The Global Market for Sustainable Chemicals 2025-2035

0

cover

cover

  • Published: October 2024
  • Pages: 1,166
  • Tables: 357
  • Figures: 152

 

The new era of chemicals represents a paradigm shift in the chemical industry, driven by the need for sustainability, technological advancements, and changing market demands. This transformation is characterized by a move away from fossil-based feedstocks towards renewable and circular resources, coupled with innovative production methods that minimize environmental impact. Key aspects of this new era include:

  • Sustainable Feedstocks: Utilization of biomass, CO2, and waste materials as raw materials for chemical production, reducing dependence on fossil resources.
  • Green Chemistry: Application of principles that reduce or eliminate the use and generation of hazardous substances in chemical processes.
  • Circular Economy: Design of chemical products and processes for reuse, recycling, and upcycling, minimizing waste and maximizing resource efficiency.
  • Electrification: Integration of renewable electricity in chemical processes, including electrocatalysis and electrochemical synthesis.
  • Digitalization: Use of AI, machine learning, and advanced analytics to optimize processes and accelerate innovation.

 

Technology areas covered in this new era include:

  • Biorefining: Converting biomass into a spectrum of valuable chemicals and materials.
  • CO2 Utilization: Capturing and converting CO2 into chemicals, fuels, and materials.
  • Advanced Catalysis: Developing highly selective and efficient catalysts for sustainable processes.
  • Synthetic Biology: Engineering microorganisms to produce chemicals from renewable feedstocks.
  • Flow Chemistry: Continuous manufacturing processes for improved efficiency and control.
  • Additive Manufacturing: 3D printing of chemicals and materials for customized production.
  • Advanced Materials: Developing sustainable, high-performance materials like bioplastics and advanced composites.
  • Green Solvents: Creating bio-based and low-impact solvents to replace harmful traditional solvents.
  • Process Intensification: Designing more compact, efficient, and integrated chemical processes.
  • Waste Valorization: Converting waste streams into valuable chemicals and materials.
  • Artificial Intelligence in Chemical Design: The use of AI and machine learning for molecular design, process optimization, and predictive modeling is becoming a significant market area in chemical innovation.
  • Personalized Chemistry: This includes the development of customized chemicals and materials for personalized medicine, cosmetics, and other consumer products.
  • Quantum Chemistry: Although still emerging, this field uses quantum mechanical principles to develop new materials and chemical processes, potentially revolutionizing various industries.

 

This new era of chemicals is not just about individual technologies but their integration into holistic, sustainable chemical value chains. It promises to deliver innovative solutions to global challenges while creating new economic opportunities and reducing the environmental footprint of the chemical industry. This report analyzes the sustainable chemicals market, offering insights into trends, technologies, and market opportunities from 2025 to 2035. Report contents include:

  • Market Drivers and Trends
  • Sustainable Feedstocks and Green Chemistry
  • Circular Economy in the Chemical Industry
  • Emerging Technologies and Manufacturing Processes
    • Electrification of chemical processes
    • Digitalization and Industry 4.0 applications
    • Advanced manufacturing technologies
    • Biorefining and industrial biotechnology
    • CO2 utilization technologies
    • Advanced catalysts
    • Synthetic biology and metabolic engineering
  • Market Segments and Applications:
    • Sustainable materials and polymers
    • Green solvents and process chemicals
    • Sustainable agriculture chemicals
    • Renewable energy technologies
    • Sustainable construction materials
    • Green cosmetics and personal care products
    • Sustainable packaging
    • Eco-friendly paints and coatings
    • Green electronics
    • Sustainable textiles and fibers
    • Alternative fuels and lubricants
    • Pharmaceuticals and healthcare applications
    • Water treatment and purification solutions
    • Carbon capture and utilization products
    • Industrial biotechnology products
    • Advanced materials for 3D printing
  • Regulatory Landscape and Policy Analysis
  • Economic Aspects and Business Models
  • Future Outlook and Emerging Trends
  • Company Profiles and Competitive Landscape-profiles of over 1,000 key players in the sustainable chemicals market, analyzing their strategies, products, and market positions. Companies profiled include Aanika Biosciences, ACCUREC-Recycling GmbH, Aduro Clean Technologies, Aemetis, Agra Energy, Agilyx, Air Company, Aircela, Algenol, Allozymes, Alpha Biofuels, AM Green, Amyris, Andritz, APChemi, Apeiron Bioenergy, Aperam BioEnergia, Applied Research Associates (ARA), Aralez Bio, Arcadia eFuels, Ascend Elements, ASB Biodiesel, Atmonia, Avalon BioEnergy, Avantium, Avioxx, BANiQL, BASF, BBCA Biochemical & GALACTIC Lactic Acid, BBGI, BDI-BioEnergy International, BEE Biofuel, Benefuel, Bio2Oil, Bio-Oils, Biofibre GmbH, Bioform Technologies, Biofine Technology, Biofy, BiogasClean, BIOD Energy, Biojet, Biokemik, BIOLO, BioLogiQ, Inc., Biome Bioplastics, Biomass Resin Holdings Co., Ltd., Biomatter, BIO-FED, BIO-LUTIONS International AG, Bioplastech Ltd, BioSmart Nano, BIOTEC GmbH & Co. KG, Biovectra, Biovox GmbH, BlockTexx Pty Ltd., Bloom Biorenewables, Blue BioFuels, Blue Ocean Closures, BlueAlp Technology, Bluepha Beijing Lanjing Microbiology Technology Co., Ltd., BOBST, Borealis AG, Braskem, Braven Environmental, Brightmark Energy, Brightplus Oy, bse Methanol, BTG Bioliquids, Bucha Bio, Business Innovation Partners Co., Ltd., Buyo, Byogy Renewables, C1 Green Chemicals, Caphenia, Carbiolice, Carbios, Carbonade, CarbonBridge, Carbon Collect, Carbon Engineering, Carbon Infinity, Carbon Neutral Fuels, Carbon Recycling International, Carbon Sink, Carbyon, Cardia Bioplastics Ltd., CARAPAC Company, Cargill, Cascade Biocatalysts, Cass Materials Pty Ltd, Cassandra Oil, Casterra Ag, Celanese Corporation, Celtic Renewables, Cellugy, Cellutech AB (Stora Enso), Cereal Process Technologies (CPT), CERT Systems, CF Industries Holdings, Chemkey Advanced Materials Technology (Shanghai) Co., Ltd., Chemol Company (Seydel), Chitose Bio Evolution, Circla Nordic, Cirba Solutions, CJ Biomaterials, Inc., CleanJoule, Climeworks, Coastgrass ApS, CNF Biofuel, Concord Blue Engineering, Constructive Bio, Cool Planet Energy Systems, Corumat, Inc., Corsair Group International, Coval Energy, Crimson Renewable Energy, Cruz Foam, Cryotech, CuanTec Ltd., Cyclic Materials, C-Zero, Daicel Polymer Ltd., Daio Paper Corporation, Danimer Scientific, D-CRBN, Debut Biotechnology, DIC Corporation, DIC Products, Inc., Diamond Green Diesel, Dimensional Energy, Dioxide Materials, Dioxycle, DKS Co. Ltd., Domsjö Fabriker, Dow, Inc., DuFor Resins B.V., DuPont, Earthodic Pty Ltd., EarthForm, EcoCeres, Eco Environmental, Eco Fuel Technology, Ecomann Biotechnology Co., Ltd., Ecoshell, Electro-Active Technologies, Eligo Bioscience, Enim, Enginzyme AB, Enzymit, Erebagen, EV Biotech, eversyn, Evolutor, FabricNano, FlexSea, Floreon, Gevo, Ginkgo Bioworks, Heraeus Remloy, HyProMag, Hyfé, Invizyne Technologies, JPM Silicon GmbH, LanzaTech, Librec AG, Lygos, MagREEsource, Mammoth Biosciences, MetaCycler BioInnovations, Mi Terro, NeoMetals, Noveon Magnetics, Novozymes A/S, NTx, Origin Materials, Phoenix Tailings, PlantSwitch, Posco, Pow.bio, Protein Evolution, REEtec, Rivalia Chemical, Samsara Eco, SiTration, Solugen, Sumitomo and Summit Nanotech, Synthego, Taiwan Bio-Manufacturing Corp. (TBMC), Teijin Limited, Twist Bioscience, Uluu, Van Heron Labs, Verde Bioresins, Versalis, Xampla and more....
  • Market Forecasts and Data Analysis

 

This report is relevant for:

  • Chemical industry executives and strategists
  • Sustainability officers and environmental managers
  • Investors and financial analysts
  • R&D professionals
  • Policy makers and regulatory bodies
  • Environmental NGOs
  • Academic researchers

 

 

Download Table of Contents (PDF)

1             EXECUTIVE SUMMARY            51

  • 1.1        The Need for a New Era in the Chemical Industry  51
  • 1.2        Defining the New Era of Chemicals 53
  • 1.3        Global Drivers and Trends     54
  • 1.4        The Changing Landscape of the Chemical Industry             55
    • 1.4.1    Historical Context: From Coal to Oil to Renewables            55
    • 1.4.2    Current State of the Global Chemical Industry       56
    • 1.4.3    Environmental Challenges and Regulatory Pressures        58
    • 1.4.4    Shifting Consumer Demands and Market Dynamics           59
    • 1.4.5    The Role of Digitalization and Industry 4.0 60
  • 1.5        Emerging and Transforming Markets in the New Era of Chemicals             61
    • 1.5.1    Sustainable Agriculture Chemicals 61
    • 1.5.2    Green Cosmetics and Personal Care             62
    • 1.5.3    Sustainable Packaging            63
    • 1.5.4    Eco-friendly Paints and Coatings      64
    • 1.5.5    Alternative Fuels and Lubricants      65
    • 1.5.6    Pharmaceuticals and Healthcare     66
    • 1.5.7    Water Treatment and Purification     67
    • 1.5.8    Carbon Capture and Utilization Products   67
    • 1.5.9    Advanced Materials for 3D Printing 67
    • 1.5.10 Sustainable Mining and Metallurgy 69

 

2             FEEDSTOCKS 70

  • 2.1        Sustainable Feedstocks: The Foundation of the New Era 70
  • 2.2        Overview of Sustainable Feedstock Options            72
  • 2.3        Biomass as a Chemical Feedstock  73
    • 2.3.1    Types of Biomass and Their Chemical Compositions        73
    • 2.3.2    Pretreatment and Conversion Technologies             74
    • 2.3.3    Challenges in Scaling Up Biomass Utilization         76
  • 2.4        CO2 as a Carbon Source        77
    • 2.4.1    CO2 Capture Technologies   77
    • 2.4.2    Chemical Conversion Pathways for CO2    79
    • 2.4.3    Economic and Technical Barriers to CO2 Utilization           82
  • 2.5        Waste Valorization     83
    • 2.5.1    Municipal Solid Waste as a Feedstock          83
    • 2.5.2    Industrial Waste Streams and By-products               85
    • 2.5.3    Plastic Waste Recycling and Upcycling        86
  • 2.6        Renewable Hydrogen               87
    • 2.6.1    Electrolysis Technologies      87
    • 2.6.2    Integration of Renewable Energy in Hydrogen Production                89
    • 2.6.3    Hydrogen's Role in Chemical Synthesis       90

 

3             GREEN CHEMISTRY PRINCIPLES AND APPLICATIONS      91

  • 3.1        The 12 Principles of Green Chemistry           91
  • 3.2        Atom Economy and Step Economy in Synthesis    93
  • 3.3        Solvent Reduction and Green Solvents        95
    • 3.3.1    Water as a Reaction Medium              95
    • 3.3.2    Ionic Liquids and Deep Eutectic Solvents   96
    • 3.3.3    Supercritical Fluids in Chemical Processes              97
  • 3.4        Catalysis for Green Chemistry           101
    • 3.4.1    Biocatalysis and Enzyme Engineering           101
    • 3.4.2    Heterogeneous Catalysis Advancements   102
    • 3.4.3    Photocatalysis and Electrocatalysis               103
  • 3.5        Green Metrics and Life Cycle Assessment in Chemistry   106

 

4             CIRCULAR ECONOMY IN THE CHEMICAL INDUSTRY         108

  • 4.1        Principles of Circular Economy         108
  • 4.2        Design for Circularity in Chemical Products              109
  • 4.3        Chemical Recycling Technologies    110
    • 4.3.1    Applications   110
    • 4.3.2    Pyrolysis            111
      • 4.3.2.1 Non-catalytic 112
      • 4.3.2.2 Catalytic            113
        • 4.3.2.2.1           Polystyrene pyrolysis 116
        • 4.3.2.2.2           Pyrolysis for production of bio fuel  116
        • 4.3.2.2.3           Used tires pyrolysis   120
          • 4.3.2.2.3.1      Conversion to biofuel               121
        • 4.3.2.2.4           Co-pyrolysis of biomass and plastic wastes             122
      • 4.3.2.3 Companies and capacities  123
    • 4.3.3    Gasification    124
      • 4.3.3.1 Technology overview 124
        • 4.3.3.1.1           Syngas conversion to methanol        125
        • 4.3.3.1.2           Biomass gasification and syngas fermentation       129
        • 4.3.3.1.3           Biomass gasification and syngas thermochemical conversion    129
      • 4.3.3.2 Companies and capacities (current and planned)                130
    • 4.3.4    Dissolution     130
      • 4.3.4.1 Technology overview 130
      • 4.3.4.2 Companies and capacities (current and planned)                131
    • 4.3.5    Depolymerisation       132
      • 4.3.5.1 Hydrolysis        134
        • 4.3.5.1.1           Technology overview 134
      • 4.3.5.2 Enzymolysis   135
        • 4.3.5.2.1           Technology overview 135
      • 4.3.5.3 Methanolysis 136
        • 4.3.5.3.1           Technology overview 136
      • 4.3.5.4 Glycolysis         137
        • 4.3.5.4.1           Technology overview 137
      • 4.3.5.5 Aminolysis      140
        • 4.3.5.5.1           Technology overview 140
      • 4.3.5.6 Companies and capacities (current and planned)                140
    • 4.3.6    Other advanced chemical recycling technologies 141
      • 4.3.6.1 Hydrothermal cracking           141
      • 4.3.6.2 Pyrolysis with in-line reforming          142
      • 4.3.6.3 Microwave-assisted pyrolysis             143
      • 4.3.6.4 Plasma pyrolysis         143
      • 4.3.6.5 Plasma gasification   144
      • 4.3.6.6 Supercritical fluids     145
  • 4.4        Upcycling of Chemical Waste             145
  • 4.5        Circular Business Models in the Chemical Sector 146
  • 4.6        Challenges and Opportunities in Implementing Circularity            147
    • 4.6.1    Companies     148

