The Global Market for Printed and Flexible Electronics 2025-2035

0

cover

cover

  • Published: October 2024
  • Pages: 840
  • Tables: 287
  • Figures: 342

 

The global printed and flexible electronics market is experiencing rapid growth driven by increasing demand for wearable devices, IoT applications, and flexible displays. This comprehensive report provides detailed analysis of the entire ecosystem from materials and manufacturing to applications and end markets. The Global Market for Printed and Flexible Electronics 2025-2035 provides comprehensive analysis and forecasting of the rapidly evolving printed and flexible electronics industry. This extensive report covers emerging technologies, applications, materials, manufacturing processes, and market opportunities across multiple sectors including consumer electronics, healthcare, automotive, smart packaging, and e-textiles. Key Market Segments Covered include:

  • Consumer electronics and wearables
  • Medical devices and healthcare monitoring
  • E-textiles and smart apparel
  • Automotive electronics and displays
  • Smart packaging and RFID
  • Building and construction
  • Energy storage and harvesting
  • Flexible displays and lighting
  • Printed and flexible sensors

 

The report provides detailed analysis of:

  • Manufacturing Technologies:
    • Printed electronics processes
    • Roll-to-roll (R2R) manufacturing
    • In-mold electronics (IME)
    • 3D electronics
    • Digital and analog printing methods
    • Flexible hybrid electronics (FHE)
  • Materials and Components:
    • Conductive inks (silver, copper, carbon)
    • Flexible substrates
    • Semiconducting materials
    • Component attachment materials
    • Flexible ICs and PCBs
    • Printable sensing materials
    • Energy storage materials
  • Applications including:
    • Flexible displays and OLED lighting
    • Wearable devices and sensors
    • Electronic skin patches
    • Smart textiles and clothing
    • Automotive displays and interfaces
    • Smart packaging and labels
    • Building-integrated electronics
    • Flexible batteries and energy harvesting
  • Market sizing and forecasts 2025-2035 (volume and value)
  • Technology benchmarking and readiness levels
  • Competitive landscape analysis
  • Regional market analysis
  • Extensive company profiles. 
  • Manufacturing innovations
  • Application roadmaps

 

Key Topics covered include:

  • Consumer Electronics & Wearables:
    • Smart watches and fitness trackers
    • Hearables and medical wearables
    • Gaming and entertainment devices
    • Flexible displays and touch interfaces
  • Healthcare & Medical:
    • Electronic skin patches
    • Remote patient monitoring
    • Smart bandages and wound care
    • Drug delivery devices
    • Continuous glucose monitoring
    • Cardiovascular monitoring
  • E-textiles & Smart Apparel:
    • Smart clothing and accessories
    • Performance sportswear
    • Healthcare monitoring garments
    • Military and protective wear
    • Manufacturing processes
    • Integration methods
  • Automotive Applications:
    • Flexible displays and lighting
    • Touch controls and interfaces
    • Seat occupancy sensors
    • Heated surfaces
    • Structural electronics
  • Smart Packaging:
    • RFID and NFC integration
    • Time-temperature indicators
    • Freshness monitoring
    • Anti-counterfeiting
    • Smart labels and tags
  • Energy Applications:
    • Flexible batteries
    • Printed supercapacitors
    • Solar cells
    • Energy harvesting
    • Wireless charging
  • Display Technologies:
    • OLED displays
    • E-paper displays
    • Micro-LED
    • Quantum dot displays
    • Automotive displays
    • Transparent displays
  • Company Profiles: Comprehensive profiles of 1,000+ companies including:
    • Major electronics manufacturers
    • Materials suppliers
    • Equipment providers
    • Technology developers
    • Start-ups and innovators

 

Companies profiled include Profiles of over 1,000 companies including 3DOM Inc., AC Biode, Accensors, Advanced Nano Products (ANP), Agfa-Gevaert NV, American Semiconductor Inc., AMO Greentech, Ampcera Inc., Anthro Energy, Ateios Systems, Australian Advanced Materials, Bando Chemical, Bare Conductive/Laiier, BeFC, Blackstone Resources, Blue Current Inc., Blue Spark Technologies Inc., Brewer Science, C2Sense, C3 Nano, Cambridge Touch Technologies, Canatu Oy, CCL Design, CHASM Advanced Materials, ChemCubed, Copprint, Copprium, Dracula Technologies, DuPont, Dycotec, Dätwyler, e2ip Technologies, Elantas, ElastiSense Sensor Technology, Electroninks, Elephantech, Enfucell OY, Ensurge Micropower ASA, Epicore Biosystems, Evonik, Exeger, Ferroperm Piezoceramics, FlexEnable, Fraunhofer Institute for Electronic Nano Systems (ENAS), Fuelium, Fuji Corporation, GE Healthcare, GenesInk, Grepow (Shenzhen Grepow Battery Co. Ltd.), Henkel, Heraeus, Heraeus Epurio, Hitachi Zosen, Holst Centre, Hyprint GmbH, Ilika, Infi-Tex, Inkron (Nagase), InkTec Co. Ltd., InnovationLab/Henkel, Intecells Inc., Inuru, ISORG, Japan Display Inc. (JDI), Jenax Inc., KUNDISCH GmbH & Co. KG, Kureha, LayerOne AS, LG Display, LiBest Inc., LionVolt BV, Liquid Wire, Mateligent GmbH, Maxell, MCK Tech, MCVE Technologie, Mühlbauer, Myrias Optics, N-Ink, Nano Dimension, Nanopaint, Navaflex, NEC Corporation, NovaCentrix, Ohara, Optomec, Panasonic, Peratech, Photocentric, Piezotech Arkema, PolyIC, PolyPlus Battery Company, PowerON, PragmatIC, Pragmatic Semiconductor, prelonic technologies, Printoptix, Prologium Technology Co. Ltd., PVNanoCell, Quad Industries, Raynergy Tek, Sakuú Corporation, Samsung SDI, Saralon, Screentec, Sefar, Semiconductor Energy Laboratory Co. Ltd., Sensel, Sensing Tex, Sensitronics, SigmaSense, Silveray, SmartKem Ltd., STMicroelectronics, StretchSense, Sun Chemical, Syenta, tacterion GmbH, Tactotek, TG0, Toppan, TotalEnergies, Toyobo, TracXon, UNIGRID Battery, Varta, Voltera, Wiliot, Xymox Technologies Inc., Ynvisible, Zinergy UK and more....

The report provides critical insights for:

  • Electronics manufacturers
  • Material suppliers
  • Equipment makers
  • Technology developers
  • Investment firms
  • R&D organizations
  • Government agencies

 

Key Features:

  • Market forecasts (volume and value)
  • Technology assessment
  • Competitive analysis
  • Strategic recommendations
  • Investment opportunities
  • Patent landscape
  • Company profiles

 

This report is essential for understanding:

  • Market opportunities and challenges
  • Technology trends and developments
  • Competitive landscape
  • Investment potential
  • Manufacturing innovations
  • Application roadmaps

 

With extensive primary research and analysis, the report offers valuable insights for companies looking to:

  • Identify market opportunities
  • Evaluate technologies
  • Assess competition
  • Plan strategic investments
  • Develop new products
  • Establish partnerships
  • Enter new markets

 

The report includes detailed market forecasts, technology assessments, and strategic analysis essential for companies participating in or planning to enter the printed and flexible electronics market.

 

 

Download table of contents (PDF)

1             EXECUTIVE SUMMARY            48

  • 1.1        The evolution of electronics 50
  • 1.2        Markets for printed and flexible electronics               53
    • 1.2.1    Macro-trends 53
    • 1.2.2    Healthcare and wellness       54
    • 1.2.3    Automotive      55
    • 1.2.4    Buildings and construction   56
    • 1.2.5    Energy storage and harvesting           57
    • 1.2.6    E-Textiles           58
    • 1.2.7    Consumer electronics             59
    • 1.2.8    Smart packaging and logistics           60
  • 1.3        The wearables revolution       61
  • 1.4        The wearable tech market in 2024   64
  • 1.5        Continuous monitoring           65
  • 1.6        Market map for printed and flexible electronics      65
  • 1.7        Wearable market leaders       66
  • 1.8        What is printed/flexible electronics?              67
    • 1.8.1    Motivation for use       67
    • 1.8.2    From rigid to flexible and stretchable             68
      • 1.8.2.1 Stretchable electronics           69
      • 1.8.2.2 Stretchable electronics in wearables            70
      • 1.8.2.3 Stretchable electronics in Medical devices               71
      • 1.8.2.4 Stretchable electronics in sensors  71
      • 1.8.2.5 Stretchable electronics in energy harvesting           71
      • 1.8.2.6 Stretchable artificial skin       72
  • 1.9        Role in the metaverse               73
  • 1.10     Wearable electronics in the textiles industry            74
  • 1.11     New conductive materials    75
  • 1.12     Entertainment               78
  • 1.13     Growth in flexible and stretchable electronics market       79
    • 1.13.1 Recent growth in Printed, flexible and hyrbid products      79
    • 1.13.2 Future growth 79
    • 1.13.3 Advanced materials as a market driver         80
    • 1.13.4 Growth in remote health monitoring and diagnostics         80
  • 1.14     Innovations at CES 2021-2024          82
  • 1.15     Investment funding and buy-outs 2019-2024          85
  • 1.16     Flexible hybrid electronics (FHE)      89
  • 1.17     Sustainability in flexible electronics               93
  • 1.18     Global market revenues, 2018-2035             94
    • 1.18.1 Consumer electronics             94
    • 1.18.2 Medical & healthcare               95
    • 1.18.3 E-textiles and smart apparel               96
    • 1.18.4 Displays            97
    • 1.18.5 Automotive      98
    • 1.18.6 Smart buildings            99
    • 1.18.7 Smart packaging         100

 

2             MANUFACTURING METHODS            101

  • 2.1        Comparative analysis              101
  • 2.2        Printed electronics     102
    • 2.2.1    Technology description           102
    • 2.2.2    SWOT analysis              103
  • 2.3        3D electronics               104
    • 2.3.1    Technology description           104
    • 2.3.2    SWOT analysis              107
  • 2.4        Analogue printing        107
    • 2.4.1    Technology description           108
    • 2.4.2    SWOT analysis              110
  • 2.5        Digital printing               110
    • 2.5.1    Technology description           110
    • 2.5.2    SWOT analysis              112
  • 2.6        In-mold electronics (IME)      113
    • 2.6.1    Technology description           113
    • 2.6.2    SWOT analysis              116
  • 2.7        Roll-to-roll (R2R)         116
    • 2.7.1    Technology description           117
    • 2.7.2    SWOT analysis              119

 

