The Global Market for Wearable Electronics and Sensors 2025-2035

0

cover

cover

  • Published: November 2024
  • Pages: 1,125
  • Tables: 197
  • Figures: 394

 

The Global Market for Wearable Electronics and Sensors 2025-2035 provides comprehensive analysis of the rapidly evolving wearable technology industry, covering everything from consumer devices to medical applications and advanced electronic textiles. This extensive report examines key market trends, technological developments, and growth opportunities across the entire wearable electronics ecosystem. The wearables market continues to experience significant growth, driven by innovations in flexible electronics, sensor technologies, and advanced materials. The report provides detailed insights into major segments including smartwatches, fitness trackers, smart clothing, medical devices, and augmented/virtual reality headsets. With the integration of artificial intelligence, improved battery technology, and miniaturization of components, wearable devices are becoming increasingly sophisticated and capable of collecting and analyzing complex biometric data.

Key areas analyzed include:

  • Comprehensive coverage of wearable form factors including smart watches, bands, glasses, clothing, patches, rings, hearables, head-mounted displays, jewelry, and smart insoles
  • Detailed analysis of sensor technologies including motion, optical, force, strain, chemical, and biosensors
  • Manufacturing methods and materials including printed electronics, 3D electronics, flexible substrates, and advanced integration techniques
  • Medical and healthcare applications from continuous glucose monitoring to electronic skin patches
  • Gaming and entertainment applications focusing on AR/VR/MR devices
  • Electronic textiles (e-textiles) and smart apparel developments
  • Energy storage and harvesting solutions for wearable devices

 

The report provides extensive market forecasts from 2025-2035, analyzing volume and revenue projections across different device categories and application segments. It examines key market drivers including:

  • Growing demand for continuous health monitoring and preventive healthcare
  • Increasing adoption of fitness tracking and sports performance analysis
  • Rising interest in augmented and virtual reality applications
  • Advancements in flexible electronics and sensor technologies
  • Integration of AI and machine learning capabilities
  • Development of improved power solutions and energy harvesting
  • Expansion of IoT and connected device ecosystems

 

Key technologies covered include:

  • Advanced sensor development and integration
  • Flexible and stretchable electronics
  • Printed electronics manufacturing
  • Novel materials including conductive inks and polymers
  • Battery and energy harvesting innovations
  • Display technologies including microLED
  • Wireless connectivity solutions

 

The report profiles >900 companies across the wearable technology value chain, from component manufacturers to end-product developers. It provides detailed analysis of market leaders and innovative startups advancing the field through technological breakthroughs and novel applications. Companies profiled include Abbott Diabetes Care, Artinis Medical Systems, Biobeat Technologies, Biosency, Bosch Sensortec, Cerca Magnetics, Cosinuss, Datwyler, Dexcom, DigiLens, Dispelix, Doublepoint, EarSwitch, Emteq Limited, Epicore Biosystems, Equivital, HTC, IDUN Technologies, IQE, Infi-Tex, Jade Bird Display, Know Labs, Kokoon, Lenovo, LetinAR, Liquid Wire, Lumus, Lynx, Mateligent GmbH, MICLEDI, MICROOLED, Mojo Vision, Nanoleq, Nanusens, NeuroFusion, Oorym, Optinvent, OQmented, Orpyx, Ostendo Technologies, PKVitality, PragmatIC, PROPHESEE, RayNeo (TCL), Raynergy Tek, Rhaeos Inc, Sefar, Segotia, Sony, STMicroelectronics, StretchSense, Tacterion, TDK, Teveri, The Metaverse Standards Forum, TriLite Technologies, TruLife Optics, Valencell, Vitality, VitreaLab, VividQ, Wearable Devices Ltd., WHOOP, Wisear, Withings Health Solutions, XSensio, Zimmer and Peacock and more......

The report also examines:

  • Manufacturing processes and challenges
  • Material developments and innovations
  • Component integration techniques
  • Power management solutions
  • Data processing and analytics
  • Regulatory considerations
  • Market barriers and opportunities
  • Investment trends and funding

 

The research highlights emerging applications across multiple sectors:

Healthcare and Medical:

  • Remote patient monitoring
  • Diagnostic devices
  • Drug delivery systems
  • Rehabilitation technology
  • Mental health applications

 

Consumer and Fitness:

  • Activity tracking
  • Sports performance analysis
  • Sleep monitoring
  • Stress management
  • Personal safety

 

Enterprise and Industrial:

  • Workplace safety monitoring
  • Industrial training
  • Remote assistance
  • Productivity enhancement
  • Process optimization

 

Gaming and Entertainment:

  • Virtual reality gaming
  • Augmented reality experiences
  • Mixed reality applications
  • Interactive entertainment
  • Immersive media

 

The report analyzes key market trends including:

  • Shift toward flexible and stretchable form factors
  • Integration of advanced sensing capabilities
  • Development of smart textiles and e-fabrics
  • Improvements in power efficiency and battery life
  • Enhanced data processing and AI integration
  • Growth in medical and healthcare applications
  • Expansion of AR/VR/MR technology

 

With over 1000 pages of detailed analysis, including hundreds of figures, tables and company profiles, this report provides essential intelligence for:

  • Wearable device manufacturers
  • Component suppliers
  • Material developers
  • Electronics companies
  • Healthcare providers
  • Investment firms
  • Research institutions
  • Technology strategists

 

 

1             EXECUTIVE SUMMARY            63

  • 1.1        The evolution of electronics 64
  • 1.2        The wearables revolution       67
  • 1.3        The wearable tech market in 2024   70
  • 1.4        Wearable market leaders       72
  • 1.5        Continuous monitoring           73
  • 1.6        Market map for wearable electronics and sensors               73
  • 1.7        From rigid to flexible and stretchable             74
  • 1.8        Flexible and stretchable electronics in wearables 75
  • 1.9        Stretchable artificial skin       78
  • 1.10     Organic and printed electronics        78
  • 1.11     Role in the metaverse               79
  • 1.12     Wearable electronics in the textiles industry            80
  • 1.13     New conductive materials    81
  • 1.14     Entertainment               84
  • 1.15     Growth in flexible and stretchable electronics market       84
    • 1.15.1 Recent growth in Printed, flexible and stretchable products          84
    • 1.15.2 Future growth 85
    • 1.15.3 Advanced materials as a market driver         85
    • 1.15.4 Growth in remote health monitoring and diagnostics         85
  • 1.16     Innovations at CES 2021-2024          87
  • 1.17     Investment funding and buy-outs 2019-2024          89

 

2             INTRODUCTION          93

  • 2.1        Introduction to wearable technology and wearable sensors          93
  • 2.2        Introduction to wearable technology             95
  • 2.3        Form factors   96
    • 2.3.1    Smart Watches             97
    • 2.3.2    Smart Bands  98
    • 2.3.3    Smart Glasses              99
    • 2.3.4    Smart Clothing             100
    • 2.3.5    Smart Patches               102
    • 2.3.6    Smart Rings    105
    • 2.3.7    Hearables        106
    • 2.3.8    Head-Mounted             107
    • 2.3.9    Smart Jewelry 109
    • 2.3.10 Smart Insoles 110
  • 2.4        Wearable sensors       113
    • 2.4.1    Motion Sensors            113
      • 2.4.1.1 Overview           113
      • 2.4.1.2 Technology and Components             114
      • 2.4.1.3 Applications   116
    • 2.4.2    Optical Sensors           117
      • 2.4.2.1 Overview           117
      • 2.4.2.2 Technology and Components             119
      • 2.4.2.3 Applications   121
    • 2.4.3    Force Sensors               125
      • 2.4.3.1 Overview           125
      • 2.4.3.2 Technology and Components             126
      • 2.4.3.3 Applications   128
    • 2.4.4    Strain Sensors               129
      • 2.4.4.1 Overview           130
      • 2.4.4.2 Technology and Components             131
      • 2.4.4.3 Applications   133
    • 2.4.5    Chemical Sensors      137
      • 2.4.5.1 Overview           137
      • 2.4.5.2 Technology and Components             140
      • 2.4.5.3 Applications   142
    • 2.4.6    Biosensors      145
    • 2.4.7    Quantum Sensors      148
    • 2.4.8    Wearable Electrodes 149
      • 2.4.8.1 Overview           149
      • 2.4.8.2 Technology and Components             150
      • 2.4.8.3 Applications   152

 

3             MANUFACTURING METHODS            153

  • 3.1        Comparative analysis              154
  • 3.2        Printed electronics     155
    • 3.2.1    Technology description           155
    • 3.2.2    SWOT analysis              156
  • 3.3        3D electronics               157
    • 3.3.1    Technology description           157
    • 3.3.2    SWOT analysis              159
  • 3.4        Analogue printing        160
    • 3.4.1    Technology description           160
    • 3.4.2    SWOT analysis              162
  • 3.5        Digital printing               163
    • 3.5.1    Technology description           163
    • 3.5.2    SWOT analysis              165
  • 3.6        In-mold electronics (IME)      165
    • 3.6.1    Technology description           166
    • 3.6.2    SWOT analysis              168
  • 3.7        Roll-to-roll (R2R)         169
    • 3.7.1    Technology description           169
    • 3.7.2    SWOT analysis              171

 

4             MATERIALS AND COMPONENTS       172

  • 4.1        Component attachment materials  173
    • 4.1.1    Conductive adhesives             174
    • 4.1.2    Biodegradable adhesives      174
    • 4.1.3    Magnets            174
    • 4.1.4    Bio-based solders      175
    • 4.1.5    Bio-derived solders   175
    • 4.1.6    Recycled plastics       175
    • 4.1.7    Nano adhesives           175
    • 4.1.8    Shape memory polymers       176
    • 4.1.9    Photo-reversible polymers    177
    • 4.1.10 Conductive biopolymers        178
    • 4.1.11 Traditional thermal processing methods     178
    • 4.1.12 Low temperature solder          178
    • 4.1.13 Reflow soldering          181
    • 4.1.14 Induction soldering    182
    • 4.1.15 UV curing          183
    • 4.1.16 Near-infrared (NIR) radiation curing 183
    • 4.1.17 Photonic sintering/curing       183
    • 4.1.18 Hybrid integration       184
  • 4.2        Conductive inks           184
    • 4.2.1    Metal-based conductive inks              187
    • 4.2.2    Nanoparticle inks       188
    • 4.2.3    Silver inks         188
    • 4.2.4    Particle-Free conductive ink 189
    • 4.2.5    Copper inks    189
    • 4.2.6    Gold (Au) ink   191
    • 4.2.7    Conductive polymer inks       191
    • 4.2.8    Liquid metals 192
    • 4.2.9    Companies     192
  • 4.3        Printable semiconductors     196
    • 4.3.1    Technology overview 196
    • 4.3.2    Advantages and disadvantages        197
    • 4.3.3    SWOT analysis              198
  • 4.4        Printable sensing materials  199
    • 4.4.1    Overview           199
    • 4.4.2    Types   200
    • 4.4.3    SWOT analysis              201
  • 4.5        Flexible Substrates     202
    • 4.5.1    Flexible plastic substrates    204
      • 4.5.1.1 Types of materials      205
      • 4.5.1.2 Flexible (bio) polyimide PCBs             205
    • 4.5.2    Paper substrates         206
      • 4.5.2.1 Overview           206
    • 4.5.3    Glass substrates         207
      • 4.5.3.1 Overview           207
    • 4.5.4    Textile substrates        208
  • 4.6        Flexible ICs      208
    • 4.6.1    Description     208
    • 4.6.2    Flexible metal oxide ICs          209
    • 4.6.3    Comparison of flexible integrated circuit technologies      210
    • 4.6.4    SWOT analysis              210
  • 4.7        Printed PCBs  211
    • 4.7.1    Description     211
    • 4.7.2    High-Speed PCBs       214
    • 4.7.3    Flexible PCBs 214
    • 4.7.4    3D Printed PCBs          215
    • 4.7.5    Sustainable PCBs       216
  • 4.8        Thin film batteries       217
    • 4.8.1    Technology description           217
    • 4.8.2    SWOT analysis              218
  • 4.9        Energy harvesting       218
    • 4.9.1    Approaches    218
    • 4.9.2    Perovskite photovoltaics        219
    • 4.9.3    Applications   219
    • 4.9.4    SWOT analysis              220

 

5             CONSUMER ELECTRONICS WEARABLE TECHNOLOGY   222

  • 5.1        Market drivers and trends      222
  • 5.2        Wearable sensors       224
  • 5.3        Wearable actuators   225
  • 5.4        Recent market developments             226
  • 5.5        Wrist-worn wearables              227
    • 5.5.1    Overview           227
    • 5.5.2    Sports-watches, smart-watches and fitness trackers         227
    • 5.5.3    Health monitoring      229
    • 5.5.4    Energy harvesting for powering smartwatches        230
    • 5.5.5    Main producers and products            230
  • 5.6        Sports and fitness      232
    • 5.6.1    Overview           232
    • 5.6.2    Wearable devices and apparel           232
    • 5.6.3    Skin patches   233
    • 5.6.4    Products           234
  • 5.7        Hearables        236
    • 5.7.1    Technology overview 237
    • 5.7.2    Assistive Hearables   239
      • 5.7.2.1 Biometric Monitoring 239
    • 5.7.3    SWOT analysis              241
    • 5.7.4    Health & Fitness Hearables  241
    • 5.7.5    Multimedia Hearables             242
    • 5.7.6    Artificial Intelligence (AI)        242
    • 5.7.7    Companies and products      242
  • 5.8        Sleep trackers and wearable monitors         247
    • 5.8.1    Built in function in smart watches and fitness trackers      249
    • 5.8.2    Smart rings      250
    • 5.8.3    Headbands     251
    • 5.8.4    Sleep monitoring devices       252
      • 5.8.4.1 Companies and products      252
  • 5.9        Pet and animal wearables     254
  • 5.10     Military wearables      255
  • 5.11     Industrial and workplace monitoring             256
    • 5.11.1 Products           257
  • 5.12     Global market forecasts         258
    • 5.12.1 Volume              258
    • 5.12.2 Revenues          260
  • 5.13     Market challenges      262
  • 5.14     Company profiles       262 (127 company profiles)

 

6             MEDICAL AND HEALTHCARE WEARABLE TECHNOLOGY 344

  • 6.1        Market drivers                344
  • 6.2        Current state of the art            347
    • 6.2.1    Wearables for Digital Health                347
    • 6.2.2    Wearable medical device products 348
    • 6.2.3    Temperature and respiratory rate monitoring           351
  • 6.3        Wearable and health monitoring and rehabilitation             351
    • 6.3.1    Market overview           351
    • 6.3.2    Companies and products      352
  • 6.4        Electronic skin patches           357
    • 6.4.1    Electrochemical biosensors                358
    • 6.4.2    Printed pH sensors    359
    • 6.4.3    Printed batteries          361
    • 6.4.4    Materials           361
      • 6.4.4.1 Summary of advanced materials      361
    • 6.4.5    Temperature and respiratory rate monitoring           362
      • 6.4.5.1 Market overview           363
      • 6.4.5.2 Companies and products      364
    • 6.4.6    Continuous glucose monitoring (CGM)        366
      • 6.4.6.1 Market overview           366
    • 6.4.7    Minimally-invasive CGM sensors     367
      • 6.4.7.1 Technologies  367
    • 6.4.8    Non-invasive CGM sensors  369
      • 6.4.8.1 Commercial devices 369
      • 6.4.8.2 Companies and products      371
    • 6.4.9    Cardiovascular monitoring   374
      • 6.4.9.1 Market overview           374
      • 6.4.9.2 ECG sensors  374
        • 6.4.9.2.1           Companies and products      375
      • 6.4.9.3 PPG sensors   377
        • 6.4.9.3.1           Companies and products      377
    • 6.4.10 Pregnancy and newborn monitoring              377
      • 6.4.10.1            Market overview           377
      • 6.4.10.2            Companies and products      377
    • 6.4.11 Hydration sensors      378
      • 6.4.11.1            Market overview           378
      • 6.4.11.2            Companies and products      379
    • 6.4.12 Wearable sweat sensors (medical and sports)        380
      • 6.4.12.1            Market overview           380
      • 6.4.12.2            Companies and products      382
  • 6.5        Wearable drug delivery            383
    • 6.5.1    Companies and products      384
  • 6.6        Cosmetics patches    385
    • 6.6.1    Companies and products      386
  • 6.7        Femtech devices         387
    • 6.7.1    Companies and products      387
  • 6.8        Smart footwear for health monitoring           389
    • 6.8.1    Companies and products      390
  • 6.9        Smart contact lenses and smart glasses for visually impaired     390
    • 6.9.1    Companies and products      390
  • 6.10     Smart woundcare       391
    • 6.10.1 Companies and products      393
  • 6.11     Smart diapers                393
    • 6.11.1 Companies and products      394
  • 6.12     Wearable robotics-exo-skeletons, bionic prostheses, exo-suits, and body worn collaborative robots 395
    • 6.12.1 Companies and products      395
  • 6.13     Global market forecasts         414
    • 6.13.1 Volume              414
    • 6.13.2 Revenues          416
  • 6.14     Market challenges      418
  • 6.15     Company profiles       419 (340 company profiles)

 