 

5             ELECTRIFICATION OF CHEMICAL PROCESSES      152

  • 5.1        The Role of Renewable Electricity in Chemical Production             152
  • 5.2        Electrochemical Synthesis   156
    • 5.2.1    Electroorganic Synthesis       156
    • 5.2.2    Electrochemical CO2 Reduction      158
    • 5.2.3    Electrochemical Nitrogen Fixation  159
  • 5.3        Plasma Chemistry      160
  • 5.4        Microwave-Assisted Chemistry         161
  • 5.5        Integration of Power-to-X Technologies in Chemical Production 161

 

6             DIGITALIZATION AND INDUSTRY 4.0 IN CHEMISTRY           163

  • 6.1        Big Data and Advanced Analytics in Chemical Research 163
  • 6.2        Artificial Intelligence and Machine Learning Applications               164
    • 6.2.1    In Silico Design of Molecules and Materials              164
    • 6.2.2    Process Optimization and Predictive Maintenance              165
    • 6.2.3    Automated Synthesis and High-Throughput Experimentation       167
  • 6.3        Digital Twins in Chemical Plant Operations               168
  • 6.4        Blockchain for Supply Chain Transparency and Traceability          170
  • 6.5        Cybersecurity Challenges in the Digitalized Chemical Industry   171

 

7             ADVANCED MANUFACTURING TECHNOLOGIES  172

  • 7.1        Continuous Flow Chemistry 174
    • 7.1.1    Microreactors and Process Intensification 174
    • 7.1.2    Advantages in Pharmaceuticals and Fine Chemicals         175
    • 7.1.3    Challenges in Scale-up and Implementation           176
  • 7.2        Modular and Distributed Manufacturing     178
  • 7.3        3D Printing of Chemicals and Materials       180
    • 7.3.1    Direct Ink Writing and Reactive Printing       180
    • 7.3.2    Applications in Custom Synthesis and Formulation            181
  • 7.4        Advanced Process Control and Real-time Monitoring        182
  • 7.5        Flexible and Adaptable Production Systems             183

 

8             BIOREFINDING AND INDUSTRIAL BIOTECHNOLOGY        184

  • 8.1        Biorefinery Concepts and Configurations  184
  • 8.2        Lignocellulosic Biomass Processing              185
  • 8.3        Algal Biorefineries       186
  • 8.4        Upstream Processing               187
    • 8.4.1    Cell Culture     187
      • 8.4.1.1 Overview           187
      • 8.4.1.2 Types of Cell Culture Systems            187
      • 8.4.1.3 Factors Affecting Cell Culture Performance              188
      • 8.4.1.4 Advances in Cell Culture Technology             189
        • 8.4.1.4.1           Single-use systems   189
        • 8.4.1.4.2           Process analytical technology (PAT)               189
        • 8.4.1.4.3           Cell line development              190
  • 8.5        Fermentation 190
    • 8.5.1    Overview           190
      • 8.5.1.1 Types of Fermentation Processes    190
      • 8.5.1.2 Factors Affecting Fermentation Performance          191
      • 8.5.1.3 Advances in Fermentation Technology         191
        • 8.5.1.3.1           High-cell-density fermentation          192
        • 8.5.1.3.2           Continuous processing           192
        • 8.5.1.3.3           Metabolic engineering             192
  • 8.6        Downstream Processing        193
    • 8.6.1    Purification      193
      • 8.6.1.1 Overview           193
      • 8.6.1.2 Types of Purification Methods            193
        • 8.6.1.2.1           Factors Affecting Purification Performance               193
      • 8.6.1.3 Advances in Purification Technology              194
        • 8.6.1.3.1           Affinity chromatography         194
        • 8.6.1.3.2           Membrane chromatography 195
        • 8.6.1.3.3           Continuous chromatography              195
  • 8.7        Formulation    196
    • 8.7.1    Overview           196
      • 8.7.1.1 Types of Formulation Methods           196
      • 8.7.1.2 Factors Affecting Formulation Performance             197
      • 8.7.1.3 Advances in Formulation Technology            197
        • 8.7.1.3.1           Controlled release      198
        • 8.7.1.3.2           Nanoparticle formulation      198
        • 8.7.1.3.3           3D printing       198
  • 8.8        Bioprocess Development      198
    • 8.8.1    Scale-up            198
      • 8.8.1.1 Overview           198
      • 8.8.1.2 Factors Affecting Scale-up Performance     199
      • 8.8.1.3 Scale-up Strategies    200
    • 8.8.2    Optimization  200
      • 8.8.2.1 Overview           201
      • 8.8.2.2 Factors Affecting Optimization Performance            201
      • 8.8.2.3 Optimization Strategies           202
  • 8.9        Analytical Methods    203
    • 8.9.1    Quality Control             203
      • 8.9.1.1 Overview           203
      • 8.9.1.2 Types of Quality Control Tests            203
      • 8.9.1.3 Factors Affecting Quality Control Performance      204
    • 8.9.2    Characterization          204
      • 8.9.2.1 Overview           205
      • 8.9.2.2 Types of Characterization Methods 205
      • 8.9.2.3 Factors Affecting Characterization Performance   206
  • 8.10     Scale of Production   208
    • 8.10.1 Laboratory Scale         208
      • 8.10.1.1            Overview           208
      • 8.10.1.2            Scale and Equipment               208
      • 8.10.1.3            Advantages     209
      • 8.10.1.4            Disadvantages             209
    • 8.10.2 Pilot Scale        210
      • 8.10.2.1            Overview           210
      • 8.10.2.2            Scale and Equipment               210
      • 8.10.2.3            Advantages     211
      • 8.10.2.4            Disadvantages             211
    • 8.10.3 Commercial Scale      212
      • 8.10.3.1            Overview           212
      • 8.10.3.2            Scale and Equipment               212
      • 8.10.3.3            Advantages     213
      • 8.10.3.4            Disadvantages             213
  • 8.11     Mode of Operation     214
    • 8.11.1 Batch Production        214
      • 8.11.1.1            Overview           214
      • 8.11.1.2            Advantages     215
      • 8.11.1.3            Disadvantages             215
      • 8.11.1.4            Applications   216
    • 8.11.2 Fed-batch Production              216
      • 8.11.2.1            Overview           216
      • 8.11.2.2            Advantages     217
      • 8.11.2.3            Disadvantages             217
      • 8.11.2.4            Applications   217
    • 8.11.3 Continuous Production           218
      • 8.11.3.1            Overview           218
      • 8.11.3.2            Advantages     218
      • 8.11.3.3            Disadvantages             218
      • 8.11.3.4            Applications   219
    • 8.11.4 Cell factories for biomanufacturing 219
    • 8.11.5 Perfusion Culture        221
      • 8.11.5.1            Overview           221
      • 8.11.5.2            Advantages     221
      • 8.11.5.3            Disadvantages             222
      • 8.11.5.4            Applications   222
    • 8.11.6 Other Modes of Operation     223
      • 8.11.6.1            Immobilized Cell Culture       223
      • 8.11.6.2            Two-Stage Production              223
      • 8.11.6.3            Hybrid Systems            223
  • 8.12     Host Organisms          224

 

9             CO2 UTILIZATION TECHNOLOGIES 226

  • 9.1        Overview           226
  • 9.2        CO2 non-conversion and conversion technology  227
  • 9.3        Carbon utilization business models               233
    • 9.3.1    Benefits of carbon utilization              234
    • 9.3.2    Market challenges      236
  • 9.4        Co2 utilization pathways        237
  • 9.5        Conversion processes             239
    • 9.5.1    Thermochemical         239
      • 9.5.1.1 Process overview        240
      • 9.5.1.2 Plasma-assisted CO2 conversion    242
    • 9.5.2    Electrochemical conversion of CO2               243
      • 9.5.2.1 Process overview        244
    • 9.5.3    Photocatalytic and photothermal catalytic conversion of CO2    247
    • 9.5.4    Catalytic conversion of CO2                247
    • 9.5.5    Biological conversion of CO2              247
    • 9.5.6    Copolymerization of CO2      251
    • 9.5.7    Mineral carbonation  253
  • 9.6        CO2-derived products             258
    • 9.6.1    Fuels    258
      • 9.6.1.1 Overview           259
      • 9.6.1.2 Production routes       261
      • 9.6.1.3 CO₂ -fuels in road vehicles    262
      • 9.6.1.4 CO₂ -fuels in shipping              263
        • 9.6.1.5 CO₂ -fuels in aviation                263
      • 9.6.1.6 Power-to-methane     263
        • 9.6.1.6.1           Biological fermentation           264
        • 9.6.1.6.2           Costs  264
      • 9.6.1.7 Algae based biofuels 268
      • 9.6.1.8 CO₂-fuels from solar 269
      • 9.6.1.9 Companies     271
      • 9.6.1.10            Challenges      274
    • 9.6.2    Chemicals and polymers       274
      • 9.6.2.1 Polycarbonate from CO₂         275
      • 9.6.2.2 Carbon nanostructures          276
      • 9.6.2.3 Scalability        278
      • 9.6.2.4 Applications   278
        • 9.6.2.4.1           Urea production           278
        • 9.6.2.4.2           CO₂-derived polymers             279
        • 9.6.2.4.3           Inert gas in semiconductor manufacturing 280
        • 9.6.2.4.4           Carbon nanotubes     280
      • 9.6.2.5 Companies     280
    • 9.6.3    Construction materials           282
      • 9.6.3.1 Overview           283
      • 9.6.3.2 CCUS technologies   286
      • 9.6.3.3 Carbonated aggregates          288
      • 9.6.3.4 Additives during mixing           290
      • 9.6.3.5 Concrete curing           291
      • 9.6.3.6 Costs  292
      • 9.6.3.7 Market trends and business models              292
      • 9.6.3.8 Companies     296
      • 9.6.3.9 Challenges      297
    • 9.6.4    CO2 Utilization in Biological Yield-Boosting              298
      • 9.6.4.1 Overview           298
      • 9.6.4.2 Applications   298
        • 9.6.4.2.1           Greenhouses 298
        • 9.6.4.2.2           Algae cultivation          298
          • 9.6.4.2.2.1      CO₂-enhanced algae cultivation: open systems    299
          • 9.6.4.2.2.2      CO₂-enhanced algae cultivation: closed systems 300
        • 9.6.4.2.3           Microbial conversion 301
        • 9.6.4.2.4           Food and feed production     303
      • 9.6.4.3 Companies     303
  • 9.7        CO₂ Utilization in Enhanced Oil Recovery   304
    • 9.7.1    Overview           304
      • 9.7.1.1 Process              305
      • 9.7.1.2 CO₂ sources   306
    • 9.7.2    CO₂-EOR facilities and projects         306
    • 9.7.3    Challenges      308
  • 9.8        Enhanced mineralization       308
    • 9.8.1    Advantages     308
    • 9.8.2    In situ and ex-situ mineralization      309
    • 9.8.3    Enhanced mineralization pathways                310
    • 9.8.4    Challenges      311

 

10          ADVANCED CATALYSTS FOR SUSTAINABLE CHEMISTRY  312

  • 10.1     Overview of biocatalyst technology 312
    • 10.1.1 Biotransformations   313
    • 10.1.2 Cascade biocatalysis               313
    • 10.1.3 Co-factor recycling    313
    • 10.1.4 Immobilization             314
  • 10.2     Types of biocatalysts 315
    • 10.2.1 Enzymes           316
    • 10.2.2 Feedstocks      318
    • 10.2.3 Protein/Enzyme Engineering                319
    • 10.2.4 Microorganisms          320
      • 10.2.4.1            Bacteria             321
      • 10.2.4.2            Fungi   321
      • 10.2.4.3            Yeast   322
      • 10.2.4.4            Archaea             324
    • 10.2.5 Engineered biocatalysts         325
      • 10.2.5.1            Directed Evolution      325
      • 10.2.5.2            Rational Design            326
      • 10.2.5.3            Semi-Rational Design              327
      • 10.2.5.4            Immobilization             328
      • 10.2.5.5            Fusion Proteins            328
    • 10.2.6 Other types     330
      • 10.2.6.1            Ribozymes       330
      • 10.2.6.2            DNAzymes       331
      • 10.2.6.3            Abzymes           332
      • 10.2.6.4            Nanozymes     333
      • 10.2.6.5            Organocatalysts          334
  • 10.3     Production methods and processes              335
    • 10.3.1 Fermentation 336
    • 10.3.2 Recombinant DNA technology           339
    • 10.3.3 Cell-Free Protein Synthesis  340
    • 10.3.4 Extraction from Natural Sources       341
    • 10.3.5 Solid-State Fermentation       342
  • 10.4     Emerging technologies and innovations in biocatalysis    343
    • 10.4.1 Synthetic biology and metabolic engineering           343
      • 10.4.1.1            Batch biomanufacturing        349
      • 10.4.1.2            Continuous biomanufacturing          350
      • 10.4.1.3            Fermentation Processes        351
      • 10.4.1.4            Cell-free synthesis     351
    • 10.4.2 Generative biology and Artificial Intelligence (AI)   354
      • 10.4.2.1            Molecular Dynamics Simulations    354
      • 10.4.2.2            Quantum Mechanical Calculations                355
      • 10.4.2.3            Systems Biology Modeling    356
      • 10.4.2.4            Metabolic Engineering Modeling       356
    • 10.4.3 Genome engineering 358
    • 10.4.4 Immobilization and encapsulation techniques       360
    • 10.4.5 Biomimetics   361
    • 10.4.6 Nanoparticle-based biocatalysts     362
    • 10.4.7 Biocatalytic cascades and multi-enzyme systems               364
    • 10.4.8 Microfluidics  365
  • 10.5     Companies     368

 

11          SYNTHETIC BIOLOGY AND METABOLIC ENGINEERING    372

  • 11.1     Metabolic engineering             372
  • 11.2     Gene and DNA synthesis       376
  • 11.3     Gene Synthesis and Assembly           377
  • 11.4     Genome engineering 379
    • 11.4.1 CRISPR              379
      • 11.4.1.1            CRISPR/Cas9-modified biosynthetic pathways      380
      • 11.4.1.2            TALENs               381
      • 11.4.1.3            ZFNs    381
  • 11.5     Protein/Enzyme Engineering                383
  • 11.6     Synthetic genomics   385
    • 11.6.1 Principles of Synthetic Genomics    385
    • 11.6.2 Synthetic Chromosomes and Genomes      386
  • 11.7     Strain construction and optimization            388
  • 11.8     Smart bioprocessing 388
  • 11.9     Chassis organisms    389
  • 11.10  Biomimetics   391
  • 11.11  Sustainable materials              392
  • 11.12  Robotics and automation      392
    • 11.12.1              Robotic cloud laboratories   393
    • 11.12.2              Automating organism design              393
    • 11.12.3              Artificial intelligence and machine learning              394
  • 11.13  Bioinformatics and computational tools     394
    • 11.13.1              Role of Bioinformatics in Synthetic Biology               394
    • 11.13.2              Computational Tools for Design and Analysis         395
  • 11.14  Xenobiology and expanded genetic alphabets        398
  • 11.15  Biosensors and bioelectronics           398
  • 11.16  Feedstocks      399
    • 11.16.1              C1 feedstocks               403
      • 11.16.1.1         Advantages     403
      • 11.16.1.2         Pathways          404
      • 11.16.1.3         Challenges      405
      • 11.16.1.4         Non-methane C1 feedstocks              405
      • 11.16.1.5         Gas fermentation        406
    • 11.16.2              C2 feedstocks               406
    • 11.16.3              Biological conversion of CO2              407
    • 11.16.4              Food processing wastes         410
      • 11.16.4.1         Syngas               411
      • 11.16.4.2         Glycerol             411
      • 11.16.4.3         Methane            411
      • 11.16.4.4         Municipal solid wastes            415
      • 11.16.4.5         Plastic wastes               415
      • 11.16.4.6         Plant oils           416
      • 11.16.4.7         Starch 416
      • 11.16.4.8         Sugars 417
      • 11.16.4.9         Used cooking oils       418
      • 11.16.4.10      Green hydrogen production 419
      • 11.16.4.11      Blue hydrogen production     420
    • 11.16.5              Marine biotechnology              422
      • 11.16.5.1         Cyanobacteria              424
      • 11.16.5.2         Macroalgae     425
  • 11.17       Companies     425

 

12          GREEN SOLVENTS AND ALTERNATIVE REACTION MEDIA 428

  • 12.1     Bio-based Solvents    428
  • 12.2     Switchable Solvents  430
  • 12.3     Deep Eutectic Solvents (DES)             431
  • 12.4     Supercritical Fluids in Industrial Applications         433
  • 12.5     Solvent-free Reactions and Mechanochemistry    435
  • 12.6     Solvent Selection Tools and Frameworks    436
  • 12.7     Companies     436

 

13          WASTE VALORIZATION AND RESOURCE RECOVERY          437

  • 13.1     Municipal Solid Waste to Chemicals             437
  • 13.2     Agricultural and Food Waste Valorization   439
  • 13.3     Critical Material Extraction Technology        441
    • 13.3.1 Recovery of critical materials from secondary sources (e.g., end-of-life products, industrial waste) 445
    • 13.3.2 Critical rare-earth element recovery from secondary sources      445
    • 13.3.3 Li-ion battery technology metal recovery    446
    • 13.3.4 Critical semiconductor materials recovery                448
    • 13.3.5 Critical semiconductor materials recovery                448
    • 13.3.6 Critical platinum group metal recovery        450
    • 13.3.7 Critical platinum Group metal recovery       451
  • 13.4     Wastewater Treatment and Resource Recovery     453
    • 13.4.1 Bio-based Flocculants and Coagulants      453
    • 13.4.2 Green Oxidants and Disinfectants  454
    • 13.4.3 Sustainable Membrane Materials    455
      • 13.4.3.1            Bio-based polymer membranes       455
      • 13.4.3.2            Ceramic membranes from recycled materials        456
      • 13.4.3.3            Self-healing membranes        457
    • 13.4.4 Advanced Adsorbents for Contaminant Removal 458
      • 13.4.4.1            Biochar              459
      • 13.4.4.2            Activated carbon from waste biomass         460
      • 13.4.4.3            Green zeolites and MOFs (Metal-Organic Frameworks)    461
    • 13.4.5 Nutrient Recovery Technologies        462
    • 13.4.6 Resource Recovery from Industrial Wastewater     464
    • 13.4.7 Bioelectrochemical Systems              465
    • 13.4.8 Green Solvents in Extraction Processes       467
    • 13.4.9 Photocatalytic Materials        469
    • 13.4.10              Biodegradable Chelating Agents      471
    • 13.4.11              Biocatalysts for Wastewater Treatment        473
    • 13.4.12              Advanced Adsorption Materials        475
    • 13.4.13              Sustainable pH Adjustment Chemicals       477
  • 13.5     Mining Waste Valorization     478
    • 13.5.1 Bioleaching and Biooxidation             478
    • 13.5.2 Green Lixiviants for Metal Extraction              480
    • 13.5.3 Phytomining and Phytoremediation                481
    • 13.5.4 Sustainable Flotation Chemicals     483
    • 13.5.5 Electrochemical Recovery Methods               485
    • 13.5.6 Geopolymers and Mine Tailings Utilization 487
    • 13.5.7 Critical Element Recovery     489
    • 13.5.8 CO2 Mineralization    491
    • 13.5.9 Sustainable Remediation Technologies       494
    • 13.5.10              Waste-to-Energy Technologies           495
    • 13.5.11              Advanced Separation Techniques    497
  • 13.6     Companies     499

 

14          ENERGY EFFICIENCY AND RENEWABLE ENERGY INTEGRATION               504

  • 14.1     Energy Efficiency Measures in Chemical Plants     504
  • 14.2     Heat Recovery and Pinch Analysis  507
  • 14.3     Renewable Energy Sources in Chemical Production           509
  • 14.4     Energy Storage Technologies for Process Industries            511
  • 14.5     Combined Heat and Power (CHP) Systems               513
  • 14.6     Industrial Symbiosis and Energy Integration             515

 

15          SAFETY AND SUSTAINABILITY ASSESSMENT            517

  • 15.1     Green Chemistry Metrics and Sustainability Indicators     517
  • 15.2     Life Cycle Assessment (LCA) in Chemical Processes         519
  • 15.3     Safety by Design Principles   521
  • 15.4     Risk Assessment and Management in New Chemical Technologies         523
  • 15.5     Environmental Impact Assessment                525
  • 15.6     Social and Ethical Considerations in the New Era of Chemicals 527

 

16          REGULATIONS AND POLICY 529

  • 16.1     Global Chemical Regulations and Their Evolution 529
  • 16.2     Environmental Policies Driving Sustainable Chemistry     531
  • 16.3     Incentives and Support Mechanisms for Green Chemistry             533
  • 16.4     Challenges in Regulating Emerging Technologies  534
  • 16.5     International Cooperation and Harmonization Efforts       537
  • 16.6     The Role of Industry Associations and Standardization Bodies    539

 