3             MATERIALS AND COMPONENTS       120

  • 3.1        Component attachment materials  121
    • 3.1.1    Conductive adhesives             122
    • 3.1.2    Biodegradable adhesives      122
    • 3.1.3    Magnets            122
    • 3.1.4    Bio-based solders      123
    • 3.1.5    Bio-derived solders   123
    • 3.1.6    Recycled plastics       123
    • 3.1.7    Nano adhesives           123
    • 3.1.8    Shape memory polymers       124
    • 3.1.9    Photo-reversible polymers    125
    • 3.1.10 Conductive biopolymers        126
    • 3.1.11 Traditional thermal processing methods     126
    • 3.1.12 Low temperature solder          127
    • 3.1.13 Reflow soldering          129
    • 3.1.14 Induction soldering    130
    • 3.1.15 UV curing          131
    • 3.1.16 Near-infrared (NIR) radiation curing 131
    • 3.1.17 Photonic sintering/curing       131
    • 3.1.18 Hybrid integration       132
  • 3.2        Conductive inks           132
    • 3.2.1    Metal-based conductive inks              135
    • 3.2.2    Nanoparticle inks       136
    • 3.2.3    Silver inks         136
    • 3.2.4    Particle-Free conductive ink 137
    • 3.2.5    Copper inks    138
    • 3.2.6    Gold (Au) ink   139
    • 3.2.7    Conductive polymer inks       139
    • 3.2.8    Liquid metals 140
    • 3.2.9    Companies     141
  • 3.3        Printable semiconductors     142
    • 3.3.1    Technology overview 142
    • 3.3.2    Advantages and disadvantages        142
    • 3.3.3    SWOT analysis              143
  • 3.4        Printable sensing materials  144
    • 3.4.1    Overview           144
    • 3.4.2    Types   145
    • 3.4.3    SWOT analysis              147
  • 3.5        Flexible Substrates     148
    • 3.5.1    Flexible plastic substrates    150
      • 3.5.1.1 Types of materials      151
      • 3.5.1.2 Flexible (bio) polyimide PCBs             151
    • 3.5.2    Paper substrates         152
      • 3.5.2.1 Overview           152
    • 3.5.3    Glass substrates         153
      • 3.5.3.1 Overview           153
    • 3.5.4    Textile substrates        154
  • 3.6        Flexible ICs      155
    • 3.6.1    Description     155
    • 3.6.2    Flexible metal oxide ICs          155
    • 3.6.3    Comparison of flexible integrated circuit technologies      156
    • 3.6.4    SWOT analysis              156
  • 3.7        Printed PCBs  157
    • 3.7.1    Description     157
    • 3.7.2    High-Speed PCBs       160
    • 3.7.3    Flexible PCBs 160
    • 3.7.4    3D Printed PCBs          161
    • 3.7.5    Sustainable PCBs       162
  • 3.8        Thin film batteries       163
    • 3.8.1    Technology description           163
    • 3.8.2    SWOT analysis              164
  • 3.9        Energy harvesting       164
    • 3.9.1    Approaches    164
    • 3.9.2    Perovskite photovoltaics        165
  • 3.9.3    Applications   165
  • 3.9.4    SWOT analysis              166

 

4             PRINTED AND FLEXIBLE CONSUMER ELECTRONICS         168

  • 4.1        Macro-trends 168
  • 4.2        Market drivers                168
  • 4.3        SWOT analysis              171
  • 4.4        Wearable sensors       172
  • 4.5        Wearable actuators   173
  • 4.6        Recent market developments             174
  • 4.7        Wrist-worn wearables              175
    • 4.7.1    Overview           175
    • 4.7.2    Sports-watches, smart-watches and fitness trackers         175
      • 4.7.2.1 Sensing              175
      • 4.7.2.2 Actuating          176
    • 4.7.3    SWOT analysis              179
    • 4.7.4    Health monitoring      180
    • 4.7.5    Energy harvesting for powering smartwatches        181
    • 4.7.6    Main producers and products            182
  • 4.8        Sports and fitness      183
    • 4.8.1    Overview           183
    • 4.8.2    Wearable devices and apparel           184
    • 4.8.3    Skin patches   184
    • 4.8.4    Products           185
  • 4.9        Hearables        187
    • 4.9.1    Technology overview 187
    • 4.9.2    Assistive Hearables   190
      • 4.9.2.1 Biometric Monitoring 190
    • 4.9.3    SWOT analysis              191
    • 4.9.4    Health & Fitness Hearables  192
    • 4.9.5    Multimedia Hearables             192
    • 4.9.6    Artificial Intelligence (AI)        192
    • 4.9.7    Companies and products      193
  • 4.10     Sleep trackers and wearable monitors         194
    • 4.10.1 Built in function in smart watches and fitness trackers      195
    • 4.10.2 Smart rings      195
    • 4.10.3 Headbands     196
    • 4.10.4 Sleep monitoring devices       197
      • 4.10.4.1            Companies and products      197
  • 4.11     Pet and animal wearables     199
  • 4.12     Military wearables      200
  • 4.13     Industrial and workplace monitoring             200
    • 4.13.1 Products           201
  • 4.14     Global market forecasts         202
  • 4.14.1 Volume              203
  • 4.14.2 Revenues          204
  • 4.15     Market challenges      206
  • 4.16     Companies     208

 

5             PRINTED AND FLEXIBLE MEDICAL AND HEALTHCARE/WELLNESS ELECTRONICS       213

  • 5.1        Macro-trends 213
  • 5.2        Market drivers                214
  • 5.3        SWOT analysis              216
  • 5.4        Current state of the art            217
    • 5.4.1    Electrochemical biosensors                219
    • 5.4.2    Skin patches for continuous monitoring      219
    • 5.4.3    Printed pH sensors    220
    • 5.4.4    Wearable medical device products 220
    • 5.4.5    Temperature and respiratory rate monitoring           222
  • 5.5        Wearable and health monitoring and rehabilitation             223
    • 5.5.1    Market overview           223
    • 5.5.2    Companies and products      224
  • 5.6        Electronic skin patches           228
    • 5.6.1    Electronic skin sensors           229
    • 5.6.2    Conductive hydrogels for soft and flexible electronics       230
    • 5.6.3    Nanomaterials-based devices           232
      • 5.6.3.1 Graphene         232
    • 5.6.4    Liquid metal alloys     233
    • 5.6.5    Conductive hydrogels for soft and flexible electronics       234
    • 5.6.6    Printed batteries          234
    • 5.6.7    Materials           235
      • 5.6.7.1 Summary of advanced materials      235
    • 5.6.8    SWOT analysis              236
    • 5.6.9    Temperature and respiratory rate monitoring           237
      • 5.6.9.1 Market overview           237
      • 5.6.9.2 Companies and products      238
    • 5.6.10 Continuous glucose monitoring (CGM)        239
      • 5.6.10.1            Market overview           239
    • 5.6.11 Minimally-invasive CGM sensors     240
      • 5.6.11.1            Technologies  240
    • 5.6.12 Non-invasive CGM sensors  243
      • 5.6.12.1            Commercial devices 243
      • 5.6.12.2            Companies and products      244
    • 5.6.13 Cardiovascular monitoring   247
      • 5.6.13.1            Market overview           247
      • 5.6.13.2            ECG sensors  248
        • 5.6.13.2.1        Companies and products      248
      • 5.6.13.3            PPG sensors   250
        • 5.6.13.3.1        Companies and products      250
    • 5.6.14 Pregnancy and newborn monitoring              250
      • 5.6.14.1            Market overview           250
      • 5.6.14.2            Companies and products      251
    • 5.6.15 Hydration sensors      252
      • 5.6.15.1            Market overview           252
      • 5.6.15.2            Companies and products      253
    • 5.6.16 Wearable sweat sensors (medical and sports)        253
      • 5.6.16.1            Market overview           253
      • 5.6.16.2            Companies and products      256
  • 5.7        Wearable drug delivery            256
    • 5.7.1    Companies and products      258
  • 5.8        Cosmetics patches    258
    • 5.8.1    Companies and products      259
  • 5.9        Femtech devices         260
    • 5.9.1    Companies and products      260
  • 5.10     Smart footwear for health monitoring           262
    • 5.10.1 Companies and products      263
  • 5.11     Smart contact lenses and smart glasses for visually impaired     263
    • 5.11.1 Companies and products      264
  • 5.12     Smart woundcare       264
    • 5.12.1 Companies and products      266
  • 5.13     Smart diapers                266
    • 5.13.1 Companies and products      267
  • 5.14     Wearable robotics-exo-skeletons, bionic prostheses, exo-suits, and body worn collaborative robots 268
    • 5.14.1 Companies and products      268
  • 5.15     Global market forecasts         287
    • 5.15.1 Volume              287
    • 5.15.2 Revenues          288
  • 5.16     Market challenges      290

 

6             ELECTRONIC TEXTILES (E-TEXTILES) AND SMART APPAREL           291

  • 6.1        Macro-trends 292
  • 6.2        Market drivers                293
  • 6.3        SWOT analysis              295
  • 6.4        Performance requirements for E-textiles     296
  • 6.5        Growth prospects for electronic textiles      297
  • 6.6        Textiles in the Internet of Things        300
  • 6.7        Types of E-Textile products   302
    • 6.7.1    Embedded e-textiles 303
    • 6.7.2    Laminated e-textiles  304
  • 6.8        Materials and components  304
    • 6.8.1    Integrating electronics for E-Textiles               304
      • 6.8.1.1 Textile-adapted             306
      • 6.8.1.2 Textile-integrated         306
      • 6.8.1.3 Textile-based  306
    • 6.8.2    Manufacturing of E-textiles   307
      • 6.8.2.1 Integration of conductive polymers and inks            307
      • 6.8.2.2 Integration of conductive yarns and conductive filament fibers   309
      • 6.8.2.3 Integration of conductive sheets       310
    • 6.8.3    Flexible and stretchable electronics in E-textiles   310
    • 6.8.4    E-textiles materials and components            312
      • 6.8.4.1 Conductive and stretchable fibers and yarns           312
        • 6.8.4.1.1           Production       314
        • 6.8.4.1.2           Metals 315
        • 6.8.4.1.3           Carbon materials and nanofibers    316
          • 6.8.4.1.3.1      Graphene         318
          • 6.8.4.1.3.2      Carbon nanotubes     319
          • 6.8.4.1.3.3      Nanofibers      321
      • 6.8.4.2 Mxenes              322
      • 6.8.4.3 Hexagonal boron-nitride (h-BN)/Bboron nitride nanosheets (BNNSs)     323
      • 6.8.4.4 Conductive polymers               325
        • 6.8.4.4.1           PDMS  328
        • 6.8.4.4.2           PEDOT: PSS     328
        • 6.8.4.4.3           Polypyrrole (PPy)          328
        • 6.8.4.4.4           Conductive polymer composites     329
        • 6.8.4.4.5           Ionic conductive polymers    329
      • 6.8.4.5 Conductive inks           329
        • 6.8.4.5.1           Aqueous-Based Ink   331
        • 6.8.4.5.2           Solvent-Based Ink      332
        • 6.8.4.5.3           Oil-Based Ink 332
        • 6.8.4.5.4           Hot-Melt Ink    333
        • 6.8.4.5.5           UV-Curable Ink             333
        • 6.8.4.5.6           Metal-based conductive inks              334
          • 6.8.4.5.6.1      Nanoparticle ink          335
          • 6.8.4.5.6.2      Silver inks         335
          • 6.8.4.5.6.3      Copper inks    339
          • 6.8.4.5.6.4      Gold (Au) ink   341
        • 6.8.4.5.7           Carbon-based conductive inks         341
          • 6.8.4.5.7.1      Carbon nanotubes     341
          • 6.8.4.5.7.2      Single-walled carbon nanotubes      343
          • 6.8.4.5.7.3      Graphene         344
        • 6.8.4.5.8           Liquid metals 348
          • 6.8.4.5.8.1      Properties         348
      • 6.8.4.6 Electronic filaments  348
      • 6.8.4.7 Phase change materials         349
        • 6.8.4.7.1           Temperature controlled fabrics         349
      • 6.8.4.8 Shape memory materials      350
      • 6.8.4.9 Metal halide perovskites        352
      • 6.8.4.10            Nanocoatings in smart textiles           352
      • 6.8.4.11            3D printing       355
        • 6.8.4.11.1        Fused Deposition Modeling (FDM)  355
        • 6.8.4.11.2        Selective Laser Sintering (SLS)           355
        • 6.8.4.11.3        Products           356
    • 6.8.5    E-textiles components            357
      • 6.8.5.1 Sensors and actuators            357
        • 6.8.5.1.1           Physiological sensors              358
        • 6.8.5.1.2           Environmental sensors           359
        • 6.8.5.1.3           Pressure sensors         359
          • 6.8.5.1.3.1      Flexible capacitive sensors  359
          • 6.8.5.1.3.2      Flexible piezoresistive sensors           360
          • 6.8.5.1.3.3      Flexible piezoelectric sensors            360
        • 6.8.5.1.4           Activity sensors            361
        • 6.8.5.1.5           Strain sensors               361
          • 6.8.5.1.5.1      Resistive sensors        361
          • 6.8.5.1.5.2      Capacitive strain sensors      362
        • 6.8.5.1.6           Temperature sensors                362
        • 6.8.5.1.7           Inertial measurement units (IMUs)  362
      • 6.8.5.2 Electrodes        363
      • 6.8.5.3 Connectors     363
  • 6.9        Applications, markets and products              363
    • 6.9.1    Current E-textiles and smart clothing products      364
    • 6.9.2    Temperature monitoring and regulation       365
      • 6.9.2.1 Heated clothing           366
      • 6.9.2.2 Heated gloves               367
      • 6.9.2.3 Heated insoles             367
      • 6.9.2.4 Heated jacket and clothing products             368
      • 6.9.2.5 Materials used in flexible heaters and applications             369
    • 6.9.3    Stretchable E-fabrics                370
    • 6.9.4    Therapeutic products               370
    • 6.9.5    Sport & fitness              371
      • 6.9.5.1 Products           373
    • 6.9.6    Smart footwear             375
      • 6.9.6.1 Companies and products      376
    • 6.9.7    Wearable displays      376
    • 6.9.8    Military               377
    • 6.9.9    Textile-based lighting                378
      • 6.9.9.1 OLEDs 378
    • 6.9.10 Smart gloves  378
    • 6.9.11 Powering E-textiles     379
      • 6.9.11.1            Advantages and disadvantages of main battery types for E-textiles          380
      • 6.9.11.2            Bio-batteries   381
      • 6.9.11.3            Challenges for battery integration in smart textiles               381
      • 6.9.11.4            Textile supercapacitors           382
      • 6.9.11.5            Energy harvesting       383
        • 6.9.11.5.1        Photovoltaic solar textiles     385
        • 6.9.11.5.2        Energy harvesting nanogenerators  386
          • 6.9.11.5.2.1   TENGs 387
          • 6.9.11.5.2.2   PENGs                387
        • 6.9.11.5.3        Radio frequency (RF) energy harvesting       387
    • 6.9.12 Motion capture for AR/VR      388
  • 6.10     Global market forecasts         389
    • 6.10.1 Volume              389
    • 6.10.2 Revenues          390
  • 6.11     Market challenges      393
  • 6.12     Companies     394

 

7             PRINTED AND FLEXIBLE ENERGY STORAGE AND HARVESTING  397

  • 7.1        Macro-trends 398
  • 7.2        Market drivers                398
  • 7.3        SWOT analysis              399
  • 7.4        Applications of printed and flexible electronics      400
  • 7.5        Flexible and stretchable batteries for electronics  401
  • 7.6        Approaches to flexibility         402
  • 7.7        Flexible Battery Technologies              406
    • 7.7.1    Thin-film Lithium-ion Batteries           406
      • 7.7.1.1 Thin film vs bulk solid-state batteries             408
      • 7.7.1.2 Types of Flexible/stretchable LIBs    410
        • 7.7.1.2.1           Flexible planar LiBs   411
        • 7.7.1.2.2           Flexible Fiber LiBs       411
        • 7.7.1.2.3           Flexible micro-LiBs    411
        • 7.7.1.2.4           Stretchable lithium-ion batteries      414
        • 7.7.1.2.5           Origami and kirigami lithium-ion batteries  416
      • 7.7.1.3 Flexible Li/S batteries                417
      • 7.7.1.4 Flexible lithium-manganese dioxide (Li–MnO2) batteries 419
    • 7.7.2    Printed Batteries          420
      • 7.7.2.1 Technical specifications         421
      • 7.7.2.2 Components  421
      • 7.7.2.3 Design 423
      • 7.7.2.4 Key features    424
        • 7.7.2.4.1           Printable current collectors  425
        • 7.7.2.4.2           Printable electrodes  426
        • 7.7.2.4.3           Materials           427
        • 7.7.2.4.4           Applications   427
        • 7.7.2.4.5           Printing techniques    429
        • 7.7.2.4.6           Lithium-ion (LIB) printed batteries    432
        • 7.7.2.4.7           Zinc-based printed batteries                433
        • 7.7.2.4.8           3D Printed batteries   436
          • 7.7.2.4.8.1      Materials for 3D printed batteries     439
    • 7.7.3    Thin-Film Solid-state Batteries           441
      • 7.7.3.1 Solid-state electrolytes            442
      • 7.7.3.2 Features and advantages      444
      • 7.7.3.3 Technical specifications         445
      • 7.7.3.4 Microbatteries               450
        • 7.7.3.4.1           Introduction    450
        • 7.7.3.4.2           3D designs      451
    • 7.7.4    Stretchable Batteries                453
    • 7.7.5    Other Emerging Technologies             455
      • 7.7.5.1 Metal-sulfur batteries               455
      • 7.7.5.2 Flexible zinc-based batteries               457
      • 7.7.5.3 Flexible silver–zinc (Ag–Zn) batteries              458
      • 7.7.5.4 Flexible Zn–Air batteries          459
      • 7.7.5.5 Flexible zinc-vanadium batteries      459
      • 7.7.5.6 Fiber-shaped batteries             460
  • 7.8        Key Components of Flexible Batteries           471
    • 7.8.1    Electrodes        471
    • 7.8.2    Electrolytes     474
    • 7.8.3    Separators       478
    • 7.8.4    Current Collectors      480
    • 7.8.5    Packaging        482
    • 7.8.6    Encapsulation Materials         485
    • 7.8.7    Other Manufacturing Techniques     487
  • 7.9        Performance Metrics and Characteristics  489
    • 7.9.1    Energy Density              489
    • 7.9.2    Power Density               491
    • 7.9.3    Cycle Life          492
    • 7.9.4    Flexibility and Bendability     493
    • 7.9.5    Printed supercapacitors         494
      • 7.9.5.1 Electrode materials   495
      • 7.9.5.2 Electrolytes     496
  • 7.10     Photovoltaics 500
    • 7.10.1 Conductive pastes     500
    • 7.10.2 Organic photovoltaics (OPV)               501
    • 7.10.3 Perovskite PV 501
    • 7.10.4 Flexible and stretchable photovoltaics        501
      • 7.10.4.1            Companies     502
    • 7.10.5 Photovoltaic solar textiles     502
    • 7.10.6 Solar tape         503
    • 7.10.7 Origami-like solar cells            504
    • 7.10.8 Spray-on and stick-on perovskite photovoltaics    505
    • 7.10.9 Photovoltaic solar textiles     505
  • 7.11     Transparent and flexible heaters       506
    • 7.11.1 Technology overview 506
    • 7.11.2 Applications   507
      • 7.11.2.1            Automotive Industry  507
        • 7.11.2.1.1        Defrosting and Defogging Systems  508
        • 7.11.2.1.2        Heated Windshields and Mirrors      509
        • 7.11.2.1.3        Touch Panels and Displays   512
      • 7.11.2.2            Aerospace and Aviation          514
        • 7.11.2.2.1        Aircraft Windows and Canopies        514
        • 7.11.2.2.2        Sensor and Camera Housings            515
      • 7.11.2.3            Consumer Electronics             519
        • 7.11.2.3.1        Smartphones and Tablets      519
        • 7.11.2.3.2        Wearable Devices       520
        • 7.11.2.3.3        Smart Home Appliances        522
      • 7.11.2.4            Building and Architecture      524
        • 7.11.2.4.1        Smart Windows            524
        • 7.11.2.4.2        Heated Glass Facades            526
        • 7.11.2.4.3        Greenhouse and Skylight Applications         527
      • 7.11.2.5            Medical and Healthcare         529
        • 7.11.2.5.1        Incubators and Warming Beds           529
        • 7.11.2.5.2        Surgical Microscopes and Endoscopes       530
        • 7.11.2.5.3        Medical Imaging Equipment 531
      • 7.11.2.6            Display Technologies                532
        • 7.11.2.6.1        LCD Displays 532
        • 7.11.2.6.2        OLED Displays              534
        • 7.11.2.6.3        Flexible and Transparent Displays   535
      • 7.11.2.7            Energy Systems            537
        • 7.11.2.7.1        Solar Panels (De-icing and Efficiency Enhancement)         537
        • 7.11.2.7.2        Fuel Cells         538
        • 7.11.2.7.3        Battery Systems           539
  • 7.12     Thermoelectric energy harvesting   542
  • 7.13     Fuel cells          543
  • 7.14     Market challenges      543
  • 7.15     Global market forecasts         544
    • 7.15.1 Volume              544
    • 7.15.2 Revenues          545
  • 7.16     Companies     547

 

