The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Alternatives and PFAS Treatment 2025-2035

0

cover

cover

  • Published: December 2024
  • Pages: 336
  • Tables: 103
  • Figures: 18

 

Currently, PFAS materials remain crucial in various industries including semiconductors, textiles, food packaging, electronics, and automotive sectors, with applications ranging from water-repellent coatings to high-performance materials for critical technologies. Market dynamics are heavily influenced by regional regulatory frameworks, particularly in Europe and North America, where stringent regulations are accelerating the transition away from traditional PFAS. The semiconductor industry represents a critical use case, where PFAS remains essential for advanced manufacturing processes, though efforts are underway to develop alternatives. Similarly, the automotive and electronics sectors continue to rely on PFAS for specific applications while actively pursuing substitutes.

The PFAS alternatives market is experiencing rapid growth, with innovative solutions emerging across multiple sectors. These include silicon-based materials, hydrocarbon technologies, bio-based alternatives, and novel polymer systems. The textiles and food packaging industries are leading the transition to PFAS-free alternatives, driven by consumer awareness and regulatory requirements. However, technical performance gaps and cost considerations remain significant challenges in many applications. PFAS treatment and remediation technologies represent a growing market segment, driven by the need to address environmental contamination. Current technologies include advanced oxidation processes, membrane filtration, adsorption systems, and emerging destruction technologies. The water treatment sector, in particular, is seeing significant investment in PFAS removal technologies.

Looking toward 2035, the market is expected to undergo substantial changes. Traditional PFAS usage is projected to decline significantly in non-essential applications, while the alternatives market is forecast to experience robust growth. Critical industries like semiconductors and medical devices may retain specific PFAS applications where alternatives are not yet viable, but with enhanced controls and containment measures.

The treatment technologies market is expected to expand considerably, driven by stricter environmental regulations and growing remediation requirements. Innovation in treatment methods, particularly in destruction technologies and bio-friendly approaches, is likely to accelerate, leading to more cost-effective and efficient solutions. Key challenges for the industry include developing alternatives that match PFAS performance in critical applications, managing transition costs, and ensuring effective treatment solutions. The market outlook varies significantly by region and application, with developed markets leading the transition to alternatives while emerging markets may continue PFAS use in certain applications. Success in this evolving market will depend on technological innovation, regulatory compliance capabilities, and the ability to balance performance requirements with environmental considerations. Companies that can effectively navigate these challenges while developing sustainable solutions are likely to capture significant market opportunities in both alternatives and treatment technologies.

The industry's future will be shaped by continued regulatory evolution, technological advancement, and growing emphasis on sustainable solutions, leading to a transformed market landscape by 2035 characterized by reduced PFAS usage, widespread adoption of alternatives, and advanced treatment capabilities.

The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Alternatives  and PFAS Treatment 2025-2035 provides an in-depth analysis of the global PFAS sector, including detailed examination of emerging PFAS alternatives and treatment technologies. The study offers strategic insights into market trends, regulatory impacts, and technological developments shaping the industry through 2035. The report covers critical market segments including:

  • Traditional PFAS materials and applications
  • PFAS alternatives across multiple industries
  • PFAS treatment and remediation technologies
  • Industry-specific usage and transition strategies
  • Regulatory compliance and future outlook

 

Key industry verticals analyzed include:

  • Semiconductors and electronics
  • Textiles and clothing
  • Food packaging
  • Paints and coatings
  • Ion exchange membranes
  • Energy storage and conversion
  • Low-loss materials for 5G
  • Automotive and transportation
  • Medical devices
  • Firefighting foams
  • Cosmetics and personal care

 

The study provides detailed analysis of PFAS alternatives and substitutes, including:

  • Non-fluorinated surfactants
  • Bio-based materials
  • Silicon-based alternatives
  • Hydrocarbon technologies
  • Novel polymer systems
  • Green chemistry solutions
  • Emerging sustainable materials

 

Comprehensive coverage of PFAS treatment technologies encompasses:

  • Water treatment methods
  • Soil remediation
  • Destruction technologies
  • Bio-friendly approaches
  • Advanced oxidation processes
  • Membrane filtration
  • Adsorption technologies

 

The report examines key market drivers including:

  • Increasing regulatory pressure
  • Growing environmental concerns
  • Consumer awareness
  • Industry sustainability initiatives
  • Technological advancement
  • Cost considerations
  • Performance requirements

 

Market challenges addressed include:

  • Technical performance gaps
  • Implementation costs
  • Regulatory compliance
  • Supply chain transitions
  • Industry-specific requirements
  • Environmental impacts
  • Treatment effectiveness

 

The study provides detailed market data and forecasts:

  • Market size and growth projections
  • Regional market analysis
  • Industry segment breakdown
  • Technology adoption rates
  • Investment trends
  • Cost comparisons
  • Market opportunities

 

Regulatory analysis covers:

  • Global regulatory landscape
  • Regional compliance requirements
  • Industry-specific regulations
  • Future regulatory trends
  • Implementation timelines
  • Enforcement mechanisms
  • Policy impacts

 

The report includes over 500 company profiles and competitive analysis covering:

  • PFAS manufacturers
  • Alternative material developers
  • Treatment technology providers
  • Industry end-users
  • Research organizations
  • Technology start-ups

 

Companies profiled include Allonia, Aquagga, Cambiotics, Greenitio, Impermea Materials, Ionomr Innovations, Kemira, Lummus Technology, NovoMOF, Oxyle, Puraffinity, Revive Environmental, Veolia, Xyle and many more...

Technical assessment includes:

  • Material properties and performance
  • Application requirements
  • Processing technologies
  • Testing and validation
  • Environmental impact
  • Cost-effectiveness
  • Implementation challenges

 

Special focus areas include:

  • Green chemistry innovations
  • Circular economy approaches
  • Digital technologies
  • Sustainable alternatives
  • Treatment effectiveness
  • Cost optimization
  • Performance validation

 

Strategic insights provided:

  • Market entry strategies
  • Technology selection
  • Risk assessment
  • Investment planning
  • Regulatory compliance
  • Supply chain optimization
  • Future scenarios

 

This essential intelligence resource provides decision-makers with comprehensive data and analysis to navigate the complex PFAS landscape and capitalize on emerging opportunities in alternatives and treatment technologies. The report helps stakeholders understand market dynamics, assess competitive threats, and develop effective strategies for PFAS transition and compliance. The analysis is based on extensive primary research including:

  • Industry interviews
  • Technology assessment
  • Patent analysis
  • Regulatory review
  • Market surveys
  • Performance testing
  • Cost analysis

 

1             EXECUTIVE SUMMARY            17

  • 1.1        Introduction to PFAS 17
  • 1.2        Definition and Overview of PFAS       18
    • 1.2.1    Chemical Structure and Properties 19
    • 1.2.2    Historical Development and Use      20
  • 1.3        Types of PFAS 21
    • 1.3.1    Non-polymeric PFAS 22
      • 1.3.1.1 Long-Chain PFAS        22
      • 1.3.1.2 Short-Chain PFAS       23
      • 1.3.1.3 Other non-polymeric PFAS   24
    • 1.3.2    Polymeric PFAS            25
      • 1.3.2.1 Fluoropolymers (FPs)               25
      • 1.3.2.2 Side-chain fluorinated polymers:     26
      • 1.3.2.3 Perfluoropolyethers   26
  • 1.4        Properties and Applications of PFAS              27
    • 1.4.1    Water and Oil Repellency       27
    • 1.4.2    Thermal and Chemical Stability        28
    • 1.4.3    Surfactant Properties               28
    • 1.4.4    Low Friction    29
    • 1.4.5    Electrical Insulation  29
    • 1.4.6    Film-Forming Abilities              30
    • 1.4.7    Atmospheric Stability               30
  • 1.5        Environmental and Health Concerns             30
    • 1.5.1    Persistence in the Environment         31
    • 1.5.2    Bioaccumulation        32
    • 1.5.3    Toxicity and Health Effects    33
    • 1.5.4    Environmental Contamination           34
  • 1.6        PFAS Alternatives        35
  • 1.7        Analytical techniques              37
  • 1.8        Manufacturing/handling/import/export       39
  • 1.9        Storage/disposal/treatment/purification     40
  • 1.10     Water quality management  42
  • 1.11     Alternative technologies and supply chains              44

 

2             GLOBAL REGULATORY LANDSCAPE               46

  • 2.1        Impact of growing PFAS regulation  46
  • 2.2        International Agreements      49
  • 2.3        European Union Regulations               49
  • 2.4        United States Regulations     50
    • 2.4.1    Federal regulations    50
    • 2.4.2    State-Level Regulations          52
  • 2.5        Asian Regulations       54
    • 2.5.1    Japan  54
      • 2.5.1.1 Chemical Substances Control Law (CSCL)               54
      • 2.5.1.2 Water Quality Standards        54
    • 2.5.2    China  55
      • 2.5.2.1 List of New Contaminants Under Priority Control  55
      • 2.5.2.2 Catalog of Toxic Chemicals Under Severe Restrictions     55
      • 2.5.2.3 New Pollutants Control Action Plan                56
    • 2.5.3    Taiwan 56
      • 2.5.3.1 Toxic and Chemical Substances of Concern Act    56
    • 2.5.4    Australia and New Zealand   56
    • 2.5.5    Canada             57
    • 2.5.6    South Korea    57
  • 2.6        Global Regulatory Trends and Outlook         58

 

3             INDUSTRY-SPECIFIC PFAS USAGE  59

  • 3.1        Semiconductors          59
    • 3.1.1    Importance of PFAS   59
    • 3.1.2    Front-end processes 61
      • 3.1.2.1 Lithography     61
      • 3.1.2.2 Wet etching solutions              62
      • 3.1.2.3 Chiller coolants for dry etchers          63
      • 3.1.2.4 Piping and valves         63
    • 3.1.3    Back-end processes 63
    • 3.1.3.1 Interconnects and Packaging Materials       63
    • 3.1.3.2 Molding materials       64
    • 3.1.3.3 Die attach materials  64
    • 3.1.3.4 Interlayer film for package substrates           64
    • 3.1.3.5 Thermal management             65
    • 3.1.4    Product life cycle and impact of PFAS           65
      • 3.1.4.1 Manufacturing Stage (Raw Materials)            65
      • 3.1.4.2 Usage Stage (Semiconductor Factory)         66
      • 3.1.4.3 Disposal Stage              66
    • 3.1.5    Environmental and Human Health Impacts              66
    • 3.1.6    Regulatory Trends Related to Semiconductors       67
    • 3.1.7    Exemptions     67
    • 3.1.8    Future Regulatory Trends       68
    • 3.1.9    Alternatives to PFAS  68
      • 3.1.9.1 Alkyl Polyglucoside and Polyoxyethylene Surfactants        69
      • 3.1.9.2 Non-PFAS Etching Solutions               69
      • 3.1.9.3 PTFE-Free Sliding Materials  69
      • 3.1.9.4 Metal oxide-based materials               69
      • 3.1.9.5 Fluoropolymer Alternatives   69
      • 3.1.9.6 Silicone-based Materials       70
      • 3.1.9.7 Hydrocarbon-based Surfactants      70
      • 3.1.9.8 Carbon Nanotubes and Graphene   71
      • 3.1.9.9 Engineered Polymers                71
      • 3.1.9.10            Supercritical CO2 Technology            72
      • 3.1.9.11            Plasma Technologies                72
      • 3.1.9.12            Sol-Gel Materials        73
      • 3.1.9.13            Biodegradable Polymers        73
  • 3.2        Textiles and Clothing 74
    • 3.2.1    Overview           74
    • 3.2.2    PFAS in Water-Repellent Materials  75
    • 3.2.3    Stain-Resistant Treatments  75
    • 3.2.4    Regulatory Impact on Water-Repellent Clothing    76
    • 3.2.5    Industry Initiatives and Commitments         77
    • 3.2.6    Alternatives to PFAS  78
      • 3.2.6.1 Enhanced surface treatments            79
      • 3.2.6.2 Non-fluorinated treatments 79
      • 3.2.6.3 Biomimetic approaches         80
      • 3.2.6.4 Nano-structured surfaces    81
      • 3.2.6.5 Wax-based additives 81
      • 3.2.6.6 Plasma treatments     82
      • 3.2.6.7 Sol-gel coatings            82
      • 3.2.6.8 Superhydrophobic coatings 83
      • 3.2.6.9 Biodegradable Polymer Coatings     84
      • 3.2.6.10            Graphene-based Coatings    84
      • 3.2.6.11            Enzyme-based Treatments   84
      • 3.2.6.12            Companies     85
  • 3.3        Food Packaging           87
    • 3.3.1    Sustainable packaging            87
      • 3.3.1.1 PFAS in Grease-Resistant Packaging             87
      • 3.3.1.2 Other applications     88
      • 3.3.1.3 Regulatory Trends in Food Contact Materials           88
    • 3.3.2    Alternatives to PFAS  90
      • 3.3.2.1 Biobased materials    90
        • 3.3.2.1.1           Polylactic Acid (PLA) 90
        • 3.3.2.1.2           Polyhydroxyalkanoates (PHAs)          91
        • 3.3.2.1.3           Cellulose-based materials   91
          • 3.3.2.1.3.1      Nano-fibrillated cellulose (NFC)       92
          • 3.3.2.1.3.2      Bacterial Nanocellulose (BNC)          93
        • 3.3.2.1.4           Silicon-based Alternatives     94
        • 3.3.2.1.5           Natural Waxes and Resins    95
        • 3.3.2.1.6           Engineered Paper and Board               96
        • 3.3.2.1.7           Nanocomposites        96
        • 3.3.2.1.8           Plasma Treatments    97
        • 3.3.2.1.9           Biodegradable Polymer Blends          98
        • 3.3.2.1.10        Chemically Modified Natural Polymers        99
        • 3.3.2.1.11        Molded Fiber  101
      • 3.3.2.2 PFAS-free coatings for food packaging         101
        • 3.3.2.2.1           Silicone-based Coatings:       101
        • 3.3.2.2.2           Bio-based Barrier Coatings   102
        • 3.3.2.2.3           Nanocellulose Coatings         103
        • 3.3.2.2.4           Superhydrophobic and Omniphobic Coatings         104
        • 3.3.2.2.5           Clay-based Nanocomposite Coatings          105
        • 3.3.2.2.6           Coated Papers              106
      • 3.3.2.3 Companies     106
  • 3.4        Paints and Coatings  109
    • 3.4.1    Overview           109
    • 3.4.2    Applications   109
    • 3.4.3    Alternatives to PFAS  110
      • 3.4.3.1 Silicon-Based Alternatives:   110
      • 3.4.3.2 Hydrocarbon-Based Alternatives:    111
      • 3.4.3.3 Nanomaterials              111
      • 3.4.3.4 Plasma-Based Surface Treatments 112
      • 3.4.3.5 Inorganic Alternatives               113
      • 3.4.3.6 Bio-based Polymers: 113
      • 3.4.3.7 Dendritic Polymers    114
      • 3.4.3.8 Zwitterionic Polymers               114
      • 3.4.3.9 Graphene-based Coatings    115
      • 3.4.3.10            Hybrid Organic-Inorganic Coatings 115
      • 3.4.3.11            Companies     115
  • 3.5        Ion Exchange membranes     119
    • 3.5.1    Overview           119
      • 3.5.1.1 PFAS in Ion Exchange Membranes   120
    • 3.5.2    Proton Exchange Membranes             120
      • 3.5.2.1 Overview           120
      • 3.5.2.2 Proton Exchange Membrane Electrolyzers (PEMELs)          123
      • 3.5.2.3 Membrane Degradation          124
      • 3.5.2.4 Nafion 125
      • 3.5.2.5 Membrane electrode assembly (MEA)          127
    • 3.5.3    Manufacturing PFSA Membranes     128
    • 3.5.4    Enhancing PFSA Membranes              130
    • 3.5.5    Commercial PFSA membranes         131
    • 3.5.6    Catalyst Coated Membranes              132
      • 3.5.6.1 Alternatives to PFAS  133
    • 3.5.7    Membranes in Redox Flow Batteries               135
      • 3.5.7.1 Alternative Materials for RFB Membranes   136
    • 3.5.8    Alternatives to PFAS  138
      • 3.5.8.1 Alternative Polymer Materials             138
      • 3.5.8.2 Anion Exchange Membrane Technology (AEM) fuel cells   139
      • 3.5.8.3 Nanocellulose               140
      • 3.5.8.4 Boron-containing membranes           141
      • 3.5.8.5 Hydrocarbon-based membranes     141
      • 3.5.8.6 Metal-Organic Frameworks (MOFs) 142
        • 3.5.8.6.1           MOF Composite Membranes              143
      • 3.5.8.7 Graphene         144
      • 3.5.8.8 Companies     145
  • 3.6        Energy (excluding fuel cells) 146
    • 3.6.1    Overview           146
    • 3.6.2    Solar Panels   147
    • 3.6.3    Wind Turbines               147
      • 3.6.3.1 Blade Coatings             147
      • 3.6.3.2 Lubricants and Greases         148
      • 3.6.3.3 Electrical and Electronic Components         148
      • 3.6.3.4 Seals and Gaskets      148
    • 3.6.4    Lithium-Ion Batteries                149
      • 3.6.4.1 Electrode Binders       149
      • 3.6.4.2 Electrolyte Additives 150
      • 3.6.4.3 Separator Coatings    150
      • 3.6.4.4 Current Collector Coatings   150
      • 3.6.4.5 Gaskets and Seals      150
      • 3.6.4.6 Fluorinated Solvents in Electrode Manufacturing 150
      • 3.6.4.7 Surface Treatments   151
    • 3.6.5    Alternatives to PFAS  151
      • 3.6.5.1 Solar    152
        • 3.6.5.1.1           Ethylene Vinyl Acetate (EVA) Encapsulants               152
        • 3.6.5.1.2           Polyolefin Encapsulants        153
        • 3.6.5.1.3           Glass-Glass Module Design 153
        • 3.6.5.1.4           Bio-based Backsheets            154
      • 3.6.5.2 Wind Turbines               154
        • 3.6.5.2.1           Silicone-Based Coatings        154
        • 3.6.5.2.2           Nanocoatings 154
        • 3.6.5.2.3           Thermal De-icing Systems    155
        • 3.6.5.2.4           Polyurethane-Based Coatings            156
      • 3.6.5.3 Lithium-Ion Batteries                157
        • 3.6.5.3.1           Water-Soluble Binders             157
        • 3.6.5.3.2           Polyacrylic Acid (PAA) Based Binders            157
        • 3.6.5.3.3           Alginate-Based Binders          158
        • 3.6.5.3.4           Ionic Liquid Electrolytes          159
      • 3.6.5.4 Companies     160
  • 3.7        Low-loss materials for 5G      161
    • 3.7.1    Overview           161
      • 3.7.1.1 Organic PCB materials for 5G             162
    • 3.7.2    PTFE in 5G        163
      • 3.7.2.1 Properties         163
      • 3.7.2.2 PTFE-Based Laminates           164
      • 3.7.2.3 Regulations     165
      • 3.7.2.4 Commercial low-loss               166
    • 3.7.3    Alternatives to PFAS  167
      • 3.7.3.1 Liquid crystal polymers (LCP)             167
      • 3.7.3.2 Poly(p-phenylene ether) (PPE)            168
      • 3.7.3.3 Poly(p-phenylene oxide) (PPO)           168
      • 3.7.3.4 Hydrocarbon-based laminates          169
      • 3.7.3.5 Low Temperature Co-fired Ceramics (LTCC)             170
      • 3.7.3.6 Glass Substrates         172
  • 3.8        Cosmetics       174
    • 3.8.1    Overview           174
    • 3.8.2    Use in cosmetics         175
    • 3.8.3    Alternatives to PFAS  175
      • 3.8.3.1 Silicone-based Polymers       176
      • 3.8.3.2 Plant-based Waxes and Oils 176
      • 3.8.3.3 Naturally Derived Polymers  176
      • 3.8.3.4 Silica-based Materials             177
      • 3.8.3.5 Companies Developing PFAS Alternatives in Cosmetics  177
  • 3.9        Firefighting Foam        179
    • 3.9.1    Overview           179
    • 3.9.2    Aqueous Film-Forming Foam (AFFF)              179
    • 3.9.3    Environmental Contamination from AFFF Use        179
    • 3.9.4    Regulatory Pressures and Phase-Out Initiatives     180
    • 3.9.5    Alternatives to PFAS  181
      • 3.9.5.1 Fluorine-Free Foams (F3)      181
      • 3.9.5.2 Siloxane-Based Foams           182
      • 3.9.5.3 Protein-Based Foams              182
      • 3.9.5.4 Synthetic Detergent Foams (Syndet)              182
      • 3.9.5.5 Compressed Air Foam Systems (CAFS)        182
  • 3.10     Automotive      183
    • 3.10.1 Overview           183
    • 3.10.2 PFAS in Lubricants and Hydraulic Fluids     184
    • 3.10.3 Use in Fuel Systems and Engine Components        185
    • 3.10.4 Electric Vehicle             186
      • 3.10.4.1            PFAS in Electric Vehicles        186
      • 3.10.4.2            High-Voltage Cables 187
      • 3.10.4.3            Refrigerants    188
        • 3.10.4.3.1        Coolant Fluids in EVs               188
          • 3.10.4.3.2        Refrigerants for EVs   189
          • 3.10.4.3.3        Regulations     190
          • 3.10.4.3.4        PFAS-free Refrigerants            190
      • 3.10.4.4            Immersion Cooling for Li-ion Batteries          191
        • 3.10.4.4.1        Overview           191
        • 3.10.4.4.2        Single-phase Cooling               193
        • 3.10.4.4.3        Two-phase Cooling    194
        • 3.10.4.4.4        Companies     196
        • 3.10.4.4.5        PFAS-based Coolants in Immersion Cooling for EVs           196
    • 3.10.5 Alternatives to PFAS  198
      • 3.10.5.1            Lubricants and Greases         199
      • 3.10.5.2            Fuel System Components     200
      • 3.10.5.3            Surface Treatments and Coatings    200
      • 3.10.5.4            Gaskets and Seals      201
      • 3.10.5.5            Hydraulic Fluids           202
      • 3.10.5.6            Electrical and Electronic Components         203
      • 3.10.5.7            Paint and Coatings     203
      • 3.10.5.8            Windshield and Glass Treatments   204
  • 3.11     Electronics      205
    • 3.11.1 Overview           205
    • 3.11.2 PFAS in Printed Circuit Boards           206
    • 3.11.3 Cable and Wire Insulation     206
    • 3.11.4 Regulatory Challenges for Electronics Manufacturers       207
    • 3.11.5 Alternatives to PFAS  208
      • 3.11.5.1            Wires and Cables        208
      • 3.11.5.2            Coating              208
      • 3.11.5.3            Electronic Components         209
      • 3.11.5.4            Sealing and Lubricants           210
      • 3.11.5.5            Cleaning           210
      • 3.11.5.6            Companies     211
  • 3.12     Medical Devices           215
    • 3.12.1 Overview           215
    • 3.12.2 PFAS in Implantable Devices               216
    • 3.12.3 Diagnostic Equipment Applications               216
    • 3.12.4 Balancing Safety and Performance in Regulations               217
    • 3.12.5 Alternatives to PFAS  219
  • 3.13     Green hydrogen            220
    • 3.13.1 Electrolyzers   220
    • 3.13.2 Alternatives to PFAS  220
    • 3.13.3 Economic implications           221

 

4             PFAS ALTERNATIVES 222

  • 4.1        PFAS-Free Release Agents    222
    • 4.1.1    Silicone-Based Alternatives  222
    • 4.1.2    Hydrocarbon-Based Solutions           223
    • 4.1.3    Performance Comparisons  224
  • 4.2        Non-Fluorinated Surfactants and Dispersants       225
    • 4.2.1    Bio-Based Surfactants            226
    • 4.2.2    Silicon-Based Surfactants    227
    • 4.2.3    Hydrocarbon-Based Surfactants      228
  • 4.3        PFAS-Free Water and Oil-Repellent Materials          229
    • 4.3.1    Dendrimers and Hyperbranched Polymers                229
    • 4.3.2    PFA-Free Durable Water Repellent (DWR) Coatings             229
    • 4.3.3    Silicone-Based Repellents    230
    • 4.3.4    Nano-Structured Surfaces    231
  • 4.4        Fluorine-Free Liquid-Repellent Surfaces     233
    • 4.4.1    Superhydrophobic Coatings 233
    • 4.4.2    Omniphobic Surfaces              234
    • 4.4.3    Slippery Liquid-Infused Porous Surfaces (SLIPS)   235
  • 4.5        PFAS-Free Colorless Transparent Polyimide             236
    • 4.5.1    Novel Polymer Structures      236
    • 4.5.2    Applications in Flexible Electronics 237

 

5             PFAS DEGRADATION AND ELIMINATION     239

  • 5.1        Current methods for PFAS degradation and elimination   239
  • 5.2        Bio-friendly methods                240
    • 5.2.1    Phytoremediation       240
    • 5.2.2    Microbial Degradation             241
    • 5.2.3    Enzyme-Based Degradation 241
    • 5.2.4    Mycoremediation        242
    • 5.2.5    Biochar Adsorption    242
    • 5.2.6    Green Oxidation Methods     243
    • 5.2.7    Bio-based Adsorbents             245
    • 5.2.8    Algae-Based Systems              245
  • 5.3        Companies     247

 

6             PFAS TREATMENT       249

  • 6.1        Introduction    249
  • 6.2        Pathways for PFAS environmental contamination 250
  • 6.3        Regulations     251
  • 6.4        PFAS water treatment               252
    • 6.4.1    Introduction    252
    • 6.4.2    Applications   253
      • 6.4.2.1 Drinking water                253
      • 6.4.2.2 Aqueous film forming foam (AFFF)   254
      • 6.4.2.3 Landfill leachate          256
      • 6.4.2.4 Municipal wastewater treatment      257
      • 6.4.2.5 Industrial process and wastewater  258
      • 6.4.2.6 Sites with heavy PFAS contamination           259
      • 6.4.2.7 Point-of-use (POU) and point-of-entry (POE) filters and systems                261
    • 6.4.3    Applications   263
    • 6.4.4    PFAS treatment approaches                264
    • 6.4.5    Traditional removal technologies     266
      • 6.4.5.1 Adsorption: granular activated carbon (GAC)           266
      • 6.4.5.2 Adsorption: ion exchange resins (IER)           270
      • 6.4.5.3 Membrane filtration-reverse osmosis and nanofiltration 272
    • 6.4.6    Emerging removal technologies        274
      • 6.4.6.1 Foam fractionation and ozofractionation    276
        • 6.4.6.1.1           Polymeric sorbents    277
        • 6.4.6.1.2           Mineral-based sorbents          279
        • 6.4.6.1.3           Flocculation/coagulation       280
        • 6.4.6.1.4           Electrostatic coagulation/concentration     281
      • 6.4.6.2 Destruction technologies      282
        • 6.4.6.2.1           Thermal treatment      283
        • 6.4.6.2.2           Liquid-phase PFAS destruction         284
        • 6.4.6.2.3           Electrochemical oxidation    285
        • 6.4.6.2.4           Supercritical water oxidation (SCWO            287
        • 6.4.6.2.5           Hydrothermal alkaline treatment (HALT)     287
        • 6.4.6.2.6           Plasma treatment       289
        • 6.4.6.2.7           Photocatalysis              290
        • 6.4.6.2.8           Sonochemical oxidation        291
  • 6.5        PFAS Solids Treatment             293
    • 6.5.1    PFAS migration             293
    • 6.5.2    Soil washing (or soil scrubbing)         294
    • 6.5.3    Soil flushing    295
    • 6.5.4    Thermal desorption   296
    • 6.5.5    Phytoremediation       297
    • 6.5.6    In-situ immobilization              299
    • 6.5.7    Pyrolysis and gasification      299
    • 6.5.8    Plasma              301
    • 6.5.9    Supercritical water oxidation (SCWO)           302
  • 6.6        Companies     303

 

7             MARKET ANALYSIS AND FUTURE OUTLOOK             305

  • 7.1        Current Market Size and Segmentation        305
    • 7.1.1    Global PFAS Market Overview            305
    • 7.1.2    Regional Market Analysis      307
      • 7.1.2.1 North America              307
      • 7.1.2.2 Europe                307
      • 7.1.2.3 Asia-Pacific    308
      • 7.1.2.4 Latin America 308
      • 7.1.2.5 Middle East and Africa             308
    • 7.1.3    Market Segmentation by Industry    309
      • 7.1.3.1 Textiles and Apparel  309
      • 7.1.3.2 Food Packaging           310
      • 7.1.3.3 Firefighting Foams      310
      • 7.1.3.4 Electronics & semiconductors           310
      • 7.1.3.5 Automotive      310
      • 7.1.3.6 Aerospace        311
      • 7.1.3.7 Construction  311
      • 7.1.3.8 Others 311
  • 7.2        Impact of Regulations on Market Dynamics             312
    • 7.2.1    Shift from Long-Chain to Short-Chain PFAS              312
    • 7.2.2    Growth in PFAS-Free Alternatives Market    313
    • 7.2.3    Regional Market Shifts Due to Regulatory Differences       315
  • 7.3        Emerging Trends and Opportunities               316
    • 7.3.1    Green Chemistry Innovations             316
    • 7.3.2    Circular Economy Approaches          317
    • 7.3.3    Digital Technologies for PFAS Management              319
  • 7.4        Challenges and Barriers to PFAS Substitution         320
    • 7.4.1    Technical Performance Gaps              320
    • 7.4.2    Cost Considerations 321
    • 7.4.3    Regulatory Uncertainty            323
  • 7.5        Future Market Projections     324
    • 7.5.1    Short-Term Outlook (1-3 Years)          325
    • 7.5.2    Medium-Term Projections (3-5 Years)            326
    • 7.5.3    Long-Term Scenarios (5-10 Years)    327

 

8             RESEARCH METHODOLOGY              331

 

9             REFERENCES 332

 

List of Tables

  • Table 1. Established applications of PFAS. 17
  • Table 2. PFAS chemicals segmented by non-polymers vs polymers.        18
  • Table 3. Non-polymeric PFAS.            18
  • Table 4. Chemical structure and physiochemical properties of various perfluorinated surfactants.  19
  • Table 5. Examples of long-chain PFAS-Applications, Regulatory Status and Environmental and Health Effects.              22
  • Table 6. Examples of short-chain PFAS.       23
  • Table 7. Other non-polymeric PFAS.               24
  • Table 8. Examples of fluoropolymers.           25
  • Table 9. Examples of side-chain fluorinated polymers.     26
  • Table 10. Applications of PFAs.          27
  • Table 11. PFAS surfactant properties.            29
  • Table 12. List of PFAS alternatives.  35
  • Table 13. Common PFAS and their regulation.         46
  • Table 14. International PFAS regulations.    49
  • Table 15. European Union Regulations.       50
  • Table 16. United States Regulations.             52
  • Table 17. PFAS Regulations in Asia-Pacific Countries.       57
  • Table 18. Identified uses of PFAS in semiconductors.        59
  • Table 19. Alternatives to PFAS in Semiconductors.               68
  • Table 20. Key properties of PFAS in water-repellent materials.     75
  • Table 21. Initiatives by outdoor clothing companies to phase out PFCs.                77
  • Table 22. Comparative analysis of Alternatives to PFAS for textiles.          78
  • Table 23. Companies developing PFAS alternatives for textiles.  85
  • Table 24. Applications of PFAS in Food Packaging.              87
  • Table 25. Regulation related to PFAS in food contact materials.  89
  • Table 26. Applications of cellulose nanofibers (CNF).        92
  • Table 27. Companies developing PFAS alternatives for food packaging.               106
  • Table 28. Applications and purpose of PFAS in paints and coatings.        109
  • Table 29. Companies developing PFAS alternatives for paints and coatings.      115
  • Table 30. Applications of Ion Exchange Membranes.          119
  • Table 31. Key aspects of PEMELs.    123
  • Table 32. Membrane Degradation Processes Overview.    124
  • Table 33. PFSA Membranes & Key Players. 124
  • Table 34. Competing Membrane Materials.               125
  • Table 35. Comparative analysis of membrane properties.               126
  • Table 36. Processes for manufacturing of  perfluorosulfonic acid (PFSA) membranes.               129
  • Table 37. PFSA Resin Suppliers.        132
  • Table 38. CCM Production Technologies.    133
  • Table 39. Comparison of Coating Processes.           133
  • Table 40. Alternatives to PFAS in catalyst coated membranes.    133
  • Table 41. Key Properties and Considerations for RFB Membranes.           135
  • Table 42. PFSA Membrane Manufacturers for RFBs.            136
  • Table 43. Alternative Materials for RFB Membranes             137
  • Table 44. Alternative Polymer Materials for Ion Exchange Membranes.  138
  • Table 45. Hydrocarbon Membranes for PEM Fuel Cells.    142
  • Table 46. Companies developing PFA alternatives for fuel cell membranes.      145
  • Table 47. Identified uses of PFASs in the energy sector.    146
  • Table 48. Alternatives to PFAS in Energy by Market (Excluding Fuel Cells).           151
  • Table 49: Anti-icing and de-icing nanocoatings product and application developers.   155
  • Table 50. Companies developing alternatives to PFAS in energy (excluding fuel cells).                160
  • Table 51. Commercial low-loss organic laminates-key properties at 10 GHz.    162
  • Table 52. Key Properties of PTFE to Consider for 5G Applications.             163
  • Table 53. Applications of PTFE in 5G in a table         163
  • Table 54. Challenges in PTFE-based laminates in 5G.        164
  • Table 55. Key regulations affecting PFAS use in low-loss materials.          165
  • Table 56. Commercial low-loss materials suitable for 5G applications. 166
  • Table 57. Key low-loss materials suppliers.               166
  • Table 58. Alternatives to PFAS for low-loss applications in 5G      167
  • Table 59. Benchmarking LTCC materials suitable for 5G applications.   171
  • Table 60. Benchmarking of various glass substrates suitable for 5G applications.         172
  • Table 61. Applications of PFAS in cosmetics.           175
  • Table 62. Alternatives to PFAS for various functions in cosmetics.            175
  • Table 63. Companies developing PFAS alternatives in cosmetics.             177
  • Table 64. Applications of PFAS in Automotive Industry.     184
  • Table 65. Application of PFAS in Electric Vehicles.                187
  • Table 66.Suppliers of PFAS-free Coolants and Refrigerants for EVs.         191
  • Table 67.Immersion Fluids for EVs   192
  • Table 68. Immersion Cooling Fluids Requirements.             193
  • Table 69. Single-phase vs two-phase cooling.         195
  • Table 70. Companies producing Immersion Fluids for EVs.            196
  • Table 71. Alternatives to PFAS in the automotive sector.   198
  • Table 72. Use of PFAS in the electronics sector.     205
  • Table 73. Companies developing alternatives to PFAS in electronics & semiconductors.          211
  • Table 74. Applications of PFAS in Medical Devices.              215
  • Table 75. Alternatives to PFAS in medical devices.               219
  • Table 76. Readiness level of PFAS alternatives.       222
  • Table 77. Comparing PFAS-free alternatives to traditional PFAS-containing release agents.   224
  • Table 78. Novel PFAS-free CTPI structures.                237
  • Table 79. Applications of PFAS-free CTPIs in flexible electronics.               237
  • Table 80. Current methods for PFAS elimination . 239
  • Table 81. Companies developing processes for PFA degradation and elimination.         247
  • Table 82. PFAS drinking water treatment market forecast 2025-2035.    249
  • Table 83. Pathways for PFAS environmental contamination.         250
  • Table 84. Regulations on PFAS in water.       251
  • Table 85. PFAS treatment approaches.        264
  • Table 86. Removal technologies for PFAS in water.               266
  • Table 87. Suppliers of GAC media for PFAS removal applications.             267
  • Table 88. Emerging removal technologies for PFAS in water.          274
  • Table 89. Companies developing processes for PFAS water and solid treatment .          303
  • Table 90. Global PFAS Market Projection (2023-2035), Billions USD.       306
  • Table 91. Regional PFAS Market Projection (2023-2035), Billions USD.  308
  • Table 92. PFAS Market Segmentation by Industry (2023-2035), Billions USD.    311
  • Table 93. Long-Chain PFAS andShort-Chain PFAS Market Share 313
  • Table 94.PFAS-Free Alternatives Market Size from 2020 to 2035, (Billions USD).             314
  • Table 95. Regional Market Data (2023) for PFAS and trends.          315
  • Table 96. Market Opportunities for PFAS alternatives.        317
  • Table 97. Circular Economy Initiatives and Potential Impact.        318
  • Table 98. Digital Technology Applications and Market Potential. 319
  • Table 99. Performance Comparison Table. 321
  • Table 100. Cost Comparison Table-PFAS and PFAS alternatives.                322
  • Table 101. Market Size 2023-2026 (USD Billions). 325
  • Table 102. Market size 2026-2030 (USD Billions). 326
  • Table 103. Long-Term Market Projections (2035).  328

 

List of Figures

  • Figure 1. Types of PFAS.          21
  • Figure 2. Structure of PFAS-based polymer finishes.          24
  • Figure 3. Water and Oil Repellent Textile Coating. 28
  • Figure 4. Main PFAS exposure route.              31
  • Figure 5. Main sources of perfluorinated compounds (PFC) and general pathways that these compounds may take toward human exposure.    32
  • Figure 6. Main sources of perfluorinated compounds (PFC) and general pathways that these compounds may take toward human exposure.    34
  • Figure 7.  Photolithography process in semiconductor manufacturing. 60
  • Figure 8. PFAS containing Chemicals by Technology Node.            61
  • Figure 9. The photoresist application process in photolithography.          62
  • Figure 10: Contact angle on superhydrophobic coated surface. 83
  • Figure 11. PEMFC Working Principle.             121
  • Figure 12. Schematic representation of a Membrane Electrode Assembly (MEA).          128
  • Figure 13. Slippery Liquid-Infused Porous Surfaces (SLIPS).          236
  • Figure 14. Aclarity’s Octa system.    244
  • Figure 15. PFAS drinking water treatment market forecast 2025-2035.  249
  • Figure 16. Process for treatment of PFAS in water. 252
  • Figure 17. Global PFAS Market Projection (2023-2035), Billions USD.     307
  • Figure 18. Regional PFAS Market Projection (2023-2035), Billions USD. 309

 

 

The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Alternatives and PFAS Treatment 2025-2035
The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Alternatives and PFAS Treatment 2025-2035
PDF download.

The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Alternatives and PFAS Treatment 2025-2035
The Global Market for Per- and Polyfluoroalkyl Substances (PFAS), PFAS Alternatives and PFAS Treatment 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com