17          MARKETS AND PRODUCTS   541

  • 17.1     Sustainable Materials and Polymers              541
    • 17.1.1 Bioplastics and Biodegradable Polymers    542
      • 17.1.1.1            Polylactic acid (Bio-PLA)        542
        • 17.1.1.1.1        Overview           542
        • 17.1.1.1.2        Properties         543
        • 17.1.1.1.3        Applications   543
        • 17.1.1.1.4        Advantages     544
        • 17.1.1.1.5        Commercial examples            545
      • 17.1.1.2            Polyethylene terephthalate (Bio-PET)            545
        • 17.1.1.2.1        Overview           545
        • 17.1.1.2.2        Properties         546
        • 17.1.1.2.3        Applications   546
        • 17.1.1.2.4        Commercial examples            547
      • 17.1.1.3            Polytrimethylene terephthalate (Bio-PTT)   547
        • 17.1.1.3.1        Overview           547
        • 17.1.1.3.2        Production Process   547
        • 17.1.1.3.3        Properties         548
        • 17.1.1.3.4        Applications   548
        • 17.1.1.3.5        Commercial examples            549
      • 17.1.1.4            Polyethylene furanoate (Bio-PEF)     549
        • 17.1.1.4.1        Overview           549
        • 17.1.1.4.2        Properties         549
        • 17.1.1.4.3        Applications   550
        • 17.1.1.4.4        Commercial examples            550
      • 17.1.1.5            Bio-PA 550
        • 17.1.1.5.1        Overview           550
        • 17.1.1.5.2        Properties         551
        • 17.1.1.5.3        Commercial examples            551
      • 17.1.1.6            Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters                551
        • 17.1.1.6.1        Overview           551
        • 17.1.1.6.2        Properties         552
        • 17.1.1.6.3        Applications   552
        • 17.1.1.6.4        Commercial examples            553
      • 17.1.1.7            Polybutylene succinate (PBS) and copolymers       553
        • 17.1.1.7.1        Overview           553
        • 17.1.1.7.2        Properties         553
        • 17.1.1.7.3        Applications   554
        • 17.1.1.7.4        Commercial examples            554
      • 17.1.1.8            Polypropylene (Bio-PP)            554
        • 17.1.1.8.1        Overview           554
        • 17.1.1.8.2        Properties         555
        • 17.1.1.8.3        Applications   555
        • 17.1.1.8.4        Commercial examples            555
      • 17.1.1.9            Polyhydroxyalkanoates (PHA)             556
        • 17.1.1.9.1        Properties         556
        • 17.1.1.9.2        Applications   556
        • 17.1.1.9.3        Commercial examples            558
      • 17.1.1.10         Starch-based blends 558
        • 17.1.1.10.1     Overview           558
        • 17.1.1.10.2     Properties         559
        • 17.1.1.10.3     Applications   559
        • 17.1.1.10.4     Commercial examples            559
      • 17.1.1.11         Cellulose          560
        • 17.1.1.11.1     Feedstocks      560
      • 17.1.1.12         Microfibrillated cellulose (MFC)        560
        • 17.1.1.12.1     Properties         560
      • 17.1.1.13         Nanocellulose               561
        • 17.1.1.13.1     Cellulose nanocrystals           561
          • 17.1.1.13.1.1 Applications   562
          • 17.1.1.13.2     Cellulose nanofibers 563
            • 17.1.1.13.2.1 Applications   564
              • 17.1.1.13.2.1.1            Reinforcement and barrier    569
              • 17.1.1.13.2.1.2            Biodegradable food packaging foil and films            569
              • 17.1.1.13.2.1.3            Paperboard coatings 570
          • 17.1.1.13.3     Bacterial Nanocellulose (BNC)          570
            • 17.1.1.13.3.1 Applications in packaging     573
            • 17.1.1.13.3.2 Commercial examples            574
      • 17.1.1.14         Protein-based bioplastics in packaging       575
        • 17.1.1.14.1     Feedstocks      575
        • 17.1.1.14.2     Commercial examples            577
      • 17.1.1.15         Alginate              577
        • 17.1.1.15.1     Overview           577
        • 17.1.1.15.2     Production       579
        • 17.1.1.15.3     Applications   579
        • 17.1.1.15.4     Producers         579
      • 17.1.1.16         Mycelium          580
        • 17.1.1.16.1     Overview           580
        • 17.1.1.16.2     Applications   581
        • 17.1.1.16.3     Commercial examples            581
      • 17.1.1.17         Chitosan           582
        • 17.1.1.17.1     Overview           582
        • 17.1.1.17.2     Applications   583
        • 17.1.1.17.3     Commercial examples            583
      • 17.1.1.18         Bio-naphtha   584
        • 17.1.1.18.1     Overview           584
        • 17.1.1.18.2     Markets and applications      585
        • 17.1.1.18.3     Commercial examples            587
    • 17.1.2 Recycled and Upcycled Plastics       588
    • 17.1.3 High-Performance Bio-based Materials       588
    • 17.1.4 Companies     590
  • 17.2     Sustainable Agriculture Chemicals 593
    • 17.2.1 Overview           593
    • 17.2.2 Biopesticides and Biocontrol Agents             593
    • 17.2.3 Precision Agriculture Chemicals      595
    • 17.2.4 Controlled-Release Fertilizers            597
    • 17.2.5 Biostimulants 597
    • 17.2.6 Microbials        599
    • 17.2.7 Biochemicals 603
    • 17.2.8 Semiochemicals         605
    • 17.2.9 Natural biostimulants and pesticides           607
    • 17.2.10              Companies     608
  • 17.3     Sustainable Construction Materials               611
    • 17.3.1 Established bio-based construction materials       611
    • 17.3.2 Hemp-based Materials           614
      • 17.3.2.1            Hemp Concrete (Hempcrete)              614
      • 17.3.2.2            Hemp Fiberboard        614
      • 17.3.2.3            Hemp Insulation          615
    • 17.3.3 Mycelium-based Materials   615
      • 17.3.3.1            Insulation         617
      • 17.3.3.2            Structural Elements  617
      • 17.3.3.3            Acoustic Panels           617
      • 17.3.3.4            Decorative Elements 617
    • 17.3.4 Sustainable Concrete and Cement Alternatives     618
      • 17.3.4.1            Geopolymer Concrete              618
      • 17.3.4.2            Recycled Aggregate Concrete             618
      • 17.3.4.3            Lime-Based Materials              619
      • 17.3.4.4            Self-healing concrete                619
        • 17.3.4.4.1        Bioconcrete    621
        • 17.3.4.4.2        Fiber concrete               623
      • 17.3.4.5            Microalgae biocement             623
      • 17.3.4.6            Carbon-negative concrete     625
      • 17.3.4.7            Biomineral binders     625
    • 17.3.5 Natural Fiber Composites     626
      • 17.3.5.1            Types of Natural Fibers            626
      • 17.3.5.2            Properties         627
      • 17.3.5.3            Applications in Construction              627
    • 17.3.6 Cellulose nanofibers 628
      • 17.3.6.1            Sandwich composites             628
      • 17.3.6.2            Cement additives       628
      • 17.3.6.3            Pump primers                629
      • 17.3.6.4            Insulation materials  629
    • 17.3.7 Sustainable Insulation Materials      630
      • 17.3.7.1            Types of sustainable insulation materials   630
      • 17.3.7.2            Biobased and sustainable aerogels (bio-aerogels)               631
    • 17.3.8 Companies     633
  • 17.4     Green Cosmetics and Personal Care             637
    • 17.4.1 Natural and Bio-based Ingredients  637
    • 17.4.2 Microplastic Alternatives        639
      • 17.4.2.1            Natural hard materials             641
      • 17.4.2.2            Natural polymers        642
      • 17.4.2.3            Polysaccharides          642
        • 17.4.2.3.1        Starch 642
          • 17.4.2.3.1.1   Applications and commercial status             642
          • 17.4.2.3.1.2   Companies     643
        • 17.4.2.3.2        Cellulose          643
          • 17.4.2.3.2.1   Microcrystalline cellulose (MCC)     644
            • 17.4.2.3.2.1.1 Applications and commercial status             644
            • 17.4.2.3.2.1.2 Companies     644
          • 17.4.2.3.2.2   Regenerated cellulose microspheres            644
            • 17.4.2.3.2.2.1 Applications and commercial status             644
            • 17.4.2.3.2.2.2 Companies     645
          • 17.4.2.3.2.3   Cellulose nanocrystals           645
            • 17.4.2.3.2.3.1 Applications and commercial status             646
            • 17.4.2.3.2.3.2 Companies     646
          • 17.4.2.3.2.4   Bacterial nanocellulose (BNC)           647
            • 17.4.2.3.2.4.1 Companies     647
        • 17.4.2.3.3        Chitin  648
          • 17.4.2.3.3.1   Applications and commercial status             648
          • 17.4.2.3.3.2   Companies     648
      • 17.4.2.4            Proteins             648
        • 17.4.2.4.1        Collagen/Gelatin         649
          • 17.4.2.4.1.1   Applications and commercial status             649
        • 17.4.2.4.2        Casein                649
          • 17.4.2.4.2.1   Applications and commercial status             649
      • 17.4.2.5            Polyesters        649
        • 17.4.2.5.1        Polyhydroxyalkanoates           649
          • 17.4.2.5.1.1   Applications and commercial status             651
          • 17.4.2.5.1.2   Companies     651
        • 17.4.2.5.2        Polylactic acid              653
          • 17.4.2.5.2.1   Applications and commercial status             654
          • 17.4.2.5.2.2   Companies     654
      • 17.4.2.6            Other natural polymers           655
        • 17.4.2.6.1        Lignin  655
          • 17.4.2.6.1.1   Description     655
          • 17.4.2.6.1.2   Applications and commercial status             657
          • 17.4.2.6.1.3   Companies     658
        • 17.4.2.6.2        Alginate              660
          • 17.4.2.6.2.1   Applications and commercial status             660
          • 17.4.2.6.2.2   Companies     661
    • 17.4.3 Waterless Formulations         662
    • 17.4.4 Companies     665
  • 17.5     Sustainable Packaging            669
    • 17.5.1 Paper and board packaging 669
    • 17.5.2 Food packaging           669
      • 17.5.2.1            Bio-Based films and trays      670
      • 17.5.2.2            Bio-Based pouches and bags             671
      • 17.5.2.3            Bio-Based textiles and nets  671
      • 17.5.2.4            Bioadhesives 671
        • 17.5.2.4.1        Starch 672
        • 17.5.2.4.2        Cellulose          672
        • 17.5.2.4.3        Protein-Based               673
      • 17.5.2.5            Barrier coatings and films     673
        • 17.5.2.5.1        Polysaccharides          674
          • 17.5.2.5.1.1   Chitin  674
          • 17.5.2.5.1.2   Chitosan           675
          • 17.5.2.5.1.3   Starch 675
        • 17.5.2.5.2        Poly(lactic acid) (PLA)              675
        • 17.5.2.5.3        Poly(butylene Succinate)       675
        • 17.5.2.5.4        Functional Lipid and Proteins Based Coatings        675
      • 17.5.2.6            Active and Smart Food Packaging   676
        • 17.5.2.6.1        Active Materials and Packaging Systems    676
        • 17.5.2.6.2        Intelligent and Smart Food Packaging           677
      • 17.5.2.7            Antimicrobial films and agents          678
        • 17.5.2.7.1        Natural               679
        • 17.5.2.7.2        Inorganic nanoparticles          679
        • 17.5.2.7.3        Biopolymers   680
      • 17.5.2.8            Bio-based Inks and Dyes        680
      • 17.5.2.9            Edible films and coatings       681
        • 17.5.2.9.1        Overview           681
        • 17.5.2.9.2        Commercial examples            683
      • 17.5.2.10         Types of bio-based coatings and films in packaging           684
        • 17.5.2.10.1     Polyurethane coatings             684
          • 17.5.2.10.1.1 Properties         684
          • 17.5.2.10.1.2 Bio-based polyurethane coatings     685
          • 17.5.2.10.1.3 Products           686
        • 17.5.2.10.2     Acrylate resins              687
          • 17.5.2.10.2.1 Properties         687
          • 17.5.2.10.2.2 Bio-based acrylates  687
          • 17.5.2.10.2.3 Products           688
        • 17.5.2.10.3     Polylactic acid (Bio-PLA)        688
          • 17.5.2.10.3.1 Properties         690
          • 17.5.2.10.3.2 Bio-PLA coatings and films  690
        • 17.5.2.10.4     Polyhydroxyalkanoates (PHA) coatings         691
        • 17.5.2.10.5     Cellulose coatings and films               692
          • 17.5.2.10.5.1 Microfibrillated cellulose (MFC)        692
          • 17.5.2.10.5.2 Cellulose nanofibers 693
            • 17.5.2.10.5.2.1            Properties         693
            • 17.5.2.10.5.2.2            Product developers    695
        • 17.5.2.10.6     Lignin coatings              697
        • 17.5.2.10.7     Protein-based biomaterials for coatings      697
          • 17.5.2.10.7.1 Plant derived proteins              698
          • 17.5.2.10.7.2 Animal origin proteins              698
    • 17.5.3 Carbon capture derived materials for packaging   699
      • 17.5.3.1            Benefits of carbon utilization for plastics feedstocks         700
      • 17.5.3.2            CO₂-derived polymers and plastics 702
      • 17.5.3.3            CO2 utilization products        703
    • 17.5.4 Companies     705
  • 17.6     Eco-friendly Paints and Coatings      709
    • 17.6.1 UV-cure             710
    • 17.6.2 Waterborne coatings 710
    • 17.6.3 Treatments with less or no solvents                711
    • 17.6.4 Hyperbranched polymers for coatings          711
    • 17.6.5 Powder coatings          711
    • 17.6.6 High solid (HS) coatings          713
    • 17.6.7 Use of bio-based materials in coatings         713
      • 17.6.7.1            Biopolymers   713
      • 17.6.7.2            Coatings based on agricultural waste           714
      • 17.6.7.3            Vegetable oils and fatty acids             714
      • 17.6.7.4            Proteins             714
      • 17.6.7.5            Cellulose          715
      • 17.6.7.6            Plant-Based wax coatings     716
    • 17.6.8 Barrier coatings            717
      • 17.6.8.1            Polysaccharides          719
        • 17.6.8.1.1        Chitin  719
        • 17.6.8.1.2        Chitosan           719
        • 17.6.8.1.3        Starch 719
      • 17.6.8.2            Poly(lactic acid) (PLA)              720
      • 17.6.8.3            Poly(butylene Succinate         720
      • 17.6.8.4            Functional Lipid and Proteins Based Coatings        720
    • 17.6.9 Alkyd coatings               721
      • 17.6.9.1            Alkyd resin properties               721
      • 17.6.9.2            Bio-based alkyd coatings       722
      • 17.6.9.3            Products           724
    • 17.6.10              Polyurethane coatings             725
      • 17.6.10.1         Properties         725
      • 17.6.10.2         Bio-based polyurethane coatings     726
        • 17.6.10.2.1     Bio-based polyols       726
        • 17.6.10.2.2     Non-isocyanate polyurethane (NIPU)            727
      • 17.6.10.3         Products           727
    • 17.6.11              Epoxy coatings              728
      • 17.6.11.1         Properties         728
      • 17.6.11.2         Bio-based epoxy coatings     729
      • 17.6.11.3         Products           730
    • 17.6.12              Acrylate resins              731
      • 17.6.12.1         Properties         731
      • 17.6.12.2         Bio-based acrylates  732
      • 17.6.12.3         Products           732
    • 17.6.13              Polylactic acid (Bio-PLA)        733
      • 17.6.13.1         Bio-PLA coatings and films  735
    • 17.6.14              Polyhydroxyalkanoates (PHA)             735
    • 17.6.15              Microfibrillated cellulose (MFC)        736
    • 17.6.16              Cellulose nanofibers 737
    • 17.6.17              Cellulose nanocrystals           741
    • 17.6.18              Bacterial Nanocellulose (BNC)          742
    • 17.6.19              Rosins 742
    • 17.6.20              Bio-based carbon black         743
      • 17.6.20.1         Lignin-based  743
      • 17.6.20.2         Algae-based   743
    • 17.6.21              Lignin  743
    • 17.6.22              Antimicrobial films and agents          744
      • 17.6.22.1         Natural               745
      • 17.6.22.2         Inorganic nanoparticles          746
      • 17.6.22.3         Biopolymers   746
    • 17.6.23              Nanocoatings 747
    • 17.6.24              Protein-based biomaterials for coatings      748
      • 17.6.24.1         Plant derived proteins              748
      • 17.6.24.2         Animal origin proteins              749
    • 17.6.25              Algal coatings 750
    • 17.6.26              Polypeptides  753
    • 17.6.27              Companies     755
  • 17.7     Green Electronics       759
    • 17.7.1 Conventional electronics manufacturing   759
    • 17.7.2 Benefits of Green Electronics manufacturing          759
    • 17.7.3 Challenges in adopting Green Electronics manufacturing              761
    • 17.7.4 Green Electronics Manufacturing    761
    • 17.7.5 Sustainability in PCB manufacturing             763
      • 17.7.5.1            Sustainable cleaning of PCBs             763
    • 17.7.6 Design of PCBs for sustainability     764
      • 17.7.6.1            Rigid    766
      • 17.7.6.2            Flexible               766
      • 17.7.6.3            Additive manufacturing          767
      • 17.7.6.4            In-mold elctronics (IME)         768
    • 17.7.7 Materials           769
      • 17.7.7.1            Metal cores     769
      • 17.7.7.2            Recycled laminates   769
      • 17.7.7.3            Conductive inks           769
      • 17.7.7.4            Green and lead-free solder   772
      • 17.7.7.5            Biodegradable substrates     773
        • 17.7.7.5.1        Bacterial Cellulose     773
        • 17.7.7.5.2        Mycelium          774
        • 17.7.7.5.3        Lignin  776
        • 17.7.7.5.4        Cellulose Nanofibers               779
        • 17.7.7.5.5        Soy Protein      782
        • 17.7.7.5.6        Algae   782
        • 17.7.7.5.7        PHAs   783
      • 17.7.7.6            Biobased inks                784
    • 17.7.8 Substrates       784
      • 17.7.8.1            Halogen-free FR4        784
        • 17.7.8.1.1        FR4 limitations             784
        • 17.7.8.1.2        FR4 alternatives           786
        • 17.7.8.1.3        Bio-Polyimide 786
      • 17.7.8.2            Metal-core PCBs         788
      • 17.7.8.3            Biobased PCBs             788
        • 17.7.8.3.1        Flexible (bio) polyimide PCBs             789
        • 17.7.8.3.2        Recent commercial activity  790
      • 17.7.8.4            Paper-based PCBs     791
      • 17.7.8.5            PCBs without solder mask   791
      • 17.7.8.6            Thinner dielectrics      792
      • 17.7.8.7            Recycled plastic substrates 792
      • 17.7.8.8            Flexible substrates     792
    • 17.7.9 Sustainable patterning and metallization in electronics manufacturing 793
      • 17.7.9.1            Introduction    793
      • 17.7.9.2            Issues with sustainability      793
      • 17.7.9.3            Regeneration and reuse of etching chemicals         794
      • 17.7.9.4            Transition from Wet to Dry phase patterning             795
      • 17.7.9.5            Print-and-plate              795
      • 17.7.9.6            Approaches    796
        • 17.7.9.6.1        Direct Printed Electronics      796
        • 17.7.9.6.2        Photonic Sintering      798
        • 17.7.9.6.3        Biometallization          798
        • 17.7.9.6.4        Plating Resist Alternatives     799
        • 17.7.9.6.5        Laser-Induced Forward Transfer       800
        • 17.7.9.6.6        Electrohydrodynamic Printing            802
        • 17.7.9.6.7        Electrically conductive adhesives (ECAs    802
        • 17.7.9.6.8        Green electroless plating       804
        • 17.7.9.6.9        Smart Masking             805
        • 17.7.9.6.10     Component Integration           805
        • 17.7.9.6.11     Bio-inspired material deposition      806
        • 17.7.9.6.12     Multi-material jetting 806
        • 17.7.9.6.13     Vacuumless deposition          808
        • 17.7.9.6.14     Upcycling waste streams      808
    • 17.7.10              Sustainable attachment and integration of components 809
      • 17.7.10.1         Conventional component attachment materials   809
      • 17.7.10.2         Materials           810
        • 17.7.10.2.1     Conductive adhesives             810
        • 17.7.10.2.2     Biodegradable adhesives      810
        • 17.7.10.2.3     Magnets            811
        • 17.7.10.2.4     Bio-based solders      811
        • 17.7.10.2.5     Bio-derived solders   811
        • 17.7.10.2.6     Recycled plastics       812
        • 17.7.10.2.7     Nano adhesives           812
        • 17.7.10.2.8     Shape memory polymers       812
        • 17.7.10.2.9     Photo-reversible polymers    814
        • 17.7.10.2.10  Conductive biopolymers        815
      • 17.7.10.3         Processes        815
        • 17.7.10.3.1     Traditional thermal processing methods     816
        • 17.7.10.3.2     Low temperature solder          816
        • 17.7.10.3.3     Reflow soldering          819
        • 17.7.10.3.4     Induction soldering    820
        • 17.7.10.3.5     UV curing          821
        • 17.7.10.3.6     Near-infrared (NIR) radiation curing 821
        • 17.7.10.3.7     Photonic sintering/curing       822
        • 17.7.10.3.8     Hybrid integration       822
    • 17.7.11              Sustainable integrated circuits          823
      • 17.7.11.1         IC manufacturing        823
      • 17.7.11.2         Sustainable IC manufacturing           824
      • 17.7.11.3         Wafer production        824
        • 17.7.11.3.1     Silicon 825
        • 17.7.11.3.2     Gallium nitride ICs     825
        • 17.7.11.3.3     Flexible ICs      825
        • 17.7.11.3.4     Fully printed organic ICs         826
      • 17.7.11.4         Oxidation methods    827
        • 17.7.11.4.1     Sustainable oxidation              827
        • 17.7.11.4.2     Metal oxides   828
        • 17.7.11.4.3     Recycling          829
        • 17.7.11.4.4     Thin gate oxide layers                829
      • 17.7.11.5         Patterning and doping              830
        • 17.7.11.5.1     Processes        830
          • 17.7.11.5.1.1 Wet etching     830
          • 17.7.11.5.1.2 Dry plasma etching    830
          • 17.7.11.5.1.3 Lift-off patterning        831
          • 17.7.11.5.1.4 Surface doping             831
      • 17.7.11.6         Metallization  832
        • 17.7.11.6.1     Evaporation    832
        • 17.7.11.6.2     Plating 833
        • 17.7.11.6.3     Printing              833
          • 17.7.11.6.3.1 Printed metal gates for organic thin film transistors            833
        • 17.7.11.6.4     Physical vapour deposition (PVD)    834
    • 17.7.12              End of life         835
      • 17.7.12.1         Hazardous waste        835
      • 17.7.12.2         Emissions        836
      • 17.7.12.3         Water Usage   837
      • 17.7.12.4         Recycling          838
        • 17.7.12.4.1     Mechanical recycling                839
        • 17.7.12.4.2     Electro-Mechanical Separation         840
        • 17.7.12.4.3     Chemical Recycling   840
        • 17.7.12.4.4     Electrochemical Processes  841
        • 17.7.12.4.5     Thermal Recycling      841
    • 17.7.13              Green Certification     842
    • 17.7.14              Companies     843
  • 17.8     Sustainable Textiles and Fibers          845
    • 17.8.1 Types of bio-based fibres       845
      • 17.8.1.1            Natural fibres 847
      • 17.8.1.2            Main-made bio-based fibres               849
    • 17.8.2 Bio-based synthetics                850
    • 17.8.3 Recyclability of bio-based fibres       851
    • 17.8.4 Lyocell                851
    • 17.8.5 Bacterial cellulose      852
    • 17.8.6 Algae textiles  852
    • 17.8.7 Bio-based leather        853
      • 17.8.7.1            Properties of bio-based leathers       857
        • 17.8.7.1.1        Tear strength. 858
        • 17.8.7.1.2        Tensile strength            858
        • 17.8.7.1.3        Bally flexing     858
      • 17.8.7.2            Comparison with conventional leathers      859
      • 17.8.7.3            Comparative analysis of bio-based leathers             862
      • 17.8.7.4            Plant-based leather   863
        • 17.8.7.4.1        Overview           863
        • 17.8.7.4.2        Production processes              863
          • 17.8.7.4.2.1   Feedstocks      864
          • 17.8.7.4.2.1   Agriculture Residues 864
          • 17.8.7.4.2.2   Food Processing Waste          864
          • 17.8.7.4.2.3   Invasive Plants              864
          • 17.8.7.4.2.4   Culture-Grown Inputs              865
          • 17.8.7.4.2.5   Textile-Based  865
          • 17.8.7.4.2.6   Bio-Composite             866
        • 17.8.7.4.3        Products           866
        • 17.8.7.4.4        Market players               867
      • 17.8.7.5            Mycelium leather         869
        • 17.8.7.5.1        Overview           869
        • 17.8.7.5.2        Production process   872
          • 17.8.7.5.2.1   Growth conditions     872
          • 17.8.7.5.2.2   Tanning Mycelium Leather     873
          • 17.8.7.5.2.3   Dyeing Mycelium Leather       873
        • 17.8.7.5.3        Products           874
        • 17.8.7.5.4        Market players               874
      • 17.8.7.6            Microbial leather          875
        • 17.8.7.6.1        Overview           875
        • 17.8.7.6.2        Production process   875
        • 17.8.7.6.3        Fermentation conditions       876
        • 17.8.7.6.4        Harvesting       877
        • 17.8.7.6.5        Products           878
        • 17.8.7.6.6        Market players               880
      • 17.8.7.7            Lab grown leather        881
        • 17.8.7.7.1        Overview           881
        • 17.8.7.7.2        Production process   882
        • 17.8.7.7.3        Products           883
        • 17.8.7.7.4        Market players               883
      • 17.8.7.8            Protein-based leather               884
        • 17.8.7.8.1        Overview           884
        • 17.8.7.8.2        Production process   885
        • 17.8.7.8.3        Commercial activity  885
      • 17.8.7.9            Sustainable textiles coatings and dyes         886
        • 17.8.7.9.1        Overview           886
          • 17.8.7.9.1.1   Coatings            886
          • 17.8.7.9.1.2   Dyes     887
        • 17.8.7.9.2        Commercial activity  888
    • 17.8.8 Companies     889
  • 17.9     Alternative Fuels and Lubricants      892
    • 17.9.1 Biofuels and Synthetic Fuels               892
    • 17.9.2 Biodiesel           892
      • 17.9.2.1            Biodiesel by generation           894
      • 17.9.2.2            Production of biodiesel and other biofuels 895
        • 17.9.2.2.1        Pyrolysis of biomass 896
        • 17.9.2.2.2        Vegetable oil transesterification       899
        • 17.9.2.2.3        Vegetable oil hydrogenation (HVO)  900
          • 17.9.2.2.3.1   Production process   901
        • 17.9.2.2.4        Biodiesel from tall oil                902
        • 17.9.2.2.5        Fischer-Tropsch BioDiesel     902
        • 17.9.2.2.6        Hydrothermal liquefaction of biomass         904
        • 17.9.2.2.7        CO2 capture and Fischer-Tropsch (FT)          905
        • 17.9.2.2.8        Dymethyl ether (DME)              905
      • 17.9.2.3            Prices  906
      • 17.9.2.4            Global production and consumption            906
    • 17.9.3 Renewable diesel        909
      • 17.9.3.1            Production       909
      • 17.9.3.2            SWOT analysis              910
      • 17.9.3.3            Global consumption 911
      • 17.9.3.4            Prices  914
    • 17.9.4 Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)                915
      • 17.9.4.1            Description     915
      • 17.9.4.2            SWOT analysis              915
      • 17.9.4.3            Global production and consumption            916
      • 17.9.4.4            Production pathways                917
      • 17.9.4.5            Prices  919
      • 17.9.4.6            Bio-aviation fuel production capacities       920
      • 17.9.4.7            Market challenges      920
      • 17.9.4.8            Global consumption 921
    • 17.9.5 Bio-naphtha   922
      • 17.9.5.1            Overview           922
      • 17.9.5.2            SWOT analysis              923
      • 17.9.5.3            Markets and applications      924
      • 17.9.5.4            Prices  926
      • 17.9.5.5            Production capacities, by producer, current and planned               926
      • 17.9.5.6            Production capacities, total (tonnes), historical, current and planned   927
    • 17.9.6 Biomethanol  928
      • 17.9.6.1            SWOT analysis              929
      • 17.9.6.2            Methanol-to gasoline technology     930
      • 17.9.6.2.1        Production processes              931
        • 17.9.6.2.1.1   Anaerobic digestion  932
        • 17.9.6.2.1.2   Biomass gasification 933
        • 17.9.6.2.1.3   Power to Methane       933
    • 17.9.7 Ethanol              934
      • 17.9.7.1            Technology description           934
      • 17.9.7.2            1G Bio-Ethanol             934
      • 17.9.7.3            SWOT analysis              935
      • 17.9.7.4            Ethanol to jet fuel technology             936
      • 17.9.7.5            Methanol from pulp & paper production      937
      • 17.9.7.6            Sulfite spent liquor fermentation      937
      • 17.9.7.7            Gasification    938
        • 17.9.7.7.1        Biomass gasification and syngas fermentation       938
        • 17.9.7.7.2        Biomass gasification and syngas thermochemical conversion    938
      • 17.9.7.8            CO2 capture and alcohol synthesis               939
      • 17.9.7.9            Biomass hydrolysis and fermentation           939
        • 17.9.7.9.1        Separate hydrolysis and fermentation           939
        • 17.9.7.9.2        Simultaneous saccharification and fermentation (SSF)    940
        • 17.9.7.9.3        Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)      940
        • 17.9.7.9.4        Simultaneous saccharification and co-fermentation (SSCF)         941
        • 17.9.7.9.5        Direct conversion (consolidated bioprocessing) (CBP)      941
      • 17.9.7.10         Global ethanol consumption              942
    • 17.9.8 Biobutanol      943
      • 17.9.8.1            Production       945
      • 17.9.8.2            Prices  945
    • 17.9.9 Biomass-based Gas 946
      • 17.9.9.1            Biomethane    948
      • 17.9.9.2            Production pathways                950
        • 17.9.9.2.1        Landfill gas recovery 950
        • 17.9.9.2.2        Anaerobic digestion  951
        • 17.9.9.2.3        Thermal gasification 952
      • 17.9.9.3            SWOT analysis              953
      • 17.9.9.4            Global production      954
      • 17.9.9.5            Prices  954
        • 17.9.9.5.1        Raw Biogas     954
        • 17.9.9.5.2        Upgraded Biomethane            954
      • 17.9.9.6            Bio-LNG             955
        • 17.9.9.6.1        Markets              955
          • 17.9.9.6.1.1   Trucks 955
          • 17.9.9.6.1.2   Marine 955
        • 17.9.9.6.2        Production       955
        • 17.9.9.6.3        Plants 956
      • 17.9.9.7            bio-CNG (compressed natural gas derived from biogas)  956
      • 17.9.9.8            Carbon capture from biogas               957
    • 17.9.10              Biosyngas        958
      • 17.9.10.1         Production       958
      • 17.9.10.2         Prices  959
    • 17.9.11              Biohydrogen   960
      • 17.9.11.1         Description     960
      • 17.9.11.2         SWOT analysis              961
      • 17.9.11.3         Production of biohydrogen from biomass  962
        • 17.9.11.3.1     Biological Conversion Routes             963
          • 17.9.11.3.1.1 Bio-photochemical Reaction              963
          • 17.9.11.3.1.2 Fermentation and Anaerobic Digestion        963
        • 17.9.11.3.2     Thermochemical conversion routes               963
          • 17.9.11.3.2.1 Biomass Gasification               964
          • 17.9.11.3.2.2 Biomass Pyrolysis      964
          • 17.9.11.3.2.3 Biomethane Reforming           964
      • 17.9.11.4         Applications   965
      • 17.9.11.5         Prices  966
    • 17.9.12              Biochar in biogas production              966
    • 17.9.13              Bio-DME            966
    • 17.9.14              Chemical recycling for biofuels         967
      • 17.9.14.1         Plastic pyrolysis           967
      • 17.9.14.2         Used tires pyrolysis   968
        • 17.9.14.2.1     Conversion to biofuel               969
      • 17.9.14.3         Co-pyrolysis of biomass and plastic wastes             970
      • 17.9.14.4         Gasification    971
        • 17.9.14.4.1     Syngas conversion to methanol        972
        • 17.9.14.4.2     Biomass gasification and syngas fermentation       976
        • 17.9.14.4.3     Biomass gasification and syngas thermochemical conversion    976
      • 17.9.14.5         Hydrothermal cracking           977
    • 17.9.15              Electrofuels (E-fuels, power-to-gas/liquids/fuels) 978
      • 17.9.15.1         Introduction    978
      • 17.9.15.2         Benefits of e-fuels       980
      • 17.9.15.3         Feedstocks      981
        • 17.9.15.3.1     Hydrogen electrolysis               981
      • 17.9.15.4         CO2 capture   982
      • 17.9.15.5         Production       982
        • 17.9.15.5.1     eFuel production facilities, current and planned   985
      • 17.9.15.6         Companies     986
    • 17.9.16              Algae-derived biofuels             987
      • 17.9.16.1         Technology description           987
        • 17.9.16.1.1     Conversion pathways               987
      • 17.9.16.2         Production       988
      • 17.9.16.3         Market challenges      989
      • 17.9.16.4         Prices  990
      • 17.9.16.5         Producers         991
    • 17.9.17              Green Ammonia          991
      • 17.9.17.1         Production       992
        • 17.9.17.1.1     Decarbonisation of ammonia production  994
        • 17.9.17.1.2     Green ammonia projects       995
      • 17.9.17.2         Green ammonia synthesis methods              995
        • 17.9.17.2.1     Haber-Bosch process              995
        • 17.9.17.2.2     Biological nitrogen fixation   996
        • 17.9.17.2.3     Electrochemical production                997
        • 17.9.17.2.4     Chemical looping processes               997
      • 17.9.17.3         Blue ammonia              997
        • 17.9.17.3.1     Blue ammonia projects           997
        • 17.9.17.3.2     Markets and applications      998
        • 17.9.17.3.3     Chemical energy storage       998
        • 17.9.17.3.4     Ammonia fuel cells    998
        • 17.9.17.3.5     Marine fuel      999
        • 17.9.17.3.6     Prices  1001
      • 17.9.17.4         Companies and projects        1003
    • 17.9.18              Bio-oils (pyrolysis oils)            1004
      • 17.9.18.1         Description     1004
        • 17.9.18.1.1     Advantages of bio-oils             1004
      • 17.9.18.2         Production       1006
        • 17.9.18.2.1     Fast Pyrolysis 1006
        • 17.9.18.2.2     Costs of production  1006
        • 17.9.18.2.3     Upgrading        1006
      • 17.9.18.3         Applications   1008
      • 17.9.18.4         Bio-oil producers         1008
      • 17.9.18.5         Prices  1009
    • 17.9.19              Refuse Derived Fuels (RDF)  1010
      • 17.9.19.1         Overview           1010
      • 17.9.19.2         Production       1010
        • 17.9.19.2.1     Production process   1010
        • 17.9.19.2.2     Mechanical biological treatment      1011
      • 17.9.19.3         Markets              1012
    • 17.9.20              Bio-based Lubricants               1012
    • 17.9.21              Companies     1015
  • 17.10  Pharmaceuticals and Healthcare     1018
    • 17.10.1              Green Pharmaceutical Synthesis     1018
      • 17.10.1.1         Green Solvents             1018
      • 17.10.1.2         Catalysis           1020
      • 17.10.1.3         Continuous Flow Chemistry 1021
      • 17.10.1.4         Alternative Energy Sources   1023
      • 17.10.1.5         Green Oxidation and Reduction Methods   1024
      • 17.10.1.6         Atom-Economical Reactions              1025
      • 17.10.1.7         Bio-based Starting Materials               1027
      • 17.10.1.8         Process Intensification            1028
      • 17.10.1.9         Green Analytical Techniques               1030
      • 17.10.1.10      Sustainable Purification Methods    1031
    • 17.10.2              Bio-based Drug Delivery Systems    1032
      • 17.10.2.1         Natural Polymers        1032
      • 17.10.2.2         Protein-based Materials         1034
      • 17.10.2.3         Polysaccharide-based Systems        1036
      • 17.10.2.4         Lipid-based Carriers 1038
      • 17.10.2.5         Plant-derived Materials           1040
      • 17.10.2.6         Microbial-derived Polymers 1042
      • 17.10.2.7         Green Synthesis Methods     1044
      • 17.10.2.8         Stimuli-responsive Biopolymers       1046
      • 17.10.2.9         Bioconjugation Techniques  1048
      • 17.10.2.10      Sustainable Particle Formation         1050
      • 17.10.2.11      Bio-inspired Delivery Systems            1051
    • 17.10.3              Sustainable Medical Devices              1053
    • 17.10.4              Personalized Chemistry in Medicine              1055
      • 17.10.4.1         Tailored Drug Delivery Systems         1055
      • 17.10.4.2         Personalized Diagnostic Materials   1056
      • 17.10.4.3         Custom-synthesized Therapeutics 1058
      • 17.10.4.4         Biocompatible Materials for Implants           1059
      • 17.10.4.5         3D-printed Pharmaceuticals               1061
      • 17.10.4.6         Personalized Nutrient Formulations               1063
    • 17.10.5              Companies     1065
  • 17.11  Advanced Materials for 3D Printing 1067
    • 17.11.1              Bio-based 3D Printing Resins              1067
    • 17.11.2              Recyclable and Reusable 3D Printing Materials      1069
    • 17.11.3              Functional and Smart 3D Printing Materials              1071
    • 17.11.3.1         Companies     1073
  • 17.12  Artificial Intelligence in Chemical Design   1076
    • 17.12.1              Machine Learning for Molecular Design       1076
    • 17.12.2              AI-driven Retrosynthesis Planning   1077
    • 17.12.3              Predictive Modeling of Chemical Properties              1079
    • 17.12.4              AI in Process Optimization    1080
    • 17.12.5              Automated Lab Systems and Robotics        1080
    • 17.12.6              AI for Materials Discovery and Development            1083
  • 17.13  Quantum Chemistry Applications   1085
    • 17.13.1              Quantum Computing for Molecular Simulations   1085
    • 17.13.2              Quantum Sensors in Chemical Analysis     1086
    • 17.13.3              Quantum-inspired Algorithms for Property Prediction       1087
    • 17.13.4              Quantum Approaches to Catalyst Design  1089
    • 17.13.5              Quantum Chemistry in Drug Discovery        1090
    • 17.13.6              Quantum Effects in Nanomaterials 1091

 

18          ECONOMIC ASPECTS AND BUSINESS MODELS  1093

  • 18.1     Cost Competitiveness of Sustainable Chemical Technologies     1093
  • 18.2     Investment Trends in Green Chemistry        1094
  • 18.3     New Business Models in the Circular Economy     1095
  • 18.4     Market Dynamics and Consumer Preferences         1096
  • 18.5     Intellectual Property Considerations             1098

 

19          FUTURE OUTLOOK AND EMERGING TRENDS            1100

  • 19.1     Convergence of Bio, Nano, and Information Technologies               1101
  • 19.2     Quantum Computing in Chemical Research and Development  1102
  • 19.3     Space-based Manufacturing of Chemicals               1103
  • 19.4     Artificial Photosynthesis and Solar Fuels    1104
  • 19.5     Personalized and On-demand Chemical Manufacturing 1105
  • 19.6     The Role of Chemistry in Achieving Net-Zero Emissions  1106
  • 19.7     Green Chemistry Advancements      1107
  • 19.8     Specialty Chemicals Evolution          1109
  • 19.9     Circular Economy Solutions 1111
  • 19.10  Artificial Intelligence and Digitalization Impact       1112
  • 19.11  Quantum Chemistry Prospects         1113

 

20          APPENDICES  1116

  • 20.1     Glossary of Terms       1116
  • 20.2     List of Abbreviations  1117
  • 20.3     Research Methodology           1118

 

21          REFERENCES 1120

 

List of Tables

  • Table 1. Global drivers and trends in sustainable chemicals.        45
  • Table 2. Types of sustainable chemicals and applications in agriculture.             53
  • Table 3. Types of sustainable chemicals and applications in Green Cosmetics and Personal Care.   54
  • Table 4. Types of sustainable chemicals and applications in Sustainable Packaging.  54
  • Table 5. Types of sustainable chemicals and applications in Eco-friendly Paints and Coatings.            55
  • Table 6. Types of sustainable chemicals and applications in Alternative Fuels and Lubricants.            56
  • Table 7. Types of sustainable chemicals and applications in Pharmaceuticals and Healthcare.           57
  • Table 8. Types of sustainable chemicals and applications in Water Treatment and Purification.           58
  • Table 9. Types of sustainable chemicals and applications in Advanced Materials for 3D Printing.       59
  • Table 10. Sustainable Mining and Metallurgy.          61
  • Table 11. Comparison of traditional and sustainable chemical feedstocks.       63
  • Table 12. Types of Biomass and Their Chemical Compositions. 64
  • Table 13. Pretreatment and Conversion Technologies.      66
  • Table 14. Challenges in Scaling Up Biomass Utilization.  68
  • Table 15. CO2 Capture Technologies.           70
  • Table 16. Chemical Conversion Pathways for CO2.             71
  • Table 17. Economic and Technical Barriers to CO2 Utilization.    73
  • Table 18. Industrial Waste Streams and By-products.        76
  • Table 19. Electrolysis Technologies.               79
  • Table 20. Types of biocatalysts.         92
  • Table 21. Heterogeneous Catalysis Advancements.            94
  • Table 22. Photocatalysis vs Electrocatalysis.           95
  • Table 23. Applications of chemically recycled materials. 102
  • Table 24. Summary of non-catalytic pyrolysis technologies.         104
  • Table 25. Summary of catalytic pyrolysis technologies.    105
  • Table 26. Summary of pyrolysis technique under different operating conditions.            109
  • Table 27. Biomass materials and their bio-oil yield.             110
  • Table 28. Biofuel production cost from the biomass pyrolysis process. 111
  • Table 29. Pyrolysis companies and plant capacities, current and planned.         114
  • Table 30. Summary of gasification technologies.  115
  • Table 31. Advanced recycling (Gasification) companies. 121
  • Table 32. Summary of dissolution technologies.   121
  • Table 33. Advanced recycling (Dissolution) companies    122
  • Table 34. Depolymerisation processes for PET, PU, PC and PA, products and yields.    124
  • Table 35. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.           125
  • Table 36. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 126
  • Table 37. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 127
  • Table 38. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.           128
  • Table 39. Summary of aminolysis technologies.    131
  • Table 40. Advanced recycling (Depolymerisation) companies and capacities (current and planned).                131
  • Table 41. Overview of hydrothermal cracking for advanced chemical recycling.              132
  • Table 42. Overview of Pyrolysis with in-line reforming for advanced chemical recycling.            133
  • Table 43. Overview of microwave-assisted pyrolysis for advanced chemical recycling.              134
  • Table 44. Overview of plasma pyrolysis for advanced chemical recycling.           134
  • Table 45. Overview of plasma gasification for advanced chemical recycling.     135
  • Table 46. Chemical recycling companies.  139
  • Table 47. Types of advanced manufacturing technologies in the chemical industry.     164
  • Table 48. Advantages in Pharmaceuticals and Fine Chemicals.  166
  • Table 49. Challenges in Scale-up and Implementation.    168
  • Table 50. Production capacities of biorefinery lignin producers. 176
  • Table 51. Types of Cell Culture Systems.     179
  • Table 52. Factors Affecting Cell Culture Performance.      180
  • Table 53. Types of Fermentation Processes.             181
  • Table 54. Factors Affecting Fermentation Performance.   182
  • Table 55. Advances in Fermentation Technology.   182
  • Table 56. Types of Purification Methods in Downstream Processing.       184
  • Table 57. Factors Affecting Purification Performance.        185
  • Table 58. Advances in Purification Technology.       185
  • Table 59. Common formulation methods used in biomanufacturing.     187
  • Table 60. Factors Affecting Formulation Performance.      188
  • Table 61. Advances in Formulation Technology.     188
  • Table 62. Factors Affecting Scale-up Performance in Biomanufacturing.             190
  • Table 63. Scale-up Strategies in Biomanufacturing.            191
  • Table 64. Factors Affecting Optimization Performance in Biomanufacturing.    192
  • Table 65. Optimization Strategies in Biomanufacturing.   193
  • Table 66. Types of Quality Control Tests in Biomanufacturing.     194
  • Table 67.Factors Affecting Quality Control Performance in Biomanufacturing  195
  • Table 68. Factors Affecting Characterization Performance in Biomanufacturing             198
  • Table 69. Key fermentation parameters in batch vs continuous biomanufacturing processes.              206
  • Table 70.  Major microbial cell factories used in industrial biomanufacturing.  211
  • Table 71. Comparison of Modes of Operation.        214
  • Table 72. Host organisms commonly used in biomanufacturing.               215
  • Table 73. Carbon utilization revenue forecast by product (US$). 221
  • Table 74. Carbon utilization business models.        224
  • Table 75. CO2 utilization and removal pathways.  225
  • Table 76. Market challenges for CO2 utilization.    227
  • Table 77. Example CO2 utilization pathways.           228
  • Table 78. CO2 derived products via Thermochemical conversion-applications, advantages and disadvantages.            231
  • Table 79. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages.            235
  • Table 80. CO2 derived products via biological conversion-applications, advantages and disadvantages.                240
  • Table 81. Companies developing and producing CO2-based polymers. 243
  • Table 82. Companies developing mineral carbonation technologies.      246
  • Table 83. Comparison of emerging CO₂ utilization applications. 247
  • Table 84. Main routes to CO₂-fuels. 249
  • Table 85. Market overview for CO2 derived fuels.  250
  • Table 86. Main routes to CO₂ -fuels 252
  • Table 87. Power-to-Methane projects.          257
  • Table 88. Microalgae products and prices. 260
  • Table 89. Main Solar-Driven CO2 Conversion Approaches.            262
  • Table 90. Companies in CO2-derived fuel products.           262
  • Table 91. Commodity chemicals and fuels manufactured from CO2.     269
  • Table 92. Companies in CO2-derived chemicals products.            271
  • Table 93. Carbon capture technologies and projects in the cement sector          277
  • Table 94. Prefabricated versus ready-mixed concrete markets .  281
  • Table 95. CO₂ utilization business models in building materials. 284
  • Table 96. Companies in CO2 derived building materials. 287
  • Table 97. Market challenges for CO2 utilization in construction materials.          288
  • Table 98. Companies in CO2 Utilization in Biological Yield-Boosting.      294
  • Table 99. Applications of CCS in oil and gas production.  295
  • Table 100. CO2 EOR/Storage Challenges.  302
  • Table 101. Comparison of types of biocatalysts.    306
  • Table 102. Types of Enzyme Biocatalysts.   307
  • Table 103. Common microbial hosts used for enzyme production.           308
  • Table 104. Enzyme feedstocks.          309
  • Table 105. Engineered proteins in industrial applications.              311
  • Table 106. Types of Microorganism Biocatalysts.  311
  • Table 107. Commonly used bacterial hosts.             312
  • Table 108. Examples of fungal hosts.            312
  • Table 109. Commonly used yeast hosts.     313
  • Table 110. Types of Engineered Biocatalysts.           316
  • Table 111. Production methods for biocatalysts.   326
  • Table 112. Fermentation processes.              327
  • Table 113. Waste-based feedstocks and biochemicals produced.            327
  • Table 114. Microbial and mineral-based feedstocks and biochemicals produced.         328
  • Table 115.  Key biomanufacturing processes utilized in synthetic biology.           338
  • Table 116. Molecules produced through industrial biomanufacturing.  339
  • Table 117. Continuous vs batch biomanufacturing              340
  • Table 118. Key fermentation parameters in batch vs continuous biomanufacturing processes.            340
  • Table 119. Synthetic biology fermentation processes.       342
  • Table 120. Cell-free versus cell-based systems      343
  • Table 121. Key applications of genome engineering.           350
  • Table 122. Types of Nanoparticle Biocatalysts.       353
  • Table 123. Types of Biocatalytic Cascades and Multi-Enzyme Systems.                355
  • Table 124. Companies developing biocatalysts..  359
  • Table 125. Key tools and techniques used in metabolic engineering for pathway optimization.             364
  • Table 126. Key applications of metabolic engineering.      366
  • Table 127. Main DNA synthesis technologies           368
  • Table 128. Main gene assembly methods.  368
  • Table 129. Key applications of genome engineering.           373
  • Table 130. Engineered proteins in industrial applications.              375
  • Table 131.Key computational tools and their applications in synthetic biology.               386
  • Table 132. Feedstocks for synthetic biology.            391
  • Table 133. Products from C1 feedstocks in white biotechnology.               397
  • Table 134. C2 Feedstock Products. 397
  • Table 135. CO2 derived products via biological conversion-applications, advantages and disadvantages.            400
  • Table 136. Common starch sources that can be used as feedstocks for producing biochemicals.     408
  • Table 137. Biomass processes summary, process description and TRL.               411
  • Table 138. Pathways for hydrogen production from biomass.       413
  • Table 139. Overview of alginate-description, properties, application and market size. 414
  • Table 140. Blue biotechnology companies.               417
  • Table 141. Types of bio-based solvents.      419
  • Table 142. Companies developing bio-based solvents.    427
  • Table 143. Value Proposition for Critical Material Extraction Technologies.         434
  • Table 144. Critical Material Extraction Methods Evaluated by Key Performance Metrics.           435
  • Table 145. Critical Rare-Earth Element Recovery Technologies from Secondary Sources.        437
  • Table 146. Li-ion Battery Technology Metal Recovery Methods-Metal, Recovery Method, Recovery Efficiency, Challenges, Environmental Impact, Economic Viability.          438
  • Table 147. Critical Semiconductor Materials Recovery-Material, Primary Source, Recovery Method, Recovery Efficiency, Challenges, Potential Applications. 439
  • Table 148. Critical Semiconductor Material Recovery from Secondary Sources.             440
  • Table 149. Critical Platinum Group Metal Recovery.            442
  • Table 150. Companies in waste valorization and resrouce recovery.        490
  • Table 151. Energy Efficiency Measures in Chemical Plants.           495
  • Table 152. Renewable Energy Sources in Chemical Production. 500
  • Table 153. Energy Storage Technologies for Process Industries.  502
  • Table 154. Combined Heat and Power (CHP) Systems.     504
  • Table 155. Green Chemistry Metrics and Sustainability Indicators.          508
  • Table 156. Incentives and Support Mechanisms for Green Chemistry.   524
  • Table 157. Challenges in Regulating Emerging Technologies.        525
  • Table 158. International Cooperation and Harmonization Efforts.             528
  • Table 159. LDPE film versus PLA, 2019–24 (USD/tonne). 533
  • Table 160. PLA properties      534
  • Table 161. Applications, advantages and disadvantages of PHAs in packaging.              548
  • Table 162. Market overview for cellulose microfibers (microfibrillated cellulose) in paperboard and packaging-market age, key benefits, applications and producers.            552
  • Table 163. Applications of nanocrystalline cellulose (CNC).         553
  • Table 164. Market overview for cellulose nanofibers in packaging.           555
  • Table 165. Applications of Bacterial Nanocellulose in Packaging.             564
  • Table 166. Types of protein based-bioplastics, applications and companies.   566
  • Table 167. Overview of alginate-description, properties, application and market size. 569
  • Table 168. Companies developing algal-based bioplastics.          570
  • Table 169. Overview of mycelium fibers-description, properties, drawbacks and applications.            571
  • Table 170. Overview of chitosan-description, properties, drawbacks and applications.             573
  • Table 171. Commercial Examples of Chitosan-based Films and Coatings and Companies.   574
  • Table 172. Bio-based naphtha markets and applications.               576
  • Table 173. Bio-naphtha market value chain.            577
  • Table 174. Commercial Examples of Bio-Naphtha Packaging and Companies. 578
  • Table 175. Bioplastics and biodegradable polymers market players.       581
  • Table 176. Biopesticides and Biocontrol Agents.   585
  • Table 177. Sustainable Agriculture Chemicals Market Players.    599
  • Table 178. Established bio-based construction materials.             603
  • Table 179. Types of self-healing concrete.  611
  • Table 180. Types of biobased aerogels.        623
  • Table 181. Sustainable Construction Materials Market Players.  624
  • Table 182. Natural and Bio-based Ingredients.        628
  • Table 183. Biodegradable polymers.              632
  • Table 184.Companies developing starch microspheres/microbeads.     634
  • Table 185. Companies developing microcrystalline cellulose (MCC) spheres/beads.  635
  • Table 186. Companies developing cellulose microbeads.              636
  • Table 187. CNC properties.  636
  • Table 188. Companies developing cellulose nanocrystal microbeads.  637
  • Table 189. Companies developing bacterial nanocellulose microbeads.             639
  • Table 190.Companies developing chitin microspheres/microbeads.      639
  • Table 191.Types of PHAs and properties.     641
  • Table 192. Polyhydroxyalkanoates (PHA) producers.           642
  • Table 193. Companies developing PHA for microbeads.  644
  • Table 194. PLA producers and production capacities.       645
  • Table 195. Technical lignin types and applications.             646
  • Table 196. Properties of lignins and their applications.     648
  • Table 197. Production capacities of technical lignin producers.  649
  • Table 198. Production capacities of biorefinery lignin producers.              650
  • Table 199. Companies developing lignin for microbeads (current or potential applications).  650
  • Table 200. Companies developing alginate for microbeads (current or potential applications).            652
  • Table 201. Green Cosmetics and Personal Care Market Players. 656
  • Table 202. Pros and cons of different type of food packaging materials. 661
  • Table 203. Active Biodegradable Films films and their food applications.             668
  • Table 204. Intelligent Biodegradable Films.               669
  • Table 205. Edible films and coatings market summary.    672
  • Table 206. Types of polyols. 675
  • Table 207. Polyol producers.                676
  • Table 208. Bio-based polyurethane coating products.       677
  • Table 209. Bio-based acrylate resin products.         679
  • Table 210. Polylactic acid (PLA) market analysis.  679
  • Table 211. Commercially available PHAs.  682
  • Table 212. Market overview for cellulose nanofibers in paints and coatings.       684
  • Table 213. Companies developing cellulose nanofibers products in paints and coatings.         686
  • Table 214. Types of protein based-biomaterials, applications and companies. 689
  • Table 215. CO2 utilization and removal pathways.                691
  • Table 216. CO2 utilization products developed by chemical and plastic producers.     694
  • Table 217. Sustainable packaging market players.               696
  • Table 218. Example envinronmentally friendly coatings, advantages and disadvantages.        700
  • Table 219. Plant Waxes.          707
  • Table 220. Types of alkyd resins and properties.     712
  • Table 221. Market summary for bio-based alkyd coatings-raw materials, advantages, disadvantages, applications and producers.                714
  • Table 222. Bio-based alkyd coating products.         715
  • Table 223. Types of polyols. 716
  • Table 224. Polyol producers.                717
  • Table 225. Bio-based polyurethane coating products.       718
  • Table 226. Market summary for bio-based epoxy resins.  720
  • Table 227. Bio-based polyurethane coating products.       722
  • Table 228. Bio-based acrylate resin products.         723
  • Table 229. Polylactic acid (PLA) market analysis.  724
  • Table 230. Market assessment for cellulose nanofibers in paints and coatings-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global paints and coatings OEMs.               728
  • Table 231. Companies developing CNF products in paints and coatings, applications targeted and stage of commercialization. 731
  • Table 232. Types of protein based-biomaterials, applications and companies. 740
  • Table 233. Overview of algal coatings-description, properties, application and market size.  742
  • Table 234. Companies developing algal-based plastics.  744
  • Table 235. Eco-friendly Paints and Coatings Market Players.         746
  • Table 236. Benefits of Green Electronics Manufacturing  751
  • Table 237. Challenges in adopting Green Electronics manufacturing.    752
  • Table 238. Key areas where the PCB industry can improve sustainability.            754
  • Table 239. Improving sustainability of PCB design.              755
  • Table 240. PCB design options for sustainability.  756
  • Table 241.  Sustainability benefits and challenges associated with 3D printing.              759
  • Table 242. Conductive ink producers.           762
  • Table 243.  Green and lead-free solder companies.            763
  • Table 244. Biodegradable substrates for PCBs.      764
  • Table 245. Overview of mycelium fibers-description, properties, drawbacks and applications.            765
  • Table 246. Application of lignin in composites.       767
  • Table 247. Properties of lignins and their applications.     768
  • Table 248. Properties of flexible electronics‐cellulose nanofiber film (nanopaper).       771
  • Table 249. Companies developing cellulose nanofibers for electronics.                771
  • Table 250. Commercially available PHAs.  774
  • Table 251. Main limitations of the FR4 material system used for manufacturing printed circuit boards (PCBs).              776
  • Table 252. Halogen-free FR4 companies.   778
  • Table 253. Properties of biobased PCBs.    779
  • Table 254. Applications of flexible (bio) polyimide PCBs. 781
  • Table 255. Main patterning and metallization steps in PCB fabrication and sustainable options.         784
  • Table 256. Sustainability issues with conventional metallization processes.     784
  • Table 257. Benefits of print-and-plate.          786
  • Table 258. Sustainable alternative options to standard plating resists used in printed circuit board (PCB) fabrication.     790
  • Table 259. Applications for laser induced forward transfer             791
  • Table 260. Copper versus silver inks in laser-induced forward transfer (LIFT) for electronics fabrication.                792
  • Table 261. Approaches for in-situ oxidation prevention.   792
  • Table 262. Market readiness and maturity of different lead-free solders and electrically conductive adhesives (ECAs) for electronics manufacturing. 795
  • Table 263. Advantages of green electroless plating.            795
  • Table 264. Comparison of component attachment materials.     800
  • Table 265. Comparison between sustainable and conventional component attachment materials for printed circuit boards              801
  • Table 266. Comparison between the SMAs and SMPs.      804
  • Table 267. Comparison of conductive biopolymers versus conventional materials for printed circuit board fabrication.       806
  • Table 268. Comparison of curing and reflow processes used for attaching components in electronics assembly.        806
  • Table 269. Low temperature solder alloys. 808
  • Table 270. Thermally sensitive substrate materials.            808
  • Table 271. Limitations of existing IC production.   814
  • Table 272. Strategies for improving sustainability in integrated circuit (IC) manufacturing.      815
  • Table 273. Comparison of oxidation methods and level of sustainability.             818
  • Table 274. Stage of commercialization for oxides. 819
  • Table 275. Alternative doping techniques.  823
  • Table 276.  Metal content mg / Kg in Printed Circuit Boards (PCBs) from waste desktop computers. 830
  • Table 277. Chemical recycling methods for handling electronic waste. 831
  • Table 278.  Electrochemical processes for recycling metals from electronic waste       832
  • Table 279. Thermal recycling processes for electronic waste.      832
  • Table 280. Green Electronics Market Players.           834
  • Table 281. Properties and applications of the main natural fibres              838
  • Table 282. Types of sustainable alternative leathers.          846
  • Table 283. Properties of bio-based leathers.             848
  • Table 284. Comparison with conventional leathers.            850
  • Table 285. Price of commercially available sustainable alternative leather products.  852
  • Table 286. Comparative analysis of sustainable alternative leathers.      853
  • Table 287. Key processing steps involved in transforming plant fibers into leather materials. 854
  • Table 288. Current and emerging plant-based leather products. 858
  • Table 289. Companies developing plant-based leather products.             858
  • Table 290. Overview of mycelium-description, properties, drawbacks and applications.          860
  • Table 291. Companies developing mycelium-based leather products.  865
  • Table 292. Types of microbial-derived leather alternative.               869
  • Table 293. Companies developing microbial leather products.   871
  • Table 294. Companies developing plant-based leather products.             874
  • Table 295. Types of protein-based leather alternatives.     875
  • Table 296. Companies developing protein based leather.                877
  • Table 297. Companies developing sustainable coatings and dyes for leather - 879
  • Table 298. Sustainable Textiles and Fibers Market Players.             880
  • Table 299. Biodiesel by generation. 885
  • Table 300. Biodiesel production techniques.            886
  • Table 301. Summary of pyrolysis technique under different operating conditions.         887
  • Table 302. Biomass materials and their bio-oil yield.          889
  • Table 303. Biofuel production cost from the biomass pyrolysis process.              889
  • Table 304. Properties of vegetable oils in comparison to diesel.  891
  • Table 305. Main producers of HVO and capacities.              892
  • Table 306. Example commercial Development of BtL processes.              893
  • Table 307. Pilot or demo projects for biomass to liquid (BtL) processes.               894
  • Table 308. Global biodiesel consumption, 2010-2035 (M litres/year).     899
  • Table 309. Global renewable diesel consumption, 2010-2035 (M litres/year).   904
  • Table 310. Renewable diesel price ranges. 905
  • Table 311. Advantages and disadvantages of Bio-aviation fuel.   906
  • Table 312. Production pathways for Bio-aviation fuel.        908
  • Table 313. Current and announced Bio-aviation fuel facilities and capacities. 911
  • Table 314. Global bio-jet fuel consumption 2019-2035 (Million litres/year).       912
  • Table 315. Bio-based naphtha markets and applications.               915
  • Table 316. Bio-naphtha market value chain.            916
  • Table 317. Bio-naphtha pricing against petroleum-derived naphtha and related fuel products.            917
  • Table 318. Bio-based Naphtha production capacities, by producer.         917
  • Table 319. Comparison of biogas, biomethane and natural gas. 923
  • Table 320.  Processes in bioethanol production.  931
  • Table 321. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.             932
  • Table 322. Ethanol consumption 2010-2035 (million litres).          933
  • Table 323. Biogas feedstocks.            938
  • Table 324. Existing and planned bio-LNG production plants.        947
  • Table 325. Methods for capturing carbon dioxide from biogas.    948
  • Table 326. Comparison of different Bio-H2 production pathways.             953
  • Table 327. Markets and applications for biohydrogen.       956
  • Table 328. Summary of gasification technologies.                962
  • Table 329. Overview of hydrothermal cracking for advanced chemical recycling.            968
  • Table 330. Applications of e-fuels, by type.                970
  • Table 331. Overview of e-fuels.          971
  • Table 332. Benefits of e-fuels.             971
  • Table 333. eFuel production facilities, current and planned.         976
  • Table 334. E-fuels companies.           977
  • Table 335. Algae-derived biofuel producers.             982
  • Table 336. Green ammonia projects (current and planned).          986
  • Table 337. Blue ammonia projects. 988
  • Table 338. Ammonia fuel cell technologies.              989
  • Table 339. Market overview of green ammonia in marine fuel.      991
  • Table 340. Summary of marine alternative fuels.   991
  • Table 341. Estimated costs for different types of ammonia.          993
  • Table 342. Main players in green ammonia.              994
  • Table 343. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils.          996
  • Table 344. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil.                996
  • Table 345. Main techniques used to upgrade bio-oil into higher-quality fuels.   998
  • Table 346. Markets and applications for bio-oil.     999
  • Table 347. Bio-oil producers.              999
  • Table 348. Key resource recovery technologies       1001
  • Table 349. Markets and end uses for refuse-derived fuels (RDF).                1003
  • Table 350. Bio-based lubricants.      1003
  • Table 351. Alternative Fuels and Lubricants Market Players.          1006
  • Table 352. Sustainable medical devices.    1044
  • Table 353. Sustainable Healthcare and Biomedicine Market Players.      1056
  • Table 354. Advanced Materials for 3D Printing.       1064
  • Table 355. Glossary of terms.              1107
  • Table 356. List of Abbreviations.        1108