8             PRINTED AND FLEXIBLE DISPLAYS  552

  • 8.1        Macro-trends 552
  • 8.2        Market drivers                552
  • 8.3        SWOT analysis              555
  • 8.4        Printed and flexible display prototypes and products         556
  • 8.5        Organic LCDs (OLCDs)           563
  • 8.6        Organic light-emitting diodes (OLEDs)         564
  • 8.7        Inorganic LEDs              565
  • 8.8        Flexible AMOLEDs      566
  • 8.9        Flexible PMOLED (Passive Matrix OLED)      568
    • 8.9.1    Printed OLEDs              569
      • 8.9.1.1 Performance  569
      • 8.9.1.2 Challenges      570
  • 8.10     Flexible and foldable microLED         570
    • 8.10.1 Foldable microLED displays 572
    • 8.10.2 Product developers    572
  • 8.11     Flexible QD displays  573
  • 8.12     Smartphones 575
  • 8.13     Laptops, tablets and other displays               577
  • 8.14     Products and prototypes        580
  • 8.15     Flexible lighting            586
    • 8.15.1 OLED lighting 586
    • 8.15.2 Automotive applications        588
      • 8.15.2.1            Commercial activity  588
  • 8.16     FHE for large area lighting     589
  • 8.17     Directly printed LED lighting 589
  • 8.18     Flexible electrophoretic displays      590
    • 8.18.1 Commercial activity  591
  • 8.19     Electrowetting displays           593
  • 8.20     Electrochromic displays         593
  • 8.21     Perovskite light-emitting diodes (PeLEDs)  594
    • 8.21.1 Types   594
    • 8.21.2 Challenges      595
    • 8.21.3 White PeLEDs                596
    • 8.21.4 Printable and flexible electronics     596
  • 8.22     Metamaterials               596
    • 8.22.1 Metasurfaces 596
      • 8.22.1.1            Flexible metasurfaces             597
      • 8.22.1.2            Meta-Lens        598
      • 8.22.1.3            Metasurface holograms         599
      • 8.22.1.4            Stretchable displays 599
      • 8.22.1.5            Soft materials                600
  • 8.23     Transparent displays 602
    • 8.23.1 Product developers    605
  • 8.24     Global market forecasts         606
    • 8.24.1 Volume              606
    • 8.24.2 Revenues          607
  • 8.25     Market challenges      608
  • 8.26     Companies     609

 

9             PRINTED AND FLEXIBLE AUTOMOTIVE ELECTRONICS      612

  • 9.1        Macro-trends 613
  • 9.2        Market drivers                613
  • 9.3        SWOT analysis              613
  • 9.4        Applications   614
    • 9.4.1    Electric vehicles           615
      • 9.4.1.1 Applications   615
      • 9.4.1.2 Battery monitoring and heating          615
      • 9.4.1.3 Printed temperature sensors and heaters   615
    • 9.4.2    HMI       616
    • 9.4.3    Automotive displays and lighting      616
      • 9.4.3.1 Interiors             617
        • 9.4.3.1.1           OLED and flexible displays   619
        • 9.4.3.1.2           Passive-matrix OLEDs             620
        • 9.4.3.1.3           Active matrix OLED    620
        • 9.4.3.1.4           Transparent OLED for heads-up displays    621
        • 9.4.3.1.5           LCD displays  621
        • 9.4.3.1.6           Curved displays           622
          • 9.4.3.1.6.1      Overview           622
          • 9.4.3.1.6.2      Automotive applications        623
          • 9.4.3.1.6.3      Companies     623
        • 9.4.3.1.7           Micro-LEDs in automotive displays 625
          • 9.4.3.1.7.1      Head-up display (HUD)           629
          • 9.4.3.1.7.2      Headlamps     630
          • 9.4.3.1.7.3      Product developers    631
      • 9.4.3.2 Exteriors            631
    • 9.4.4    In-Mold Electronics    632
    • 9.4.5    Printed and flexible sensors 633
      • 9.4.5.1 Capacitive sensors    633
      • 9.4.5.2 Flexible and stretchable pressure sensors 634
      • 9.4.5.3 Piezoresistive sensors             635
      • 9.4.5.4 Piezoelectric sensors               636
      • 9.4.5.5 Image sensors              637
        • 9.4.5.5.1           Materials and technologies  638
    • 9.4.6    Printed heaters             640
      • 9.4.6.1 Printed car seat heaters          641
      • 9.4.6.2 Printed/flexible interior heaters          641
      • 9.4.6.3 Printed on-glass heater           641
      • 9.4.6.4 Carbon nanotube transparent conductors 642
      • 9.4.6.5 Metal mesh transparent conductors              642
      • 9.4.6.6 3D shaped transparent heaters         642
      • 9.4.6.7 Direct heating                643
      • 9.4.6.8 Transparent heaters   644
    • 9.4.7    Transparent antennas              645
  • 9.5        Global market forecasts         647
    • 9.5.1    Volume              648
    • 9.5.2    Revenues          648
  • 9.6        Market challenges      650
  • 9.7        Companies     651

 

10          PRINTED AND FLEXIBLE SENSORS 659

  • 10.1     Market overview           659
  • 10.2     Printed piezoresistive sensors            660
    • 10.2.1 Technology overview 661
    • 10.2.2 Applications   662
  • 10.3     Printed piezoelectric sensors             664
    • 10.3.1 Technology overview 664
    • 10.3.2 Applications   666
  • 10.4     Printed photodetectors           667
    • 10.4.1 Technology overview 667
    • 10.4.2 Applications   669
  • 10.5     Printed temperature sensors               671
    • 10.5.1 Technology overview 671
    • 10.5.2 Applications   673
  • 10.6     Printed strain sensors              675
    • 10.6.1 Technology overview 675
    • 10.6.2 Applications   677
  • 10.7     Printed Gas Sensors 679
    • 10.7.1.          Technology overview 679
    • 10.7.2 Applications   681
  • 10.8     Printed capacitive sensors   683
    • 10.8.1 Technology overview 684
    • 10.8.2 Transparent conductive materials   684
    • 10.8.3 Applications   686
  • 10.9     Printed wearable electrodes                688
    • 10.9.1 Technology overview 688
    • 10.9.2 Applications   691
  • 10.10  Global market forecasts         692
    • 10.10.1              Volume              692
    • 10.10.2              Revenues          694
  • 10.11  Companies     695

 

11          PRINTED AND FLEXIBLE SMART BUILDINGS AND CONSTRUCTION ELECTRONICS      716

  • 11.1     Macro-trends 716
  • 11.2     Market drivers                717
  • 11.3     SWOT analysis              718
  • 11.4     Applications   719
    • 11.4.1 Industrial asset tracking/monitoring with hybrid electronics          720
    • 11.4.2 Customizable interiors            720
    • 11.4.3 Sensors             721
      • 11.4.3.1            Capacitive sensors    723
      • 11.4.3.2            Temperature and humidity sensors 724
      • 11.4.3.3            Sensors for air quality              726
      • 11.4.3.4            Magnetostrictive sensors      726
      • 11.4.3.5            Magneto- and electrorheological fluids       726
      • 11.4.3.6            CO2 sensors for energy efficient buildings 726
    • 11.4.4 Building integrated transparent antennas  728
    • 11.4.5 Reconfigurable intelligent surfaces (RIS)    729
    • 11.4.6 Industrial monitoring 729
  • 11.5     Global market forecasts         730
    • 11.5.1 Revenues          732
  • 11.6     Companies     735

 

12          SMART PACKAGING ELECTRONICS               737

  • 12.1     What is Smart Packaging?    738
    • 12.1.1 Flexible hybrid electronics (FHE)      739
    • 12.1.2 Printed batteries and antennas         741
    • 12.1.3 Flexible silicon integrated circuits    743
    • 12.1.4 Natural materials in packaging          743
    • 12.1.5 Extruded conductive pastes and inkjet printing      744
    • 12.1.6 OLEDs for smart and interactive packaging              745
    • 12.1.7 Active packaging         745
    • 12.1.8 Intelligent packaging 747
      • 12.1.8.1            Smart Cards   748
      • 12.1.8.2            RFID tags          749
        • 12.1.8.2.1        Low-frequency (LF) RFID tags: 30 KHz to 300 KHz 749
        • 12.1.8.2.2        High-frequency (HF) RFID tags: 3 to 30 MHz              749
        • 12.1.8.2.3        Ultra-high-frequency (UHF) RFID tags: 300 MHz to 3GHz 750
        • 12.1.8.2.4        Active, passive and semi-passive RFID tags              750
      • 12.1.8.3            Temperature Indicators           750
      • 12.1.8.4            Freshness Indicators 752
      • 12.1.8.5            Gas Indicators               753
  • 12.2     SWOT analysis              754
  • 12.3     Supply chain management  755
  • 12.4     Improving product freshness and extending shelf life         756
  • 12.5     Brand protection and anti-counterfeiting    757
  • 12.6     Printed and flexible electronics in packaging           758
    • 12.6.1 FHE with printed batteries and antennas for smart packaging     759
    • 12.6.2 Printed codes and markings 759
    • 12.6.3 Barcodes (D)  760
    • 12.6.4 D data matrix codes  762
    • 12.6.5 Augmented reality (AR) codes             763
    • 12.6.6 Sensors and indicators           764
      • 12.6.6.1            Freshness Indicators 764
      • 12.6.6.2            Time-temperature indicator labels (TTIs)    764
      • 12.6.6.3            Natural colour formulation indicator              765
      • 12.6.6.4            Thermochromic inks 766
      • 12.6.6.5            Gas indicators               767
      • 12.6.6.6            Chemical Sensors      768
      • 12.6.6.7            Electrochemical-Based Sensors      768
      • 12.6.6.8            Optical-Based Sensors           769
      • 12.6.6.9            Biosensors      769
        • 12.6.6.9.1        Electrochemical-Based Biosensors               769
        • 12.6.6.9.2        Optical-Based Biosensors    770
      • 12.6.6.10         Edible Sensors              770
    • 12.6.7 Antennas          771
      • 12.6.7.1            Radio frequency identification (RFID)            771
        • 12.6.7.1.1        RFID technologies      772
          • 12.6.7.1.1.1   Biosensors on RFID tags         773
          • 12.6.7.1.1.2   Powerless RFID sensor tags 773
          • 12.6.7.1.1.3   RFID ICs with Large Area Printed Sensors   774
          • 12.6.7.1.1.4   RFID for anti-counterfeiting  775
        • 12.6.7.1.2        Passive RFID   776
        • 12.6.7.1.3        Active RFID      777
          • 12.6.7.1.3.1   Real Time Locating Systems (RTLS) 778
          • 12.6.7.1.3.2   Bluetooth Low Energy (BLE) and Low Power Wide Area Networks (LPWAN)         778
        • 12.6.7.1.4        Chipless RFID or Flexible/Printed IC Passive tags  778
        • 12.6.7.1.5        RAIN (UHF RFID) Smart Packaging  779
      • 12.6.7.2            Near-field communications (NFC)   779
    • 12.6.8 Smart blister packs   780
  • 12.7     Global market forecasts         782
    • 12.7.1 Volume              782
    • 12.7.2 Revenues          783
  • 12.8     Companies     785

 

13          RESEARCH METHODOLOGY              789

 

14          REFERENCES 790

 

List of Tables

  • Table 1. Macro-trends driving printed/flexible electronics.              53
  • Table 2. Applications of printed and flexible electronics in healthcare & wellness.         54
  • Table 3. Applications of printed and flexible electronics in automotive. 55
  • Table 4. Applications of printed and flexible electronics in buildings and construction.              56
  • Table 5. Applications of printed and flexible electronics in energy storage and harvesting.      57
  • Table 6. Applications of printed and flexible electronics in E-textiles.      58
  • Table 7. Applications of printed and flexible electronics in consumer electronics.         59
  • Table 8. Applications of printed and flexible electronics in smart packaging and logistics.       60
  • Table 9. Types of wearable devices and applications.        62
  • Table 10. Types of wearable devices and the data collected.         63
  • Table 11. Main Wearable Device Companies by Shipment Volume, Market Share, and Year-Over-Year Growth, (million units).           64
  • Table 12. New wearable tech products 2022-2024.             64
  • Table 13. Wearable market leaders by market segment.   66
  • Table 14. Applications of stretchable electronics in wearables.  70
  • Table 15. Applications of stretchable electronics in sensors.       71
  • Table 16.  Applications of stretchable artificial skin electronics   72
  • Table 17. Applications for printed flexible and stretchable electronics in the metaverse.           73
  • Table 18. Advanced materials for Printed and Flexible and sensors and electronics-Advantages and disadvantages.            76
  • Table 19. Sheet resistance (RS) and transparency (T) values for transparent conductive oxides and alternative materials for transparent conductive electrodes (TCE).          77
  • Table 20. Applications of printed flexible and stretchable electronics in the entertainment industry. 78
  • Table 21. Wearable, printed and flexible electronics at CES 2021-2024.               82
  • Table 22. Wearables Investment funding and buy-outs 2019-2024.         85
  • Table 23. Comparative analysis of conventional and flexible hybrid electronics.             90
  • Table 24. Materials, components, and manufacturing methods for FHE                91
  • Table 25. Research and commercial activity in FHE.           92
  • Table 26. Manufacturing methods for printed, flexible and hybrid electronics.  102
  • Table 27.  Common printing methods used in printed electronics manufacturing in terms of resolution vs throughput.               103
  • Table 28. Manufacturing methods for 3D electronics.        104
  • Table 29.  Readiness level of various additive manufacturing technologies for electronics applications.                105
  • Table 30. Fully 3D printed electronics process steps          106
  • Table 31. Manufacturing methods for Analogue manufacturing. 108
  • Table 32. Technological and commercial readiness level of analogue printing methods.           109
  • Table 33. Manufacturing methods for Digital printing         110
  • Table 34. Innovations in high resolution printing.   111
  • Table 35. Key manufacturing methods for creating smart surfaces with integrated electronics.            114
  • Table 36. IME manufacturing techniques.  115
  • Table 37. Applications of R2R electronics manufacturing.              118
  • Table 38. Technology readiness level for R2R manufacturing.      119
  • Table 39. Materials for printed and flexible electronics.     120
  • Table 40. Comparison of component attachment materials.        121
  • Table 41. Comparison between sustainable and conventional component attachment materials for printed circuit boards              122
  • Table 42. Comparison between the SMAs and SMPs.         124
  • Table 43. Comparison of conductive biopolymers versus conventional materials for printed circuit board fabrication.       126
  • Table 44. Low temperature solder alloys.    127
  • Table 45. Thermally sensitive substrate materials.               127
  • Table 46. Typical conductive ink formulation.          133
  • Table 47. Comparative properties of conductive inks.       135
  • Table 48. Comparison of the electrical conductivities of liquid metal with typical conductive inks.   140
  • Table 49. Conductive ink producers.              141
  • Table 50. Technology readiness level of printed semiconductors.              142
  • Table 51. Organic semiconductors: Advantages and disadvantages.      142
  • Table 52. Market Drivers for printed/flexible sensors.         145
  • Table 53. Overview of specific printed/flexible sensor types.         145
  • Table 54. Properties of typical flexible substrates. 148
  • Table 55. Comparison of stretchable substrates.  149
  • Table 56.  Main types of materials used as flexible plastic substrates in flexible electronics.  151
  • Table 57. Applications of flexible (bio) polyimide PCBs.    152
  • Table 58. Paper substrates: Advantages and disadvantages.        153
  • Table 59. Comparison of flexible integrated circuit technologies.              156
  • Table 60. PCB manufacturing process.        159
  • Table 61. Challenges in PCB manufacturing.           159
  • Table 62. 3D PCB manufacturing.    162
  • Table 63. Macro-trends in consumer electronics. 168
  • Table 64. Market drivers and trends in wearable electronics.         169
  • Table 65. Types of wearable sensors.            172
  • Table 66. Trends in wearable technology.    173
  • Table 67. Different sensing modalities that can be incorporated into wrist-worn wearable device.      175
  • Table 68. Overview of actuating at the wrist              176
  • Table 69. Wearable health monitors.             180
  • Table 70. Sports-watches, smart-watches and fitness trackers producers and products.         182
  • Table 71. Wearable sensors for sports performance.          185
  • Table 72. Wearable sensor products for monitoring sport performance.               185
  • Table 73.  Product types in the hearing assistance technology market.  188
  • Table 74. Sensing options in the ear.              190
  • Table 75. Companies and products in hearables. 193
  • Table 76. Example wearable sleep tracker products and prices. 194
  • Table 77. Smart ring products.           196
  • Table 78. Sleep headband products.              196
  • Table 79. Sleep monitoring products.            197
  • Table 80. Pet wearable companies and products. 199
  • Table 81. Wearable electronics applications in the military.          200
  • Table 82. Wearable workplace products.    201
  • Table 83. Global market for printed and flexible consumer electronics 2020-2035 by type (Volume).                203
  • Table 84. Global market revenues for printed and flexible consumer electronics, 2020-2035, (millions USD).  205
  • Table 85. Market challenges in consumer wearable electronics. 206
  • Table 86. Market players in printed and flexible consumer electronics.  208
  • Table 87. Macro trends in medical & healthcare/ wellness.            213
  • Table 88. Market drivers for printed, flexible and stretchable medical and healthcare sensors and wearables.       214
  • Table 89. Healthcare/wellness applications for printed/flexible electronics.      218
  • Table 90. Examples of wearable medical device products.             220
  • Table 91. Medical wearable companies applying products to remote monitoring and analysis.            222
  • Table 92. Electronic skin patch manufacturing value chain.          229
  • Table 93. Benefits of electronic skin patches as a form factor.     231
  • Table 94. Current and emerging applications for electronic skin patches.            232
  • Table 95. Applications in flexible and stretchable health monitors, by advanced materials type and benefits thereof.           235
  • Table 96. Medical wearable companies applying products to temperate and respiratory monitoring and analysis.           239
  • Table 97. Technologies for minimally-invasive and non-invasive glucose detection-advantages and disadvantages.            241
  • Table 98. Commercial devices for non-invasive glucose monitoring not released or withdrawn from market.              243
  • Table 99. Minimally-invasive and non-invasive glucose monitoring products.   245
  • Table 100. Companies developing wearable swear sensors.         256
  • Table 101. Wearable drug delivery companies and products.       258
  • Table 102. Companies and products, cosmetics and drug delivery patches.     259
  • Table 103. Companies developing femtech wearable technology.             260
  • Table 104. Companies and products in smart footwear.   263
  • Table 105. Companies and products in smart contact lenses.     264
  • Table 106. Companies and products in smart wound care.            266
  • Table 107. Companies developing smart diaper products.             267
  • Table 108. Companies developing wearable robotics.       268
  • Table 109. Global market for printed and flexible medical & healthcare electronics 2020-2035 by type (Volume).         287
  • Table 110. Global market for printed and flexible medical & healthcare electronics, 2020-2035, millions of US dollars. 289
  • Table 111. Market challenges in medical and healthcare sensors and wearables.          290
  • Table 112. Macro-trends for electronic textiles.      292
  • Table 113. Market drivers for printed, flexible, stretchable and organic electronic textiles.       293
  • Table 114. Examples of smart textile products.      294
  • Table 115. Performance requirements for E-textiles.           296
  • Table 116. Commercially available smart clothing products.        302
  • Table 117. Types of smart textiles.   305
  • Table 118. Comparison of E-textile fabrication methods. 307
  • Table 119. Types of fabrics for the application of electronic textiles.        307
  • Table 120. Methods for integrating conductive compounds.         308
  • Table 121. Methods for integrating conductive yarn and conductive filament fiber.       309
  • Table 122. 1D electronic fibers including the conductive materials, fabrication strategies, electrical conductivity, stretchability, and applications.         312
  • Table 123. Conductive materials used in smart textiles, their electrical conductivity and percolation threshold.        315
  • Table 124. Metal coated fibers and their mechanisms.     316
  • Table 125. Applications of carbon nanomaterials and other nanomaterials in e-textiles.           317
  • Table 126. Applications and benefits of graphene in textiles and apparel.            318
  • Table 127. Properties of CNTs and comparable materials.              319
  • Table 128. Properties of hexagonal boron nitride (h-BN).  325
  • Table 129. Types of flexible conductive polymers, properties and applications.               326
  • Table 130. Typical conductive ink formulation.       330
  • Table 131. Comparative properties of conductive inks.     330
  • Table 132.  Comparison of pros and cons of various types of conductive ink compositions.   333
  • Table 133. Properties of CNTs and comparable materials.              342
  • Table 134. Properties of graphene.  344
  • Table 135. Electrical conductivity of different types of graphene.               347
  • Table 136. Comparison of the electrical conductivities of liquid metal with typical conductive inks. 348
  • Table 137. Nanocoatings applied in the smart textiles industry-type of coating, nanomaterials utilized, benefits and applications.    353
  • Table 138. 3D printed shoes.               356
  • Table 139. Sensors used in electronic textiles.        357
  • Table 140. Features of flexible strain sensors with different structures. 361
  • Table 141. Features of resistive and capacitive strain sensors.    362
  • Table 142. Typical applications and markets for e-textiles.             363
  • Table 143. Commercially available E-textiles and smart clothing products.        364
  • Table 144. Example heated jacket products.            366
  • Table 145. Heated jacket and clothing products.   368
  • Table 146. Examples of materials used in flexible heaters and applications.      369
  • Table 147. Commercialized smart textiles/or e-textiles for healthcare and fitness applications.          372
  • Table 148. Example earable sensor products for monitoring sport performance.            373
  • Table 149.Companies and products in smart footwear.    376
  • Table 150. Wearable electronics applications in the military.       377
  • Table 151. Advantages and disadvantages of batteries for E-textiles.      380
  • Table 152. Comparison of prototype batteries (flexible, textile, and other) in terms of area-specific performance. 382
  • Table 153. Advantages and disadvantages of photovoltaic, piezoelectric, triboelectric, and thermoelectric energy harvesting in of e-textiles.  384
  • Table 154. Teslasuit. 389
  • Table 155. Global market for printed and flexible E-textiles and smart apparel electronics, 2020-2035 by type (Volume).              389
  • Table 156. Global market for printed and flexible E-textiles and smart apparel electronics, 2020-2035, millions of US dollars.              390
  • Table 157. Market and technical challenges for E-textiles and smart clothing.  393
  • Table 158. Market players in E-textiles.         394
  • Table 159. Macro-trends in printed and flexible electronics in energy.    398
  • Table 160. Market drivers for Printed and flexible electronic energy storage, generation and harvesting.                398
  • Table 161. Energy applications for printed/flexible electronics.   400
  • Table 162. Flexible Li-ion battery prototypes.           407
  • Table 163. Thin film vs bulk solid-state batteries.   408
  • Table 164. Summary of fiber-shaped lithium-ion batteries.            413
  • Table 165. Main components and properties of different printed battery types.               422
  • Table 166, Types of printable current collectors and the materials commonly used.    425
  • Table 167. Applications of printed batteries and their physical and electrochemical requirements.  427
  • Table 168. 2D and 3D printing techniques. 430
  • Table 169. Printing techniques applied to printed batteries.           431
  • Table 170. Main components and corresponding electrochemical values of lithium-ion printed batteries.          432
  • Table 171. Printing technique, main components and corresponding electrochemical values of printed batteries based on Zn–MnO2 and other battery types.       434
  • Table 172. Main 3D Printing techniques for battery manufacturing.         438
  • Table 173. Electrode Materials for 3D Printed Batteries.   440
  • Table 174. Types of solid-state electrolytes.              442
  • Table 175. Market segmentation and status for solid-state batteries.      443
  • Table 176.  Typical process chains for manufacturing key components and assembly of solid-state batteries.          444
  • Table 177. Comparison between liquid and solid-state batteries.              449
  • Table 178. Types of fiber-shaped batteries.                460
  • Table 179. Components of transparent batteries. 464
  • Table 180. Components of degradable batteries.  467
  • Table 181. Types of fiber-shaped batteries.                469
  • Table 182. Electrode designs in flexible lithium-ion batteries.       474
  • Table 183. Methods for printing supercapacitors. 494
  • Table 184. Electrode Materials for printed supercapacitors.          495
  • Table 185. Electrolytes for printed supercapacitors.           496
  • Table 186. Main properties and components of printed supercapacitors.            497
  • Table 187. Conductive pastes for photovoltaics.   500
  • Table 188. companies commercializing thin film flexible photovoltaics 502
  • Table 189. Examples of materials used in flexible heaters and applications.      506
  • Table 190. Transparent heaters for exterior lighting / sensors / windows.              507
  • Table 191. Types of transparent heaters for automotive exterior applications.  508
  • Table 192. Smart Window Applications of Transparent Heaters. 524
  • Table 193. Market challenges in printed and flexible electronics for energy.        543
  • Table 194. Global market for printed and flexible energy storage, generation and harvesting electronics, 2020-2035 by type (Volume).              544
  • Table 195. Global market for printed and flexible energy storage, generation and harvesting electronics, 2020-2035, millions of US dollars.  545
  • Table 196. Market players in printed and flexible energy storage and harvesting.            547
  • Table 197. Macro-trends in displays.             552
  • Table 198. Market drivers for Printed and flexible displays and electronic components.            552
  • Table 199. Printed and flexible displays products. 556
  • Table 200. Flexible miniLED and MicroLED products.         572
  • Table 201. Comparison of performance metrics between microLEDs and other commercial display technologies. 572
  • Table 202. Foldable smartphones, laptops and tablets and other display products, on or near market.                580
  • Table 203. Companies developing OLED lighting products.           587
  • Table 204. Types of electrochromic materials and applications. 594
  • Table 205. Applications of Mini-LED and Micro-LED transparent displays.           602
  • Table 206. Companies developing Micro-LED transparent displays.        605
  • Table 207. Global market for printed and flexible displays, 2020-2035 by type (Volume).          606
  • Table 208. Global market for printed and flexible displays, 2020-2035, millions of US dollars.              607
  • Table 209. Market challenges in printed and flexible displays.      608
  • Table 210. Market players in printed and flexible displays.              609
  • Table 211.  Macro-trends in automotive.     613
  • Table 212. Market drivers for printed and flexible electronics in automotive.      613
  • Table 213. Printed and flexible electronics in the automotive market.     614
  • Table 214. Printed/flexible electronics in automotive displays and lighting.        617
  • Table 215. Printed and flexible electronics are being integrated into vehicle interiors. 618
  • Table 216. Applications of curved displays in automotive and technology readiness level (TRL).         623
  • Table 217. Companies developing curved automotive displays. 623
  • Table 218. Applications of Micro-LED in automotive.         627
  • Table 219. HUD vs other display types.        629
  • Table 220. Automotive display Mini-LED and Micro-LED products.           631
  • Table 221. Conductive materials for transparent capacitive sensors.     634
  • Table 222. Automotive applications for printed piezoresistive sensors. 635
  • Table 223.  Piezoelectric sensors for automotive applications.    636
  • Table 224. Printed piezoelectric sensors in automotive applications.     636
  • Table 225. SWIR for autonomous mobility and ADAS.         638
  • Table 226. Types of printed photodetectors and image sensors developed for automotive applications                639
  • Table 227. Comparison of SWIR image sensors technologies       639
  • Table 228. Comparison of conventional and printed seat heaters for automotive applications.            640
  • Table 229. Printed car seat heaters.                641
  • Table 230. Types of Printed/flexible interior heaters.            641
  • Table 231. Transparent heaters for exterior lighting / sensors / windows.              644
  • Table 232. Types of transparent heaters for automotive exterior applications.  644
  • Table 233. Transparent electronics for automotive radar for ADAS.           645
  • Table 234. Global market for printed and flexible automotive electronics, 2020-2035 by type (Volume).                648
  • Table 235. Global market for printed and flexible automotive electronics, 2020-2035, millions of US dollars.              648
  • Table 236. Market challenges for printed and flexible electronics in automotive.            650
  • Table 237. Market players in printed and flexible electronics in automotive.      651
  • Table 238. Market opportunities in printed and flexible sensors. 659
  • Table 239. Printed piezoresistive sensors Applications.    662
  • Table 240.Printed piezoelectric sensors Applications.       666
  • Table 241.Printed photodetectors Applications     669
  • Table 242. Printed temperature sensors Applications.       673
  • Table 243. Printed strain sensors Applications.      677
  • Table 244.Printed Gas Sensor Applications.             681
  • Table 245. Printed capacitive sensors Applications             686
  • Table 246. Global market for printed/flexible sensors 2020-2035 by type (Volume).      692
  • Table 247. Global market for printed/flexible sensors 2020-2035by type (Billions USD).            694
  • Table 248. Market players in printed and flexible sensors.               695
  • Table 249. Macro-trends in smart buildings and construction.     716
  • Table 250. Market drivers for smart sensors for buildings.               717
  • Table 251. Printed and flexible electronics being applied for building, infrastructure, and industrial applications.  719
  • Table 252.  Printed electronics in customizable smart building interiors.              720
  • Table 253. Types of smart building sensors.              721
  • Table 254. Commonly used sensors in smart buildings.   722
  • Table 255. Capacitive sensors integrated into smart buildings.   723
  • Table 256. Types of flexible humidity sensors.         724
  • Table 257. MOF sensor applications.             727
  • Table 258. Global market for printed and flexible smart buildings electronics, 2020-2035, millions of US dollars.              732
  • Table 259. Market players in printed and flexible smart buildings electronics.   735
  • Table 260. Consumer goods applications for printed/flexible electronics.           743
  • Table 261. Types of Active packaging.           746
  • Table 262. Commercially available food active packaging.            746
  • Table 263. Types of intelligent packaging.  747
  • Table 264. Types of RFID tags.            749
  • Table 265.  Commercially available time-temperature indicators (TTI) indicators.          751
  • Table 266. Commercially available freshness indicators. 753
  • Table 267. Commercially available gas indicators.               753
  • Table 268.  Supply chain management considerations for smart electronic packaging targeted at consumers.    755
  • Table 269. Types of printed/flexible electronics and materials that can be used to enhance packaging barcodes.         761
  • Table 270. Commercially available freshness indicators. 764
  • Table 271. Commercial examples of time-temperature indicators            765
  • Table 272. Examples of Chemical Time Temperature Indicators (TTIs).  766
  • Table 273. Types of ripeness indicators.      766
  • Table 274. Commercially available gas indicators.               768
  • Table 275. Chemical sensors in smart packaging. 768
  • Table 276. Electrochemical-based sensors for smart food packaging.   768
  • Table 277. Optical-based sensors for smart food packaging applications.          769
  • Table 278. Electrochemical biosensors for smart food packaging:           769
  • Table 279. Optical-Based Biosensors for smart food packaging. 770
  • Table 280. Types of edible sensors for food packaging.     770
  • Table 281.  Commercially available radio frequency identification systems (RFID) technology.             776
  • Table 282. Passive RFID: Technologies by Operating Frequency. 777
  • Table 283. Examples of NFC in packaging. 780
  • Table 284. Companies in smart blister packs.         781
  • Table 285. Global market for printed and flexible smart packaging electronics 2020-2035 by type (Volume).         782
  • Table 286. Global market for printed and flexible smart packaging electronics, 2020-2035, millions of US dollars.       783
  • Table 287. Market players in smart packaging electronics.             785

 

List of Figures

  • Figure 1. Examples of flexible electronics devices.               49
  • Figure 2. Evolution of electronics.    51
  • Figure 3. Applications for printed and flexible electronics.              52
  • Figure 4. Wearable technology inventions. 53
  • Figure 5. Market map for printed and flexible electronics.                66
  • Figure 6. Wove Band. 68
  • Figure 7. Wearable graphene medical sensor.         69
  • Figure 8. 3D printed stretchable electronics.            70
  • Figure 9. Artificial skin prototype for gesture recognition. 73
  • Figure 10. Applications of wearable flexible sensors worn on various body parts.           74
  • Figure 11. Systemization of wearable electronic systems.              75
  • Figure 12. Baby Monitor.         81
  • Figure 13. Wearable health monitor incorporating graphene photodetectors.   82
  • Figure 14. LG 77” transparent 4K OLED TV. 83
  • Figure 15. 137-inch N1 foldable TV. 84
  • Figure 16. Flex Note Extendable™.    84
  • Figure 17. Flex In & Out Flip. 85
  • Figure 18. Traxcon printed lighting circuitry.              91
  • Figure 19. Global market revenues for Printed & Flexible consumer electronics, 2018-2035, (millions USD).  95
  • Figure 20. Global market for Printed & Flexible medical & healthcare electronics, 2018-2035, millions of US dollars.       96
  • Figure 21. Global market for Printed & Flexible E-textiles and smart apparel electronics, 2018-2035, millions of US dollars.              97
  • Figure 22. Global market for Printed & Flexible displays, 2018-2035, millions of US dollars.    98
  • Figure 23. Global market for Printed & Flexible automotive electronics, 2018-2035, millions of US dollars.              99
  • Figure 24. Global market for Printed & Flexible smart buildings electronics, 2018-2035, millions of US dollars.              100
  • Figure 25. Global market for Printed & Flexible smart packaging electronics, 2018-2035, millions of US dollars 101
  • Figure 26. SWOT analysis for printed electronics.  104
  • Figure 27. SWOT analysis for 3D electronics.            107
  • Figure 28. SWOT analysis for analogue printing.    110
  • Figure 29. SWOT analysis for digital printing.            113
  • Figure 30. In-mold electronics prototype devices and products. 113
  • Figure 31. SWOT analysis for In-Mold Electronics. 116
  • Figure 32. SWOT analysis for R2R manufacturing. 119
  • Figure 33. The molecular mechanism of the shape memory effect under different stimuli.     125
  • Figure 34. Supercooled Soldering™ Technology.     129
  • Figure 35. Reflow soldering schematic.        130
  • Figure 36. Schematic diagram of induction heating reflow.             131
  • Figure 37. Types of conductive inks and applications.       133
  • Figure 38. Copper based inks on flexible substrate.             138
  • Figure 39. SWOT analysis for Printable semiconductors. 144
  • Figure 40.  SWOT analysis for Printable sensor materials.               148
  • Figure 41. RFID Tag with Nano Copper Antenna on Paper.               150
  • Figure 42. SWOT analysis for flexible integrated circuits.  157
  • Figure 43. Fully-printed organic thin-film transistors and circuitry on one-micron-thick polymer films.                158
  • Figure 44. Flexible PCB.          161
  • Figure 45. SWOT analysis for Flexible batteries.      164
  • Figure 46.  SWOT analysis for Flexible PV for energy harvesting. 167
  • Figure 47. SWOT analysis for printed, flexible and hybrid electronics in consumer electronics.             172
  • Figure 48. EmeTerm nausea relief wearable.             177
  • Figure 49. Embr Wave for cooling and warming.     177
  • Figure 50. dpl Wrist Wrap Light THerapy pain relief.              178
  • Figure 51. SWOT analysis for Wrist-worn wearables.          180
  • Figure 52. FitBit Sense Watch.            180
  • Figure 53. Wearable bio-fluid monitoring system for monitoring of hydration.   184
  • Figure 54. Nuheara IQbuds² Max.     187
  • Figure 55. HP Hearing PRO OTC Hearing Aid.           189
  • Figure 56. SWOT analysis for Ear worn wearables (hearables).    192
  • Figure 57. Beddr SleepTuner.               197
  • Figure 58. Global market for printed and flexible consumer electronics 2020-2035 by type (Volume).                203
  • Figure 59. Global market revenues for printed and flexible consumer electronics, 2020-2035, (millions USD).  205
  • Figure 60. SWOT analysis for printed, flexible and hybrid electronics in medical and healthcare/wellness.                217
  • Figure 61. Connected human body and product examples.           218
  • Figure 62. Companies and products in wearable health monitoring and rehabilitation devices and products.          224
  • Figure 63. Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs.               230
  • Figure 64. Graphene medical patch.              233
  • Figure 65. Graphene-based E-skin patch.   233
  • Figure 66. SWOT analysis for printed and flexible electronics in skin patches.   237
  • Figure 67. Enfucell wearable temperature tag.        238
  • Figure 68. TempTraQ wearable wireless thermometer.       239
  • Figure 69. Technologies for minimally-invasive and non-invasive glucose detection.    240
  • Figure 70. Schematic of non-invasive CGM sensor.             244
  • Figure 71. Adhesive wearable CGM sensor.               244
  • Figure 72. VitalPatch.                248
  • Figure 73. Wearable ECG-textile.      248
  • Figure 74. Wearable ECG recorder.  249
  • Figure 75. Nexkin™.     250
  • Figure 76. Bloomlife. 252
  • Figure 77. Nanowire skin hydration patch.  253
  • Figure 78. NIX sensors.           253
  • Figure 79. Wearable sweat sensor.  254
  • Figure 80. Wearable  graphene sweat sensor.          255
  • Figure 81. Gatorade's GX Sweat Patch.         255
  • Figure 82. Sweat sensor incorporated into face mask.      256
  • Figure 83. D-mine Pump.       257
  • Figure 84. Lab-on-Skin™.        257
  • Figure 85. My UV Patch.          259
  • Figure 86. Overview layers of L'Oreal skin patch.   259
  • Figure 87. Brilliantly Warm.  260
  • Figure 88. Ava Fertility tracker.            261
  • Figure 89. S9 Pro breast pump.          261
  • Figure 90. Tempdrop. 262
  • Figure 91. Digitsole Smartshoe.        263
  • Figure 92. Schematic of smart wound dressing.    265
  • Figure 93. REPAIR electronic patch concept. Image courtesy of the University of Pittsburgh School of Medicine.         266
  • Figure 94. ABENA Nova smart diaper.            267
  • Figure 95. Honda Walking Assist.     268
  • Figure 96. ABLE Exoskeleton.              269
  • Figure 97. ANGEL-LEGS-M10.             269
  • Figure 98. AGADEXO Shoulder.          269
  • Figure 99. Enyware.   269
  • Figure 100. AWN-12 occupational powered hip exoskeleton.        270
  • Figure 101. CarrySuit passive upper-body exoskeleton.    270
  • Figure 102. Axosuit lower body medical exoskeleton.         270
  • Figure 103. FreeGait. 271
  • Figure 104. InMotion Arm.     271
  • Figure 105. Biomotum SPARK.            271
  • Figure 106. PowerWalk energy.           271
  • Figure 107. Keeogo™. 272
  • Figure 108. MATE-XT. 272
  • Figure 109. CDYS passive shoulder support exoskeleton.                272
  • Figure 110. ALDAK.     273
  • Figure 111. HAL® Lower Limb.             273
  • Figure 112. DARWING PA.     273
  • Figure 113. Dephy ExoBoot. 273
  • Figure 114. EksoNR.  274
  • Figure 115. Emovo Assist.     274
  • Figure 116. HAPO.       274
  • Figure 117. Atlas passive modular exoskeleton.     275
  • Figure 118. ExoAtlet II.             275
  • Figure 119. ExoHeaver.            275
  • Figure 120. Exy ONE. 276
  • Figure 121. ExoArm.  276
  • Figure 122. ExoMotus.             276
  • Figure 123. Gloreha Sinfonia.             276
  • Figure 124. BELK Knee Exoskeleton.               277
  • Figure 125. Apex exosuit.       277
  • Figure 126. Honda Walking Assist.  277
  • Figure 127. BionicBack.          278
  • Figure 128. Muscle Suit.         278
  • Figure 129.Japet.W powered exoskeleton. 278
  • Figure 130.Ski~Mojo. 279
  • Figure 131. AIRFRAME passive shoulder.    279
  • Figure 132.FORTIS passive tool holding exoskeleton.         279
  • Figure 133. Integrated Soldier Exoskeleton (UPRISE®).       280
  • Figure 134.UNILEXA passive exoskeleton.  280
  • Figure 135.HandTutor.             280
  • Figure 136.MyoPro®. 281
  • Figure 137.Myosuit.  281
  • Figure 138. archelis wearable chair.               281
  • Figure 139.Chairless Chair.  281
  • Figure 140.Indego.     282
  • Figure 141. Polyspine.              282
  • Figure 142. Hercule powered lower body exoskeleton.      282
  • Figure 143. ReStore Soft Exo-Suit.   283
  • Figure 144. Hand of Hope.    283
  • Figure 145. REX powered exoskeleton.         283
  • Figure 146. Elevate Ski Exoskeleton.              284
  • Figure 147. UGO210 exoskeleton.    284
  • Figure 148. EsoGLOVE Pro.   284
  • Figure 149. Roki.          284
  • Figure 150. Powered Clothing.           285
  • Figure 151. Againer shock absorbing exoskeleton.               285
  • Figure 152. EasyWalk Assistive Soft Exoskeleton Walker. 285
  • Figure 153. Skel-Ex.    285
  • Figure 154. EXO-H3 lower limbs robotic exoskeleton.        286
  • Figure 155. Ikan Tilta Max Armor-Man 2        286
  • Figure 156. AMADEO hand and finger robotic rehabilitation device.          286
  • Figure 157.Atalante autonomous lower-body exoskeleton.            287
  • Figure 158. Global market for printed and flexible medical & healthcare electronics 2020-2035 by type (Volume).         288
  • Figure 159. Global market for printed and flexible medical & healthcare electronics, 2020-2035, millions of US dollars.              289
  • Figure 160. SWOT analysis for printed, flexible and hybrid electronics in E-textiles.      296
  • Figure 161. Timeline of the different generations of electronic textiles.  297
  • Figure 162. Examples of each generation of electronic textiles.   298
  • Figure 163. Conductive yarns.            302
  • Figure 164. H-Tee by H-Cube.             304
  • Figure 165. Electronics integration in textiles: (a) textile-adapted, (b) textile-integrated (c) textile-basd.                305
  • Figure 166. Stretchable polymer encapsulation microelectronics on textiles.   311
  • Figure 167. Conductive yarns.            313
  • Figure 168. Classification of conductive materials and process technology.      314
  • Figure 169. Structure diagram of Ti3C2Tx.  323
  • Figure 170. Structure of hexagonal boron nitride.  324
  • Figure 171. BN nanosheet textiles application.       325
  • Figure 172. SEM image of cotton fibers with PEDOT:PSS coating.              327
  • Figure 173. Schematic of inkjet-printed processes.             332
  • Figure 174: Silver nanocomposite ink after sintering and resin bonding of discrete electronic components. 337
  • Figure 175. Schematic summary of the formulation of silver conductive inks.  338
  • Figure 176. Copper based inks on flexible substrate.          340
  • Figure 177: Schematic of single-walled carbon nanotube.             343
  • Figure 178. Stretchable SWNT memory and logic devices for wearable electronics.     344
  • Figure 179. Graphene layer structure schematic.  345
  • Figure 180. BGT Materials graphene ink product.   347
  • Figure 181. PCM cooling vest.             350
  • Figure 182. SMPU-treated cotton fabrics.   350
  • Figure 183. Schematics of DIAPLEX membrane.    351
  • Figure 184. SMP energy storage textiles.      352
  • Figure 185. Nike x Acronym Blazer Sneakers.           356
  • Figure 186. Adidas 3D Runner Pump.            356
  • Figure 187. Under Armour Archi-TechFuturist.         356
  • Figure 188. Reebok Reebok Liquid Speed.  356
  • Figure 189. Radiate sports vest.        357
  • Figure 190. Adidas smart insole.       360
  • Figure 191. Applications of E-textiles.           364
  • Figure 192. EXO2 Stormwalker 2 Heated Jacket.    366
  • Figure 193. Flexible polymer-based heated glove, sock and slipper.         367
  • Figure 194. ThermaCell Rechargeable Heated Insoles.     368
  • Figure 195. Myant sleeve tracks biochemical indicators in sweat.             370
  • Figure 196. Flexible polymer-based therapeutic products.             371
  • Figure 197. iStimUweaR .       372
  • Figure 198. Digitsole Smartshoe.     375
  • Figure 199. Basketball referee Royole fully flexible display.            377
  • Figure 200. A mechanical glove, Robo-Glove, with pressure sensors and other sensors jointly developed by General Motors and NASA.             379
  • Figure 201. Power supply mechanisms for electronic textiles and wearables.   380
  • Figure 202. Micro-scale energy scavenging techniques.   383
  • Figure 203. Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper. 385
  • Figure 204. 3D printed piezoelectric material.         387
  • Figure 205. Application of electronic textiles in AR/VR.      388
  • Figure 206. Global market for printed and flexible E-textiles and smart apparel electronics, 2020-2035 by type (Volume).        390
  • Figure 207. Global market for printed and flexible E-textiles and smart apparel electronics, 2020-2035, millions of US dollars.              392
  • Figure 208. SWOT analysis for printed, flexible and hybrid electronics in energy.             400
  • Figure 209. Flexible batteries on the market.            401
  • Figure 210. Various architectures for flexible and stretchable electrochemical energy storage.            403
  • Figure 211. Types of flexible batteries.           405
  • Figure 212. Materials and design structures in flexible lithium ion batteries.      406
  • Figure 213. Flexible/stretchable LIBs with different structures.    410
  • Figure 214. a–c) Schematic illustration of coaxial (a), twisted (b), and stretchable (c) LIBs.     413
  • Figure 215. a) Schematic illustration of the fabrication of the superstretchy LIB based on an MWCNT/LMO composite fiber and an MWCNT/LTO composite fiber. b,c) Photograph (b) and the schematic illustration (c) of a stretchable fiber-shaped battery under stretching conditions. d) Schematic illustration of the spring-like stretchable LIB. e) SEM images of a fiberat different strains. f) Evolution of specific capacitance with strain. d–f)                416
  • Figure 216. Origami disposable battery.       417
  • Figure 217. Zn–MnO2 batteries produced by Brightvolt.    419
  • Figure 218. Various applications of printed paper batteries.          421
  • Figure 219.Schematic representation of the main components of a battery.      422
  • Figure 220. Schematic of a printed battery in a sandwich cell architecture, where the anode and cathode of the battery are stacked together.            424
  • Figure 221. Sakuú's Swift Print 3D-printed solid-state battery cells.         436
  • Figure 222. Manufacturing Processes for Conventional Batteries (I), 3D Microbatteries (II), and 3D-Printed Batteries (III).                437
  • Figure 223. Examples of applications of thin film batteries.            446
  • Figure 224. Capacities and voltage windows of various cathode and anode materials.               447
  • Figure 225. Traditional lithium-ion battery (left), solid state battery (right).          449
  • Figure 226. Stretchable lithium-air battery for wearable electronics.       453
  • Figure 227. Ag–Zn batteries produced by Imprint Energy. 459
  • Figure 228. Transparent batteries.    464
  • Figure 229. Degradable batteries.    466
  • Figure 230 . Fraunhofer IFAM printed electrodes.   472
  • Figure 231. Ragone plots of diverse batteries and the commonly used electronics powered by flexible batteries.          473
  • Figure 232. Schematic of the structure of stretchable LIBs.           476
  • Figure 233. Electrochemical performance of materials in flexible LIBs. 476
  • Figure 234. Main printing methods for supercapacitors.  494
  • Figure 235. Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper. 503
  • Figure 236. Origami-like silicon solar cells.                504
  • Figure 237. Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper. 506
  • Figure 238. Concept of microwave-transparent heaters for automotive radars.               509
  • Figure 239. Defrosting and defogging transparent heater applications.  511
  • Figure 240. Global market for printed and flexible energy storage, generation and harvesting electronics, 2020-2035 by type (Volume).              545
  • Figure 241. Global market for printed and flexible energy storage, generation and harvesting electronics, 2020-2035, millions of US dollars.  546
  • Figure 242. LG Signature OLED TV R.             554
  • Figure 243. Flexible display. 554
  • Figure 244. SWOT analysis for printed and flexible displays.          556
  • Figure 245. f-OLED N-shaped folding display.          556
  • Figure 246. C SEED 37-inch N1 foldable TV.              557
  • Figure 247. DELL Ori. 557
  • Figure 248. Gloshine curved LED screen.    557
  • Figure 249. Huawei Mate X3.               558
  • Figure 250. LG Media Chair. 559
  • Figure 251. LG Virtual Ride.  559
  • Figure 252. Microsoft                Surface Duo 2 .             559
  • Figure 253. Motorola Razr.    559
  • Figure 254. Mirage smart speaker with wraparound touch display.            560
  • Figure 255. Samsung Galaxy Fold.   561
  • Figure 256. Vivo X Flip.             562
  • Figure 257. Organic LCD with a 10-mm bend radius.          564
  • Figure 258. Foldable organic light-emitting diode (OLED) panel. 565
  • Figure 259. AMOLED schematic.      567
  • Figure 260. LG rollable OLED TV.       568
  • Figure 261. OLED structure. 570
  • Figure 262. AU Optonics Flexible MicroLED Display.           571
  • Figure 263. Schematic of the TALT technique for wafer-level microLED transferring.    571
  • Figure 264. Foldable 4K C SEED M1.              572
  • Figure 265. Stamp-based transfer-printing techniques.    573
  • Figure 266: Flexible & stretchable LEDs based on quantum dots.              574
  • Figure 267. Samsung S-foldable display.     575
  • Figure 268. Samsung slideable display.       576
  • Figure 269. Samsung foldable battery patent schematic. 577
  • Figure 270. Rollable 65RX OLED TV.               578
  • Figure 271. Lenovo ThinkPad X1 Fold.           578
  • Figure 272. LG Chem foldable display.          579
  • Figure 273. Samsung Display Flex G folding smartphones.            579
  • Figure 274. Asus Foldable Phone.    580
  • Figure 275. Asus Zenbook 17 Fold.  580
  • Figure 276. Dell Concept Ori.              581
  • Figure 277. Intel Foldable phone.     581
  • Figure 278. ThinkPad X1 Fold.             582
  • Figure 279. Motorola Razr.    582
  • Figure 280. Oppo Find N folding phone.       583
  • Figure 281. Oppo Find N2 Flip.           583
  • Figure 282. Royole FlexPai 2.               583
  • Figure 283. Royole FlexPai 3 from CES 2024.           584
  • Figure 284. Galaxy Fold 3.     584
  • Figure 285. Samsung Galaxy Z Flip 3              584
  • Figure 286. TCL Tri-Fold Foldable Phone      585
  • Figure 287. TCL rollable phone.         585
  • Figure 288. Xiaomi Mi MIX Flex.          586
  • Figure 289. LG OLED flexible lighting panel.              587
  • Figure 290. Flexible OLED incorporated into automotive headlight.          588
  • Figure 291. Audi 2022 A8 .     589
  • Figure 292. Electrophoretic display applications. 591
  • Figure 293. Passive reflective displays with flexibility.        592
  • Figure 294. Plastic Logic 5.4” Iridis™ display.            593
  • Figure 295. Argil electrochromic film integrated with polycarbonate lenses.      594
  • Figure 296. Transparent and flexible metamaterial film developed by Sekishi Chemical.           598
  • Figure 297. Scanning electron microscope (SEM) images of several metalens antenna forms.             599
  • Figure 298. Design concepts of soft mechanical metamaterials with large negative swelling ratios and tunable stress-strain curves.              601
  • Figure 299. Different transparent displays and transmittance limitations.           603
  • Figure 300. 7.56" high transparency & frameless Micro-LED display.       604
  • Figure 301. AUO's 13.5-inch transparent RGB microLED display.               604
  • Figure 302. 17.3-inch transparent microLED AI display in a Taiwan Ferry.             605
  • Figure 303. Global market for printed and flexible displays, 2020-2035 by type (Volume).        607
  • Figure 304. Global market for printed and flexible displays, 2020-2035, millions of US dollars.             608
  • Figure 305. SWOT analysis for printed, flexible and hybrid electronics in automotive. 614
  • Figure 306. Automotive display concept.    618
  • Figure 307. Mercedes MBUX Hyperscreen. 619
  • Figure 308.  AUO Smart Cockpit with 55-inch pillar-to-pillar curved display.      623
  • Figure 309. Cadillac XT4 33-inch curved LED touchscreen display            624
  • Figure 310. Continental Curved Ultrawide Display.              624
  • Figure 311. Hyundai 2024 Sonata panoramic curved display.       624
  • Figure 312. Peugeot 3008 fastback SUV curved wide-screen display.      625
  • Figure 313. TCL CSOT single, continuous flexible curved automotive display panel.     625
  • Figure 314. AUO automotive display.             626
  • Figure 315. Micro-LED automotive display.                626
  • Figure 316. Issues in current commercial automotive HUD.           629
  • Figure 317. Rear lamp utilizing flexible Micro-LEDs.            631
  • Figure 318. SWOT analysis for integrated antennas with printed electronics in automotive.    647
  • Figure 319. Global market for printed and flexible automotive electronics, 2020-2035 by type (Volume).                648
  • Figure 320. Global market for printed and flexible automotive electronics, 2020-2035, millions of US dollars.              650
  • Figure 321. Global market for printed/flexible sensors 2020-2035 by type (Volume).    693
  • Figure 322. Global market for printed/flexible sensors 2020-2035 by type (Billions USD).         694
  • Figure 323. SWOT analysis for printed, flexible and hybrid electronics in smart buildings and construction. Source: Future Markets.         719
  • Figure 324. Use of sensors in smart buildings.        722
  • Figure 325. Global market for printed and flexible smart buildings electronics, 2020-2035, millions of US dollars.              733
  • Figure 326. Active and Intelligent packaging classification.           738
  • Figure 327. Smart packaging for detecting bacteria growth in milk containers. 739
  • Figure 328. RFID tags with printed silver antennas on paper substrates.               741
  • Figure 329. Smart card incorporating an ultra-thin battery.             748
  • Figure 330. RFID ultra micro battery.              750
  • Figure 331. SWOT analysis for printed, flexible and hybrid electronics in smart packaging.     755
  • Figure 332. Active packaging film.   757
  • Figure 333. Anti-counterfeiting smart label.              758
  • Figure 334. Security tag developed by Nanotech Security.               761
  • Figure 335. Fundamental principle of a gas sensor for detecting CO2 (gas) after food spoilage             767
  • Figure 336. A standard RFID system.             772
  • Figure 337. RFID functions and applications of silver nanoparticle inks.               773
  • Figure 338. OHMEGA Conductive Ink + Touchcode box.   774
  • Figure 339. Wiliot RFID.           775
  • Figure 340. Smart blister pack.          780
  • Figure 341. Global market for printed and flexible smart packaging electronics 2020-2035 by type (Volume).         783
  • Figure 342. Global market for printed and flexible smart packaging electronics, 2020-2035, millions of US dollars.       784

 

 

 

The Global Market for Printed and Flexible Electronics 2025-2035
The Global Market for Printed and Flexible Electronics 2025-2035
PDF download/by email.

The Global Market for Printed and Flexible Electronics 2025-2035
The Global Market for Printed and Flexible Electronics 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart.