- 15.178 Sea6 Energy 382
- 15.179 Sekab E-Technology AB 383
- 15.180 Shell 384
- 15.181 Silva Green Fuel 385
- 15.182 SkyNRG 385
- 15.183 Skytree BV 385
- 15.184 St1 Oy 386
- 15.185 Steeper Energy Aps 387
- 15.186 Stiesdal 388
- 15.187 Sumitomo 389
- 15.188 SunCoal Industries GmbH 390
- 15.189 Sundrop Fuels, Inc. 390
- 15.190 Sunho Biodiesel Corporation 391
- 15.191 Sunfire GmbH 392
- 15.192 Synhelion 393
- 15.193 Synkero 394
- 15.194 Syzygy Plasmonics, Inc. 394
- 15.195 Swedish Biofuels AB 395
- 15.196 Takachar 395
- 15.197 TotalEnergies 396
- 15.198 Tree Energy Solutions (TES-H2) 397
- 15.199 Twelve 399
- 15.200 Uflex 401
- 15.201 UPM Biofuels 401
- 15.202 Velocys 402
- 15.203 VERBIO Vereinigte BioEnergie AG 403
- 15.204 Vertimass LLC 404
- 15.205 Vertoro 405
- 15.206 Versalis SpA 406
- 15.207 Vertus Energy Ltd. 408
- 15.208 Virent Inc. 409
- 15.209 Viridos, Inc. 410
- 15.210 WasteFuel 410
- 15.211 XFuel 411
- 15.212 Yield10 Bioscience, Inc. 411
16 REFERENCES 413
List of Tables
- Table 1. Market drivers for biofuels. 26
- Table 2. Market challenges for biofuels. 27
- Table 3. Liquid biofuels market 2020-2035, by type and production. 29
- Table 4. Industry developments in biofuels 2022-2024. 31
- Table 5. Comparison of biofuels. 34
- Table 6. Comparison of biofuel costs (USD/liter) 2023, by type. 39
- Table 7. Categories and examples of solid biofuel. 40
- Table 8. Comparison of biofuels and e-fuels to fossil and electricity. 43
- Table 9. Classification of biomass feedstock. 44
- Table 10. Biorefinery feedstocks. 45
- Table 11. Feedstock conversion pathways. 45
- Table 12. First-Generation Feedstocks. 46
- Table 13. Lignocellulosic ethanol plants and capacities. 48
- Table 14. Comparison of pulping and biorefinery lignins. 49
- Table 15. Commercial and pre-commercial biorefinery lignin production facilities and processes 50
- Table 16. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol. 52
- Table 17. Properties of microalgae and macroalgae. 54
- Table 18. Yield of algae and other biodiesel crops. 55
- Table 19. Advantages and disadvantages of biofuels, by generation. 56
- Table 20. Biodiesel by generation. 67
- Table 21. Biodiesel production techniques. 70
- Table 22. Summary of pyrolysis technique under different operating conditions. 71
- Table 23. Biomass materials and their bio-oil yield. 72
- Table 24. Biofuel production cost from the biomass pyrolysis process. 73
- Table 25. Properties of vegetable oils in comparison to diesel. 74
- Table 26. Main producers of HVO and capacities. 76
- Table 27. Example commercial Development of BtL processes. 77
- Table 28. Pilot or demo projects for biomass to liquid (BtL) processes. 77
- Table 29. Global biodiesel consumption, 2010-2035 (M litres/year). 82
- Table 30. Global renewable diesel consumption, 2010-2035 (M litres/year). 87
- Table 31. Renewable diesel price ranges. 88
- Table 32. Advantages and disadvantages of Bio-aviation fuel. 89
- Table 33. Production pathways for Bio-aviation fuel. 91
- Table 34. Current and announced Bio-aviation fuel facilities and capacities. 94
- Table 35. Global bio-jet fuel consumption 2019-2035 (Million litres/year). 95
- Table 36. Bio-based naphtha markets and applications. 99
- Table 37. Bio-naphtha market value chain. 99
- Table 38. Bio-naphtha pricing against petroleum-derived naphtha and related fuel products. 101
- Table 39. Bio-based Naphtha production capacities, by producer. 101
- Table 40. Comparison of biogas, biomethane and natural gas. 106
- Table 41. Processes in bioethanol production. 114
- Table 42. Microorganisms used in CBP for ethanol production from biomass lignocellulosic. 115
- Table 43. Ethanol consumption 2010-2035 (million litres). 116
- Table 44. Biogas feedstocks. 122
- Table 45. Existing and planned bio-LNG production plants. 129
- Table 46. Methods for capturing carbon dioxide from biogas. 130
- Table 47. Comparison of different Bio-H2 production pathways. 135
- Table 48. Markets and applications for biohydrogen. 137
- Table 49. Summary of gasification technologies. 144
- Table 50. Overview of hydrothermal cracking for advanced chemical recycling. 150
- Table 51. Applications of e-fuels, by type. 153
- Table 52. Overview of e-fuels. 154
- Table 53. Benefits of e-fuels. 154
- Table 54. eFuel production facilities, current and planned. 159
- Table 55. Main characteristics of different electrolyzer technologies. 161
- Table 56. Market challenges for e-fuels. 165
- Table 57. E-fuels companies. 166
- Table 58. Algae-derived biofuel producers. 171
- Table 59. Green ammonia projects (current and planned). 175
- Table 60. Blue ammonia projects. 178
- Table 61. Ammonia fuel cell technologies. 179
- Table 62. Market overview of green ammonia in marine fuel. 180
- Table 63. Summary of marine alternative fuels. 181
- Table 64. Estimated costs for different types of ammonia. 183
- Table 65. Main players in green ammonia. 184
- Table 66. Market overview for CO2 derived fuels. 187
- Table 67. Point source examples. 189
- Table 68. Advantages and disadvantages of DAC. 193
- Table 69. Companies developing airflow equipment integration with DAC. 199
- Table 70. Companies developing Passive Direct Air Capture (PDAC) technologies. 199
- Table 71. Companies developing regeneration methods for DAC technologies. 201
- Table 72. DAC companies and technologies. 201
- Table 73. DAC technology developers and production. 203
- Table 74. DAC projects in development. 208
- Table 75. Markets for DAC. 209
- Table 76. Costs summary for DAC. 210
- Table 77. Cost estimates of DAC. 213
- Table 78. Challenges for DAC technology. 215
- Table 79. DAC companies and technologies. 216
- Table 80. Market overview for CO2 derived fuels. 218
- Table 81. Main production routes and processes for manufacturing fuels from captured carbon dioxide. 221
- Table 82. CO₂-derived fuels projects. 222
- Table 83. Thermochemical methods to produce methanol from CO2. 227
- Table 84. pilot plants for CO2-to-methanol conversion. 229
- Table 85. Microalgae products and prices. 232
- Table 86. Main Solar-Driven CO2 Conversion Approaches. 234
- Table 87. Market challenges for CO2 derived fuels. 234
- Table 88. Companies in CO2-derived fuel products. 236
- Table 89. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils. 239
- Table 90. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil. 240
- Table 91. Main techniques used to upgrade bio-oil into higher-quality fuels. 241
- Table 92. Markets and applications for bio-oil. 243
- Table 93. Bio-oil producers. 244
- Table 94. Key resource recovery technologies 246
- Table 95. Markets and end uses for refuse-derived fuels (RDF). 247
- Table 96. Granbio Nanocellulose Processes. 318
List of Figures
- Figure 1. Liquid biofuel production and consumption (in thousands of m3), 2000-2022. 28
- Figure 2. Distribution of global liquid biofuel production in 2022. 29
- Figure 3. Diesel and gasoline alternatives and blends. 37
- Figure 4. SWOT analysis for biofuels. 39
- Figure 5. Schematic of a biorefinery for production of carriers and chemicals. 50
- Figure 6. Hydrolytic lignin powder. 53
- Figure 7. SWOT analysis for energy crops in biofuels. 59
- Figure 8. SWOT analysis for agricultural residues in biofuels. 61
- Figure 9. SWOT analysis for Manure, sewage sludge and organic waste in biofuels. 63
- Figure 10. SWOT analysis for forestry and wood waste in biofuels. 65
- Figure 11. Range of biomass cost by feedstock type. 65
- Figure 12. Regional production of biodiesel (billion litres). 67
- Figure 13. SWOT analysis for biodiesel. 69
- Figure 14. Flow chart for biodiesel production. 74
- Figure 15. Biodiesel (B20) average prices, current and historical, USD/litre. 80
- Figure 16. Global biodiesel consumption, 2010-2035 (M litres/year). 82
- Figure 17. SWOT analysis for renewable iesel. 86
- Figure 18. Global renewable diesel consumption, 2010-2035 (M litres/year). 87
- Figure 19. SWOT analysis for Bio-aviation fuel. 90
- Figure 20. Global bio-jet fuel consumption to 2019-2035 (Million litres/year). 95
- Figure 21. SWOT analysis for bio-naphtha. 98
- Figure 22. Bio-based naphtha production capacities, 2018-2035 (tonnes). 102
- Figure 23. SWOT analysis biomethanol. 104
- Figure 24. Renewable Methanol Production Processes from Different Feedstocks. 105
- Figure 25. Production of biomethane through anaerobic digestion and upgrading. 106
- Figure 26. Production of biomethane through biomass gasification and methanation. 107
- Figure 27. Production of biomethane through the Power to methane process. 108
- Figure 28. SWOT analysis for ethanol. 110
- Figure 29. Ethanol consumption 2010-2035 (million litres). 116
- Figure 30. Properties of petrol and biobutanol. 118
- Figure 31. Biobutanol production route. 118
- Figure 32. Biogas and biomethane pathways. 121
- Figure 33. Overview of biogas utilization. 123
- Figure 34. Biogas and biomethane pathways. 124
- Figure 35. Schematic overview of anaerobic digestion process for biomethane production. 126
- Figure 36. Schematic overview of biomass gasification for biomethane production. 126
- Figure 37. SWOT analysis for biogas. 127
- Figure 38. Total syngas market by product in MM Nm³/h of Syngas, 2021. 132
- Figure 39. SWOT analysis for biohydrogen. 134
- Figure 40. Waste plastic production pathways to (A) diesel and (B) gasoline 140
- Figure 41. Schematic for Pyrolysis of Scrap Tires. 142
- Figure 42. Used tires conversion process. 143
- Figure 43. Total syngas market by product in MM Nm³/h of Syngas, 2021. 145
- Figure 44. Overview of biogas utilization. 147
- Figure 45. Biogas and biomethane pathways. 148
- Figure 46. SWOT analysis for chemical recycling of biofuels. 151
- Figure 47. Process steps in the production of electrofuels. 152
- Figure 48. Mapping storage technologies according to performance characteristics. 153
- Figure 49. Production process for green hydrogen. 156
- Figure 50. SWOT analysis for E-fuels. 157
- Figure 51. E-liquids production routes. 158
- Figure 52. Fischer-Tropsch liquid e-fuel products. 158
- Figure 53. Resources required for liquid e-fuel production. 159
- Figure 54. Levelized cost and fuel-switching CO2 prices of e-fuels. 163
- Figure 55. Cost breakdown for e-fuels. 165
- Figure 56. Pathways for algal biomass conversion to biofuels. 167
- Figure 57. SWOT analysis for algae-derived biofuels. 168
- Figure 58. Algal biomass conversion process for biofuel production. 170
- Figure 59. Classification and process technology according to carbon emission in ammonia production. 172
- Figure 60. Green ammonia production and use. 174
- Figure 61. Schematic of the Haber Bosch ammonia synthesis reaction. 176
- Figure 62. Schematic of hydrogen production via steam methane reformation. 176
- Figure 63. SWOT analysis for green ammonia. 178
- Figure 64. Estimated production cost of green ammonia. 183
- Figure 65. Projected annual ammonia production, million tons. 184
- Figure 66. CO2 capture and separation technology. 186
- Figure 67. Conversion route for CO2-derived fuels and chemical intermediates. 188
- Figure 68. Conversion pathways for CO2-derived methane, methanol and diesel. 189
- Figure 69. SWOT analysis for biofuels from carbon capture. 191
- Figure 70. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse. 192
- Figure 71. Global CO2 capture from biomass and DAC in the Net Zero Scenario. 193
- Figure 72. DAC technologies. 195
- Figure 73. Schematic of Climeworks DAC system. 196
- Figure 74. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland. 197
- Figure 75. Flow diagram for solid sorbent DAC. 198
- Figure 76. Direct air capture based on high temperature liquid sorbent by Carbon Engineering. 198
- Figure 77. Global capacity of direct air capture facilities. 203
- Figure 78. Global map of DAC and CCS plants. 209
- Figure 79. Schematic of costs of DAC technologies. 211
- Figure 80. DAC cost breakdown and comparison. 212
- Figure 81. Operating costs of generic liquid and solid-based DAC systems. 214
- Figure 82. Conversion route for CO2-derived fuels and chemical intermediates. 219
- Figure 83. Conversion pathways for CO2-derived methane, methanol and diesel. 220
- Figure 84. CO2 feedstock for the production of e-methanol. 228
- Figure 85. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2. 233
- Figure 86. SWOT analysis: CO2 utilization in fuels. 235
- Figure 87. Audi synthetic fuels. 236
- Figure 88. Bio-oil upgrading/fractionation techniques. 241
- Figure 89. SWOT analysis for bio-oils. 243
- Figure 90. ANDRITZ Lignin Recovery process. 255
- Figure 91. ChemCyclingTM prototypes. 261
- Figure 92. ChemCycling circle by BASF. 262
- Figure 93. FBPO process 273
- Figure 94. Direct Air Capture Process. 277
- Figure 95. CRI process. 280
- Figure 96. Cassandra Oil process. 283
- Figure 97. Colyser process. 290
- Figure 98. ECFORM electrolysis reactor schematic. 296
- Figure 99. Dioxycle modular electrolyzer. 297
- Figure 100. Domsjö process. 298
- Figure 101. FuelPositive system. 311
- Figure 102. INERATEC unit. 329
- Figure 103. Infinitree swing method. 331
- Figure 104. Audi/Krajete unit. 337
- Figure 105. Enfinity cellulosic ethanol technology process. 366
- Figure 106: Plantrose process. 374
- Figure 107. Sunfire process for Blue Crude production. 393
- Figure 108. Takavator. 396
- Figure 109. O12 Reactor. 399
- Figure 110. Sunglasses with lenses made from CO2-derived materials. 400
- Figure 111. CO2 made car part. 400
- Figure 112. The Velocys process. 403
- Figure 113. Goldilocks process and applications. 406
- Figure 114. The Proesa® Process. 407
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer.
To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.