- Published: June 2024
- Pages: 176
- Tables: 59
- Figures: 24
Technological advancements are explored including nanomaterials, green energetics, advanced formulations, AI/modeling, additive manufacturing, safety/sensitivity studies, bioengineering approaches, green/insensitive materials, and propulsion system innovations. Customer segmentation analyzes energetic materials usage across military, aerospace, mining, construction, oil/gas, and pyrotechnic sectors. Comprehensive geographic market intelligence covers the US, China, India, Asia-Pacific, Russia, Middle East, Europe and Latin America.
Forecasts are provided for the total addressable market size by application through 2035. Historical data from 2020 quantifies the overall market size (metric tons and $ millions) for key energetic material types like RDX, HMX, CL-20, PETN and others. Projections to 2035 are broken down by type, revenue source and world region.
Risks, opportunities and future outlook considerations round out this definitive energetic materials market report. The competitive landscape is mapped with profiles of leading companies. Companies profiled include BAE Systems, Chemring Nobel, Hanwha Corporation, Island Pyrochemical Industries (IPI), LIG Nex1, Nammo AS, Nitro-Chem SA, Northrop Grumman, Poongsan Corporation, Rheinmetall Defence, Saudi Chemical and main Russian, Chinese and India producers.
1 EXECUTIVE SUMMARY 13
- 1.1 Overview of the global energetic materials market 13
- 1.2 High Performance Energetic Materials 14
- 1.3 Key market trends 15
- 1.4 Growth drivers 17
- 1.5 Market Challenges 19
- 1.6 Biobased energetic materials 21
2 INTRODUCTION 23
- 2.1 Definition and classification of energetic materials 23
- 2.2 Precursors 24
- 2.3 Types of high-performance energetic materials 25
- 2.3.1 RDX 26
- 2.3.1.1 Description and Manufacture 26
- 2.3.1.2 Advantages 27
- 2.3.1.3 Disadvantages 27
- 2.3.1.4 Applications and Market Demand 27
- 2.3.2 HMX 31
- 2.3.2.1 Description and Manufacture 31
- 2.3.2.2 Advantages 32
- 2.3.2.3 Disadvantages 32
- 2.3.2.4 Applications and Market Demand 32
- 2.3.3 CL-20 (Hexanitrohexaazaisowurtzitane) 36
- 2.3.3.1 Description and Manufacture 36
- 2.3.3.2 Advantages 38
- 2.3.3.3 Disadvantages 38
- 2.3.3.4 Applications and Market Demand 38
- 2.3.4 TNT (Trinitrotoluene) 44
- 2.3.4.1 Description and Manufacture 44
- 2.3.4.2 Advantages 44
- 2.3.4.3 Disadvantages 45
- 2.3.4.4 Applications and Market Demand 45
- 2.3.5 PETN (Pentaerythritol tetranitrate) 49
- 2.3.5.1 Description and Manufacture 49
- 2.3.5.2 Advantages 50
- 2.3.5.3 Disadvantages 50
- 2.3.5.4 Applications and Market Demand 50
- 2.3.6 NTO (3-Nitro-1,2,4-triazol-5-one) 54
- 2.3.6.1 Description and Manufacture 54
- 2.3.6.2 Advantages 55
- 2.3.6.3 Disadvantages 55
- 2.3.6.4 Applications and Market Demand 56
- 2.3.7 TATB (Triaminotrinitrobenzene) 59
- 2.3.7.1 Description and Manufacture 59
- 2.3.7.2 Advantages 60
- 2.3.7.3 Disadvantages 60
- 2.3.7.4 Applications and Market Demand 61
- 2.3.8 FOX-7 (1,1-Diamino-2,2-dinitroethene) 64
- 2.3.8.1 Description and Manufacture 64
- 2.3.8.2 Advantages 65
- 2.3.8.3 Disadvantages 65
- 2.3.8.4 Applications and Market Demand 66
- 2.3.9 ADN (Ammonium dinitramide) 69
- 2.3.9.1 Description and Manufacture 69
- 2.3.9.2 Advantages 70
- 2.3.9.3 Disadvantages 70
- 2.3.9.4 Applications and Market Demand 71
- 2.3.10 ANPz (Aminonitropiperazine) 74
- 2.3.10.1 Description and Manufacture 74
- 2.3.10.2 Advantages 75
- 2.3.10.3 Disadvantages 75
- 2.3.10.4 Applications and Market Demand 76
- 2.3.11 ONC (Octanitrocubane) 80
- 2.3.11.1 Description and Manufacture 80
- 2.3.11.2 Advantages 81
- 2.3.11.3 Disadvantages 81
- 2.3.11.4 Applications and Market Demand 82
- 2.3.12 TADA (Triaminodinitroazobenzene) 83
- 2.3.12.1 Description and Manufacture 83
- 2.3.12.2 Advantages 84
- 2.3.12.3 Disadvantages 84
- 2.3.12.4 Applications and Market Demand 84
- 2.3.1 RDX 26
- 2.4 Manufacturing processes and technologies 85
3 MARKETS AND APPLICATIONS 87
- 3.1 Military and defense 87
- 3.1.1 Overview 87
- 3.1.2 Applications 88
- 3.1.2.1 Warheads 88
- 3.1.2.2 Ammunition 88
- 3.1.2.3 Boosters 89
- 3.1.2.4 Detonators and Initiators 89
- 3.1.2.5 Blasting Caps and Primers 89
- 3.1.2.6 Torpedoes and Mines 90
- 3.1.2.7 Military Demolition 90
- 3.1.2.8 Energetic Composites 90
- 3.1.2.9 Unmanned Combat Vehicles and Smaller Weapon Systems 91
- 3.2 Aerospace and space exploration 92
- 3.2.1 Overview 92
- 3.2.2 Applications 93
- 3.2.2.1 Rocket Propulsion 93
- 3.2.2.2 Gas Generators and Pyrotechnic Devices 93
- 3.2.2.3 Explosive Bolts and Separation Mechanisms 93
- 3.2.2.4 Airbag Deployment Systems 94
- 3.2.2.5 Spacecraft Thrusters 94
- 3.2.2.6 Emerging concepts 94
- 3.3 Mining and quarrying 95
- 3.3.1 Overview 95
- 3.3.2 Applications 96
- 3.3.2.1 Quarrying 96
- 3.3.2.2 Metal Mining 97
- 3.3.2.3 Coal Mining 97
- 3.3.2.4 Non-Metal Mining 97
- 3.4 Construction and demolition 98
- 3.4.1 Overview 98
- 3.4.1.1 Building Demolition 99
- 3.4.1.2 Concrete and Rock Breaking 100
- 3.4.1.3 Underwater Demolition 100
- 3.4.1.4 Explosive Cutting 100
- 3.4.1.5 Blasting Capsules 101
- 3.4.1 Overview 98
- 3.5 Oil and gas 102
- 3.5.1 Overview 102
- 3.5.2 Applications 103
- 3.5.2.1 Oil well perforating charges 103
- 3.5.2.2 Oil and Gas Well Stimulation 103
- 3.5.2.3 Geophysical Exploration 104
- 3.5.2.4 Other 104
- 3.6 Pyrotechnics 106
- 3.6.1 Overview 106
- 3.6.2 Applications 107
- 3.6.2.1 Fireworks 107
- 3.6.2.2 Signal Flares 107
- 3.6.2.3 Explosive Tracers 107
- 3.6.2.4 Special Effects 108
- 3.7 Other applications 108
- 3.7.1 Shockwave Generators 108
- 3.7.2 Additive Manufacturing 108
- 3.7.3 Medical Research 109
4 MARKET ANALYSIS 111
- 4.1 Regulations 111
- 4.1.1 United States 112
- 4.1.2 Europe 113
- 4.1.3 Asia-Pacific 115
- 4.1.3.1 China 115
- 4.1.3.2 Japan 115
- 4.1.3.3 South Korea 115
- 4.1.3.4 Australia 116
- 4.1.3.5 India 116
- 4.1.3.6 Singapore 117
- 4.2 Price and Cost Analysis 117
- 4.2.1 Market prices 117
- 4.3 Supply Chain and Manufacturing 119
- 4.3.1 Supply chain for energetic materials 119
- 4.3.2 Export and intra-country supply chains 120
- 4.4 Competitive Landscape 123
- 4.4.1 Market players 123
- 4.4.1.1 North America 124
- 4.4.1.2 China 125
- 4.4.1.3 Rest of Asia-Pacific 126
- 4.4.1.4 Europe 127
- 4.4.1.5 Rest of the World 128
- 4.4.1 Market players 123
- 4.5 Technological Advancements 129
- 4.5.1 Nanomaterials 130
- 4.5.2 Green Energetics 130
- 4.5.3 Advanced Formulations 130
- 4.5.4 Safety and Sensitivity Studies 130
- 4.5.5 Advanced Synthesis Techniques 131
- 4.5.6 Biological and Bioengineering Approaches 131
- 4.5.7 Additive Manufacturing 133
- 4.5.8 Advancements in Theoretical Modeling, Artificial Intelligence (AI), and Machine Learning 134
- 4.5.9 Green and Insensitive Energetic Materials 135
- 4.6 Customer Segmentation 137
- 4.7 Geographical Markets 140
- 4.7.1 United States 140
- 4.7.2 China 141
- 4.7.3 India 141
- 4.7.4 Rest of Asia-Pacific 141
- 4.7.5 Australia 141
- 4.7.6 Russia 141
- 4.7.7 Middle East 142
- 4.7.8 Europe 142
- 4.7.9 Latin America 142
- 4.8 Addressable Market Size 142
- 4.8.1 Risks and Opportunities 143
- 4.9 Future Outlook 145
5 COMPANY PROFILES 147 (38 company profiles)
6 RESEARCH METHODOLOGY 171
7 REFERENCES 172
List of Tables
- Table 1. Common high-performance energetic materials- properties, advantages, and limitations. 14
- Table 2. Market trends in energetic materials 15
- Table 3. Energetic materials market growth drivers. 17
- Table 4. Market challenges in energetic materials. 20
- Table 5. Synthesis methods for RDX. 26
- Table 6. Global production of RDX, 2022-2035 (Metric Tons). 28
- Table 7. Global revenues for RDX, 2022-2035 (Millions USD). 29
- Table 8. HMX synthesis methods. 31
- Table 9. Global production of HMX, 2022-2035 (Metric Tons). 33
- Table 10. Global revenues for HMX, 2022-2035 (Millions USD). 34
- Table 11. Synthesis Methods for CL-20. 37
- Table 12. Global production of CL-20, 2022-2035 (Metric Tons). 41
- Table 13. Global revenues for CL-20, 2022-2035 (Millions USD). 42
- Table 14. Synthesis Methods for TNT. 44
- Table 15. Global production of TNT, 2022-2035 (Metric Tons). 46
- Table 16. Global revenues for TNT, 2022-2035 (Millions USD). 47
- Table 17. Synthesis Methods for PETN (Pentaerythritol Tetranitrate). 49
- Table 18. Global production of PETN, 2022-2035 (Metric Tons). 51
- Table 19. Global revenues for PETN, 2022-2035 (Millions USD). 52
- Table 20. Synthesis Methods for NTO 54
- Table 21. Global production of NTO, 2022-2035 (Metric Tons). 56
- Table 22. Global revenues for NTO, 2022-2035 (Millions USD). 57
- Table 23. Synthesis Methods for TATB. 59
- Table 24. Global production of TATB, 2022-2035 (Metric Tons). 61
- Table 25. Global revenues for TATB, 2022-2035 (Millions USD). 62
- Table 26. Synthesis Methods for FOX-7 (1,1-Diamino-2,2-dinitroethene). 64
- Table 27. Global production of FOX-7, 2022-2035 (Metric Tons). 66
- Table 28. Global revenues for FOX-7, 2022-2035 (Millions USD). 67
- Table 29. Synthesis Methods for ADN (Ammonium Dinitramide). 69
- Table 30. Global production of ADN, 2022-2035 (Metric Tons). 71
- Table 31. Global revenues for ADN, 2022-2035 (Millions USD). 72
- Table 32. Synthesis Methods for ANPz (Aminonitropiperazine) 74
- Table 33. Global production of ANPz, 2022-2035 (Metric Tons). 76
- Table 34. Global revenues for ANPz,, 2022-2035 (Millions USD). 78
- Table 35. Synthesis Methods for ONC (Octanitrocubane). 80
- Table 36. Synthesis Methods for TADA (Triaminodinitroazobenzene). 83
- Table 37. Manufacturing processes and technologies for energetic materials-comparative analysis. 85
- Table 38. Application by energetic material type in military and defense. 87
- Table 39. High-performance energetic materials in aerospace and space exploration. 92
- Table 40. Application by energetic material type in mining and quarrying. 96
- Table 41. Application by energetic material type in construction and demolition. 98
- Table 42. Application by high-performance energetic material type in oil and gas. 102
- Table 43. Application by high-performance energetic material type in pyrotechnics. 106
- Table 44. Properties, Advantages, and Limitations of High-Performance Energetic Materials in Pyrotechnics. 107
- Table 45. Application by High-Performance Energetic Material Type in Shockwave Generators. 108
- Table 46. Application by High-Performance Energetic Material Type in Additive Manufacturing. 109
- Table 47. Application by High-Performance Energetic Material Type in Medical Research. 109
- Table 48. Market price for common energetic materials ($/lb). 117
- Table 49. Market players in high-performance energetic materials in North America. 124
- Table 50. Market players in high-performance energetic materials in China. 125
- Table 51. Market players in high-performance energetic materials in Rest of Asia-Pacific. 126
- Table 52. Market players in high-performance energetic materials in Europe. 127
- Table 53. Market players in high-performance energetic materials in Rest of the World. 128
- Table 54. Additive Manufacturing Approaches to High-Performance Energetic Materials. 133
- Table 55. Theoretical Modeling, Artificial Intelligence (AI), and Machine Learning in Energetic Materials. 134
- Table 56. Green and Insensitive Energetic Materials. 135
- Table 57. Comparative analysis of selected energetic materials by primary end user markets. 138
- Table 58. Addressable market sizes for energetic materials by application (tonnes). 142
- Table 59. Future outlook by high-performance energetic materials material type. 145
List of Figures
- Figure 1. Types of energetic materials. 25
- Figure 2. Global production of RDX, 2022-2035 (Metric Tons). 29
- Figure 3. Global revenues for RDX, 2022-2035 (Millions USD). 30
- Figure 4. Global production of HMX, 2022-2035 (Metric Tons). 34
- Figure 5. Global revenues for HMX, 2022-2035 (Millions USD). 35
- Figure 6. Global production of CL-20, 2022-2035 (Metric Tons). 42
- Figure 7. Global revenues for CL-20, 2022-2035 (Millions USD). 44
- Figure 8. Global production of TNT, 2022-2035 (Metric Tons). 47
- Figure 9. Global revenues for TNT, 2022-2035 (Millions USD). 48
- Figure 10. Global production of PETN, 2022-2035 (Metric Tons). 52
- Figure 11. Global revenues for PETN, 2022-2035 (Millions USD). 53
- Figure 12. Global production of NTO, 2022-2035 (Metric Tons). 57
- Figure 13. Global revenues for NTO, 2022-2035 (Millions USD). 58
- Figure 14. Global production of TATB, 2022-2035 (Metric Tons). 62
- Figure 15. Global revenues for TATB, 2022-2035 (Millions USD). 63
- Figure 16. Global production of FOX-7, 2022-2035 (Metric Tons). 67
- Figure 17. Global revenues for FOX-7, 2022-2035 (Millions USD). 68
- Figure 18. Global production of ADN, 2022-2035 (Metric Tons). 72
- Figure 19. Global revenues for ADN, 2022-2035 (Millions USD). 73
- Figure 20. Global production of ANPz,, 2022-2035 (Metric Tons). 77
- Figure 21. Global revenues for ANPz,, 2022-2035 (Millions USD). 79
- Figure 22. Supply chain for energetic materials. 120
- Figure 23. Typical export supply chain for energetic materials. 121
- Figure 24. Typical intra-country supply chain for energetic materials. 122
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer.
To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.