7             GAMING AND ENTERTAINMENT WEARABLE TECHNOLOGY (VR/AR/MR)              643

  • 7.1        Commercialization    643
  • 7.2        Extended reality (XR) 646
    • 7.2.1    Wearables for XR         646
  • 7.3        Virtual Reality (VR) devices   647
    • 7.3.1    VR headset products 649
  • 7.4        Augmented (AR) headsets and smart glasses         649
    • 7.4.1    Products           652
  • 7.5        Mixed Reality (MR) smart glasses     655
    • 7.5.1    Mixed Reality (MR) smart glass products     655
  • 7.6        OLED microdisplays 656
  • 7.7        MiniLED             656
    • 7.7.1    High dynamic range miniLED displays          658
    • 7.7.2    Quantum dot films for miniLED displays     659
    • 7.7.3    Perovskite colour enhancement film in MiniLEDs 659
  • 7.8        MicroLED          660
    • 7.8.1    Production       662
      • 7.8.1.1 Integration       662
      • 7.8.1.2 Transfer technologies               663
    • 7.8.2    Comparison to LCD and OLED           667
    • 7.8.3    MicroLED display specifications       668
    • 7.8.4    Advantages     669
      • 7.8.4.1 Transparency 670
      • 7.8.4.2 Borderless       670
      • 7.8.4.3 Flexibility           671
    • 7.8.5    Costs  671
    • 7.8.6    AR/VR Smart glasses and head-mounted displays (HMDs)            672
    • 7.8.7    MicroLED contact lenses       672
    • 7.8.8    Products and prototypes        673
    • 7.8.9    Product developers    676
  • 7.9        Global market forecasts         677
    • 7.9.1    Volume              677
    • 7.9.2    Revenues          678
  • 7.10     Company profiles       680 (97 company profiles)

 

8             ELECTRONIC TEXTILES (E-TEXTILES) AND SMART APPAREL           748

  • 8.1        Macro-trends 748
  • 8.2        Market drivers                749
  • 8.3        SWOT analysis              752
  • 8.4        Performance requirements for E-textiles     753
  • 8.5        Growth prospects for electronic textiles      754
  • 8.6        Textiles in the Internet of Things        757
  • 8.7        Types of E-Textile products   759
    • 8.7.1    Embedded e-textiles 760
    • 8.7.2    Laminated e-textiles  761
  • 8.8        Materials and components  761
    • 8.8.1    Integrating electronics for E-Textiles               761
      • 8.8.1.1 Textile-adapted             763
      • 8.8.1.2 Textile-integrated         763
      • 8.8.1.3 Textile-based  763
    • 8.8.2    Manufacturing of E-textiles   763
      • 8.8.2.1 Integration of conductive polymers and inks            764
      • 8.8.2.2 Integration of conductive yarns and conductive filament fibers   765
      • 8.8.2.3 Integration of conductive sheets       766
    • 8.8.3    Flexible and stretchable electronics               766
    • 8.8.4    E-textiles materials and components            769
      • 8.8.4.1 Conductive and stretchable fibers and yarns           770
        • 8.8.4.1.1           Production       772
        • 8.8.4.1.2           Metals 773
        • 8.8.4.1.3           Carbon materials and nanofibers    774
          • 8.8.4.1.3.1      Graphene         776
          • 8.8.4.1.3.2      Carbon nanotubes     777
          • 8.8.4.1.3.3      Nanofibers      779
      • 8.8.4.2 Mxenes              781
      • 8.8.4.3 Hexagonal boron-nitride (h-BN)/Bboron nitride nanosheets (BNNSs)     782
      • 8.8.4.4 Conductive polymers               784
        • 8.8.4.4.1           PDMS  786
        • 8.8.4.4.2           PEDOT: PSS     787
        • 8.8.4.4.3           Polypyrrole (PPy)          787
        • 8.8.4.4.4           Conductive polymer composites     787
        • 8.8.4.4.5           Ionic conductive polymers    787
      • 8.8.4.5 Conductive inks           788
        • 8.8.4.5.1           Aqueous-Based Ink   790
        • 8.8.4.5.2           Solvent-Based Ink      791
        • 8.8.4.5.3           Oil-Based Ink 791
        • 8.8.4.5.4           Hot-Melt Ink    791
        • 8.8.4.5.5           UV-Curable Ink             791
        • 8.8.4.5.6           Metal-based conductive inks              793
          • 8.8.4.5.6.1      Nanoparticle ink          793
          • 8.8.4.5.6.2      Silver inks         794
          • 8.8.4.5.6.3      Copper inks    798
          • 8.8.4.5.6.4      Gold (Au) ink   799
        • 8.8.4.5.7           Carbon-based conductive inks         800
          • 8.8.4.5.7.1      Carbon nanotubes     800
          • 8.8.4.5.7.2      Single-walled carbon nanotubes      802
          • 8.8.4.5.7.3      Graphene         803
        • 8.8.4.5.8           Liquid metals 807
          • 8.8.4.5.8.1      Properties         807
      • 8.8.4.6 Electronic filaments  808
      • 8.8.4.7 Phase change materials         808
        • 8.8.4.7.1           Temperature controlled fabrics         808
      • 8.8.4.8 Shape memory materials      809
      • 8.8.4.9 Metal halide perovskites        811
      • 8.8.4.10            Nanocoatings in smart textiles           811
      • 8.8.4.11            3D printing       814
        • 8.8.4.11.1        Fused Deposition Modeling (FDM)  815
        • 8.8.4.11.2        Selective Laser Sintering (SLS)           815
        • 8.8.4.11.3        Products           815
    • 8.8.5    E-textiles components            816
      • 8.8.5.1 Sensors and actuators            816
        • 8.8.5.1.1           Physiological sensors              818
        • 8.8.5.1.2           Environmental sensors           818
        • 8.8.5.1.3           Pressure sensors         819
          • 8.8.5.1.3.1      Flexible capacitive sensors  819
          • 8.8.5.1.3.2      Flexible piezoresistive sensors           819
          • 8.8.5.1.3.3      Flexible piezoelectric sensors            820
        • 8.8.5.1.4           Activity sensors            820
        • 8.8.5.1.5           Strain sensors               821
          • 8.8.5.1.5.1      Resistive sensors        821
          • 8.8.5.1.5.2      Capacitive strain sensors      821
        • 8.8.5.1.6           Temperature sensors                822
        • 8.8.5.1.7           Inertial measurement units (IMUs)  822
      • 8.8.5.2 Electrodes        822
      • 8.8.5.3 Connectors     823
  • 8.9        Applications, markets and products              823
    • 8.9.1    Current E-textiles and smart clothing products      824
    • 8.9.2    Temperature monitoring and regulation       826
      • 8.9.2.1 Heated clothing           826
      • 8.9.2.2 Heated gloves               827
      • 8.9.2.3 Heated insoles             828
      • 8.9.2.4 Heated jacket and clothing products             828
      • 8.9.2.5 Materials used in flexible heaters and applications             829
    • 8.9.3    Stretchable E-fabrics                830
    • 8.9.4    Therapeutic products               830
    • 8.9.5    Sport & fitness              831
      • 8.9.5.1 Products           833
    • 8.9.6    Smart footwear             835
      • 8.9.6.1 Companies and products      836
    • 8.9.7    Wearable displays      836
    • 8.9.8    Military               837
    • 8.9.9    Textile-based lighting                838
      • 8.9.9.1 OLEDs 838
    • 8.9.10 Smart gloves  838
    • 8.9.11 Powering E-textiles     839
      • 8.9.11.1            Advantages and disadvantages of main battery types for E-textiles          840
      • 8.9.11.2            Bio-batteries   841
      • 8.9.11.3            Challenges for battery integration in smart textiles               841
      • 8.9.11.4            Textile supercapacitors           842
      • 8.9.11.5            Energy harvesting       843
        • 8.9.11.5.1        Photovoltaic solar textiles     844
        • 8.9.11.5.2        Energy harvesting nanogenerators  846
          • 8.9.11.5.2.1   TENGs 847
          • 8.9.11.5.2.2   PENGs                847
        • 8.9.11.5.3        Radio frequency (RF) energy harvesting       847
    • 8.9.12 Motion capture for AR/VR      848
  • 8.10     Global market forecasts         849
    • 8.10.1 Volume              849
    • 8.10.2 Revenues          850
  • 8.11     Market challenges      852
  • 8.12     Company profiles       854 (153 company profiles)

 

9             ENERGY STORAGE AND HARVESTING FOR WEARABLE TECHNOLOGY 964

  • 9.1        Macro-trends 964
  • 9.2        Market drivers                964
  • 9.3        SWOT analysis              965
  • 9.4        Applications of printed and flexible electronics      966
  • 9.5        Flexible and stretchable batteries for electronics  967
  • 9.6        Approaches to flexibility         968
  • 9.7        Flexible Battery Technologies              972
    • 9.7.1    Thin-film Lithium-ion Batteries           972
      • 9.7.1.1 Types of Flexible/stretchable LIBs    975
        • 9.7.1.1.1           Flexible planar LiBs   975
        • 9.7.1.1.2           Flexible Fiber LiBs       976
        • 9.7.1.1.3           Flexible micro-LiBs    976
        • 9.7.1.1.4           Stretchable lithium-ion batteries      978
        • 9.7.1.1.5           Origami and kirigami lithium-ion batteries  979
      • 9.7.1.2 Flexible Li/S batteries                980
      • 9.7.1.3 Flexible lithium-manganese dioxide (Li–MnO2) batteries 981
    • 9.7.2    Printed Batteries          982
      • 9.7.2.1 Technical specifications         982
      • 9.7.2.2 Components  983
      • 9.7.2.3 Design 984
      • 9.7.2.4 Key features    985
        • 9.7.2.4.1           Printable current collectors  986
        • 9.7.2.4.2           Printable electrodes  986
        • 9.7.2.4.3           Materials           987
        • 9.7.2.4.4           Applications   988
        • 9.7.2.4.5           Printing techniques    990
        • 9.7.2.4.6           Lithium-ion (LIB) printed batteries    992
        • 9.7.2.4.7           Zinc-based printed batteries                994
        • 9.7.2.4.8           3D Printed batteries   997
          • 9.7.2.4.8.1      Materials for 3D printed batteries     1001
    • 9.7.3    Thin-Film Solid-state Batteries           1002
      • 9.7.3.1 Solid-state electrolytes            1003
      • 9.7.3.2 Features and advantages      1005
      • 9.7.3.3 Technical specifications         1006
      • 9.7.3.4 Microbatteries               1010
        • 9.7.3.4.1           Introduction    1010
        • 9.7.3.4.2           3D designs      1011
    • 9.7.4    Stretchable Batteries                1012
    • 9.7.5    Other Emerging Technologies             1012
      • 9.7.5.1 Metal-sulfur batteries               1012
      • 9.7.5.2 Flexible zinc-based batteries               1014
      • 9.7.5.3 Flexible silver–zinc (Ag–Zn) batteries              1014
      • 9.7.5.4 Flexible Zn–Air batteries          1015
      • 9.7.5.5 Flexible zinc-vanadium batteries      1016
      • 9.7.5.6 Fiber-shaped batteries             1016
        • 9.7.5.6.1           Carbon nanotubes     1017
        • 9.7.5.6.2           Applications   1018
        • 9.7.5.6.3           Challenges      1019
      • 9.7.5.7 Transparent batteries                1019
        • 9.7.5.7.1           Components  1020
      • 9.7.5.8 Degradable batteries                1021
        • 9.7.5.8.1           Components  1022
      • 9.7.5.9 Fiber-shaped batteries             1023
        • 9.7.5.9.1           Carbon nanotubes     1023
        • 9.7.5.9.2           Types   1023
        • 9.7.5.9.3           Applications   1024
        • 9.7.5.9.4           Challenges      1025
  • 9.8        Key Components of Flexible Batteries           1025
    • 9.8.1    Electrodes        1025
      • 9.8.1.1 Cable-type batteries 1027
      • 9.8.1.2 Batteries-on-wire        1027
    • 9.8.2    Electrolytes     1028
    • 9.8.3    Separators       1034
    • 9.8.4    Current Collectors      1035
    • 9.8.5    Packaging        1037
      • 9.8.5.1 Flexible Pouch Cells  1039
      • 9.8.5.2 Encapsulation Materials         1041
    • 9.8.6    Other Manufacturing Techniques     1041
  • 9.9        Performance Metrics and Characteristics  1042
    • 9.9.1    Energy Density              1042
    • 9.9.2    Power Density               1043
    • 9.9.3    Cycle Life          1043
    • 9.9.4    Flexibility and Bendability     1044
  • 9.10     Printed supercapacitors         1044
    • 9.10.1 Electrode materials   1046
    • 9.10.2 Electrolytes     1047
  • 9.11     Photovoltaics 1050
    • 9.11.1 Conductive pastes     1050
    • 9.11.2 Organic photovoltaics (OPV)               1051
    • 9.11.3 Perovskite PV 1052
    • 9.11.4 Flexible and stretchable photovoltaics        1052
      • 9.11.4.1            Companies     1052
    • 9.11.5 Photovoltaic solar textiles     1053
    • 9.11.6 Solar tape         1054
    • 9.11.7 Origami-like solar cells            1055
    • 9.11.8 Spray-on and stick-on perovskite photovoltaics    1055
    • 9.11.9 Photovoltaic solar textiles     1055
  • 9.12     Transparent and flexible heaters       1057
    • 9.12.1 Technology overview 1057
    • 9.12.2 Applications   1058
      • 9.12.2.1            Automotive Industry  1058
        • 9.12.2.1.1        Defrosting and Defogging Systems  1058
        • 9.12.2.1.2        Heated Windshields and Mirrors      1059
        • 9.12.2.1.3        Touch Panels and Displays   1060
      • 9.12.2.2            Aerospace and Aviation          1061
        • 9.12.2.2.1        Aircraft Windows and Canopies        1061
        • 9.12.2.2.2        Sensor and Camera Housings            1061
      • 9.12.2.3            Consumer Electronics             1061
        • 9.12.2.3.1        Smartphones and Tablets      1061
        • 9.12.2.3.2        Wearable Devices       1061
        • 9.12.2.3.3        Smart Home Appliances        1061
      • 9.12.2.4            Building and Architecture      1062
        • 9.12.2.4.1        Smart Windows            1062
        • 9.12.2.4.2        Heated Glass Facades            1063
        • 9.12.2.4.3        Greenhouse and Skylight Applications         1063
      • 9.12.2.5            Medical and Healthcare         1064
        • 9.12.2.5.1        Incubators and Warming Beds           1064
        • 9.12.2.5.2        Surgical Microscopes and Endoscopes       1065
        • 9.12.2.5.3        Medical Imaging Equipment 1065
      • 9.12.2.6            Display Technologies                1066
        • 9.12.2.6.1        LCD Displays 1066
        • 9.12.2.6.2        OLED Displays              1066
        • 9.12.2.6.3        Flexible and Transparent Displays   1067
      • 9.12.2.7            Energy Systems            1068
        • 9.12.2.7.1        Solar Panels (De-icing and Efficiency Enhancement)         1068
        • 9.12.2.7.2        Fuel Cells         1068
        • 9.12.2.7.3        Battery Systems           1069
  • 9.13     Thermoelectric energy harvesting   1070
  • 9.14     Market challenges      1071
  • 9.15     Global market forecasts         1071
    • 9.15.1 Volume              1071
    • 9.15.2 Revenues          1073
  • 9.16     Companies     1075

 

10          RESEARCH METHODOLOGY              1077

 

11          REFERENCES 1078

 

List of Tables

  • Table 1. Types of wearable devices and applications.        68
  • Table 2. Types of wearable devices and the data collected.            69
  • Table 3. Main Wearable Device Companies by Shipment Volume, Market Share, and Year-Over-Year Growth, (million units).           71
  • Table 4. New wearable tech products 2022-2024. 71
  • Table 5. Wearable market leaders by market segment.     72
  • Table 6. Applications in printed, flexible and stretchable electronics, by advanced materials type and benefits thereof.           76
  • Table 7. Advanced materials for Printed, flexible and stretchable sensors and Electronics-Advantages and disadvantages.  82
  • Table 8. Sheet resistance (RS) and transparency (T) values for transparent conductive oxides and alternative materials for transparent conductive electrodes (TCE).          83
  • Table 9. Wearable electronics at CES 2021-2024. 87
  • Table 10. Wearables Investment funding and buy-outs 2019-2022.         89
  • Table 11. Manufacturing Methods for Wearable Electronics.         153
  • Table 12. Manufacturing methods for printed, flexible and hybrid electronics.  154
  • Table 13.  Common printing methods used in printed electronics manufacturing in terms of resolution vs throughput.               155
  • Table 14. Manufacturing methods for 3D electronics.        157
  • Table 15.  Readiness level of various additive manufacturing technologies for electronics applications.                158
  • Table 16. Fully 3D printed electronics process steps          159
  • Table 17. Manufacturing methods for Analogue manufacturing. 160
  • Table 18. Technological and commercial readiness level of analogue printing methods.           162
  • Table 19. Manufacturing methods for Digital printing         163
  • Table 20. Innovations in high resolution printing.   164
  • Table 21. Key manufacturing methods for creating smart surfaces with integrated electronics.            167
  • Table 22. IME manufacturing techniques.  167
  • Table 23. Applications of R2R electronics manufacturing.              170
  • Table 24. Technology readiness level for R2R manufacturing.      171
  • Table 25. Materials for printed and flexible electronics.     172
  • Table 26. Comparison of component attachment materials.        173
  • Table 27. Comparison between sustainable and conventional component attachment materials for printed circuit boards              174
  • Table 28. Comparison between the SMAs and SMPs.         176
  • Table 29. Comparison of conductive biopolymers versus conventional materials for printed circuit board fabrication.       178
  • Table 30. Low temperature solder alloys.    179
  • Table 31. Thermally sensitive substrate materials.               179
  • Table 32. Typical conductive ink formulation.          185
  • Table 33. Comparative properties of conductive inks.       187
  • Table 34. Comparison of the electrical conductivities of liquid metal with typical conductive inks.   192
  • Table 35. Conductive ink producers.              192
  • Table 36. Technology readiness level of printed semiconductors.              197
  • Table 37. Organic semiconductors: Advantages and disadvantages.      197
  • Table 38. Market Drivers for printed/flexible sensors.         199
  • Table 39. Overview of specific printed/flexible sensor types.         200
  • Table 40. Properties of typical flexible substrates. 202
  • Table 41. Comparison of stretchable substrates.  203
  • Table 42.  Main types of materials used as flexible plastic substrates in flexible electronics.  205
  • Table 43. Applications of flexible (bio) polyimide PCBs.    206
  • Table 44. Paper substrates: Advantages and disadvantages.        207
  • Table 45. Comparison of flexible integrated circuit technologies.              210
  • Table 46. PCB manufacturing process.        213
  • Table 47. Challenges in PCB manufacturing.           213
  • Table 48. 3D PCB manufacturing.    216
  • Table 49. Market drivers and trends in wearable electronics.         222
  • Table 50. Types of wearable sensors.            224
  • Table 51. Wearable health monitors.             229
  • Table 52. Sports-watches, smart-watches and fitness trackers producers and products.         231
  • Table 53. Wearable sensors for sports performance.          234
  • Table 54. Wearable sensor products for monitoring sport performance.               234
  • Table 55.  Product types in the hearing assistance technology market.  238
  • Table 56. Sensing options in the ear.              240
  • Table 57. Companies and products in hearables. 243
  • Table 58. Example wearable sleep tracker products and prices. 247
  • Table 59. Smart ring products.           251
  • Table 60. Sleep headband products.              251
  • Table 61. Sleep monitoring products.            252
  • Table 62. Pet wearable companies and products. 254
  • Table 63. Wearable electronics applications in the military.          255
  • Table 64. Wearable workplace products.    257
  • Table 65. Global market for wearable consumer electronics 2020-2035 by type (Millions Units).         258
  • Table 66. Global market revenues for wearable consumer electronics, 2018-2035, (millions USD).  260
  • Table 67. Market challenges in consumer wearable electronics. 262
  • Table 68. Market drivers for printed, flexible and stretchable medical and healthcare sensors and wearables.       344
  • Table 69. Examples of wearable medical device products.             349
  • Table 70. Medical wearable companies applying products to COVID-19 monitoring and analysis.     351
  • Table 71. Applications in flexible and stretchable health monitors, by advanced materials type and benefits thereof.           361
  • Table 72. Medical wearable companies applying products to temperate and respiratory monitoring and analysis.           365
  • Table 73. Technologies for minimally-invasive and non-invasive glucose detection-advantages and disadvantages.            367
  • Table 74. Commercial devices for non-invasive glucose monitoring not released or withdrawn from market.              369
  • Table 75. Minimally-invasive and non-invasive glucose monitoring products.   371
  • Table 76. Companies developing wearable swear sensors.            382
  • Table 77. Wearable drug delivery companies and products.          384
  • Table 78. Companies and products, cosmetics and drug delivery patches.        386
  • Table 79. Companies developing femtech wearable technology.                387
  • Table 80. Companies and products in smart footwear.      390
  • Table 81. Companies and products in smart contact lenses.        390
  • Table 82. Companies and products in smart wound care.               393
  • Table 83. Companies developing smart diaper products. 394
  • Table 84. Companies developing wearable robotics.          395
  • Table 85. Global Market for Wearable Medical & Healthcare Electronics 2020-2035 (Million Units). 415
  • Table 86. Global market for Wearable medical & healthcare electronics, 2020-2035, millions of US dollars.              417
  • Table 87. Market challenges in medical and healthcare sensors and wearables.            418
  • Table 88. Example VR headset products.    649
  • Table 89. Key requirements for AR wearable devices.         650
  • Table 90. Augmented reality (AR) smart glass products.   652
  • Table 91. Mixed Reality (MR) smart glass products.             655
  • Table 92. Comparison between miniLED displays and other display types.         656
  • Table 93. Comparison of AR Display Light Engines.             660
  • Table 94. Comparison to conventional LEDs.           661
  • Table 95. Types of microLED.               661
  • Table 96. Summary of monolithic integration, monolithic hybrid integration (flip-chip/wafer bonding), and mass transfer technologies.      663
  • Table 97. Summary of different mass transfer technologies.         664
  • Table 98. Comparison to LCD and OLED.    667
  • Table 99. Schematic comparison to LCD and OLED.           668
  • Table 100. Commercially available microLED products and specifications.       668
  • Table 101. microLED-based display advantages and disadvantages.     669
  • Table 102. MicroLED based smart glass products.               673
  • Table 103. tooz technologies smart glasses.            675
  • Table 104. VR and AR MicroLED products. 676
  • Table 105. Global market for gaming and entertainment wearable technology, 2020-2035  (Million Units). 677
  • Table 106. Global market for gaming and entertainment wearable technology, 2020-2035, millions of US dollars.              678
  • Table 107. Macro-trends for electronic textiles.      748
  • Table 108. Market drivers for printed, flexible, stretchable and organic electronic textiles.       749
  • Table 109. Examples of smart textile products.      751
  • Table 110. Performance requirements for E-textiles.           753
  • Table 111. Commercially available smart clothing products.        759
  • Table 112. Types of smart textiles.   762
  • Table 113. Comparison of E-textile fabrication methods. 763
  • Table 114. Types of fabrics for the application of electronic textiles.        764
  • Table 115. Methods for integrating conductive compounds.         765
  • Table 116. Methods for integrating conductive yarn and conductive filament fiber.       766
  • Table 117. 1D electronic fibers including the conductive materials, fabrication strategies, electrical conductivity, stretchability, and applications.         769
  • Table 118. Conductive materials used in smart textiles, their electrical conductivity and percolation threshold.        773
  • Table 119. Metal coated fibers and their mechanisms.     774
  • Table 120. Applications of carbon nanomaterials and other nanomaterials in e-textiles.           775
  • Table 121. Applications and benefits of graphene in textiles and apparel.            776
  • Table 122. Properties of CNTs and comparable materials.              777
  • Table 123. Properties of hexagonal boron nitride (h-BN).  783
  • Table 124. Types of flexible conductive polymers, properties and applications.               784
  • Table 125. Typical conductive ink formulation.       788
  • Table 126. Comparative properties of conductive inks.     789
  • Table 127.  Comparison of pros and cons of various types of conductive ink compositions.   791
  • Table 128: Properties of CNTs and comparable materials.              800
  • Table 129. Properties of graphene.  803
  • Table 130. Electrical conductivity of different types of graphene.               806
  • Table 131. Comparison of the electrical conductivities of liquid metal with typical conductive inks. 807
  • Table 132. Nanocoatings applied in the smart textiles industry-type of coating, nanomaterials utilized, benefits and applications.    812
  • Table 133. 3D printed shoes.               815
  • Table 134. Sensors used in electronic textiles.        817
  • Table 135. Features of flexible strain sensors with different structures. 821
  • Table 136. Features of resistive and capacitive strain sensors.    822
  • Table 137. Typical applications and markets for e-textiles.             824
  • Table 138. Commercially available E-textiles and smart clothing products.        824
  • Table 139. Example heated jacket products.            827
  • Table 140. Heated jacket and clothing products.   828
  • Table 141. Examples of materials used in flexible heaters and applications.      829
  • Table 142. Commercialized smart textiles/or e-textiles for healthcare and fitness applications.          832
  • Table 143. Example earable sensor products for monitoring sport performance.            833
  • Table 144.Companies and products in smart footwear.    836
  • Table 145. Wearable electronics applications in the military.       838
  • Table 146. Advantages and disadvantages of batteries for E-textiles.      840
  • Table 147. Comparison of prototype batteries (flexible, textile, and other) in terms of area-specific performance. 842
  • Table 148. Advantages and disadvantages of photovoltaic, piezoelectric, triboelectric, and thermoelectric energy harvesting in of e-textiles.  844
  • Table 149. Teslasuit. 849
  • Table 150. Global market for printed and flexible E-textiles and smart apparel electronics, 2020-2035  (Million Units).              849
  • Table 151. Global market for printed and flexible E-textiles and smart apparel electronics, 2020-2035, millions of US dollars.              850
  • Table 152. Market and technical challenges for E-textiles and smart clothing.  852
  • Table 153. Macro-trends in printed and flexible electronics in energy.    964
  • Table 154. Market drivers for Printed and flexible electronic energy storage, generation and harvesting.                964
  • Table 155. Energy applications for printed/flexible electronics.   966
  • Table 156. Comparison of Flexible and Traditional Lithium-Ion Batteries               969
  • Table 157. Material Choices for Flexible Battery Components.    969
  • Table 158. Flexible Li-ion battery prototypes.           973
  • Table 159. Thin film vs bulk solid-state batteries.   974
  • Table 160. Summary of fiber-shaped lithium-ion batteries.            977
  • Table 161. Main components and properties of different printed battery types.               984
  • Table 162, Types of printable current collectors and the materials commonly used.    986
  • Table 163. Applications of printed batteries and their physical and electrochemical requirements.  988
  • Table 164. 2D and 3D printing techniques. 990
  • Table 165. Printing techniques applied to printed batteries.           992
  • Table 166. Main components and corresponding electrochemical values of lithium-ion printed batteries.          992
  • Table 167. Printing technique, main components and corresponding electrochemical values of printed batteries based on Zn–MnO2 and other battery types.       995
  • Table 168. Main 3D Printing techniques for battery manufacturing.         999
  • Table 169. Electrode Materials for 3D Printed Batteries.   1001
  • Table 170. Main Fabrication Techniques for Thin-Film Batteries. 1002
  • Table 171. Types of solid-state electrolytes.              1003
  • Table 172. Market segmentation and status for solid-state batteries.      1004
  • Table 173.  Typical process chains for manufacturing key components and assembly of solid-state batteries.          1005
  • Table 174. Comparison between liquid and solid-state batteries.              1009
  • Table 175. Types of fiber-shaped batteries.                1017
  • Table 176. Components of transparent batteries. 1020
  • Table 177. Components of degradable batteries.  1022
  • Table 178. Types of fiber-shaped batteries.                1023
  • Table 179. Organic vs. Inorganic Solid-State Electrolytes.                1029
  • Table 180. Electrode designs in flexible lithium-ion batteries.       1031
  • Table 181. Packaging Procedures for Pouch Cells.                1038
  • Table 182. Performance Metrics and Characteristics for Printed and Flexible Batteries.             1042
  • Table 183. Methods for printing supercapacitors. 1045
  • Table 184. Electrode Materials for printed supercapacitors.          1046
  • Table 185. Electrolytes for printed supercapacitors.           1047
  • Table 186. Main properties and components of printed supercapacitors.            1048
  • Table 187. Conductive pastes for photovoltaics.   1051
  • Table 188. Companies commercializing thin film flexible photovoltaics.              1052
  • Table 189. Examples of materials used in flexible heaters and applications.      1057
  • Table 190. Transparent heaters for exterior lighting / sensors / windows.              1058
  • Table 191. Types of transparent heaters for automotive exterior applications.  1058
  • Table 192. Smart Window Applications of Transparent Heaters. 1062
  • Table 193. Applications of Printed and Flexible Fuel Cells.             1069
  • Table 194. Market challenges in printed and flexible electronics for energy.        1071
  • Table 195. Global market for printed and flexible energy storage, generation and harvesting electronics, 2020-2035 by type (Volume).              1071
  • Table 196. Global market for printed and flexible energy storage, generation and harvesting electronics, 2020-2035, millions of US dollars.  1074
  • Table 197. Market players in printed and flexible energy storage and harvesting.            1075

 

List of Figures

  • Figure 1. Evolution of electronics.    65
  • Figure 2. Wearable technology inventions. 67
  • Figure 3. Market map for wearable electronics and sensors.         74
  • Figure 4. Wove Band. 74
  • Figure 5. Wearable graphene medical sensor.         75
  • Figure 6. Stretchable transistor.        76
  • Figure 7. Artificial skin prototype for gesture recognition. 78
  • Figure 8. Applications timeline for organic and printed electronics.          79
  • Figure 9. Applications of wearable flexible sensors worn on various body parts.             81
  • Figure 10. Systemization of wearable electronic systems.              81
  • Figure 11. Baby Monitor.         86
  • Figure 12. Wearable health monitor incorporating graphene photodetectors.   86
  • Figure 13. SWOT analysis for printed electronics.  157
  • Figure 14. SWOT analysis for 3D electronics.            160
  • Figure 15. SWOT analysis for analogue printing.    163
  • Figure 16. SWOT analysis for digital printing.            165
  • Figure 17. In-mold electronics prototype devices and products. 166
  • Figure 18. SWOT analysis for In-Mold Electronics. 169
  • Figure 19. SWOT analysis for R2R manufacturing. 172
  • Figure 20. The molecular mechanism of the shape memory effect under different stimuli.     177
  • Figure 21. Supercooled Soldering™ Technology.     181
  • Figure 22. Reflow soldering schematic.        182
  • Figure 23. Schematic diagram of induction heating reflow.             183
  • Figure 24. Types of conductive inks and applications.       185
  • Figure 25. Copper based inks on flexible substrate.             190
  • Figure 26. SWOT analysis for Printable semiconductors. 199
  • Figure 27.  SWOT analysis for Printable sensor materials.               202
  • Figure 28. RFID Tag with Nano Copper Antenna on Paper.               204
  • Figure 29. SWOT analysis for flexible integrated circuits.  211
  • Figure 30. Fully-printed organic thin-film transistors and circuitry on one-micron-thick polymer films.                212
  • Figure 31. Flexible PCB.          215
  • Figure 32. SWOT analysis for Flexible batteries.      218
  • Figure 33.  SWOT analysis for Flexible PV for energy harvesting. 221
  • Figure 34. FitBit Charge 5.     229
  • Figure 35. Wearable bio-fluid monitoring system for monitoring of hydration.   233
  • Figure 36. Nuheara IQbuds² Max.     237
  • Figure 37. HP Hearing PRO OTC Hearing Aid.           239
  • Figure 38. SWOT analysis for Ear worn wearables (hearables).    241
  • Figure 39. Beddr SleepTuner.               250
  • Figure 40. Beddr SleepTuner.               252
  • Figure 41. Global market for wearable consumer electronics 2020-2035 by type (Volume).    259
  • Figure 42. Global market revenues for wearable consumer electronics, 2018-2035, (millions USD). 261
  • Figure 43. The Apollo wearable device.         266
  • Figure 44. Cyclops HMD.        269
  • Figure 45. C2Sense sensors.               275
  • Figure 46. Coachwhisperer device. 277
  • Figure 47. Cogwear headgear.            278
  • Figure 48. CardioWatch 287.               279
  • Figure 49. FRENZ™ Brainband.           283
  • Figure 50. NightOwl Home Sleep Apnea Test Device.          284
  • Figure 51. eQ02+LIfeMontor.               286
  • Figure 52. Cove wearable device.     289
  • Figure 53. German bionic exoskeleton.        292
  • Figure 54. UnlimitedHand.    293
  • Figure 55. Apex Exosuit.          294
  • Figure 56. Humanox Shin Guard.      298
  • Figure 57. Airvida E1. 299
  • Figure 58. Footrax.      300
  • Figure 59. eMacula®. 301
  • Figure 60. G2 Pro.        302
  • Figure 61. REFLEX.     303
  • Figure 62. Ring ZERO.               306
  • Figure 63. Mawi Heart Patch.               308
  • Figure 64. Ayo wearable light therapy.           315
  • Figure 65. Nowatch.   316
  • Figure 66. ORII smart ring.     318
  • Figure 67. Proxxi Voltage.       322
  • Figure 68. RealWear HMT-1. 323
  • Figure 69. Moonwalkers from Shift Robotics Inc.   326
  • Figure 70. SnowCookie device.          327
  • Figure 71. Soter device.           328
  • Figure 72. Feelzing Energy Patch.     333
  • Figure 73. Wiliot tags.               340
  • Figure 74. Connected human body and product examples.           348
  • Figure 75. Companies and products in wearable health monitoring and rehabilitation devices and products.          352
  • Figure 76. Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs.               358
  • Figure 77. Graphene medical patch.              360
  • Figure 78. Graphene-based E-skin patch.   360
  • Figure 79. Enfucell wearable temperature tag.        364
  • Figure 80. TempTraQ wearable wireless thermometer.       365
  • Figure 81. Technologies for minimally-invasive and non-invasive glucose detection.    366
  • Figure 82. Schematic of non-invasive CGM sensor.             370
  • Figure 83. Adhesive wearable CGM sensor.               371
  • Figure 84. VitalPatch.                375
  • Figure 85. Wearable ECG-textile.      375
  • Figure 86. Wearable ECG recorder.  376
  • Figure 87. Nexkin™.     376
  • Figure 88. Bloomlife. 378
  • Figure 89. Nanowire skin hydration patch.  379
  • Figure 90. NIX sensors.           379
  • Figure 91. Wearable sweat sensor.  380
  • Figure 92. Wearable  graphene sweat sensor.          381
  • Figure 93. Gatorade's GX Sweat Patch.         382
  • Figure 94. Sweat sensor incorporated into face mask.      382
  • Figure 95. D-mine Pump.       383
  • Figure 96. Lab-on-Skin™.        384
  • Figure 97. My UV Patch.          385
  • Figure 98. Overview layers of L'Oreal skin patch.   386
  • Figure 99. Brilliantly Warm.  387
  • Figure 100. Ava Fertility tracker.         388
  • Figure 101. S9 Pro breast pump.       388
  • Figure 102. Tempdrop.             388
  • Figure 103. Digitsole Smartshoe.     390
  • Figure 104. Schematic of smart wound dressing.  392
  • Figure 105. REPAIR electronic patch concept. Image courtesy of the University of Pittsburgh School of Medicine.         393
  • Figure 106. ABENA Nova smart diaper.         394
  • Figure 107. Honda Walking Assist.  395
  • Figure 108. ABLE Exoskeleton.           396
  • Figure 109. ANGEL-LEGS-M10.          396
  • Figure 110. AGADEXO Shoulder.       396
  • Figure 111. Enyware. 396
  • Figure 112. AWN-12 occupational powered hip exoskeleton.        397
  • Figure 113. CarrySuit passive upper-body exoskeleton.    397
  • Figure 114. Axosuit lower body medical exoskeleton.         397
  • Figure 115. FreeGait. 398
  • Figure 116. InMotion Arm.     398
  • Figure 117. Biomotum SPARK.            398
  • Figure 118. PowerWalk energy.           398
  • Figure 119. Keeogo™. 399
  • Figure 120. MATE-XT. 399
  • Figure 121. CDYS passive shoulder support exoskeleton.                399
  • Figure 122. ALDAK.     400
  • Figure 123. HAL® Lower Limb.             400
  • Figure 124. DARWING PA.     400
  • Figure 125. Dephy ExoBoot. 400
  • Figure 126. EksoNR.  401
  • Figure 127. Emovo Assist.     401
  • Figure 128. HAPO.       401
  • Figure 129. Atlas passive modular exoskeleton.     402
  • Figure 130. ExoAtlet II.             402
  • Figure 131. ExoHeaver.            402
  • Figure 132. Exy ONE. 403
  • Figure 133. ExoArm.  403
  • Figure 134. ExoMotus.             403
  • Figure 135. Gloreha Sinfonia.             403
  • Figure 136. BELK Knee Exoskeleton.               404
  • Figure 137. Apex exosuit.       404
  • Figure 138. Honda Walking Assist.  404
  • Figure 139. BionicBack.          405
  • Figure 140. Muscle Suit.         405
  • Figure 141.Japet.W powered exoskeleton. 405
  • Figure 142.Ski~Mojo. 406
  • Figure 143. AIRFRAME passive shoulder.    406
  • Figure 144.FORTIS passive tool holding exoskeleton.         407
  • Figure 145. Integrated Soldier Exoskeleton (UPRISE®).       407
  • Figure 146.UNILEXA passive exoskeleton.  407
  • Figure 147.HandTutor.             407
  • Figure 148.MyoPro®. 408
  • Figure 149.Myosuit.  408
  • Figure 150. archelis wearable chair.               408
  • Figure 151.Chairless Chair.  408
  • Figure 152.Indego.     409
  • Figure 153. Polyspine.              409
  • Figure 154. Hercule powered lower body exoskeleton.      409
  • Figure 155. ReStore Soft Exo-Suit.   410
  • Figure 156. Hand of Hope.    410
  • Figure 157. REX powered exoskeleton.         410
  • Figure 158. Elevate Ski Exoskeleton.              411
  • Figure 159. UGO210 exoskeleton.    411
  • Figure 160. EsoGLOVE Pro.   411
  • Figure 161. Roki.          411
  • Figure 162. Powered Clothing.           412
  • Figure 163. Againer shock absorbing exoskeleton.               412
  • Figure 164. EasyWalk Assistive Soft Exoskeleton Walker. 412
  • Figure 165. Skel-Ex.    412
  • Figure 166. EXO-H3 lower limbs robotic exoskeleton.        413
  • Figure 167. Ikan Tilta Max Armor-Man 2        413
  • Figure 168. AMADEO hand and finger robotic rehabilitation device.          413
  • Figure 169.Atalante autonomous lower-body exoskeleton.            414
  • Figure 170. Global Market for Wearable Medical & Healthcare Electronics 2020-2035 (Million Units).                416
  • Figure 171. Global market for Wearable medical & healthcare electronics, 2020-2035, millions of US dollars.              417
  • Figure 172. Libre 3.     420
  • Figure 173. Libre Sense Glucose Sport Biowearable.          421
  • Figure 174. AcuPebble SA100.           422
  • Figure 175. Vitalgram®.            424
  • Figure 176. Alertgy NICGM wristband.          427
  • Figure 177. ALLEVX.   428
  • Figure 178. Gastric Alimetry.                429
  • Figure 179. Alva Health stroke monitor.       430
  • Figure 180. amofit S. 432
  • Figure 181. MIT and Amorepacific's chip-free skin sensor.              433
  • Figure 182. Sigi™ Insulin Management System.       435
  • Figure 183. The Apollo wearable device.      437
  • Figure 184. Apos3.     438
  • Figure 185. Artemis is  smart clothing system.        440
  • Figure 186. KneeStim.              441
  • Figure 187. PaciBreath.           443
  • Figure 188. Structure of Azalea Vision’s smart contact lens.         445
  • Figure 189. Belun® Ring.         446
  • Figure 190. Evo Patch.              451
  • Figure 191. Neuronaute wearable.   455
  • Figure 192. biped.ai device.  456
  • Figure 193. circul+ smart ring.            460
  • Figure 194. Cala Trio. 464
  • Figure 195. BioSleeve®.            472
  • Figure 196. Cognito's gamma stimulation device. 473
  • Figure 197. Cogwear Headband.      474
  • Figure 198. First Relief.            481
  • Figure 199. Jewel Patch Wearable Cardioverter Defibrillator .       485
  • Figure 200. enFuse.   487
  • Figure 201. EOPatch. 489
  • Figure 202. Epilog.      491
  • Figure 203. FloPatch. 498
  • Figure 204. gSKIN®.    509
  • Figure 205. Hinge Health wearable therapy devices.           511
  • Figure 206. MYSA - 'Relax Shirt'.         512
  • Figure 207. Atusa system.     521
  • Figure 208. Kenzen ECHO Smart Patch.       525
  • Figure 209. The Kernel Flow headset.            526
  • Figure 210. KnowU™. 528
  • Figure 211. LifeSpan patch.  538
  • Figure 212. Mawi Heart Patch.            541
  • Figure 213. MetaSCOPE.        542
  • Figure 214. WalkAid. 547
  • Figure 215. Monarch™ Wireless Wearable Biosensor          548
  • Figure 216. Modoo device.    553
  • Figure 217. Munevo Drive.     557
  • Figure 218. Electroskin integration schematic.        560
  • Figure 219. Modius Sleep wearable device.               565
  • Figure 220. Neuphony Headband.   566
  • Figure 221. Nix Biosensors patch.    569
  • Figure 222. BODY-CASE.        572
  • Figure 223. Otolith wearable device.              574
  • Figure 224. Peerbridge Cor.  578
  • Figure 225. Point Fit Technology skin patch.              582
  • Figure 226. Sylvee 1.0.             588
  • Figure 227. RootiRx.  592
  • Figure 228. Sylvee 1.0.             594
  • Figure 229. Silvertree Reach.               606
  • Figure 230. Smardii smart diaper.    610
  • Figure 231. Subcuject.             617
  • Figure 232. Nerivio.    621
  • Figure 233. Feelzing Energy Patch.   622
  • Figure 234. Ultrahuman wearable glucose monitor.            625
  • Figure 235. Vaxxas patch.      628
  • Figure 236. S-Patch Ex.            638
  • Figure 237. Zeit Medical Wearable Headband.        641
  • Figure 238. Vuzix Blade.          648
  • Figure 239. AR operation.       650
  • Figure 240. TCL Leiniao Air.   651
  • Figure 241. Engo Eyewear.     652
  • Figure 242. Lenovo ThinkReality A3.               653
  • Figure 243. Magic Leap 1.      653
  • Figure 244. Microsoft HoloLens 2.   653
  • Figure 245. OPPO Air Glass AR.         654
  • Figure 246. Snap Spectacles AR (4th gen). 654
  • Figure 247. Vuzix Blade Upgraded.  654
  • Figure 248. NReal Light MR smart glasses. 655
  • Figure 249. Schematic for configuration of full colour microLED display               657
  • Figure 250. BOE glass-based backplane process. 658
  • Figure 251. MSI curved quantum dot miniLED display.      659
  • Figure 252. Nanolumi Chameleon® G Film in LED/LCD Monitor. 660
  • Figure 253. Vuzix microLED microdisplay Smart Glasses.               661
  • Figure 254. Pixels per inch roadmap of µ-LED displays from 2007 to 2019.         662
  • Figure 255. Mass transfer for µLED chips.  664
  • Figure 256. Schematic diagram of mass transfer technologies.   666
  • Figure 257. Comparison of microLED with other display technologies.  669
  • Figure 258. Lextar 10.6 inch transparent microLED display.           670
  • Figure 259. Transition to borderless design.              671
  • Figure 260. Mojo Vision smart contact lens with an embedded MicroLED display.         673
  • Figure 261. Cellid AR glasses, Exploded version.   673
  • Figure 262. Air Glass.               674
  • Figure 263. Panasonic MeganeX.     674
  • Figure 264. Thunderbird Smart Glasses Pioneer Edition. 675
  • Figure 265. Vuzix microLED micro display Smart Glasses.              676
  • Figure 266. Leopard demo glasses by WaveOptics.             676
  • Figure 267. Global market for gaming and entertainment wearable technology, 2020-2035  (Million Units). 678
  • Figure 268. Global market for gaming and entertainment wearable technology, 2020-2035, millions of US dollars.       679
  • Figure 269. Skinetic vest.       680
  • Figure 270. IntelliPix™ design for 0.26″ 1080p microLED display. 688
  • Figure 271. Dapeng DPVR P1 Pro 4k VR all-in-one VR glasses.     690
  • Figure 272. Vive Focus 3 VR headset Wrist Tracker.              700
  • Figure 273. Huawei smart glasses. 701
  • Figure 274. Jade Bird Display micro displays.           706
  • Figure 275. JBD's 0.13-inch panel.   707
  • Figure 276. 0.22” Monolithic full colour microLED panel and inset shows a conceptual monolithic polychrome projector with a waveguide.     707
  • Figure 277. Kura Technologies' AR Glasses.              710
  • Figure 278. Smart contact lenses schematic.          720
  • Figure 279. OQmented technology for AR smart glasses. 723
  • Figure 280. VISIRIUM® Technology smart glasses prototype.         728
  • Figure 281. SenseGlove Nova.            730
  • Figure 282. MeganeX.               731
  • Figure 283.  A micro-display with a stacked-RGB pixel array, where each pixel is an RGB-emitting stacked microLED device (left). The micro-display showing a video of fireworks at night, demonstrating the full-colour capability (right). N.B. Areas around the display   734
  • Figure 284. JioGlass mixed reality glasses type headset.  735
  • Figure 285. Vuzix uLED display engine.         744
  • Figure 286. Xiaomi Smart Glasses. 745
  • Figure 287. SWOT analysis for printed, flexible and hybrid electronics in E-textiles.      752
  • Figure 288. Timeline of the different generations of electronic textiles.  754
  • Figure 289. Examples of each generation of electronic textiles.   754
  • Figure 290. Conductive yarns.            759
  • Figure 291. Electronics integration in textiles: (a) textile-adapted, (b) textile-integrated (c) textile-basd.                762
  • Figure 292. Stretchable polymer encapsulation microelectronics on textiles.   767
  • Figure 293. Wove Band.          768
  • Figure 294. Wearable graphene medical sensor.   769
  • Figure 295. Conductive yarns.            771
  • Figure 296. Classification of conductive materials and process technology.      772
  • Figure 297. Structure diagram of Ti3C2Tx.  781
  • Figure 298. Structure of hexagonal boron nitride.  782
  • Figure 299. BN nanosheet textiles application.       784
  • Figure 300. SEM image of cotton fibers with PEDOT:PSS coating.              785
  • Figure 301. Schematic of inkjet-printed processes.             790
  • Figure 302: Silver nanocomposite ink after sintering and resin bonding of discrete electronic components. 796
  • Figure 303. Schematic summary of the formulation of silver conductive inks.  797
  • Figure 304. Copper based inks on flexible substrate.          799
  • Figure 305: Schematic of single-walled carbon nanotube.             802
  • Figure 306. Stretchable SWNT memory and logic devices for wearable electronics.     803
  • Figure 307. Graphene layer structure schematic.  805
  • Figure 308. BGT Materials graphene ink product.   806
  • Figure 309. PCM cooling vest.             809
  • Figure 310. SMPU-treated cotton fabrics.   810
  • Figure 311. Schematics of DIAPLEX membrane.    811
  • Figure 312. SMP energy storage textiles.      811
  • Figure 313. Nike x Acronym Blazer Sneakers.           815
  • Figure 314. Adidas 3D Runner Pump.            816
  • Figure 315. Under Armour Archi-TechFuturist.         816
  • Figure 316. Reebok Reebok Liquid Speed.  816
  • Figure 317. Radiate sports vest.        817
  • Figure 318. Adidas smart insole.       820
  • Figure 319. Applications of E-textiles.           824
  • Figure 320. EXO2 Stormwalker 2 Heated Jacket.    826
  • Figure 321. Flexible polymer-based heated glove, sock and slipper.         828
  • Figure 322. ThermaCell Rechargeable Heated Insoles.     828
  • Figure 323. Myant sleeve tracks biochemical indicators in sweat.             830
  • Figure 324. Flexible polymer-based therapeutic products.             831
  • Figure 325. iStimUweaR .       832
  • Figure 326. Digitsole Smartshoe.     836
  • Figure 327. Basketball referee Royole fully flexible display.            837
  • Figure 328. A mechanical glove, Robo-Glove, with pressure sensors and other sensors jointly developed by General Motors and NASA.             839
  • Figure 329. Power supply mechanisms for electronic textiles and wearables.   840
  • Figure 330. Micro-scale energy scavenging techniques.   843
  • Figure 331. Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper. 845
  • Figure 332. 3D printed piezoelectric material.         847
  • Figure 333. Application of electronic textiles in AR/VR.      848
  • Figure 334. Global market for printed and flexible E-textiles and smart apparel electronics, 2020-2035  (Million Units).              850
  • Figure 335. Global market for printed and flexible E-textiles and smart apparel electronics, 2020-2035, millions of US dollars.              852
  • Figure 336. BioMan+.               856
  • Figure 337. EXO Glove.            857
  • Figure 338. LED hooded jacket.         861
  • Figure 339. Heated element module.            862
  • Figure 340. Carhartt X-1 Smart Heated Vest.            870
  • Figure 341. Cionic Neural Sleeve.     873
  • Figure 342. Graphene dress. The dress changes colour in sync with the wearer’s breathing.   876
  • Figure 343. Descante Solar Thermo insulated jacket.         877
  • Figure 344. G+ Graphene Aero Jersey.            878
  • Figure 345. HiFlex strain/pressure sensor.  887
  • Figure 346. KiTT motion tracking knee sleeve.          890
  • Figure 347. Healables app-controlled electrotherapy device.       896
  • Figure 348. LumeoLoop device.         910
  • Figure 349. Electroskin integration schematic.        916
  • Figure 350. Nextiles’ compression garments.          918
  • Figure 351. Nextiles e-fabric.               918
  • Figure 352 .Nuada.    921
  • Figure 353. Palarum PUP smart socks.         927
  • Figure 354. Smardii smart diaper.    939
  • Figure 355. Softmatter compression garment.        941
  • Figure 356. Softmatter sports bra with a woven ECG sensor.         941
  • Figure 357. MoCap Pro Glove.             943
  • Figure 358. Teslasuit.                947
  • Figure 359. ZOZOFIT wearable at-home 3D body scanner.              962
  • Figure 360. YouCare smart shirt.       963
  • Figure 361. SWOT analysis for printed, flexible and hybrid electronics in energy.             966
  • Figure 362. Flexible batteries on the market.            967
  • Figure 363. Various architectures for flexible and stretchable electrochemical energy storage.            970
  • Figure 364. Types of flexible batteries.           972
  • Figure 365. Materials and design structures in flexible lithium ion batteries.      973
  • Figure 366. Flexible/stretchable LIBs with different structures.    975
  • Figure 367. a–c) Schematic illustration of coaxial (a), twisted (b), and stretchable (c) LIBs.     978
  • Figure 368. a) Schematic illustration of the fabrication of the superstretchy LIB based on an MWCNT/LMO composite fiber and an MWCNT/LTO composite fiber. b,c) Photograph (b) and the schematic illustration (c) of a stretchable fiber-shaped battery under stretching conditions. d) Schematic illustration of the spring-like stretchable LIB. e) SEM images of a fiberat different strains. f) Evolution of specific capacitance with strain. d–f)                979
  • Figure 369. Origami disposable battery.       980
  • Figure 370. Zn–MnO2 batteries produced by Brightvolt.    982
  • Figure 371. Various applications of printed paper batteries.          983
  • Figure 372.Schematic representation of the main components of a battery.      983
  • Figure 373. Schematic of a printed battery in a sandwich cell architecture, where the anode and cathode of the battery are stacked together.            985
  • Figure 374. Sakuú's Swift Print 3D-printed solid-state battery cells.         998
  • Figure 375. Manufacturing Processes for Conventional Batteries (I), 3D Microbatteries (II), and 3D-Printed Batteries (III).                998
  • Figure 376. Examples of applications of thin film batteries.            1006
  • Figure 377. Capacities and voltage windows of various cathode and anode materials.               1007
  • Figure 378. Traditional lithium-ion battery (left), solid state battery (right).          1009
  • Figure 379. Stretchable lithium-air battery for wearable electronics.       1012
  • Figure 380. Ag–Zn batteries produced by Imprint Energy. 1015
  • Figure 381. Transparent batteries.    1019
  • Figure 382. Degradable batteries.    1021
  • Figure 383 . Fraunhofer IFAM printed electrodes.   1026
  • Figure 384. Ragone plots of diverse batteries and the commonly used electronics powered by flexible batteries.          1026
  • Figure 385. Schematic of the structure of stretchable LIBs.           1032
  • Figure 386. Electrochemical performance of materials in flexible LIBs. 1032
  • Figure 387. Main printing methods for supercapacitors.  1045
  • Figure 388. Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper. 1054
  • Figure 389. Origami-like silicon solar cells.                1055
  • Figure 390. Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper. 1056
  • Figure 391. Concept of microwave-transparent heaters for automotive radars.               1059
  • Figure 392. Defrosting and defogging transparent heater applications.  1060
  • Figure 393. Global market for printed and flexible energy storage, generation and harvesting electronics, 2020-2035 by type (Volume).              1073
  • Figure 394. Global market for printed and flexible energy storage, generation and harvesting electronics, 2020-2035, millions of US dollars.  1075

 

The Global Market for Wearable Electronics and Sensors 2025-2035
The Global Market for Wearable Electronics and Sensors 2025-2035
PDF download.

The Global Market for Wearable Electronics and Sensors 2025-2035
The Global Market for Wearable Electronics and Sensors 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com