Cell to Pack (CTP), Cell to Body (CTB) and Cell to Chassis (CTC) Integrated Battery Market 2024-2035

0

 

The growth in EV sales is driving demand for batteries, with the market for EV batteries surpassing 750 GWh in 2023, up 40% on the previous year. Electric cars account for approximately 95% of this growth. The EV market is rapidly expanding, and one of the significant challenges is the development of a reliable and safe battery that can provide a long driving range. The traditional lithium-ion batteries used in electric vehicles have limitations such as low energy density, poor thermal stability, and a tendency to catch fire. Vehicle OEMS and battery manufacturing companies are developing new batteries to address these issues for safe uses in electric vehicles. The key advantage of cell to pack (CTP), cell to body (CTB), and cell to chassis (CTC) battery technologies over traditional lithium-ion battery technologies lies in their improved energy density and enhanced performance parameters. These innovative battery integration approaches enable higher volumetric and gravimetric energy densities, allowing for more compact and lightweight battery solutions that occupy less vehicle packaging space while contributing to reduced overall vehicle weight.

Moreover, CTP, CTB, and CTC technologies facilitate more efficient battery packaging designs, minimizing manufacturing steps, reducing overall battery packaging volume, and enabling greater design flexibility. This translates into longer battery life and superior performance metrics, such as more stable battery characteristics, extended battery lifespans, and improved overall battery performance. A significant advantage of these advanced battery technologies lies in their potential to lower battery packaging and assembly costs. By streamlining manufacturing processes and reducing complexity compared to traditional methods, CTP, CTB, and CTC packaging techniques offer cost-effective solutions for automotive manufacturers.

Cell to Pack (CTP), Cell to Body (CTB) and Cell to Chassis (CTC) Integrated Battery Market Report 2024-2035 covers the latest technologies, key applications, manufacturing processes, advantages, challenges, and opportunities within this rapidly evolving industry across major global regions. The integration of batteries directly into vehicle bodies and chassis represents a transformative shift in automotive design and engineering. This report meticulously evaluates the technological capabilities, real-world applicability, advantages, disadvantages, and tangible benefits CTP, CTB and CTC offer the entire automotive value chain. 

The report assesses the pivotal battery technology trends propelling advancements in on-road and off-road automotive and aerospace vehicles utilizing CTP, CTB and CTC integrated solutions. This comprehensive evaluation illuminates the key commercial opportunities and strategic entry points across different vehicle segments. Also covered are emerging next-generation battery chemistries, materials, and architectures poised to disrupt the market further. The role of transformative technologies like AI, IoT, and wireless battery management systems in optimizing performance, safety, and sustainability is examined in detail. Report contents include:

  • Technology Overview including in-depth technical specifications on: 
    • Cell-to-Pack (CTP) Technology
    • Cell-to-Body (CTB) Technology
    • Cell-to-Chassis (CTC) Technology
    • Thermal Management Systems
    • Battery Management Systems (BMS)
  • Market Analysis
    • Global Market Overview
    • Market Size and Forecast
    • Market Segmentation
    • Market Drivers
    • Market Restraints
    • Opportunities
    • Challenges
  • Competitive Landscape
    • Key Players and Strategies
    • Automotive OEMs
    • Strategic Partnerships
  • Regulatory Landscape
    • Safety and Environmental Regulations
    • Incentives and Subsidies
    • Recycling and Disposal Regulations
  • Future Outlook and Emerging Trends
    • Battery Chemistry and Materials Advancements
    • AI and IoT Integration
    • Wireless Battery Management Systems
    • Sustainability and Circularity Initiatives
    • Emerging Applications and Markets
  • Profiles of 44 companies including Company Overview, Product Portfolio and Recent Developments and Initiatives. Companies profiled include BYD, CALB, CATL, EVE Energy, GM, LG Energy, Leap Motor, NIO, Stellantis, StoreDot and SVOLT Energy (Full list of companies profiled in table of contents). 

 

 

1             EXECUTIVE SUMMARY            13

  • 1.1        Market Overview          13
  • 1.2        Market Drivers and Trends     14
  • 1.3        Recent Market Developments and Technology Highlights               14
  • 1.4        Competitive Landscape         15
  • 1.5        Regulatory Landscape             17
  • 1.6        Future Outlook and Emerging Trends             19
  • 1.7        Market Forecast and Growth Projections    20
    • 1.7.1    EV Battery Demand, By EV Type         20
    • 1.7.2    EV Battery Demand, By Region          22
    • 1.7.3    EV Battery Demand, By Battery Type              23
    • 1.7.4    Battery Cell Materials               24
    • 1.7.5    Battery Pack Materials             28

 

2             TECHNOLOGY OVERVIEW    34

  • 2.1        Overview of Integrated Battery Systems      34
    • 2.1.1    Battery Materials for Electric Vehicles           34
    • 2.1.2    From Cell to Pack        36
    • 2.1.3    Cell-to-Pack (CTP), Cell-to-Body (CTB), and Cell-to-Chassis (CTC)          37
    • 2.1.4    Cell-to-Module (CTM)              39
    • 2.1.5    Passenger Car Integrated Battery (Chassis)              40
    • 2.1.6    Comparative Analysis              41
  • 2.2        Importance of CTP, CTB, and CTC in Electric Vehicles        42
  • 2.3        Cost analysis 43
    • 2.3.1    CTP (Cell to Pack)       43
    • 2.3.2    CTB (Cell to Body)       44
    • 2.3.3    CTC (Cell to Chassis)               45
  • 2.4        Cell-to-Pack (CTP) Technology           47
    • 2.4.1    Definition and Concept           48
    • 2.4.2    Key Components and Architecture  49
    • 2.4.3    Comparison between CTC and CTP                52
    • 2.4.4    Cell Design Optimization       53
    • 2.4.5    Advantages and Challenges 56
    • 2.4.6    Manufacturing Processes      56
    • 2.4.7    Design Considerations            57
  • 2.5        Cell-to-Body (CTB) Technology          59
    • 2.5.1    Definition and Concept           59
    • 2.5.2    Key Components and Architecture  59
    • 2.5.3    Comparison between CTB and CTP                61
    • 2.5.4    Comparison between CTB and CTC                62
    • 2.5.5    Advantages and Challenges 64
    • 2.5.6    Manufacturing Processes      65
    • 2.5.7    Design Considerations            66
  • 2.6        Cell-to-Chassis (CTC) Technology   67
    • 2.6.1    Definition and Concept           67
    • 2.6.2    Key Components and Architecture  68
    • 2.6.3    Advantages and Challenges 70
    • 2.6.4    Manufacturing Processes      70
    • 2.6.5    Design Considerations            71
  • 2.7        Thermal Management Systems         72
    • 2.7.1    Liquid Cooling Systems          73
    • 2.7.2    Air Cooling Systems  74
    • 2.7.3    Thermal Interface Materials 75
      • 2.7.3.1 Properties for TIMs in EVs      75
      • 2.7.3.2 Gap Pads in EV Batteries        76
      • 2.7.3.3 Gap Fillers        77
      • 2.7.3.4 Thermally Conductive Adhesives     77
      • 2.7.3.5 Chemistry Comparison          78
      • 2.7.3.6 Gap Filler to Thermally Conductive Adhesives         79
    • 2.7.4    Cold Plates and Coolant Hoses         80
      • 2.7.4.1 Coolant Fluids in EVs               80
      • 2.7.4.2 Inter-cell Heat Spreaders or Cooling Plates               83
      • 2.7.4.3 Advanced Cold Plate Design               84
      • 2.7.4.4 Coolant Hoses for EVs             85
    • 2.7.5    Phase Change Materials (PCMs)       87
    • 2.7.6    Smart Thermal Management Systems          88
    • 2.7.7    Two-Phase Cooling Systems:              88
    • 2.7.8    Direct Battery Immersion Cooling   89
    • 2.7.9    Thermoelectric Cooling          89
    • 2.7.10 Graphene-based Thermal Management      90
    • 2.7.11 Thermal Energy Harvesting   90
    • 2.7.12 Thermal Metamaterials           91
  • 2.8        Battery Management Systems (BMS)            92
    • 2.8.1    Functions and Components                93
    • 2.8.2    Centralized vs. Distributed BMS        94
    • 2.8.3    Communication Protocols    95
    • 2.8.4    Advancements in BMS            96
    • 2.8.5    Safety and Reliability Considerations            99

 

3             MARKET ANALYSIS      101

  • 3.1        Global Integrated Battery Market Overview               101
    • 3.1.1    Production in China  101
  • 3.2        Market Size and Forecast (2024-2035)         104
    • 3.2.1    CTP Market      104
    • 3.2.2    CTB Market      105
    • 3.2.3    CTC Market      106
  • 3.3        Market Segmentation               107
    • 3.3.1    By Technology (CTP, CTB, CTC)          107
    • 3.3.2    By Vehicle Type (Passenger Cars, Commercial Vehicles, Others)               108
    • 3.3.3    By Region         109
    • 3.3.4    By Application (Battery Electric Vehicles, Hybrid Electric Vehicles, Plug-in Hybrid Electric Vehicles)           110
    • 3.3.5    By Battery Chemistry                112
  • 3.4        Market Drivers               113
    • 3.4.1    Increasing Demand for Electric Vehicles     113
    • 3.4.2    Need for Lightweight and Efficient Battery Systems             113
    • 3.4.3    Advancements in Battery Technology            114
    • 3.4.4    Regulatory Initiatives and Incentives              114
    • 3.4.5    Government Policies and Emissions Targets            115
  • 3.5        Market Restraints       115
    • 3.5.1    High Initial Costs         115
    • 3.5.2    Technical Challenges and Integration Complexities            115
    • 3.5.3    Safety Concerns and Reliability Issues        116
    • 3.5.4    Limited Infrastructure and Charging Facilities         116
  • 3.6        Opportunities 117
    • 3.6.1    Performance Improvements                117
    • 3.6.2    Cost Reduction Potential       117
    • 3.6.3    Design Innovation       117
    • 3.6.4    EV Market Expansion 118
    • 3.6.5    Environmental Benefits           118
  • 3.7        Challenges      118
  • 3.8        Competitive Landscape         120
    • 3.8.1    Key Players and Strategies     120
    • 3.8.2    Automotive OEMS      121
    • 3.8.3    Strategic partnerships             122
    • 3.8.4    Battery Integration Policies in China              124
  • 3.9        Regulatory Landscape             126
    • 3.9.1    Safety and Environmental Regulations         127
      • 3.9.1.1 Battery Safety Standards       127
      • 3.9.1.2 Emissions and Fuel Economy Standards    128
      • 3.9.1.3 Environmental Impact Regulations 129
    • 3.9.2    Incentives and Subsidies       129
      • 3.9.2.1 Government Incentives           129
    • 3.9.3    Recycling and Disposal Regulations              131
      • 3.9.3.1 Battery Recycling Regulations            131
      • 3.9.3.2 End-of-Life Vehicle Directives             132
  • 3.10     Future Outlook and Emerging Trends             133
    • 3.10.1 Advancements in Battery Chemistry and Materials             133
      • 3.10.1.1            Solid-State Batteries 133
      • 3.10.1.2            Lithium-Sulfur Batteries          134
      • 3.10.1.3            Sodium-ion Batteries                134
      • 3.10.1.4            Silicon Anodes              135
    • 3.10.2 Integration of Artificial Intelligence and Internet of Things (IoT)    136
      • 3.10.2.1            Predictive Maintenance          137
      • 3.10.2.2            Smart Battery Management Systems            138
    • 3.10.3 Wireless Battery Management Systems       139
    • 3.10.4 Increasing Focus on Sustainability and Circularity               141
      • 3.10.4.1            Sustainable Battery Materials             141
      • 3.10.4.2            Battery Recycling and Reuse               142
  • 3.11     Emerging Applications and Markets               143
    • 3.11.1 Aerospace and Defense         143
    • 3.11.2 Energy Storage Systems         144
    • 3.11.3 Marine and Shipping 145

 

4             COMPANY PROFILES                147

  • 4.1        24M Technologies, Inc,            147
  • 4.2        Automotive Energy Supply Corporation (AESC)      148
  • 4.3        Beijing Hyundai            149
  • 4.4        BAIC BJEV         149
  • 4.5        Benteler             150
  • 4.6        BMW    151
  • 4.7        BYD      152
  • 4.8        China Aviation Lithium Battery (CALB) Technology Co., Ltd.          154
  • 4.9        CATL    155
  • 4.10     Changan Automobile               159
  • 4.11     Chery International    159
  • 4.12     EVE Energy Co., Ltd.  160
  • 4.13     Farasis Energy               161
  • 4.14     FAW      164
  • 4.15     FinDreams Battery     165
  • 4.16     Ford  Motor Company              166
  • 4.17     GAC Aion          167
  • 4.18     GM        168
  • 4.19     Gotion High-Tech         169
  • 4.20     Great Wall Motor (GWM)        171
  • 4.21     Hycan 172
  • 4.22     IAT Automobile             172
  • 4.23     JAC Motors      173
  • 4.24     LG Energy         174
  • 4.25     Leap Motor      176
  • 4.26     Neta Auto         177
  • 4.27     NIO, Inc.            178
  • 4.28     Our Next Energy (ONE)            180
  • 4.29     REPT Battero   181
  • 4.30     SAIC (Shanghai Automotive Industry Corporation)               182
  • 4.31     Samsung SDI Co.        183
  • 4.32     SEVB    184
  • 4.33     SK On  185
  • 4.34     Stellantis N.V. 185
  • 4.35     StoreDot            186
  • 4.36     SVOLT Energy 188
  • 4.37     Tesla    190
  • 4.38     Tuopu Group  192
  • 4.39     Volvo   192
  • 4.40     Volkswagen    193
  • 4.41     Xiaomi Automobile    194
  • 4.42     XING Mobility 195
  • 4.43     Xpeng  196
  • 4.44     ZEEKR 197

 

5             RESEARCH METHODOLOGY              200

 

6             REFERENCES 201

 

List of Tables

  • Table 1. Comparison of Advanced Battery Chemistries.   13
  • Table 2. CTP, CTB and CTC Integrated Battery Market Drivers and Trends.            14
  • Table 3. Recent CTP, CTB and CTC Integrated Battery Market Developments and Technology Highlights.                14
  • Table 4. CTP, CTB and CTC Integrated Battery Market Competitive Landscape. 16
  • Table 5. CTP, CTB and CTC Integrated Battery Market Regulations.           18
  • Table 6.Trends in CTP, CTB and CTC Integrated Batteries. 19
  • Table 7. EV Battery Demand Market Share Forecast (GWh) 2021-2035. 20
  • Table 8. EV Battery Demand Market Share Forecast (GWh) 2021-2035, by region.          22
  • Table 9. Battery Market Value Forecast for EVs 2022-2035 (Millions US$).           23
  • Table 10. Battery Cell Materials Forecast for 2022-2035. 24
  • Table 11. Battery Cell Materials Market 2022-2035 (MT). 26
  • Table 12. Battery Pack Materials Market 2022-2035.          28
  • Table 13. Total Battery Cell and Pack Materials Forecast by Vehicle Type 2022-2035 (MT).       31
  • Table 14.Total Battery Cell and Pack Materials Market Value Forecast 2022-2035 (Millions US$).        33
  • Table 15. Battery Materials for Electric Vehicles.   35
  • Table 16. Main types of cells used in electric vehicle batteries.    35
  • Table 17. Cell vs Pack Energy Density.           39
  • Table 18. Comparative analysis of CTP, CTB and CTC.       41
  • Table 19. Summary of Cost Impact.               43
  • Table 20. Cost Analysis for CTP, CTB and CTC Integrated Batteries.          47
  • Table 21. Comparison of CTP Mode and Conventional Battery Pack.       52
  • Table 22. Comparison between CTC and CTP.         52
  • Table 23. Cell to Pack (CTP) Advantages and Challenges.               56
  • Table 24. Manufacturing Processes for Cell-to-Pack.          57
  • Table 25. Design Considerations for Cell-to-Pack.                58
  • Table 26. Comparison between CTB and CTP.         61
  • Table 27. Comparison between CTB and CTC.        62
  • Table 28. Cell to Body (CTB) Advantages and Challenges.               65
  • Table 29. Cell to Body (CTB) Manufacturing Processes.    65
  • Table 30. Cell to Body (CTB) Design Considerations.          66
  • Table 31. Cell to Chassis (CTC) Advantages and Challenges.        70
  • Table 32. Cell to Chassis (CTC) Manufacturing Processes.             71
  • Table 33. Comparison of Thermal Management Systems.               73
  • Table 34. Liquid Cooling Systems.   74
  • Table 35. Air Cooling Systems.           74
  • Table 36. TIM Application by Cell Format.   75
  • Table 37. Key Properties for TIMs in EVs.      75
  • Table 38. Key properties and characteristics of common TIM chemistries.          78
  • Table 39. Overview of the battery thermal management strategies employed by major OEMs.              82
  • Table 40. Types of PCMs.       87
  • Table 41. Comparison of Battery Management System (BMS) Architectures.     93
  • Table 42. Functions and components in Battery Management Systems (BMS) for Electric Vehicles (EVs).                94
  • Table 43. Centralized vs. Distributed BMS. 95
  • Table 44. Communication Protocols in BMS.           96
  • Table 45. Safety and Reliability Considerations.    99
  • Table 46. Global CTP Market Size and Forecast (2023-2035), billions USD.         104
  • Table 47. Global CTB Market Size and Forecast (2022-2035), Billions USD.         105
  • Table 48. Global CTC Market Size and Forecast (2024-2035), Billions USD.        106
  • Table 49. Integrated Battery Market Share by Vehicle Type, 2023-2035, Billions USD.  108
  • Table 50. Integrated Battery Market Share by Region, 2023-2035, Billions USD.               109
  • Table 51. Integrated Battery Market Share by Application, 2023-2035, Billions USD.    110
  • Table 52. Challenges in CTP, CTB and CTC Integrated Battery Market.     119
  • Table 53. Key Players in the Integrated Battery Market.      120
  • Table 54. Comparison of Automotive OEM integrated batteries.  121
  • Table 55. Strategic partnerships in the CTP, CTB and CTC Integrated Battery Market .  123
  • Table 56. Overview of key policies and initiatives in China.             124
  • Table 57. Battery Safety Standards for Integrated Batteries in EVs.            127
  • Table 58. Emissions and Fuel Economy Standards Affecting EV Battery Development.               128
  • Table 59. Environmental Impact Regulations Affecting EV Battery Production and Recycling. 129
  • Table 60. Battery Recycling Regulations.     131
  • Table 61. End-of-Life Vehicle Directives.      132

 

List of Figures

  • Figure 1. EV Battery Demand Market Share Forecast (GWh) 2021-2035.               21
  • Figure 2. EV Battery Demand Market Share Forecast (GWh) 2021-2035, by region.        23
  • Figure 3. Battery Market Value Forecast for EVs 2022-2035 (Millions US$).         24
  • Figure 4. Battery Cell Materials Market 2022-2035 (MT).  27
  • Figure 5. Battery Pack Materials Market 2022-2035 (MT). 30
  • Figure 6. Total Battery Cell and Pack Materials Forecast by Vehicle Type 2022-2035 (MT).        32
  • Figure 7. Total Battery Cell and Pack Materials Market Value Forecast 2022-2035 (US$).          33
  • Figure 8. Li-ion batteries packaging schemes for EVs.        34
  • Figure 9. Types of integrated battery packs.              38
  • Figure 10. Component Breakdown of a Battery Pack.         40
  • Figure 11. CATL's CIIC skateboard chassis.              41
  • Figure 12. Battery pack with a cell-to-pack design and prismatic cells.  48
  • Figure 13. Battery pack with a cell-to-pack design and prismatic cells.  49
  • Figure 14. BYD CTP schematic            50
  • Figure 15. Qilin battery.           51
  • Figure 16. CTP Technology Architecture.      51
  • Figure 17. The structural design of blade cell, cell arrays, and battery pack.       54
  • Figure 18. Gravimetric Energy Density and Cell-to-pack Ratio.     55
  • Figure 19. BYD Cell-to-body.                60
  • Figure 20. CATL Cell-to-chassis.       68
  • Figure 21. Tesla CTC Technology.      69
  • Figure 22. CTC Technology Architecture. The battery pack is a structural component of the vehicle, where cells are assembled directly into a car’s structure.               69
  • Figure 23. Passenger NEV production in China 2020-2024.           101
  • Figure 24. Passenger BEV production in China 2020-2024.            102
  • Figure 25. Passenger PHEV production in China 2020-2024.        103
  • Figure 26. Global CTP Market Size and Forecast (2023-2035), billions USD.       105
  • Figure 27. Global CTB Market Size and Forecast (2022-2035), Billions USD.       106
  • Figure 28. Global CTC Market Size and Forecast (2024-2035), Billions USD.      107
  • Figure 29. Integrated Battery Market Share by Technology (2023-2035), Billions USD.. 107
  • Figure 30. Integrated Battery Market Share by Vehicle Type, 2023-2035, Billions USD. 109
  • Figure 31. Integrated Battery Market Share by Region, 2023-2035, Billions USD.             110
  • Figure 32. Integrated Battery Market Share by Application, 2023-2035. 111
  • Figure 33. Integrated Battery Market Share by Battery Chemistry, 2023-2035, Billions USD.    112
  • Figure 34. Rolling chassis developed by BENTELER and Bosch.  151
  • Figure 35. BYD CTB technology.         153
  • Figure 36. CALB “U" type battery.      154
  • Figure 37. CATL CTP 1.0-3.0.               156
  • Figure 38. CTP 3.0: Shenxing Batteries.        157
  • Figure 39. CATL Skateboard chassis.             158
  • Figure 40. “π” Battery System.            161
  • Figure 41. Farasis Cell-to-Pack Battery System.     162
  • Figure 42. Farasis Energy Super Pouch Solution (SPS).      163
  • Figure 43. GAC Aion's magazine battery.     168
  • Figure 44. GM Ultium.              169
  • Figure 45. Batteries with CTP mounted on a mock-up design of an automobile.              174
  • Figure 46. LG Energy’s cell-to-pack technology for pouch batteries.         175
  • Figure 47. Leapmotor CTC 2.0.          177
  • Figure 48. Nio Hybrid Chemistry Cell-to-pack.        179
  • Figure 49. Our Next Energy: Aeris.    180
  • Figure 50. SAIC CTP battery design.                183
  • Figure 51. StoreDot I-BEAM XFC Cells.         187
  • Figure 52. Dragon Armor Battery.      188
  • Figure 53. Short Blade Battery LCTP Technology.   189
  • Figure 54.  L400 Short Blade Batteries.         190
  • Figure 55. Tesla Cell-to-Chassis.      191
  • Figure 56. IMMERSIO™ Cell-to-Pack (CTP) architecture.    195
  • Figure 57. Xpeng CIB technology.     197
  • Figure 58. Gold brick battery.               198

 

 

Cell to Pack (CTP), Cell to Body (CTB) and Cell to Chassis (CTC) Integrated Battery Market 2024-2035
Cell to Pack (CTP), Cell to Body (CTB) and Cell to Chassis (CTC) Integrated Battery Market 2024-2035
PDF download/by email.

Cell to Pack (CTP), Cell to Body (CTB) and Cell to Chassis (CTC) Integrated Battery Market 2024-2035
Cell to Pack (CTP), Cell to Body (CTB) and Cell to Chassis (CTC) Integrated Battery Market 2024-2035
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.