The Global Market for Flexible Batteries 2025-2035

0

Cover

  • Published: September 2024
  • Pages: 362
  • Tables: 50
  • Figures: 74

 

As electronic devices become more compact, flexible, and wearable, the demand for similarly flexible and efficient power sources is increasing. Flexible batteries have been identified by the World Economic Forum as one of the key emerging technologies for the next decade. The flexible batteries market is being supported by the expansion of wearable electronics, Internet of Things (IoT) devices, and other applications that require thin, bendable, and potentially stretchable power sources. This market report examines the global flexible batteries landscape from 2025 to 2035, providing insights for investors, manufacturers, and technology developers interested in this evolving energy storage solution. Report contents include: 

  • Market Size and Growth Projections: Forecasts of the flexible batteries market size and growth rate from 2025 to 2035, categorized by technology, application, and region.
  • Technology Analysis: Overview of various flexible battery technologies, including thin-film lithium-ion, printed batteries, solid-state batteries, and stretchable batteries.
  • Application Areas: Assessment of key application areas such as consumer electronics, healthcare devices, smart packaging, wearables, IoT, and automotive sectors.
  • Regional Analysis: Examination of market trends and opportunities in North America, Europe, Asia-Pacific, and other key regions.
  • Competitive Landscape: Profiles of established companies and new entrants in the flexible batteries space, including their technologies, strategies, and market positioning. Companies profiled include 3DOM Inc., AC Biode, AMO Greentech, Ampcera Inc., Anthro Energy, Ateios Systems, Australian Advanced Materials, Blackstone Resources, Blue Current Inc., Blue Spark Technologies Inc., CCL Design, Enfucell OY, Ensurge Micropower ASA, Evonik, Exeger, Fraunhofer Institute for Electronic Nano Systems (ENAS), Fuelium, Hitachi Zosen, Hyprint GmbH, Ilika, Intecells Inc., Jenax Inc., LiBest Inc., LionVolt BV, Maxell, Navaflex, NEC Corporation, Ohara, Photocentric, PolyPlus Battery Company, prelonic technologies, Prologium Technology Co. Ltd., Sakuú Corporation, Samsung SDI, Semiconductor Energy Laboratory Co. Ltd., Shenzhen Grepow Battery Co. Ltd. (Grepow), STMicroelectronics, TotalEnergies, UNIGRID Battery, Varta, and Zinergy UK.
  • Recent developments in flexible battery technology.
  • Market Drivers and Opportunities. 
  • Challenges and Market Dynamics
  • Technical issues in manufacturing and scaling production.
  • Cost considerations and competition from traditional battery technologies.
  • Regulatory and safety concerns.
  • Technology Benchmarking and Performance Metrics.
  • Manufacturing Innovations and Material Science Advancements.
  • Investment Landscape and Market Opportunities.
    • Analysis of venture capital funding trends.
    • Overview of government initiatives and grants supporting flexible battery development.
    • Identification of potential investment areas and emerging market segments.

 

This report offers information for various stakeholders in the flexible batteries ecosystem:

  • Manufacturers: Production strategies, technology selection, and scaling considerations
  • Electronics Companies: Integration challenges and opportunities in product design
  • Investors: Potentially high-growth technologies and market segments for investment
  • Researchers: Areas for further study and development
  • Policy Makers: Regulatory considerations and support mechanisms for industry growth

 

 

1             EXECUTIVE SUMMARY            15

  • 1.1        Definition and Overview of Flexible Batteries            15
  • 1.2        Battery market megatrends  18
  • 1.3        Advanced materials for batteries      22
  • 1.4        Macro-trends 23
  • 1.5        Importance of Flexible Batteries in Modern Applications 24
  • 1.6        Technology benchmarking    25
  • 1.7        Battery Development                26
    • 1.7.1    Enhanced Energy Density and Performance             28
    • 1.7.2    Stretchable Batteries                29
    • 1.7.3    Textile-Based Batteries            29
    • 1.7.4    Printable Batteries      31
    • 1.7.5    Sustainable and Biodegradable Batteries   31
    • 1.7.6    Self-Healing Batteries              32
    • 1.7.7    Solid-State Flexible Batteries              33
    • 1.7.8    Integration with Energy Harvesting  34
    • 1.7.9    Nanostructured Materials     35
    • 1.7.10 Thin-Film Battery Technologies          35
  • 1.8        The Global Battery Market     36
  • 1.9        Market drivers                38
  • 1.10     Batteries roadmap     39
  • 1.11     Application market roadmap              42
  • 1.12     Applications   43
  • 1.13     Market forecast assumptions and challenges         46
    • 1.13.1 By technology (Millions USD)              47
    • 1.13.2 By technology (Units)               49
    • 1.13.3 By application (Millions USD)              50
    • 1.13.4 By application (Units)               51
  • 1.14     Market and technical challenges      53

 

2             TECHNOLOGY OVERVIEW    54

  • 2.1        Approaches to flexibility         55
  • 2.2        Flexible Battery Technologies              59
    • 2.2.1    Thin-film Lithium-ion Batteries           59
      • 2.2.1.1 Thin film vs bulk solid-state batteries             62
      • 2.2.1.2 Types of Flexible/stretchable LIBs    64
        • 2.2.1.2.1           Flexible planar LiBs   64
        • 2.2.1.2.2           Flexible Fiber LiBs       65
        • 2.2.1.2.3           Flexible micro-LiBs    65
        • 2.2.1.2.4           Stretchable lithium-ion batteries      68
        • 2.2.1.2.5           Origami and kirigami lithium-ion batteries  70
      • 2.2.1.3 Flexible Li/S batteries                71
      • 2.2.1.4 Flexible lithium-manganese dioxide (Li–MnO2) batteries 73
    • 2.2.2    Printed Batteries          74
      • 2.2.2.1 Technical specifications         75
      • 2.2.2.2 Components  75
      • 2.2.2.3 Design 77
      • 2.2.2.4 Key features    78
        • 2.2.2.4.1           Printable current collectors  79
        • 2.2.2.4.2           Printable electrodes  80
        • 2.2.2.4.3           Materials           81
        • 2.2.2.4.4           Applications   82
        • 2.2.2.4.5           Printing techniques    84
        • 2.2.2.4.6           Lithium-ion (LIB) printed batteries    87
        • 2.2.2.4.7           Zinc-based printed batteries                89
        • 2.2.2.4.8           3D Printed batteries   92
          • 2.2.2.4.8.1      Materials for 3D printed batteries     96
    • 2.2.3    Thin-Film Solid-state Batteries           98
      • 2.2.3.1 Solid-state electrolytes            99
      • 2.2.3.2 Features and advantages      100
      • 2.2.3.3 Technical specifications         102
      • 2.2.3.4 Microbatteries               107
        • 2.2.3.4.1           Introduction    107
        • 2.2.3.4.2           3D designs      109
    • 2.2.4    Stretchable Batteries                110
    • 2.2.5    Other Emerging Technologies             112
      • 2.2.5.1 Metal-sulfur batteries               112
      • 2.2.5.2 Flexible zinc-based batteries               115
      • 2.2.5.3 Flexible silver–zinc (Ag–Zn) batteries              116
      • 2.2.5.4 Flexible Zn–Air batteries          116
      • 2.2.5.5 Flexible zinc-vanadium batteries      117
      • 2.2.5.6 Fiber-shaped batteries             118
  • 2.3        Key Components of Flexible Batteries           130
    • 2.3.1    Electrodes        130
    • 2.3.2    Electrolytes     133
    • 2.3.3    Separators       137
    • 2.3.4    Current Collectors      139
    • 2.3.5    Packaging        141
    • 2.3.6    Encapsulation Materials         144
    • 2.3.7    Other Manufacturing Techniques     146
  • 2.4        Performance Metrics and Characteristics  149
    • 2.4.1    Energy Density              149
    • 2.4.2    Power Density               150
    • 2.4.3    Cycle Life          152
    • 2.4.4    Flexibility and Bendability     153

 

3             MARKET DYNAMICS  155

  • 3.1        Market Drivers               155
    • 3.1.1    Growing Demand for Wearable Electronics               156
    • 3.1.2    Increasing Adoption of IoT Devices  157
    • 3.1.3    Advancements in Flexible Electronics           159
    • 3.1.4    Rising Interest in Printed Electronics              160
    • 3.1.5    Demand for Lightweight and Portable Power Sources        161
  • 3.2        Market Restraints       163
    • 3.2.1    Technical Challenges in Manufacturing       163
    • 3.2.2    Limited Energy Density Compared to Conventional Batteries       164
    • 3.2.3    High Initial Production Costs              165
    • 3.2.4    Safety Concerns and Regulatory Hurdles   166
  • 3.3        Market Opportunities               167
    • 3.3.1    Emerging Applications in Healthcare and Medical Devices            167
    • 3.3.2    Integration with Energy Harvesting Technologies   169
    • 3.3.3    Potential in Aerospace and Defense Sectors            172
    • 3.3.4    Smart Packaging and RFID Applications      174
  • 3.4        Market Challenges     177
    • 3.4.1    Scaling Up Production             177
    • 3.4.2    Achieving Consistent Performance Under Various Conditions     178
    • 3.4.3    Competition from Alternative Energy Storage Technologies           180
    • 3.4.4    Addressing Environmental and Recycling Concerns            181

 

4             GLOBAL MARKET SIZE AND FORECAST (2025-2035)          182

  • 4.1        Overall Market Size and Growth Rate             182
  • 4.2        Market Segmentation by Technology              184
    • 4.2.1    Thin-film Lithium-ion Batteries           184
    • 4.2.2    Printed Batteries          186
    • 4.2.3    Flexible Solid-state Batteries               188
    • 4.2.4    Stretchable Batteries                189
  • 4.3        Market Segmentation by Application             191
    • 4.3.1    Consumer Electronics             191
    • 4.3.2    Healthcare and Medical Devices      193
    • 4.3.3    Smart Packaging         195
    • 4.3.4    Smart Cards and RFID             197
    • 4.3.5    Wearable Devices       199
    • 4.3.6    Internet of Things (IoT)             201
    • 4.3.7    Automotive      202
  • 4.4        Market Segmentation by Region       204
    • 4.4.1    North America              204
    • 4.4.2    Europe                205
    • 4.4.3    Asia-Pacific    206

 

5             APPLICATION ANALYSIS         212

  • 5.1        Consumer Electronics             213
    • 5.1.1    Applications   214
    • 5.1.2    Technology Requirements and Challenges                215
  • 5.2        Healthcare and Medical Devices      217
    • 5.2.1    Key Applications          217
      • 5.2.1.1 Smart Patches               217
      • 5.2.1.2 Implantable Devices 219
      • 5.2.1.3 Monitoring Systems   221
    • 5.2.2    Technology Requirements and Challenges                222
  • 5.3        Smart Packaging         223
    • 5.3.1    Key Applications          224
      • 5.3.1.1 Temperature Sensors               224
      • 5.3.1.2 Freshness Indicators 225
    • 5.3.2    Technology Requirements and Challenges                225
  • 5.4        Smart Cards and RFID             226
    • 5.4.1    Key Applications          228
    • 5.4.2    Technology Requirements and Challenges                229
  • 5.5        Wearable Devices       232
    • 5.5.1    Key Products  232
      • 5.5.1.1 Wrist-worn wearables and fitness trackers                232
      • 5.5.1.2 Smart Clothing             234
      • 5.5.1.3 Smart eyewear and headwear            235
      • 5.5.1.4 Smart contact lenses               236
    • 5.5.2    Technology Requirements and Challenges                238
  • 5.6        Internet of Things (IoT)             239
    • 5.6.1    Key Applications          239
      • 5.6.1.1 Sensors             239
      • 5.6.1.2 Smart Home Devices                241
      • 5.6.1.3 Industrial IoT  242
    • 5.6.2    Technology Requirements and Challenges                243
  • 5.7        Aerospace and Defense         244
    • 5.7.1    Key Applications          244
      • 5.7.1.1 Drones               244
      • 5.7.1.2 Soldier Systems           245
      • 5.7.1.3 Aircraft Components 246
    • 5.7.2    Technology Requirements and Challenges                247
  • 5.8        Automotive      248
    • 5.8.1    Key Applications          248
    • 5.8.2    Technology Requirements and Challenges                249

 

6             TRENDS AND FUTURE OUTLOOK    251

  • 6.1        Emerging Flexible Battery Technologies       251
    • 6.1.1    Graphene-based Flexible Batteries 252
    • 6.1.2    Fiber and Textile Batteries      254
    • 6.1.3    Bio-batteries and Eco-friendly Solutions    256
    • 6.1.4    Self-healing Battery Technologies    257
  • 6.2        Integration with Other Technologies               257
    • 6.2.1    Flexible Solar Cells    259
    • 6.2.2    Wireless Charging Systems  260
    • 6.2.3    Energy Harvesting Devices    261
    • 6.2.4    Artificial Intelligence and Smart Power Management         263
  • 6.3        Advancements in Materials Science               264
  • 6.4        Manufacturing Innovations  265
  • 6.5        Standardization and Regulatory Landscape             267
    • 6.5.1    Development of Industry Standards              267
    • 6.5.2    Safety Regulations and Compliance              269
    • 6.5.3    Environmental Regulations and Sustainability Initiatives 270
  • 6.6        Environmental Impact and Sustainability   271
    • 6.6.1    Life Cycle Assessment of Flexible Batteries               271
    • 6.6.2    Recyclability and End-of-Life Management               273
    • 6.6.3    Eco-friendly Materials and Production Processes 274

 

7             COMPANY PROFILES                275 (41 company profiles)

 

8             APPENDICES  336

  • 8.1        Glossary of Terms       336
  • 8.2        List of Abbreviations  337
  • 8.3        Research Methodology           338

 

9             REFERENCES 340

 

List of Tables

  • Table 1. Comparison with Conventional Battery Technologies.    17
  • Table 2. Battery market megatrends.             18
  • Table 3. Advanced materials for batteries.  22
  • Table 4. Macro-trends in flexible batteries. 23
  • Table 5. Technology benchmarking for flexible batteries.  25
  • Table 6. Application market roadmap for flexible batteries.            42
  • Table 7. Overview of applications for flexible batteries.     43
  • Table 8. Global market 2025-2035 by technology (Millions USD) for flexible batteries. 46
  • Table 9. Global market 2025-2035 by technology (units) for flexible batteries.   48
  • Table 10.Global market 2025-2035 by application (Millions USD) for flexible batteries.               49
  • Table 11.Global market 2025-2035 by application (Units) for flexible batteries.                50
  • Table 12. Market and technical challenges in flexible batteries.   53
  • Table 13. Flexible Li-ion battery prototypes.              59
  • Table 14. Thin film vs bulk solid-state batteries.     61
  • Table 15. Summary of fiber-shaped lithium-ion batteries.               65
  • Table 16. Main components and properties of different printed battery types.  75
  • Table 17, Types of printable current collectors and the materials commonly used.       78
  • Table 18. Applications of printed batteries and their physical and electrochemical requirements.     81
  • Table 19. 2D and 3D printing techniques.   83
  • Table 20. Printing techniques applied to printed batteries.              85
  • Table 21. Main components and corresponding electrochemical values of lithium-ion printed batteries.                86
  • Table 22. Printing technique, main components and corresponding electrochemical values of printed batteries based on Zn–MnO2 and other battery types.       88
  • Table 23. Main 3D Printing techniques for battery manufacturing.            93
  • Table 24. Electrode Materials for 3D Printed Batteries.      95
  • Table 25. Types of solid-state electrolytes. 98
  • Table 26. Market segmentation and status for solid-state batteries.         98
  • Table 27.  Typical process chains for manufacturing key components and assembly of solid-state batteries.          100
  • Table 28. Comparison between liquid and solid-state batteries. 105
  • Table 29. Types of fiber-shaped batteries.   117
  • Table 30. Components of transparent batteries.    121
  • Table 31. Components of degradable batteries.     124
  • Table 32. Types of fiber-shaped batteries.   126
  • Table 33. Electrode designs in flexible lithium-ion batteries.          133
  • Table 34. Thin batteries used in RFID tags/ sensors             173
  • Table 35. Global market for Thin-film Lithium-ion Batteries 2025-2035 (Millions USD).              183
  • Table 36. Global market for Printed Batteries 2025-2035 (Millions USD).              185
  • Table 37. Global market for Flexible Solid-state Batteries 2025-2035 (Millions USD).  187
  • Table 38. Global market for Stretchable Batteries 2025-2035 (Millions USD).   188
  • Table 39. Global market for Flexible Batteries in Consumer Electronics 2025-2035 (Millions USD).   190
  • Table 40. Global market for Flexible Batteries in Healthcare and Medical Devices 2025-2035 (Millions USD).  192
  • Table 41. Global market for Flexible Batteries in Smart Packaging 2025-2035 (Millions USD). 194
  • Table 42. Global market for Flexible Batteries in Smart Cards and RFID 2025-2035 (Millions USD).   196
  • Table 43. Global market for Flexible Batteries in Wearables 2025-2035 (Millions USD).              198
  • Table 44. Global market for Flexible Batteries in Internet of Things (IoT) 2025-2035 (Millions USD).    200
  • Table 45. Global market for Flexible Batteries in Automotive 2025-2035 (Millions USD).            201
  • Table 46. Market for Flexible Batteries in North America 2025-2035 (Millions USD).     203
  • Table 47. Market for Flexible Batteries in Europe 2025-2035 (Millions USD).      204
  • Table 48. Market for Flexible Batteries in Asia-Pacific 2025-2035 (Millions USD).            205
  • Table 49. 3DOM separator.   276
  • Table 50. Battery performance test specifications of J. Flex batteries.     306

 

List of Figures

  • Figure 1. Flexible, rechargeable battery.       16
  • Figure 2. Costs of batteries to 2030.              20
  • Figure 3. Flexible batteries on the market.  26
  • Figure 4. Stretchable lithium-ion battery for flexible electronics  29
  • Figure 5. Global market 2025-2035 by technology (value) for flexible batteries.                47
  • Figure 6. Global market 2025-2035 by technology (units) for flexible batteries. 49
  • Figure 7. Global market 2025-2035 by application (Millions USD) for flexible batteries.               50
  • Figure 8. Global market 2025-2035 by application (Units) for flexible batteries.                51
  • Figure 9. Various architectures for flexible and stretchable electrochemical energy storage. 55
  • Figure 10. Types of flexible batteries.             57
  • Figure 11. Materials and design structures in flexible lithium ion batteries.         59
  • Figure 12. Flexible/stretchable LIBs with different structures.       63
  • Figure 13. a–c) Schematic illustration of coaxial (a), twisted (b), and stretchable (c) LIBs.        66
  • Figure 14. a) Schematic illustration of the fabrication of the superstretchy LIB based on an MWCNT/LMO composite fiber and an MWCNT/LTO composite fiber. b,c) Photograph (b) and the schematic illustration (c) of a stretchable fiber-shaped battery under stretching conditions. d) Schematic illustration of the spring-like stretchable LIB. e) SEM images of a fiberat different strains. f) Evolution of specific capacitance with strain. d–f)                68
  • Figure 15. Origami disposable battery.          69
  • Figure 16. Zn–MnO2 batteries produced by Brightvolt.       72
  • Figure 17. Various applications of printed paper batteries.             74
  • Figure 18.Schematic representation of the main components of a battery.         75
  • Figure 19. Schematic of a printed battery in a sandwich cell architecture, where the anode and cathode of the battery are stacked together. 77
  • Figure 20. Sakuú's Swift Print 3D-printed solid-state battery cells.            91
  • Figure 21. Manufacturing Processes for Conventional Batteries (I), 3D Microbatteries (II), and 3D-Printed Batteries (III). 92
  • Figure 22. Examples of applications of thin film batteries.               102
  • Figure 23. Capacities and voltage windows of various cathode and anode materials. 103
  • Figure 24. Traditional lithium-ion battery (left), solid state battery (right).             105
  • Figure 25. Stretchable lithium-air battery for wearable electronics.          110
  • Figure 26. Ag–Zn batteries produced by Imprint Energy.    115
  • Figure 27. Transparent batteries.       121
  • Figure 28. Degradable batteries.       123
  • Figure 29 . Fraunhofer IFAM printed electrodes.      130
  • Figure 30. Ragone plots of diverse batteries and the commonly used electronics powered by flexible batteries.          131
  • Figure 31. Schematic of the structure of stretchable LIBs.              134
  • Figure 32. Electrochemical performance of materials in flexible LIBs.    134
  • Figure 33.  Wearable self-powered devices.              170
  • Figure 34. RFID sensors/tags with thin batteries.   173
  • Figure 35. Audio Paper.           174
  • Figure 36. Global market for Thin-film Lithium-ion Batteries 2025-2035 (Millions USD).            183
  • Figure 37. Global market for Printed Lithium-ion Batteries 2025-2035 (Millions USD). 185
  • Figure 38. Global market for Flexible Solid-state Batteries 2025-2035 (Millions USD). 187
  • Figure 39. Global market for Stretchable Solid-state Batteries 2025-2035 (Millions USD).       188
  • Figure 40. Global market for Flexible Batteries in Consumer Electronics 2025-2035 (Millions USD). 191
  • Figure 41. Global market for Flexible Batteries in Healthcare and Medical Devices 2025-2035 (Millions USD).  193
  • Figure 42. Global market for Flexible Batteries in Smart Packaging 2025-2035 (Millions USD).              195
  • Figure 43. Global market for Flexible Batteries in Smart Cards and RFID 2025-2035 (Millions USD). 196
  • Figure 44. Global market for Flexible Batteries in Wearables 2025-2035 (Millions USD).            198
  • Figure 45. Global market for Flexible Batteries in Internet of Things (IoT) 2025-2035 (Millions USD).  200
  • Figure 46. Global market for Flexible Batteries in Automotive 2025-2035 (Millions USD).          201
  • Figure 47. Market for Flexible Batteries in North America 2025-2035 (Millions USD).   203
  • Figure 48. Market for Flexible Batteries in Europe 2025-2035 (Millions USD).    204
  • Figure 49. Market for Flexible Batteries in Asia-Pacific 2025-2035 (Millions USD).          206
  • Figure 50. Skin patch.               217
  • Figure 51. Golf sensor patch powered by flexible, thin-film battery.          231
  • Figure 52. Rod-shaped batteriesrod-shaped batteries.      239
  • Figure 53. 3DOM battery.       275
  • Figure 54. AC biode prototype.           277
  • Figure 55. Ampcera’s all-ceramic dense solid-state electrolyte separator sheets (25 um thickness, 50mm x 100mm size, flexible and defect free, room temperature ionic conductivity ~1 mA/cm).         280
  • Figure 56. Ateios thin-film, printed battery.                282
  • Figure 57. 3D printed lithium-ion battery.    286
  • Figure 58. TempTraq wearable patch.             288
  • Figure 59. ZincPoly™ technology.      292
  • Figure 60. Roll-to-roll equipment working with ultrathin steel substrate.               294
  • Figure 61. TAeTTOOz printable battery materials.  295
  • Figure 62. Exeger Powerfoyle.              297
  • Figure 63. 2D paper batteries.             300
  • Figure 64. 3D Custom Format paper batteries.        300
  • Figure 65. Ilika solid-state batteries.               303
  • Figure 66. LiBEST flexible battery.     307
  • Figure 67. 3D solid-state thin-film battery technology.       308
  • Figure 68. Schematic illustration of three-chamber system for SWCNH production.    311
  • Figure 69. TEM images of carbon nanobrush.          312
  • Figure 70. Printed battery.      319
  • Figure 71. ProLogium solid-state battery.    321
  • Figure 72. Sakuú Corporation 3Ah Lithium Metal Solid-state Battery.      323
  • Figure 73. Samsung SDI's sixth-generation prismatic batteries.   325
  • Figure 74. Grepow flexible battery.  328

 

 

 

The Global Market for Flexible Batteries 2025-2035
The Global Market for Flexible Batteries 2025-2035
PDF download.

The Global Market for Flexible Batteries 2025-2035
The Global Market for Flexible Batteries 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart.