The Global Market for High-Performance Energetic Materials 2024-2035

0

  • Published: June 2024
  • Pages: 176
  • Tables: 59
  • Figures: 24
 
The Global Market for High-Performance Energetic Materials 2024-2035 provides an in-depth analysis of the evolving energetic materials industry. Energetic materials (EMs), classified as high energy material, explosives, propellants, and pyrotechnic, are compounds capable of rapidly releasing large amounts of energy through controlled chemical reactions.
This comprehensive report covers the key types of energetic materials including RDX, HMX, CL-20, TNT, PETN, NTO, TATB, FOX-7, ADN, ANPz, ONC and TADA. EMs find a wide range of applications both in civil and military sectors. The report examines their classification, manufacturing precursors, and details each major type – describing advantages, disadvantages, production methods, applications and demand factors. A thorough markets and applications analysis is provided, covering military/defense (warheads, ammunition, boosters, detonators, torpedoes, demolition), aerospace (rocket propulsion, gas generators, explosive bolts, airbags), mining, construction/demolition, oil/gas (perforating, well stimulation, exploration), and pyrotechnics (fireworks, flares, tracers). Regulations across the US, Europe, China, Japan, South Korea, Australia, India and Singapore are examined to provide compliance insights. Pricing analysis reveals current market prices for common energetic materials. Supply chain breakdowns detail energetic materials sourcing, manufacturing, exporting and domestic distribution.

Technological advancements are explored including nanomaterials, green energetics, advanced formulations, AI/modeling, additive manufacturing, safety/sensitivity studies, bioengineering approaches, green/insensitive materials, and propulsion system innovations. Customer segmentation analyzes energetic materials usage across military, aerospace, mining, construction, oil/gas, and pyrotechnic sectors. Comprehensive geographic market intelligence covers the US, China, India, Asia-Pacific, Russia, Middle East, Europe and Latin America.

Forecasts are provided for the total addressable market size by application through 2035. Historical data from 2020 quantifies the overall market size (metric tons and $ millions) for key energetic material types like RDX, HMX, CL-20, PETN and others. Projections to 2035 are broken down by type, revenue source and world region.

Risks, opportunities and future outlook considerations round out this definitive energetic materials market report.  The competitive landscape is mapped with profiles of leading companies. Companies profiled include BAE Systems, Chemring Nobel, Hanwha Corporation, Island Pyrochemical Industries (IPI), LIG Nex1, Nammo AS, Nitro-Chem SA, Northrop Grumman, Poongsan Corporation, Rheinmetall Defence, Saudi Chemical and main Russian, Chinese and India producers. 

1             EXECUTIVE SUMMARY            13

  • 1.1        Overview of the global energetic materials market               13
  • 1.2        High Performance Energetic Materials          14
  • 1.3        Key market trends       15
  • 1.4        Growth drivers               17
  • 1.5        Market Challenges     19
  • 1.6        Biobased energetic materials             21

 

2             INTRODUCTION          23

  • 2.1        Definition and classification of energetic materials             23
  • 2.2        Precursors       24
  • 2.3        Types of high-performance energetic materials      25
    • 2.3.1    RDX      26
      • 2.3.1.1 Description and Manufacture             26
      • 2.3.1.2 Advantages     27
      • 2.3.1.3 Disadvantages             27
      • 2.3.1.4 Applications and Market Demand   27
    • 2.3.2    HMX     31
      • 2.3.2.1 Description and Manufacture             31
      • 2.3.2.2 Advantages     32
      • 2.3.2.3 Disadvantages             32
      • 2.3.2.4 Applications and Market Demand   32
    • 2.3.3    CL-20 (Hexanitrohexaazaisowurtzitane)     36
      • 2.3.3.1 Description and Manufacture             36
      • 2.3.3.2 Advantages     38
      • 2.3.3.3 Disadvantages             38
      • 2.3.3.4 Applications and Market Demand   38
    • 2.3.4    TNT (Trinitrotoluene) 44
      • 2.3.4.1 Description and Manufacture             44
      • 2.3.4.2 Advantages     44
      • 2.3.4.3 Disadvantages             45
      • 2.3.4.4 Applications and Market Demand   45
    • 2.3.5    PETN (Pentaerythritol tetranitrate)   49
      • 2.3.5.1 Description and Manufacture             49
      • 2.3.5.2 Advantages     50
      • 2.3.5.3 Disadvantages             50
      • 2.3.5.4 Applications and Market Demand   50
    • 2.3.6    NTO (3-Nitro-1,2,4-triazol-5-one)     54
      • 2.3.6.1 Description and Manufacture             54
      • 2.3.6.2 Advantages     55
      • 2.3.6.3 Disadvantages             55
      • 2.3.6.4 Applications and Market Demand   56
    • 2.3.7    TATB (Triaminotrinitrobenzene)          59
      • 2.3.7.1 Description and Manufacture             59
      • 2.3.7.2 Advantages     60
      • 2.3.7.3 Disadvantages             60
      • 2.3.7.4 Applications and Market Demand   61
    • 2.3.8    FOX-7 (1,1-Diamino-2,2-dinitroethene)       64
      • 2.3.8.1 Description and Manufacture             64
      • 2.3.8.2 Advantages     65
      • 2.3.8.3 Disadvantages             65
      • 2.3.8.4 Applications and Market Demand   66
    • 2.3.9    ADN (Ammonium dinitramide)          69
      • 2.3.9.1 Description and Manufacture             69
      • 2.3.9.2 Advantages     70
      • 2.3.9.3 Disadvantages             70
      • 2.3.9.4 Applications and Market Demand   71
    • 2.3.10 ANPz (Aminonitropiperazine)             74
      • 2.3.10.1            Description and Manufacture             74
      • 2.3.10.2            Advantages     75
      • 2.3.10.3            Disadvantages             75
      • 2.3.10.4            Applications and Market Demand   76
    • 2.3.11 ONC (Octanitrocubane)         80
      • 2.3.11.1            Description and Manufacture             80
      • 2.3.11.2            Advantages     81
      • 2.3.11.3            Disadvantages             81
      • 2.3.11.4            Applications and Market Demand   82
    • 2.3.12 TADA (Triaminodinitroazobenzene) 83
      • 2.3.12.1            Description and Manufacture             83
      • 2.3.12.2            Advantages     84
      • 2.3.12.3            Disadvantages             84
      • 2.3.12.4            Applications and Market Demand   84
  • 2.4        Manufacturing processes and technologies             85

 

3             MARKETS AND APPLICATIONS           87

  • 3.1        Military and defense  87
    • 3.1.1    Overview           87
    • 3.1.2    Applications   88
      • 3.1.2.1 Warheads        88
      • 3.1.2.2 Ammunition   88
      • 3.1.2.3 Boosters           89
      • 3.1.2.4 Detonators and Initiators       89
      • 3.1.2.5 Blasting Caps and Primers    89
      • 3.1.2.6 Torpedoes and Mines               90
      • 3.1.2.7 Military Demolition    90
      • 3.1.2.8 Energetic Composites             90
      • 3.1.2.9 Unmanned Combat Vehicles and Smaller Weapon Systems        91
  • 3.2        Aerospace and space exploration    92
    • 3.2.1    Overview           92
    • 3.2.2    Applications   93
      • 3.2.2.1 Rocket Propulsion      93
      • 3.2.2.2 Gas Generators and Pyrotechnic Devices   93
      • 3.2.2.3 Explosive Bolts and Separation Mechanisms          93
      • 3.2.2.4 Airbag Deployment Systems               94
      • 3.2.2.5 Spacecraft Thrusters 94
      • 3.2.2.6 Emerging concepts    94
  • 3.3        Mining and quarrying 95
    • 3.3.1    Overview           95
    • 3.3.2    Applications   96
      • 3.3.2.1 Quarrying         96
      • 3.3.2.2 Metal Mining  97
      • 3.3.2.3 Coal Mining    97
      • 3.3.2.4 Non-Metal Mining       97
  • 3.4        Construction and demolition              98
    • 3.4.1    Overview           98
      • 3.4.1.1 Building Demolition   99
      • 3.4.1.2 Concrete and Rock Breaking               100
      • 3.4.1.3 Underwater Demolition          100
      • 3.4.1.4 Explosive Cutting        100
      • 3.4.1.5 Blasting Capsules      101
  • 3.5        Oil and gas      102
    • 3.5.1    Overview           102
    • 3.5.2    Applications   103
      • 3.5.2.1 Oil well perforating charges  103
      • 3.5.2.2 Oil and Gas Well Stimulation              103
      • 3.5.2.3 Geophysical Exploration        104
      • 3.5.2.4 Other   104
  • 3.6        Pyrotechnics  106
    • 3.6.1    Overview           106
    • 3.6.2    Applications   107
      • 3.6.2.1 Fireworks          107
      • 3.6.2.2 Signal Flares   107
      • 3.6.2.3 Explosive Tracers         107
      • 3.6.2.4 Special Effects              108
  • 3.7        Other applications     108
    • 3.7.1    Shockwave Generators            108
    • 3.7.2    Additive Manufacturing          108
    • 3.7.3    Medical Research       109

 

4             MARKET ANALYSIS      111

  • 4.1        Regulations     111
    • 4.1.1    United States 112
    • 4.1.2    Europe                113
    • 4.1.3    Asia-Pacific    115
      • 4.1.3.1 China  115
      • 4.1.3.2 Japan  115
      • 4.1.3.3 South Korea    115
      • 4.1.3.4 Australia           116
      • 4.1.3.5 India    116
      • 4.1.3.6 Singapore         117
  • 4.2        Price and Cost Analysis          117
    • 4.2.1    Market prices 117
  • 4.3        Supply Chain and Manufacturing    119
    • 4.3.1    Supply chain for energetic materials              119
    • 4.3.2    Export and intra-country supply chains       120
  • 4.4        Competitive Landscape         123
    • 4.4.1    Market players               123
      • 4.4.1.1 North America              124
      • 4.4.1.2 China  125
      • 4.4.1.3 Rest of Asia-Pacific   126
      • 4.4.1.4 Europe                127
      • 4.4.1.5 Rest of the World         128
  • 4.5        Technological Advancements             129
    • 4.5.1    Nanomaterials              130
    • 4.5.2    Green Energetics         130
    • 4.5.3    Advanced Formulations         130
    • 4.5.4    Safety and Sensitivity Studies             130
    • 4.5.5    Advanced Synthesis Techniques       131
    • 4.5.6    Biological and Bioengineering Approaches               131
    • 4.5.7    Additive Manufacturing          133
    • 4.5.8    Advancements in Theoretical Modeling, Artificial Intelligence (AI), and Machine Learning        134
    • 4.5.9    Green and Insensitive Energetic Materials 135
  • 4.6        Customer Segmentation        137
  • 4.7        Geographical Markets              140
    • 4.7.1    United States 140
    • 4.7.2    China  141
    • 4.7.3    India    141
    • 4.7.4    Rest of Asia-Pacific   141
    • 4.7.5    Australia           141
    • 4.7.6    Russia 141
    • 4.7.7    Middle East     142
    • 4.7.8    Europe                142
    • 4.7.9    Latin America 142
  • 4.8        Addressable Market Size        142
    • 4.8.1    Risks and Opportunities         143
  • 4.9        Future Outlook             145

 

5             COMPANY PROFILES                147 (38 company profiles)

 

6             RESEARCH METHODOLOGY              171

 

7             REFERENCES 172

 

List of Tables

  • Table 1. Common high-performance energetic materials- properties, advantages, and limitations.  14
  • Table 2. Market trends in energetic materials           15
  • Table 3. Energetic materials market growth drivers.             17
  • Table 4. Market challenges in energetic materials.               20
  • Table 5. Synthesis methods for RDX.             26
  • Table 6. Global production of RDX, 2022-2035 (Metric Tons).        28
  • Table 7. Global revenues for RDX, 2022-2035 (Millions USD).       29
  • Table 8. HMX synthesis methods.    31
  • Table 9. Global production of HMX, 2022-2035 (Metric Tons).      33
  • Table 10. Global revenues for HMX, 2022-2035 (Millions USD).   34
  • Table 11. Synthesis Methods for CL-20.       37
  • Table 12. Global production of CL-20, 2022-2035 (Metric Tons). 41
  • Table 13. Global revenues for CL-20, 2022-2035 (Millions USD). 42
  • Table 14. Synthesis Methods for TNT.            44
  • Table 15. Global production of TNT, 2022-2035 (Metric Tons).      46
  • Table 16. Global revenues for TNT, 2022-2035 (Millions USD).     47
  • Table 17. Synthesis Methods for PETN (Pentaerythritol Tetranitrate).       49
  • Table 18. Global production of PETN, 2022-2035 (Metric Tons).  51
  • Table 19. Global revenues for PETN, 2022-2035 (Millions USD). 52
  • Table 20. Synthesis Methods for NTO            54
  • Table 21. Global production of NTO, 2022-2035 (Metric Tons).     56
  • Table 22. Global revenues for NTO, 2022-2035 (Millions USD).    57
  • Table 23. Synthesis Methods for TATB.          59
  • Table 24. Global production of TATB, 2022-2035 (Metric Tons).    61
  • Table 25. Global revenues for TATB, 2022-2035 (Millions USD).   62
  • Table 26. Synthesis Methods for FOX-7 (1,1-Diamino-2,2-dinitroethene).            64
  • Table 27. Global production of FOX-7, 2022-2035 (Metric Tons). 66
  • Table 28. Global revenues for FOX-7, 2022-2035 (Millions USD). 67
  • Table 29. Synthesis Methods for ADN (Ammonium Dinitramide).              69
  • Table 30. Global production of ADN, 2022-2035 (Metric Tons).    71
  • Table 31. Global revenues for ADN, 2022-2035 (Millions USD).   72
  • Table 32. Synthesis Methods for ANPz (Aminonitropiperazine)    74
  • Table 33. Global production of ANPz, 2022-2035 (Metric Tons).  76
  • Table 34. Global revenues for ANPz,, 2022-2035 (Millions USD). 78
  • Table 35. Synthesis Methods for ONC (Octanitrocubane).              80
  • Table 36. Synthesis Methods for TADA (Triaminodinitroazobenzene).     83
  • Table 37. Manufacturing processes and technologies for energetic materials-comparative analysis.                85
  • Table 38. Application by energetic material type in military and defense.             87
  • Table 39. High-performance energetic materials in aerospace and space exploration.               92
  • Table 40. Application by energetic material type in mining and quarrying.            96
  • Table 41. Application by energetic material type in construction and demolition.           98
  • Table 42. Application by high-performance energetic material type in oil and gas.         102
  • Table 43. Application by high-performance energetic material type in pyrotechnics.    106
  • Table 44. Properties, Advantages, and Limitations of High-Performance Energetic Materials in Pyrotechnics. 107
  • Table 45. Application by High-Performance Energetic Material Type in Shockwave Generators.            108
  • Table 46. Application by High-Performance Energetic Material Type in Additive Manufacturing.           109
  • Table 47. Application by High-Performance Energetic Material Type in Medical Research.       109
  • Table 48. Market price for common energetic materials ($/lb).    117
  • Table 49. Market players in high-performance energetic materials in North America.  124
  • Table 50. Market players in high-performance energetic materials in China.      125
  • Table 51. Market players in high-performance energetic materials in Rest of Asia-Pacific.       126
  • Table 52. Market players in high-performance energetic materials in Europe.    127
  • Table 53. Market players in high-performance energetic materials in Rest of the World.             128
  • Table 54. Additive Manufacturing Approaches to High-Performance Energetic Materials.         133
  • Table 55. Theoretical Modeling, Artificial Intelligence (AI), and Machine Learning in Energetic Materials.                134
  • Table 56. Green and Insensitive Energetic Materials.          135
  • Table 57. Comparative analysis of selected energetic materials by primary end user markets.              138
  • Table 58. Addressable market sizes for energetic materials by application (tonnes).    142
  • Table 59. Future outlook by high-performance energetic materials material type.          145

 

List of Figures

  • Figure 1. Types of energetic materials.          25
  • Figure 2. Global production of RDX, 2022-2035 (Metric Tons).      29
  • Figure 3. Global revenues for RDX, 2022-2035 (Millions USD).     30
  • Figure 4. Global production of HMX, 2022-2035 (Metric Tons).    34
  • Figure 5. Global revenues for HMX, 2022-2035 (Millions USD).    35
  • Figure 6. Global production of CL-20, 2022-2035 (Metric Tons).  42
  • Figure 7. Global revenues for CL-20, 2022-2035 (Millions USD). 44
  • Figure 8. Global production of TNT, 2022-2035 (Metric Tons).       47
  • Figure 9. Global revenues for TNT, 2022-2035 (Millions USD).      48
  • Figure 10. Global production of PETN, 2022-2035 (Metric Tons). 52
  • Figure 11. Global revenues for PETN, 2022-2035 (Millions USD). 53
  • Figure 12. Global production of NTO, 2022-2035 (Metric Tons).   57
  • Figure 13. Global revenues for NTO, 2022-2035 (Millions USD).  58
  • Figure 14. Global production of TATB, 2022-2035 (Metric Tons).  62
  • Figure 15. Global revenues for TATB, 2022-2035 (Millions USD). 63
  • Figure 16. Global production of FOX-7, 2022-2035 (Metric Tons).               67
  • Figure 17. Global revenues for FOX-7, 2022-2035 (Millions USD).              68
  • Figure 18. Global production of ADN, 2022-2035 (Metric Tons).  72
  • Figure 19. Global revenues for ADN, 2022-2035 (Millions USD). 73
  • Figure 20. Global production of ANPz,, 2022-2035 (Metric Tons).               77
  • Figure 21. Global revenues for ANPz,, 2022-2035 (Millions USD).              79
  • Figure 22. Supply chain for energetic materials.     120
  • Figure 23. Typical export supply chain for energetic materials.    121
  • Figure 24. Typical intra-country supply chain for energetic materials.     122

 

 

The Global Market for High-Performance Energetic Materials 2024-2035
The Global Market for High-Performance Energetic Materials 2024-2035
PDF download.

The Global Market for High-Performance Energetic Materials 2024-2035
The Global Market for High-Performance Energetic Materials 2024-2035
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.