 

List of Figures

  • Figure 1. CO2 emissions reduction pathway for the chemical sector.      73
  • Figure 2. Water extraction methods for natural products. 87
  • Figure 3. Circular economy model for the chemical industry.       99
  • Figure 4. Schematic layout of a pyrolysis plant.      103
  • Figure 5. Waste plastic production pathways to (A) diesel and (B) gasoline         108
  • Figure 6. Schematic for Pyrolysis of Scrap Tires.    112
  • Figure 7. Used tires conversion process.     113
  • Figure 8. Total syngas market by product in MM Nm³/h of Syngas, 2021.              117
  • Figure 9. Overview of biogas utilization.       118
  • Figure 10. Biogas and biomethane pathways.          119
  • Figure 11. Products obtained through the different solvolysis pathways of PET, PU, and PA.    123
  • Figure 12. Electroorganic Synthesis.              148
  • Figure 13. Digital Twin schematic.    160
  • Figure 14. CO2 non-conversion and conversion technology, advantages and disadvantages.               218
  • Figure 15. Applications for CO2.       220
  • Figure 16. Cost to capture one metric ton of carbon, by sector.   221
  • Figure 17. Life cycle of CO2-derived products and services.          227
  • Figure 18. Co2 utilization pathways and products.               230
  • Figure 19. Plasma technology configurations and their advantages and disadvantages for CO2 conversion.     234
  • Figure 20. Electrochemical CO₂ reduction products.          235
  • Figure 21. LanzaTech gas-fermentation process.   239
  • Figure 22. Schematic of biological CO2 conversion into e-fuels. 240
  • Figure 23. Econic catalyst systems.                243
  • Figure 24. Mineral carbonation processes. 246
  • Figure 25. Conversion route for CO2-derived fuels and chemical intermediates.            251
  • Figure 26.  Conversion pathways for CO2-derived methane, methanol and diesel.        252
  • Figure 27. CO2 feedstock for the production of e-methanol.         259
  • Figure 28. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c           261
  • Figure 29. Audi synthetic fuels.          263
  • Figure 30.  Conversion of CO2 into chemicals and fuels via different pathways.              268
  • Figure 31.  Conversion pathways for CO2-derived polymeric materials  270
  • Figure 32. Conversion pathway for CO2-derived building materials.        274
  • Figure 33. Schematic of CCUS in cement sector.  275
  • Figure 34. Carbon8 Systems’ ACT process.               280
  • Figure 35. CO2 utilization in the Carbon Cure process.     281
  • Figure 36. Algal cultivation in the desert.     290
  • Figure 37. Example pathways for products from cyanobacteria. 293
  • Figure 38. Typical Flow Diagram for CO2 EOR.        296
  • Figure 39. Large CO2-EOR projects in different project stages by industry.          298
  • Figure 40. Carbon mineralization pathways.             301
  • Figure 41. Cell-free and cell-based protein synthesis systems.   345
  • Figure 42. CRISPR/Cas9 & Targeted Genome Editing.        372
  • Figure 43. Genetic Circuit-Assisted Smart Microbial Engineering.             380
  • Figure 44. Microbial Chassis Development for Natural Product Biosynthesis.  382
  • Figure 45. LanzaTech gas-fermentation process.   398
  • Figure 46. Schematic of biological CO2 conversion into e-fuels. 399
  • Figure 47. Overview of biogas utilization.    403
  • Figure 48. Biogas and biomethane pathways.          404
  • Figure 49. Schematic overview of anaerobic digestion process for biomethane production.   406
  • Figure 50. BLOOM masterbatch from Algix.               415
  • Figure 51. TRL of critical material extraction technologies.             433
  • Figure 52. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms.      551
  • Figure 53. TEM image of cellulose nanocrystals.   552
  • Figure 54. CNC slurry.              553
  • Figure 55. CNF gel.     555
  • Figure 56. Bacterial nanocellulose shapes 563
  • Figure 57. BLOOM masterbatch from Algix.               570
  • Figure 58. Luum Temple, constructed from Bamboo.         603
  • Figure 59. Typical structure of mycelium-based foam.      607
  • Figure 60. Commercial mycelium composite construction materials.    607
  • Figure 61. Self-healing concrete test study with cracked concrete (left) and self-healed concrete after 28 days (right).              611
  • Figure 62. Self-healing bacteria crack filler for concrete.  612
  • Figure 63. Self-healing bio concrete.              613
  • Figure 64. Microalgae based biocement masonry bloc.    616
  • Figure 65. Types of bio-based materials used for antimicrobial food packaging application.  670
  • Figure 66. Water soluble packaging by Notpla.        674
  • Figure 67. Examples of edible films in food packaging.     675
  • Figure 68. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test.               688
  • Figure 69. Applications for CO2.       691
  • Figure 70. Life cycle of CO2-derived products and services.          693
  • Figure 71.  Conversion pathways for CO2-derived polymeric materials  694
  • Figure 72. Schematic of production of powder coatings.  703
  • Figure 73. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms.      706
  • Figure 74. Types of bio-based materials used for antimicrobial food packaging application.  736
  • Figure 75. BLOOM masterbatch from Algix.               743
  • Figure 76. Vapor degreasing.               755
  • Figure 77. Multi-layered PCB.              756
  • Figure 78. 3D printed PCB.    758
  • Figure 79. In-mold electronics prototype devices and products. 759
  • Figure 80. Silver nanocomposite ink after sintering and resin bonding of discrete electronic components. 761
  • Figure 81. Typical structure of mycelium-based foam.      767
  • Figure 82. Flexible electronic substrate made from CNF. 771
  • Figure 83. CNF composite.   772
  • Figure 84. Oji CNF transparent sheets.         772
  • Figure 85. Electronic components using cellulose nanofibers as insulating materials.               773
  • Figure 86. BLOOM masterbatch from Algix.               773
  • Figure 87. Dell's Concept Luna laptop.         782
  • Figure 88.  Direct-write, precision dispensing, and 3D printing platform for 3D printed electronics.    788
  • Figure 89. 3D printed circuit boards from Nano Dimension.          788
  • Figure 90. Photonic sintering.             789
  • Figure 91. Laser-induced forward transfer (LIFT).  791
  • Figure 92. Material jetting 3d printing.           798
  • Figure 93. Material jetting 3d printing product.        799
  • Figure 94. The molecular mechanism of the shape memory effect under different stimuli.     805
  • Figure 95. Supercooled Soldering™ Technology.     810
  • Figure 96. Reflow soldering schematic.        811
  • Figure 97. Schematic diagram of induction heating reflow.             812
  • Figure 98. Fully-printed organic thin-film transistors and circuitry on one-micron-thick polymer films.                818
  • Figure 99. Types of PCBs after dismantling waste computers and monitors.      829
  • Figure 100. AlgiKicks sneaker, made with the Algiknit biopolymer gel.    844
  • Figure 101. Conceptual landscape of next-gen leather materials.             846
  • Figure 102. Typical structure of mycelium-based foam.   862
  • Figure 103. Hermès bag made of MycoWorks' mycelium leather.               865
  • Figure 104. Ganni blazer made from bacterial cellulose.  870
  • Figure 105. Bou Bag by GANNI and Modern Synthesis.      871
  • Figure 106. Regional production of biodiesel (billion litres).           884
  • Figure 107. Flow chart for biodiesel production.    890
  • Figure 108. Biodiesel (B20) average prices, current and historical, USD/litre.     897
  • Figure 109. Global biodiesel consumption, 2010-2035 (M litres/year).   899
  • Figure 110. SWOT analysis for renewable iesel.      902
  • Figure 111. Global renewable diesel consumption, 2010-2035 (M litres/year). 904
  • Figure 112. SWOT analysis for Bio-aviation fuel.    907
  • Figure 113. Global bio-jet fuel consumption to 2019-2035 (Million litres/year). 912
  • Figure 114. SWOT analysis for bio-naphtha.             915
  • Figure 115. Bio-based naphtha production capacities, 2018-2035 (tonnes).     919
  • Figure 116. SWOT analysis biomethanol.   921
  • Figure 117. Renewable Methanol Production Processes from Different Feedstocks.    922
  • Figure 118. Production of biomethane through anaerobic digestion and upgrading.     923
  • Figure 119. Production of biomethane through biomass gasification and methanation.            924
  • Figure 120. Production of biomethane through the Power to methane process.               925
  • Figure 121. SWOT analysis for ethanol.        927
  • Figure 122. Ethanol consumption 2010-2035 (million litres).        933
  • Figure 123. Properties of petrol and biobutanol.    935
  • Figure 124. Biobutanol production route.   936
  • Figure 125. Biogas and biomethane pathways.       938
  • Figure 126. Overview of biogas utilization. 940
  • Figure 127. Biogas and biomethane pathways.       941
  • Figure 128. Schematic overview of anaerobic digestion process for biomethane production. 943
  • Figure 129. Schematic overview of biomass gasification for biomethane production. 944
  • Figure 130. SWOT analysis for biogas.          945
  • Figure 131. Total syngas market by product in MM Nm³/h of Syngas, 2021.         950
  • Figure 132. SWOT analysis for biohydrogen.             953
  • Figure 133. Waste plastic production pathways to (A) diesel and (B) gasoline   959
  • Figure 134. Schematic for Pyrolysis of Scrap Tires.              960
  • Figure 135. Used tires conversion process.               961
  • Figure 136. Total syngas market by product in MM Nm³/h of Syngas, 2021.         964
  • Figure 137. Overview of biogas utilization. 965
  • Figure 138. Biogas and biomethane pathways.       966
  • Figure 139. Process steps in the production of electrofuels.          969
  • Figure 140. Mapping storage technologies according to performance characteristics.               970
  • Figure 141. Production process for green hydrogen.            973
  • Figure 142. E-liquids production routes.      974
  • Figure 143. Fischer-Tropsch liquid e-fuel products.              975
  • Figure 144. Resources required for liquid e-fuel production.         975
  • Figure 145.  Pathways for algal biomass conversion to biofuels. 979
  • Figure 146. Algal biomass conversion process for biofuel production.   980
  • Figure 147. Classification and process technology according to carbon emission in ammonia production.     983
  • Figure 148. Green ammonia production and use. 985
  • Figure 149. Schematic of the Haber Bosch ammonia synthesis reaction.            987
  • Figure 150. Schematic of hydrogen production via steam methane reformation.            987
  • Figure 151. Estimated production cost of green ammonia.            993
  • Figure 152. Bio-oil upgrading/fractionation techniques.   998

 

The Global Market for Sustainable Chemicals 2025-2035
The Global Market for Sustainable Chemicals 2025-2035
PDF download/by email.

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart.