The Global Market for Quantum Computing 2025-2045

0

cover

cover

  • Published: January 2025
  • Pages: 308
  • Tables: 81
  • Figures: 54

 

The quantum computing market is experiencing a transformative phase, marked by significant technological advancements and increasing commercial interest. This growth is driven by multiple factors, including substantial government investments, private sector participation, and accelerating technological breakthroughs. In the current market landscape, hardware development commands the largest share of investment, particularly in superconducting qubits and trapped ion systems. Major technology companies like IBM, Google, and Microsoft continue to advance their quantum programs, while specialized companies such as IonQ, Rigetti, and PsiQuantum are making significant strides in their respective technologies. The market is also seeing increased activity in quantum software and applications, with companies developing quantum algorithms and use-case-specific solutions for industries including finance, pharmaceuticals, and logistics.

Cloud-based quantum computing services represent a rapidly growing market segment, enabling broader access to quantum capabilities without requiring direct hardware investment. Amazon Braket, IBM Quantum, and Microsoft Azure Quantum are leading this transformation, making quantum computing resources available to enterprises and researchers worldwide. This "quantum-as-a-service" model is expected to drive significant market growth in the near term.

Looking toward the future, the quantum computing market is expected to undergo several crucial transitions. The achievement of quantum advantage in specific applications will likely drive increased enterprise adoption, particularly in industries where quantum computing can provide significant competitive advantages. Financial services, drug discovery, and materials science are expected to be among the first sectors to realize practical quantum advantages. The market is also witnessing a shift from purely research-focused activities to more commercial applications. While early-stage quantum computers currently serve primarily research purposes, the development of error-corrected quantum systems in the coming years will enable more practical applications. This transition is expected to dramatically expand the market, particularly in the 2025-2030 timeframe.

Government investments continue to shape the market landscape, with major initiatives like the US National Quantum Initiative, China's quantum strategy, and the EU Quantum Flagship providing substantial funding and strategic direction. These programs, along with private sector investments, are creating a robust ecosystem for quantum technology development. Industry consolidation and specialization are expected to become more prominent features of the market as it matures. While some companies focus on full-stack quantum solutions, others are specializing in specific components of the quantum computing stack, from hardware components to application-specific software solutions.

The development of the quantum computing supply chain represents another crucial market aspect. Companies are investing in specialized component manufacturing, from control electronics to cryogenic systems, creating new market opportunities and potential bottlenecks. The market for quantum-specific components and materials is expected to grow significantly as quantum computers scale up. Despite these positive trends, the market faces several challenges. Technical hurdles in achieving fault-tolerant quantum computing, the need for skilled quantum workforce development, and the challenge of identifying near-term commercially viable applications all impact market growth. However, these challenges are driving innovation and creating opportunities for companies offering solutions to these specific problems.

The quantum computing market stands at an inflection point, with technological progress and commercial interest converging to create significant growth opportunities. While the path to widespread quantum computing adoption may be complex, the market's fundamental drivers remain strong, suggesting continued expansion and evolution in the coming years.

The Global Market for Quantum Computing 2025-2045 provides a comprehensive analysis of the quantum computing industry, market trends, technologies, and key players shaping this transformative sector. The report examines the evolution from the first to second quantum revolution and provides detailed insights into the current quantum computing landscape, including technical progress, persistent challenges, and key market developments. This extensive study covers the complete quantum computing ecosystem, from fundamental technologies and hardware architectures to software platforms and end-user applications. The report includes detailed analysis of various qubit technologies including superconducting, trapped ion, silicon spin, topological, photonic, and neutral atom approaches, with comprehensive SWOT analyses for each technology platform.

Key market segments analyzed include pharmaceuticals, chemicals, transportation, financial services, and automotive industries. The report delivers in-depth analysis of quantum chemistry, AI applications, quantum communications, and quantum sensing technologies, highlighting crossover opportunities and synergies between these fields. Detailed coverage of materials for quantum computing encompasses superconductors, photonics, silicon photonics, optical components, and various nanomaterials including 2D materials, carbon nanotubes, diamond, and metal-organic frameworks. The report examines material requirements, challenges, and opportunities across the quantum technology stack.

The market analysis section provides comprehensive investment data, including venture capital activity, M&A developments, corporate investments, and government funding initiatives. Global market forecasts from 2025 to 2045 cover hardware, software, and services, with detailed projections for installed base, pricing trends, and revenue streams. The report includes extensive profiling of over 205 companies across the quantum computing value chain, from hardware manufacturers and software developers to end-use application providers. Company profiles include detailed information on technologies, products, partnerships, and market positioning. Companies profiled include A* Quantum, AbaQus, Aegiq, Agnostiq GmbH, Airbus, Aliro Quantum, Alice&Bob, Alpine Quantum Technologies (AQT), Anyon Systems, Archer Materials, Arclight Quantum, Arctic Instruments, ARQUE Systems, Atlantic Quantum, Atom Computing, Atom Quantum Labs, Atos Quantum, Baidu, BEIT, BlueFors, BlueQubit, BosonQ Ps, C12 Quantum Electronics, CAS Cold Atom, Classiq Technologies, ColibriTD, Crystal Quantum Computing, D-Wave Systems, Delft Circuits, Diatope, Dirac, Diraq, Duality Quantum Photonics, EeroQ, eleQtron, Elyah, Entropica Labs, Ephos, EvolutionQ, Fujitsu, Good Chemistry, Google Quantum AI, g2-Zero, Haiqu, HQS Quantum Simulations, HRL, Huayi Quantum, IBM, Icosa Computing, ID Quantique, InfinityQ, Infineon Technologies, Infleqtion, Intel, IonQ and many others (complete list in report).

Key features of the report include:

  • Comprehensive analysis of quantum computing technologies and architectures
  • Detailed market forecasts 2025-2045
  • Analysis of government initiatives and funding landscape
  • Examination of quantum computing infrastructure requirements
  • In-depth material analysis and supply chain considerations
  • Extensive company profiles and competitive landscape analysis
  • Assessment of market challenges and opportunities
  • Analysis of key application areas and end-user industries

 

1             EXECUTIVE SUMMARY            17

  • 1.1        First and Second quantum revolutions         17
  • 1.2        Current quantum computing market landscape    19
    • 1.2.1    Technical Progress and Persistent Challenges        20
    • 1.2.2    Key developments      20
  • 1.3        Investment Landscape            22
  • 1.4        Global Government Initiatives            24
  • 1.5        Market Landscape     27
  • 1.6        Challenges for Quantum Technologies Adoption   38
  • 1.7        Market Map     38
  • 1.8        Market Challenges     40
  • 1.9        SWOT analysis              42
  • 1.10     Quantum Computing Value Chain  42
  • 1.11     Market Outlook            43
  • 1.12     Quantum Computing and Artificial Intelligence      44
  • 1.13     Global market forecast 2018-2045 44
    • 1.13.1 Revenues          45
    • 1.13.2 Quantum Computing Installed Base Forecast (Number of Systems)       46
    • 1.13.3 Pricing 47

 

2             INTRODUCTION          48

  • 2.1        What is quantum computing?            48
  • 2.2        Operating principle    49
  • 2.3        Classical vs quantum computing    50
  • 2.4        Quantum computing technology      52
    • 2.4.1    Quantum emulators  55
    • 2.4.2    Quantum inspired computing            55
    • 2.4.3    Quantum annealing computers        55
    • 2.4.4    Quantum simulators 56
    • 2.4.5    Digital quantum computers 56
    • 2.4.6    Continuous variables quantum computers               56
    • 2.4.7    Measurement Based Quantum Computing (MBQC)           56
    • 2.4.8    Topological quantum computing      56
    • 2.4.9    Quantum Accelerator               57
  • 2.5        Competition from other technologies           57

 

3             QUANTUM ALGORITHMS       60

  • 3.1        Quantum Software Stack      60
    • 3.1.1    Quantum Machine Learning 61
    • 3.1.2    Quantum Simulation 61
    • 3.1.3    Quantum Optimization           62
    • 3.1.4    Quantum Cryptography          62
      • 3.1.4.1 Quantum Key Distribution (QKD)      63
      • 3.1.4.2 Post-Quantum Cryptography             63

 

4             QUANTUM COMPUTING HARDWARE            65

  • 4.1        Qubit Technologies    66
    • 4.1.1    Overview           66
    • 4.1.2    Noise effects  67
    • 4.1.3    Logical qubits                68
    • 4.1.4    Quantum Volume       69
    • 4.1.5    Algorithmic Qubits     69
    • 4.1.6    Superconducting Qubits        70
      • 4.1.6.1 Technology description           70
      • 4.1.6.2 Materials           71
      • 4.1.6.3 Market players               74
      • 4.1.6.4 Swot analysis 75
    • 4.1.7    Trapped Ion Qubits    76
      • 4.1.7.1 Technology description           76
      • 4.1.7.2 Hardware          78
      • 4.1.7.3 Materials           78
        • 4.1.7.3.1           Integrating optical components        79
        • 4.1.7.3.2           Incorporating high-quality mirrors and optical cavities      79
        • 4.1.7.3.3           Engineering the vacuum packaging and encapsulation     80
        • 4.1.7.3.4           Removal of waste heat            80
      • 4.1.7.4 Market players               81
      • 4.1.7.5 Swot analysis 82
    • 4.1.8    Silicon Spin Qubits    83
      • 4.1.8.1 Technology description           83
      • 4.1.8.2 Quantum dots               84
      • 4.1.8.3 Market players               87
      • 4.1.8.4 SWOT analysis              87
    • 4.1.9    Topological Qubits     88
      • 4.1.9.1 Technology description           88
        • 4.1.9.1.1           Cryogenic cooling       89
      • 4.1.9.2 Market players               90
      • 4.1.9.3 SWOT analysis              90
    • 4.1.10 Photonic Qubits           91
      • 4.1.10.1            Technology description           91
      • 4.1.10.2            Hardware Architecture            94
      • 4.1.10.3            Market players               94
      • 4.1.10.4            Swot analysis 95
    • 4.1.11 Neutral atom (cold atom) qubits       96
      • 4.1.11.1            Technology description           96
      • 4.1.11.2            Market players               99
      • 4.1.11.3            Swot analysis 100
    • 4.1.12 Diamond-defect qubits          101
      • 4.1.12.1            Technology description           101
      • 4.1.12.2            SWOT analysis              104
      • 4.1.12.3            Market players               105
    • 4.1.13 Quantum annealers  106
      • 4.1.13.1            Technology description           106
      • 4.1.13.2            SWOT analysis              108
      • 4.1.13.3            Market players               109
  • 4.2        Architectural Approaches     110

 

5             QUANTUM COMPUTING INFRASTRUCTURE            111

  • 5.1        Infrastructure Requirements               111
  • 5.2        Hardware agnostic platforms             111
  • 5.3        Cryostats          112
  • 5.4        Qubit readout 113

 

6             QUANTUM COMPUTING SOFTWARE             114

  • 6.1        Technology description           114
  • 6.2        Cloud-based services- QCaaS (Quantum Computing as a Service).        114
  • 6.3        Market players               115

 

7             MARKETS AND APPLICATIONS           119

  • 7.1        Pharmaceuticals         120
    • 7.1.1    Market overview           120
      • 7.1.1.1 Drug discovery              120
      • 7.1.1.2 Diagnostics    120
      • 7.1.1.3 Molecular simulations            121
      • 7.1.1.4 Genomics        121
      • 7.1.1.5 Proteins and RNA folding       121
    • 7.1.2    Market players               122
  • 7.2        Chemicals       123
    • 7.2.1 Market overview           123
    • 7.2.2    Market players               123
  • 7.3        Transportation              124
    • 7.3.1    Market overview           124
    • 7.3.2    Market players               126
  • 7.4        Financial services       127
    • 7.4.1    Market overview           127
    • 7.4.2    Market players               128
  • 7.5        Automotive      129
    • 7.5.1    Market overview           129
    • 7.5.2    Market players               130

 

8             OTHER CROSSOVER TECHNOLOGIES         132

  • 8.1        Quantum chemistry and AI   132
    • 8.1.1    Technology description           132
    • 8.1.2    Applications   132
    • 8.1.3    Market players               133
  • 8.2        Quantum Communications 133
    • 8.2.1    Technology description           133
    • 8.2.2    Types   134
    • 8.2.3    Applications   134
    • 8.2.4    Market players               135
  • 8.3        Quantum Sensors      138
    • 8.3.1    Technology description           138
    • 8.3.2    Applications   139
    • 8.3.3    Companies     139

 

9             MATERIALS FOR QUANTUM COMPUTING  144

  • 9.1        Superconductors        144
    • 9.1.1    Overview           144
    • 9.1.2    Types and Properties 145
    • 9.1.3    Temperature (Tc) of superconducting materials     146
    • 9.1.4    Superconducting Nanowire Single Photon Detectors (SNSPD)    146
    • 9.1.5    Kinetic Inductance Detectors (KIDs)              147
    • 9.1.6    Transition Edge Sensors (TES)            148
    • 9.1.7    Opportunities 149
  • 9.2        Photonics, Silicon Photonics and Optical Components   149
    • 9.2.1    Overview           149
    • 9.2.2    Types and Properties 150
    • 9.2.3    Vertical-Cavity Surface-Emitting Lasers (VCSELs) 151
    • 9.2.4    Alkali azides   151
    • 9.2.5    Optical Fiber and Quantum Interconnects 151
    • 9.2.6    Semiconductor Single Photon Detectors    151
    • 9.2.7    Opportunities 152
  • 9.3        Nanomaterials              153
    • 9.3.1    Overview           153
    • 9.3.2    Types and Properties 153
      • 9.3.2.1 2D Materials   154
      • 9.3.2.2 Transition metal dichalcogenide quantum dots     154
      • 9.3.2.3 Graphene Membranes             154
      • 9.3.2.4 2.5D materials              155
      • 9.3.2.5 Carbon nanotubes     155
        • 9.3.2.5.1           Single Walled Carbon Nanotubes    155
        • 9.3.2.5.2           Boron Nitride Nanotubes       156
      • 9.3.2.6 Diamond          156
      • 9.3.2.7 Metal-Organic Frameworks (MOFs) 157
    • 9.3.3    Opportunities 157

 

10          MARKET ANALYSIS      159

  • 10.1     Key industry players   159
    • 10.1.1 Start-ups           159
    • 10.1.2 Tech Giants     160
    • 10.1.3 National Initiatives     160
  • 10.2     Investment funding    160
    • 10.2.1 Venture Capital            162
    • 10.2.2 M&A     163
    • 10.2.3 Corporate Investment              163
    • 10.2.4 Government Funding                164

 

11          COMPANY PROFILES                166 (208 company profiles)

 

12          RESEARCH METHODOLOGY              299

 

13          TERMS AND DEFINITIONS     300

 

14          REFERENCES 303

 

List of Tables

  • Table 1. First and second quantum revolutions.     17
  • Table 2. Applications for Quantum Computing.     18
  • Table 3. Quantum Computing Business Models.   19
  • Table 4. Quantum Computing Investments (2018-2024). 22
  • Table 5. Global government initiatives in quantum technologies.               24
  • Table 6. Quantum computing industry developments 2020-2025.            28
  • Table 7. Business Models in Quantum Computing.             37
  • Table 8. Market challenges in quantum computing.            40
  • Table 9. Quantum computing value chain. 42
  • Table 10. Global market for quantum computing-by category, 2023-2045 (billions USD).         45
  • Table 11. Global Revenue from Hardware Sales (Billions USD).   46
  • Table 12. Installed Base Forecast (2025-2045)-Units.        46
  • Table 13. Installed Base by Technology (2025-2045)-Units.           46
  • Table 14. Quantum Computer Pricing Forecast (Millions USD).   47
  • Table 15. Quantum Computer Architectures.           48
  • Table 16.  Applications for quantum computing     49
  • Table 17. Comparison of classical versus quantum computing. 51
  • Table 18. Key quantum mechanical phenomena utilized in quantum computing.          52
  • Table 19. Types of quantum computers.      52
  • Table 20.Comparison of Quantum Computer Technologies.         54
  • Table 21. Comparative analysis of quantum computing with classical computing, quantum-inspired computing, and neuromorphic computing.              58
  • Table 22. Different computing paradigms beyond conventional CMOS. 58
  • Table 23. Applications of quantum algorithms.      60
  • Table 24. QML approaches. 61
  • Table 25. Commercial Readiness Level by Technology.     66
  • Table 26. Qubit Performance Benchmarking.          67
  • Table 27. Coherence times for different qubit implementations. 67
  • Table 28. Quantum Computer Benchmarking Metrics.      68
  • Table 29. Logical Qubit Progress.     69
  • Table 30. Superconducting qubit market players.  74
  • Table 31. Initialization, manipulation and readout for trapped ion quantum computers.            77
  • Table 32. Ion trap market players.     81
  • Table 33.  Initialization, manipulation, and readout methods for silicon-spin qubits.   85
  • Table 34. Silicon spin qubits market players.            87
  • Table 35. Initialization, manipulation and readout of topological qubits.              89
  • Table 36. Topological qubits market players.            90
  • Table 37. Pros and cons of photon qubits. 92
  • Table 38. Comparison of photon polarization and squeezed states.         92
  • Table 39. Initialization, manipulation and readout of photonic platform quantum computers.               93
  • Table 40. Photonic qubit market players.     94
  • Table 41. Initialization, manipulation and readout for neutral-atom quantum computers.        98
  • Table 42. Pros and cons of cold atoms quantum computers and simulators      99
  • Table 43. Neural atom qubit market players.             100
  • Table 44. Initialization, manipulation and readout of Diamond-Defect Spin-Based Computing.           102
  • Table 45.  Key materials for developing diamond-defect spin-based quantum computers.      103
  • Table 46. Diamond-defect qubits market players. 105
  • Table 47. Commercial Applications for Quantum Annealing.        106
  • Table 48. Pros and cons of quantum annealers.    107
  • Table 49. Quantum annealers market players.        109
  • Table 50. Quantum Computing Infrastructure Requirements.      111
  • Table 51. Modular vs. Single Core.   112
  • Table 52. Quantum computing software market players. 115
  • Table 53. Markets and applications for quantum computing.       119
  • Table 54. Total Addressable Market (TAM) for Quantum Computing.        119
  • Table 55. Market players in quantum technologies for pharmaceuticals.             122
  • Table 56. Market players in quantum computing for chemicals.  123
  • Table 57. Automotive applications of quantum computing,           124
  • Table 58. Market players in quantum computing for transportation.         126
  • Table 59. Quantum Computing in Finance.               128
  • Table 60. Market players in quantum computing for financial services   128
  • Table 61. Automotive Applications of Quantum Computing.         129
  • Table 62. Applications in quantum chemistry and artificial intelligence (AI).      132
  • Table 63. Market players in quantum chemistry and AI.    133
  • Table 64. Main types of quantum communications.            134
  • Table 65. Applications in quantum communications.        134
  • Table 66. Market players in quantum communications.   135
  • Table 67.  Comparison between classical and quantum sensors.             138
  • Table 68. Applications in quantum sensors.             139
  • Table 69. Companies developing high-precision quantum time measurement 139
  • Table 70. Materials in Quantum Technology.             144
  • Table 71. Superconductor Value Chain in Quantum Technology.                145
  • Table 72. Superconductors in quantum technology.           145
  • Table 73. SNSPD Players companies.           147
  • Table 74. Single Photon Detector Technology Comparison.           148
  • Table 75. Photonics, silicon photonics and optics in quantum technology.         150
  • Table 76. Materials for Quantum Photonic Applications. 152
  • Table 77. Nanomaterials in quantum technology. 153
  • Table 79. Synthetic Diamond Value Chain for Quantum Technology.       156
  • Table 80. Quantum technologies investment funding.       161
  • Table 81. Top funded quantum technology companies.    162

 

List of Figures

  • Figure 1. Quantum computing development timeline.       19
  • Figure 2.Quantum investments 2012-2024 (billions USD).             23
  • Figure 3.  National quantum initiatives and funding 2015-2023. 24
  • Figure 4. Quantum computing Market Map.              40
  • Figure 5. SWOT analysis for quantum computing. 42
  • Figure 6. Global market for quantum computing-Hardware, Software & Services, 2023-2035 (billions USD).  45
  • Figure 7. An early design of an IBM 7-qubit chip based on superconducting technology.           49
  • Figure 8. Various 2D to 3D chips integration techniques into chiplets.    51
  • Figure 9. IBM Q System One quantum computer.  55
  • Figure 10. Unconventional computing approaches.            59
  • Figure 11. 53-qubit Sycamore processor.   62
  • Figure 12. Interior of IBM quantum computing system. The quantum chip is located in the small dark square at center bottom.       65
  • Figure 13. Superconducting quantum computer.  71
  • Figure 14. Superconducting quantum computer schematic.         72
  • Figure 15.  Components and materials used in a superconducting qubit.            73
  • Figure 16. Superconducting Hardware Roadmap. 73
  • Figure 17. SWOT analysis for superconducting quantum computers:.    75
  • Figure 18. Ion-trap quantum computer.       76
  • Figure 19. Various ways to trap ions                77
  • Figure 20. Trapped-Ion Hardware Roadmap.            78
  • Figure 21.  Universal Quantum’s shuttling ion architecture in their Penning traps.          79
  • Figure 22. SWOT analysis for trapped-ion quantum computing. 82
  • Figure 23. CMOS silicon spin qubit.                83
  • Figure 24. Silicon quantum dot qubits.         85
  • Figure 25. Silicon-Spin Hardware Roadmap.            86
  • Figure 26. SWOT analysis for silicon spin quantum computers.  88
  • Figure 27. Topological Quantum Computing Roadmap.   90
  • Figure 28. SWOT analysis for topological qubits     91
  • Figure 29 . SWOT analysis for photonic quantum computers.       96
  • Figure 30. Neutral atoms (green dots) arranged in various configurations            97
  • Figure 31. Neutral Atom Hardware Roadmap.         98
  • Figure 32. SWOT analysis for neutral-atom quantum computers.              101
  • Figure 33. NV center components.  101
  • Figure 34. Diamond Defect Supply Chain. 104
  • Figure 35. Diamond Defect Hardware Roadmap.  104
  • Figure 36. SWOT analysis for diamond-defect quantum computers.       105
  • Figure 37. D-Wave quantum annealer.          108
  • Figure 38. SWOT analysis for quantum annealers.               109
  • Figure 39. Quantum software development platforms.     114
  • Figure 40. Tech Giants quantum technologies activities. 160
  • Figure 41. Quantum Technology investment by sector, 2023.       161
  • Figure 42.  Quantum computing public and industry funding to mid-2023, millions USD.         164
  • Figure 43. Archer-EPFL spin-resonance circuit.      173
  • Figure 44.  IBM Q System One quantum computer.              200
  • Figure 45. ColdQuanta Quantum Core (left), Physics Station (middle) and the atoms control chip (right).                203
  • Figure 46.  Intel Tunnel Falls 12-qubit chip.                204
  • Figure 47. IonQ's ion trap       205
  • Figure 48. IonQ product portfolio.    206
  • Figure 49. 20-qubit quantum computer.      207
  • Figure 50. Maybell Big Fridge.              214
  • Figure 51. PsiQuantum’s modularized quantum computing system networks. 236
  • Figure 52. SemiQ first chip prototype.           279
  • Figure 53. Toshiba QKD Development Timeline.     289
  • Figure 54. Toshiba Quantum Key Distribution technology.               290

   

The Global Market for Quantum Computing 2025-2045
The Global Market for Quantum Computing 2025-2045
PDF download.

The Global Market for Quantum Computing 2025-2045
The Global Market for Quantum Computing 2025-2045
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com