The Global Critical Raw Materials Recovery Market 2025-2040

0

cover

cover

  • Published: September 2024
  • Pages: 393
  • Tables: 116
  • Figures: 55

 

The Critical Raw Materials (CRM) Recovery market is experiencing significant growth and transformation as the world shifts towards cleaner technologies and a circular economy. The market focuses on the extraction and recycling of materials deemed critical for advanced technologies, particularly those essential for the clean energy transition and digital revolution. The market encompasses various materials, including rare earth elements, lithium, cobalt, platinum group metals, and others. Key drivers of the CRM Recovery market include:

  • Increasing demand for clean energy technologies like electric vehicles, wind turbines, and solar panels, which require substantial amounts of CRMs.
  • Growing awareness of supply chain vulnerabilities and the need for resource security, especially given the geographic concentration of many CRM sources.
  • Regulatory pressures promoting recycling and sustainable resource use, such as the EU's Critical Raw Materials Act.
  • Advancements in recycling technologies making CRM recovery more economically viable.

 

Countries are ramping up efforts to increase and diversify critical raw materials supply and recovery, extraction and recycling are key components. The recently enacted European Union’s Critical Raw Materials Act, United Kingdom’s Critical Mineral Strategy (“UK CMS”) and the United States’ Inflation Reduction Act place significant emphasis on promoting extraction and processing projects, as well as recycling critical raw materials and rare earth elements. Major sources for recovery include:

  • End-of-life products (e-waste, spent batteries, catalytic converters)
  • Industrial production scrap
  • Urban mining initiatives
  • Landfill mining projects

 

Key technologies in the CRM Recovery market include hydrometallurgy, pyrometallurgy, bioleaching, and direct recycling methods. The choice of technology depends on the specific materials being recovered and the source. The CRM Recovery market is poised for substantial growth as it plays a crucial role in enabling the transition to a more sustainable and resilient global economy. The market is attracting increased investment and seeing the entry of both established players and innovative start-ups, driving technological advancements and expanding recovery capabilities. This comprehensive market research report provides an in-depth analysis of the global critical raw materials market from 2025 to 2040. Report contents include: 

  • Detailed market size forecasts in both volume (ktonnes) and value (USD billions) from 2025-2040
  • Segmentation by material type, recovery source, and geographic region
  • Analysis of 15+ critical materials including rare earth elements, lithium, cobalt, platinum group metals, and more
  • Evaluation of primary and secondary (recycled) material sources
  • Assessment of extraction and recovery technologies
  • Profiles of 155+ key players in the CRM industry. Companies profiled include ACCUREC-Recycling GmbH, Ascend Elements, BANiQL, BASF, Ceibo, Cirba Solutions, Cyclic Materials, Enim, Heraeus Remloy, HyProMag, JPM Silicon GmbH, Librec AG, MagREEsource, NeoMetals, Noveon Magnetics, Phoenix Tailings, Posco, REEtec, Rivalia Chemical, SiTration, Sumitomo and Summit Nanotech.
  • Global supply and trade dynamics for CRMs
  • The circular economy and sustainable use of CRMs
  • Critical and strategic materials used in the energy transition
  • CRM Recovery in Semiconductors and Electronics: Types of CRMs found in e-waste; Concentration and value of CRMs in e-waste; Collection, sorting, and pre-processing technologies; Metal recovery technologies like pyrometallurgy, hydrometallurgy, and biometallurgy; Market forecasts for CRM recovery from electronics 2025-2040.
  • CRM Recovery in Lithium-ion Batteries: Li-ion battery recycling value chain; Recycling processes for different cathode chemistries; Comparison of recycling techniques (hydrometallurgy, pyrometallurgy, direct recycling); Economic factors in battery recycling; Market forecasts for CRM recovery from batteries 2025-2040.
  • Rare Earth Elements Recovery: REE recovery technologies; Comparison of recovery methods; REE recycling markets and players; Forecasts for REE recovery 2025-2040.
  • Platinum Group Metals Recovery: PGM recovery from automotive catalysts; PGM recovery from fuel cells and electrolyzers; PGM recycling markets; Forecasts for PGM recovery 2025-2040

 

Critical raw materials are essential enablers of the clean energy transition and next-generation technologies. However, they face supply risks, price volatility, and sustainability concerns. This report provides businesses, investors, and policymakers with crucial intelligence on the rapidly evolving CRM market landscape.

Key questions answered include:

  • What are the supply and demand projections for key CRMs through 2040?
  • Which recovery technologies and sources will see the highest growth?
  • How will recycling and urban mining impact primary CRM production?
  • What are the economic factors driving CRM recovery from end-of-life products?
  • Which geographic markets offer the greatest opportunities for CRM recovery?
  • Who are the key players across the CRM value chain?
  • What regulatory and sustainability trends will shape the market?

 

With detailed forecasts, technology assessments, and competitive analysis, this report offers an essential tool for strategy formulation in the critical materials sector. The shift towards clean energy and electrification is creating major market opportunities in CRM recovery and recycling. This comprehensive study provides the market intelligence needed to capitalize on the growing demand for sustainably-sourced critical raw materials.

Download Table of Contents (PDF)

1             EXECUTIVE SUMMARY            21

  • 1.1        Definition and Importance of Critical Raw Materials           21
  • 1.2        E-Waste as a Source of Critical Raw Materials        23
  • 1.3        Electrification, Renewable and Clean Technologies            24
  • 1.4        Regulatory Landscape             26
    • 1.4.1    European Union           26
    • 1.4.2    United States 26
    • 1.4.3    China  27
    • 1.4.4    Japan  27
    • 1.4.5    Australia           27
    • 1.4.6    Canada             27
    • 1.4.7    India    27
    • 1.4.8    South Korea    27
    • 1.4.9    Brazil   28
    • 1.4.10 Russia 28
    • 1.4.11 Global Initiatives          28
  • 1.5        Key Market Drivers and Restraints   30
  • 1.6        The Global Critical Raw Materials Market in 2024 32
  • 1.7        Critical Material Extraction Technology        34
  • 1.7.1    Recovery of critical materials from secondary sources (e.g., end-of-life products, industrial waste) 37
    • 1.7.2    Critical rare-earth element recovery from secondary sources      38
    • 1.7.3    Li-ion battery technology metal recovery    39
    • 1.7.4    Critical semiconductor materials recovery                41
    • 1.7.5    Critical semiconductor materials recovery                41
    • 1.7.6    Critical platinum group metal recovery        43
    • 1.7.7    Critical platinum Group metal recovery       44
  • 1.8        Critical Raw Materials Value Chain 45
  • 1.9        The Economic Case for Critical Raw Materials Recovery  46
  • 1.10     Price Trends for Key Recovered Materials (2020-2024)      46
  • 1.11     Global market forecasts         48
    • 1.11.1 By Material Type (2025-2040)             48
    • 1.11.2 By Recovery Source (2025-2040)     50
    • 1.11.3 By Region (2025-2040)            52

 

2             INTRODUCTION          54

  • 2.1        Critical Raw Materials              54
  • 2.2        Global situation in supply and trade               55
  • 2.3        Circular economy       55
    • 2.3.1    Circular use of critical raw materials             57
  • 2.4        Critical and strategic raw materials used in the energy transition              60
    • 2.4.1    Greening critical metals         62
  • 2.5        Metals and minerals processed and extracted        63
    • 2.5.1    Copper               63
      • 2.5.1.1 Global copper demand and trends 63
      • 2.5.1.2 Markets and applications      64
      • 2.5.1.3 Copper extraction and recovery        65
    • 2.5.2    Nickel  66
      • 2.5.2.1 Global nickel demand and trends    66
      • 2.5.2.2 Markets and applications      66
      • 2.5.2.3 Nickel extraction and recovery           68
    • 2.5.3    Cobalt 69
      • 2.5.3.1 Global cobalt demand and trends   69
      • 2.5.3.2 Markets and applications      70
      • 2.5.3.3 Cobalt extraction and recovery          71
    • 2.5.4    Rare Earth Elements (REE)   72
      • 2.5.4.1 Global Rare Earth Elements demand and trends   72
      • 2.5.4.2 Markets and applications      72
      • 2.5.4.3 Rare Earth Elements extraction and recovery           73
      • 2.5.4.4 Recovery of REEs from secondary resources            74
    • 2.5.5    Lithium              75
      • 2.5.5.1 Global lithium demand and trends  75
      • 2.5.5.2 Markets and applications      76
      • 2.5.5.3 Lithium extraction and recovery        76
    • 2.5.6    Gold     77
      • 2.5.6.1 Global gold demand and trends        77
      • 2.5.6.2 Markets and applications      78
      • 2.5.6.3 Gold extraction and recovery               79
    • 2.5.7    Uranium            79
      • 2.5.7.1 Global uranium demand and trends               79
      • 2.5.7.2 Markets and applications      80
      • 2.5.7.3 Uranium extraction and recovery      80
    • 2.5.8    Zinc      81
      • 2.5.8.1 Global Zinc demand and trends        81
      • 2.5.8.2 Markets and applications      82
      • 2.5.8.3 Zinc extraction and recovery                83
    • 2.5.9    Manganese     83
      • 2.5.9.1 Global manganese demand and trends       83
      • 2.5.9.2 Markets and applications      84
      • 2.5.9.3 Manganese extraction and recovery               85
    • 2.5.10 Tantalum          86
      • 2.5.10.1            Global tantalum demand and trends             86
      • 2.5.10.2            Markets and applications      86
      • 2.5.10.3            Tantalum extraction and recovery    87
    • 2.5.11 Niobium            88
      • 2.5.11.1            Global niobium demand and trends               88
      • 2.5.11.2            Markets and applications      88
      • 2.5.11.3            Niobium extraction and recovery      89
    • 2.5.12 Indium                90
      • 2.5.12.1            Global indium demand and trends  90
      • 2.5.12.2            Markets and applications      90
      • 2.5.12.3            Indium extraction and recovery          91
    • 2.5.13 Gallium              92
      • 2.5.13.1            Global gallium demand and trends 92
      • 2.5.13.2            Markets and applications      92
      • 2.5.13.3            Gallium extraction and recovery        93
    • 2.5.14 Germanium    93
      • 2.5.14.1            Global germanium demand and trends        93
      • 2.5.14.2            Markets and applications      94
      • 2.5.14.3            Germanium extraction and recovery              94
    • 2.5.15 Antimony          95
      • 2.5.15.1            Global antimony demand and trends            95
      • 2.5.15.2            Markets and applications      96
      • 2.5.15.3            Antimony extraction and recovery    96
    • 2.5.16 Scandium        97
      • 2.5.16.1            Global scandium demand and trends           97
      • 2.5.16.2            Markets and applications      97
      • 2.5.16.3            Scandium extraction and recovery  98
    • 2.5.17 Graphite            99
    • 2.5.17.1            Global graphite demand and trends               99
    • 2.5.17.2            Markets and applications      100
    • 2.5.17.3            Graphite extraction and recovery      101
  • 2.6        Recovery sources       102
    • 2.6.1    Primary sources           104
    • 2.6.2    Secondary sources    105
    • 2.6.2.1 Extraction         108
      • 2.6.2.1.1           Hydrometallurgical extraction            110
        • 2.6.2.1.1.1      Overview           110
        • 2.6.2.1.1.2      Lixiviants          111
        • 2.6.2.1.1.3      SWOT analysis              112
      • 2.6.2.1.2           Pyrometallurgical extraction                113
        • 2.6.2.1.2.1      Overview           113
        • 2.6.2.1.2.2      SWOT analysis              114
      • 2.6.2.1.3           Biometallurgy 115
        • 2.6.2.1.3.1      Overview           115
        • 2.6.2.1.3.2      SWOT analysis              117
      • 2.6.2.1.4           Ionic liquids and deep eutectic solvents     118
        • 2.6.2.1.4.1      Overview           118
        • 2.6.2.1.4.2      SWOT analysis              120
      • 2.6.2.1.5           Electroleaching extraction    122
        • 2.6.2.1.5.1      Overview           122
        • 2.6.2.1.5.2      SWOT analysis              122
      • 2.6.2.1.6           Supercritical fluid extraction               124
        • 2.6.2.1.6.1      Overview           124
        • 2.6.2.1.6.2      SWOT analysis              124
      • 2.6.2.2 Recovery           126
        • 2.6.2.2.1           Solvent extraction       126
          • 2.6.2.2.1.1      Overview           126
          • 2.6.2.2.1.2      Rare-Earth Element Recovery             126
          • 2.6.2.2.1.3      WOT analysis 128
        • 2.6.2.2.2           Ion exchange recovery             129
          • 2.6.2.2.2.1      Overview           129
          • 2.6.2.2.2.2      SWOT analysis              131
        • 2.6.2.2.3           Ionic liquid (IL) and deep eutectic solvent (DES) recovery                132
          • 2.6.2.2.3.1      Overview           132
          • 2.6.2.2.3.2      SWOT analysis              135
        • 2.6.2.2.4           Precipitation   136
          • 2.6.2.2.4.1      Overview           136
          • 2.6.2.2.4.2      Coagulation and flocculation              137
          • 2.6.2.2.4.3      SWOT analysis              139
        • 2.6.2.2.5           Biosorption     140
          • 2.6.2.2.5.1      Overview           140
          • 2.6.2.2.5.2      SWOT analysis              142
        • 2.6.2.2.6           Electrowinning              143
          • 2.6.2.2.6.1      Overview           143
          • 2.6.2.2.6.2      SWOT analysis              145
        • 2.6.2.2.7           Direct materials recovery       146
      • 2.6.2.2.7.1      Overview           146
          • 2.6.2.2.7.2      Rare-earth Oxide (REO) Processing Using Molten Salt Electrolysis            147
          • 2.6.2.2.7.3      Rare-earth Magnet Recycling by Hydrogen Decrepitation                147
          • 2.6.2.2.7.4      Direct Recycling of Li-ion Battery Cathodes by Sintering  148
          • 2.6.2.2.7.5      SWOT analysis              148

 

3             CRITICAL RAW MATERIALS RECOVERY IN SEMICONDUCTORS  153

  • 3.1        Critical semiconductor materials    153
  • 3.2        Electronic waste (e-waste)   157
    • 3.2.1    Types of Critical Raw Materials found in E-Waste  157
  • 3.3        Photovoltaic and solar technologies              161
    • 3.3.1    Common types of PV panels and their critical semiconductor components      161
    • 3.3.2    Silicon Recovery Technology for Crystalline-Si PVs              162
    • 3.3.3    Tellurium Recovery from CdTe Thin-Film Photovoltaics     162
    • 3.3.4    Solar Panel Manufacturers and Recovery Rates     163
  • 3.4        Concentration and value of Critical Raw Materials in E-Waste     163
  • 3.5        Applications and Importance of Key Critical Raw Materials           164
  • 3.6        Waste Recycling and Recovery Processes  165
  • 3.7        Collection and Sorting Infrastructure             166
  • 3.8        Pre-Processing Technologies              167
  • 3.9        Metal Recovery Technologies              168
    • 3.9.1    Pyrometallurgy              168
    • 3.9.2    Hydrometallurgy          169
    • 3.9.3    Biometallurgy 169
    • 3.9.4    Supercritical Fluid Extraction              170
    • 3.9.5    Electrokinetic Separation      170
    • 3.9.6    Mechanochemical Processing           171
  • 3.10     Global market 2025-2040     173
    • 3.10.1 Ktonnes             175
    • 3.10.2 Revenues          176
    • 3.10.3 Regional            177

 

4             CRITICAL RAW MATERIALS RECOVERY IN LI-ION BATTERIES        179

  • 4.1        Critical Li-ion Battery Metals               179
  • 4.2        Critical Li-ion Battery Technology Metal Recovery 180
  • 4.3        Lithium-Ion Battery recycling value chain   182
  • 4.4        Black mass powder   185
  • 4.5        Recycling different cathode chemistries     185
  • 4.6        Preparation     186
  • 4.7        Pre-Treatment                186
    • 4.7.1    Discharging    186
    • 4.7.2    Mechanical Pre-Treatment    186
    • 4.7.3    Thermal Pre-Treatment            189
  • 4.8        Comparison of recycling techniques              190
  • 4.9        Hydrometallurgy          191
    • 4.9.1    Method overview         191
      • 4.9.1.1 Solvent extraction       193
    • 4.9.2    SWOT analysis              193
  • 4.10     Pyrometallurgy              194
    • 4.10.1 Method overview         194
    • 4.10.2 SWOT analysis              195
  • 4.11     Direct recycling             196
    • 4.11.1 Method overview         196
      • 4.11.1.1            Electrolyte separation              197
      • 4.11.1.2            Separating cathode and anode materials   198
      • 4.11.1.3            Binder removal             198
      • 4.11.1.4            Relithiation      198
      • 4.11.1.5            Cathode recovery and rejuvenation                199
      • 4.11.1.6            Hydrometallurgical-direct hybrid recycling                200
    • 4.11.2 SWOT analysis              200
  • 4.12     Other methods             201
    • 4.12.1 Mechanochemical Pretreatment      201
    • 4.12.2 Electrochemical Method        202
    • 4.12.3 Ionic Liquids   202
  • 4.13     Recycling of Specific Components 203
    • 4.13.1 Anode (Graphite)         203
    • 4.13.2 Cathode            203
    • 4.13.3 Electrolyte        203
  • 4.14     Recycling of Beyond Li-ion Batteries               204
    • 4.14.1 Conventional vs Emerging Processes            204
    • 4.14.2 Li-Metal batteries        205
    • 4.14.3 Lithium sulfur batteries (Li–S)             206
    • 4.14.4 All-solid-state batteries (ASSBs)       207
  • 4.15     Economic case for Li-ion battery recycling 208
    • 4.15.1 Metal prices    210
    • 4.15.2 Second-life energy storage   211
    • 4.15.3 LFP batteries  212
    • 4.15.4 Other components and materials    212
    • 4.15.5 Reducing costs             212
  • 4.16     Competitive landscape          214
  • 4.17     Global capacities, current and planned       214
  • 4.18     Future outlook              216
  • 4.19     Global market 2025-2040     216
    • 4.19.1 Chemistry        218
    • 4.19.2 Ktonnes             220
    • 4.19.3 Revenues          222
    • 4.19.4 Regional            224

 

5             CRITICAL RARE-EARTH ELEMENT RECOVERY         227

  • 5.1        Introduction    227
  • 5.2        Permanent magnet applications      228
  • 5.3        Recovery technologies            229
    • 5.3.1    Long-loop and short-loop recovery methods           231
    • 5.3.2    Hydrogen decrepitation           232
    • 5.3.3    Powder metallurgy (PM)          233
    • 5.3.4    Long-loop magnet recycling 234
    • 5.3.5    Solvent Extraction      235
    • 5.3.6    Ion Exchange Resin Chromatography            236
    • 5.3.7    Electrolysis and Metallothermic Reduction               237
  • 5.4        Markets              240
    • 5.4.1    Rare-earth magnet market    240
    • 5.4.2    Rare-earth magnet recovery technology      241
  • 5.5        Global market 2025-2040     245
    • 5.5.1    Ktonnes             245
    • 5.5.2    Revenues          246

 

6             CRITICAL PLATINUM GROUP METAL RECOVERY   247

  • 6.1        Introduction    247
  • 6.2        Supply chain  248
  • 6.3        Prices  249
  • 6.4        PGM Recovery               250
  • 6.5        PGM recovery from spent automotive catalysts     253
  • 6.6        PGM recovery from hydrogen electrolyzers and fuel cells 256
    • 6.6.1    Green hydrogen market           256
    • 6.6.2    PGM recovery from hydrogen-related technologies             256
    • 6.6.3    Catalyst Coated Membranes (CCMs)            258
    • 6.6.4    Fuel cell catalysts       259
    • 6.6.5    Emerging technologies            261
      • 6.6.5.1 Microwave-assisted Leaching            261
      • 6.6.5.2 Supercritical Fluid Extraction              261
      • 6.6.5.3 Bioleaching     262
      • 6.6.5.4 Electrochemical Recovery    263
      • 6.6.5.5 Membrane Separation             263
      • 6.6.5.6 Ionic Liquids   264
      • 6.6.5.7 Photocatalytic Recovery         264
    • 6.6.6    Sustainability of the hydrogen economy      265
  • 6.7        Markets              265
  • 6.8        Global market 2025-2040     268
    • 6.8.1    Ktonnes             268
    • 6.8.2    Revenues          270

 

7             COMPANY PROFILES                271 (155 company profiles)

 

8             APPENDICES  385

  • 8.1        Research Methodology           385
  • 8.2        Glossary of Terms       386
  • 8.3        List of Abbreviations  387

 

9             REFERENCES 388

 

List of Tables

  • Table 1. List of Key Critical Raw Materials and Their Primary Applications.          21
  • Table 2. Regulatory Landscape for Critical Raw Materials by Country/Region.  29
  • Table 3. Key Market Drivers and Restraints in Critical Raw Materials Recovery. 30
  • Table 4. Global Production of Critical Materials by Country (Top 10 Countries).               33
  • Table 5. Projected Demand for Critical Materials in Clean Energy Technologies (2024-2040). 33
  • Table 6. Value Proposition for Critical Material Extraction Technologies.               35
  • Table 7. Critical Material Extraction Methods Evaluated by Key Performance Metrics. 37
  • Table 8. Critical Rare-Earth Element Recovery Technologies from Secondary Sources.              38
  • Table 9. Li-ion Battery Technology Metal Recovery Methods-Metal, Recovery Method, Recovery Efficiency, Challenges, Environmental Impact, Economic Viability.          40
  • Table 10. Critical Semiconductor Materials Recovery-Material, Primary Source, Recovery Method, Recovery Efficiency, Challenges, Potential Applications. 41
  • Table 11. Critical Semiconductor Material Recovery from Secondary Sources.                42
  • Table 12. Critical Platinum Group Metal Recovery.               44
  • Table 13. Price Trends for Key Recovered Materials (2020-2024).               47
  • Table 14. Global critical raw materials recovery market by material types (2025-2040), by ktonnes. 48
  • Table 15. Global critical raw materials recovery market by material types (2025-2040), by value (Billions USD).  49
  • Table 16. Global critical raw materials recovery market by recovery source (2025-2040), in ktonnes.                50
  • Table 17. Global critical raw materials recovery market by recovery source (2025-2040), by value (Billions USD).               51
  • Table 18. Global critical raw materials recovery market by region (2025-2040), by ktonnes.    52
  • Table 19. Global critical raw materials recovery market by region (2025-2040), by value (Billions USD).                53
  • Table 20. Primary global suppliers of critical raw materials.           54
  • Table 21. Current contribution of recycling to meet global demand of CRMs.    57
  • Table 22. Applications and Importance of Key Critical Raw Materials.    60
  • Table 23. Comparison of Recovery Rates for Different Critical Materials.             61
  • Table 24. Markets and applications: copper.             64
  • Table 25. Technologies and Techniques for Copper Extraction and Recovery.    65
  • Table 26. Markets and applications: nickel.               67
  • Table 27. Technologies and Techniques for Nickel Extraction and Recovery.       68
  • Table 28. Markets and applications: cobalt.              70
  • Table 29. Technologies and Techniques for Cobalt Extraction and Recovery.      71
  • Table 30. Markets and applications: rare earth elements.                73
  • Table 31. Technologies and Techniques for Rare Earth Elements Extraction and Recovery.      74
  • Table 32. Markets and applications: lithium.            76
  • Table 33. Technologies and Techniques for Lithium Extraction and Recovery.    77
  • Table 34. Markets and applications: gold.  78
  • Table 35. Technologies and Techniques for Gold Extraction and Recovery.          79
  • Table 36. Markets and applications: uranium.         80
  • Table 37. Technologies and Techniques for Uranium Extraction and Recovery. 81
  • Table 38. Markets and applications: zinc.   82
  • Table 39. Zinc Extraction and Recovery Technologies.        83
  • Table 40. Markets and applications: manganese. 84
  • Table 41. Manganese Extraction and Recovery Technologies.       85
  • Table 42. Markets and applications: tantalum.       86
  • Table 43. Tantalum Extraction and Recovery Technologies.            87
  • Table 44. Markets and applications: niobium.         89
  • Table 45. Niobium Extraction and Recovery Technologies.              89
  • Table 46. Markets and applications: indium.            91
  • Table 47. Indium Extraction and Recovery Technologies. 91
  • Table 48. Markets and applications: gallium.           92
  • Table 49. Gallium Extraction and Recovery Technologies.               93
  • Table 50. Markets and applications: germanium.  94
  • Table 51. Germanium Extraction and Recovery Technologies.      95
  • Table 52. Markets and applications: antimony.       96
  • Table 53. Antimony Extraction and Recovery Technologies.           97
  • Table 54. Markets and applications: scandium.     98
  • Table 55. Scandium Extraction and Recovery Technologies.          98
  • Table 56. Graphite Markets and Applications.         100
  • Table 57. Graphite Extraction and Recovery Techniques and Technologies.        101
  • Table 58. Comparison of Primary vs Secondary Production for Key Materials.   103
  • Table 59. Environmental Impact Comparison: Primary vs Secondary Production.          105
  • Table 60. Technologies for critical material recovery from secondary sources. 105
  • Table 61. Technologies for critical raw material recovery from secondary sources.        107
  • Table 62. Critical raw material extraction technologies.    108
  • Table 63. Pyrometallurgical extraction methods.   113
  • Table 64. Bioleaching processes and their applicability to critical materials.     115
  • Table 65. Comparative analysis of metal recovery technologies. 150
  • Table 66. Technology readiness of critical material recovery technologies by secondary material sources.            151
  • Table 67. Technology readiness of critical semiconductor recovery technologies.         154
  • Table 68. Critical Semiconductors Applications and Recycling Rates.    156
  • Table 69. Types of critical raw Materials found in E-Waste.             157
  • Table 70. E-waste Generation and Recycling Rates.            160
  • Table 71. Critical Semiconductor Recovery from Photovoltaics. 161
  • Table 72. Solar Panel Manufacturers and Their Recycling Capabilities. 163
  • Table 73. Concentration and Value of Critical Raw Materials in E-waste.              164
  • Table 74. Critical Semiconductor Materials and Their Applications.         165
  • Table 75. Critical Materials Waste Recycling and Recovery Processes.  166
  • Table 76. Collection and Sorting Infrastructure for Critical Materials Recycling.              166
  • Table 77. Pre-Processing Technologies for Critical Materials Recycling. 167
  • Table 78. Global recovered critical raw electronics material, 2025-2040 (ktonnes).      175
  • Table 79. Global recovered critical raw electronics material market, 2025-2040 (billions USD).           176
  • Table 80. Recovered critical raw electronics material market, by region, 2025-2040 (ktonnes).            177
  • Table 81. Drivers for Recycling Li-ion Batteries.       179
  • Table 82. Li-ion Battery Metal Recovery Technologies.       180
  • Table 83. Li-ion battery recycling value chain.         182
  • Table 84. Typical lithium-ion battery recycling process flow.         184
  • Table 85. Main feedstock streams that can be recycled for lithium-ion batteries.            184
  • Table 86. Comparison of LIB recycling methods.   190
  • Table 87. Comparison of conventional and emerging processes for recycling beyond lithium-ion batteries.          205
  • Table 88. Economic assessment of battery recycling options.     209
  • Table 89. Retired lithium-batteries. 213
  • Table 90. Global capacities, current and planned (tonnes/year).                214
  • Table 91. Global lithium-ion battery recycling market in tonnes segmented by cathode chemistry, 2025-2040.  218
  • Table 92. Global Li-ion battery recycling market, 2025-2040 (ktonnes)  220
  • Table 93. Global Li-ion battery recycling market, 2025-2040 (billions USD).       222
  • Table 94. Li-ion battery recycling market, by region, 2025-2040 (ktonnes).          225
  • Table 95. Critical rare-earth elements markets and applications.              227
  • Table 96. Primary and Secondary Material Streams for Rare-Earth Element Recovery. 229
  • Table 97. Critical rare-earth element recovery technologies.        230
  • Table 98. Rare Earth Element Content in Secondary Material Sources.  231
  • Table 99. Comparison of Short-loop and Long-loop Rare Earth Recovery Methods.      232
  • Table 100. Long-loop Rare-Earth Magnet Recycling Technologies.            234
  • Table 101. Rare Earth Element Demand by Application.   240
  • Table 102. Global rare-earth magnet key players in a table             241
  • Table 103. Rare Earth Magnet Recycling Value Chain.        241
  • Table 104.Technology readiness of REE recovery technologies in a table              244
  • Table 105. Global recovered critical rare-earth element market, 2025-2040 (ktonnes) 245
  • Table 106. Global recovered critical rare-earth element market, 2025-2040 (billions USD).    246
  • Table 107. Global PGM Demand Segmented by Application.        247
  • Table 108. Critical Platinum Group Metals: Applications and Recycling Rates. 250
  • Table 109. Technology Readiness of Critical PGM Recovery from Secondary Sources.                252
  • Table 110. Automotive Catalyst Recycling Players.               256
  • Table 111. Challenges in transitioning to new PEMEL catalysts and the role of PGM recycling in a table.                257
  • Table 112. Key Suppliers of Catalysts for Fuel Cells.           260
  • Table 113. Global recovered critical platinum group metal market, 2025-2040 (ktonnes)         268
  • Table 114. Global recovered critical platinum group metal market, 2025-2040 (billions USD).              270
  • Table 115. Glossary of terms.              386
  • Table 116. List of Abbreviations.        387

 

List of Figures

  • Figure 1. TRL of critical material extraction technologies. 35
  • Figure 2. Critical Raw Materials Value Chain.           46
  • Figure 3. Global critical raw materials recovery market by material types (2025-2040), by ktonnes.  48
  • Figure 4. Global critical raw materials recovery market by material types (2025-2040), by value (Billions USD).  49
  • Figure 5. Global critical raw materials recovery market by recovery source (2025-2040), by ktonnes.                50
  • Figure 6. Global critical raw materials recovery market by recovery source (2025-2040), by value.     51
  • Figure 7. Global critical raw materials recovery market by region (2025-2040), by ktonnes.     53
  • Figure 8. Global critical raw materials recovery market by region (2025-2040), by value (Billions USD).                53
  • Figure 9. Conceptual diagram illustrating the Circular Economy.               57
  • Figure 10. Circular Economy Model for Critical Materials.               59
  • Figure 11. Copper demand outlook.               63
  • Figure 12. Global nickel demand outlook.  66
  • Figure 13. Global cobalt demand outlook. 70
  • Figure 14. Global lithium demand outlook.               75
  • Figure 15. Global graphite demand outlook.             100
  • Figure 16.  Solvent extraction (SX) in hydrometallurgy.       111
  • Figure 17. SWOT analysis: hydrometallurgical extraction.               113
  • Figure 18. SWOT analysis: pyrometallurgical extraction of critical materials.     115
  • Figure 19. SWOT analysis: biometallurgy for critical material extraction.              118
  • Figure 20. SWOT analysis: ionic liquids and deep eutectic solvents for critical material extraction.   121
  • Figure 21. SWOT analysis: electrochemical leaching for critical material extraction.    124
  • Figure 22. SWOT analysis: supercritical fluid extraction technology.        126
  • Figure 23. SWOT analysis: solvent extraction recovery technology.           129
  • Figure 24. SWOT analysis: ion exchange resin recovery technology.         132
  • Figure 25. SWOT analysis: ionic liquids and deep eutectic solvents for critical material recovery.       136
  • Figure 26. SWOT analysis: precipitation for critical material recovery.     140
  • Figure 27. SWOT analysis: biosorption for critical material recovery.       143
  • Figure 28. SWOT analysis: electrowinning for critical material recovery.                146
  • Figure 29. SWOT analysis: direct critical material recovery technology. 150
  • Figure 30. Global Li-ion battery recycling market, 2025-2040 (chemistry).          174
  • Figure 31. Global  recovered critical raw electronics materials market, 2025-2040 (ktonnes) 175
  • Figure 32. Global  recovered critical raw electronics material market, 2025-2040 (Billion USD).          176
  • Figure 33. Recovered critical raw electronics material market, by region, 2025-2040 (ktonnes).          178
  • Figure 34. Typical direct, pyrometallurgical, and hydrometallurgical recycling methods for recovery of Li-ion battery active materials. 183
  • Figure 35. Mechanical separation flow diagram.   187
  • Figure 36. Recupyl mechanical separation flow diagram. 188
  • Figure 37. Flow chart of recycling processes of lithium-ion batteries (LIBs).       191
  • Figure 38. Hydrometallurgical recycling flow sheet.             192
  • Figure 39. SWOT analysis for Hydrometallurgy Li-ion Battery Recycling.                194
  • Figure 40. Umicore recycling flow diagram.              195
  • Figure 41. SWOT analysis for Pyrometallurgy Li-ion Battery Recycling.   196
  • Figure 42. Schematic of direct recyling process.    197
  • Figure 43. SWOT analysis for Direct Li-ion Battery Recycling.        201
  • Figure 44. Schematic diagram of a Li-metal battery.            206
  • Figure 45. Schematic diagram of Lithium–sulfur battery.  207
  • Figure 46. Schematic illustration of all-solid-state lithium battery.            208
  • Figure 47.  Global scrapped EV (BEV+PHEV) forecast to 2040.     217
  • Figure 48. Global Li-ion battery recycling market, 2025-2040 (chemistry).          219
  • Figure 49. Global Li-ion battery recycling market, 2025-2040 (ktonnes) 221
  • Figure 50. Global Li-ion battery recycling market, 2025-2040 (Billion USD).       223
  • Figure 51. Global Li-ion battery recycling market, by region, 2025-2040 (ktonnes).       226
  • Figure 52. Global recovered critical rare-earth element market, 2025-2040 (ktonnes) 245
  • Figure 53. Global recovered critical rare-earth element market, 2025-2040 (Billion USD).       246
  • Figure 54. Global recovered critical platinum group metal market, 2025-2040 (ktonnes)          269
  • Figure 55. Global recovered critical platinum group metal market, 2025-2040 (Billion USD). 270

 

 

 

 

The Global Critical Raw Materials Recovery Market 2025-2040
The Global Critical Raw Materials Recovery Market 2025-2040
PDF download.

The Global Critical Raw Materials Recovery Market 2025-2040
The Global Critical Raw Materials Recovery Market 2025-2040
PDF and print edition (including delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.