The Global Market for Sustainable Electronics and Semiconductor Manufacturing 2025-2035

0

cover

cover

  • Published: January 2025
  • Pages: 237
  • Tables: 119
  • Figures: 49

 

The volume of electronics will continues to increase and the use of raw materials in the sector is expected to double by 2050. The amount of electronic waste has also almost doubled over the two decades and it is estimated that only 20% of this waste is collected efficiently.  With over 55 million tonnes of electronic waste produced every year, the risk of harm to human and animal health as well as the environment is substantial. There is also considerable value squandered in discarded electronics. It is estimated that $60 billion worth of raw materials are lost every year as precious metals and re-useable materials are disposed of in landfill or incinerated. The use of plastics in electronics devices has significant environmental issues owing to poor biodegradability and additional cost for disposal after use. It is therefore essential to find an eco-friendly and biodegradable substrate.

Sustainable electronics and semiconductor manufacturing seeks to develop electronics products through economically-sound processes that minimize negative environmental impacts while conserving energy and natural resources. The goal is to make the lifecycle of electronic products more sustainable through energy efficiency, reducing waste, using recycled and non-toxic materials, and other eco-friendly practices. Key principles of sustainable electronics manufacturing include:

  • Energy efficiency: Reducing energy consumption in production processes through technology, automation, and optimized practices.
  • Renewable energy: Utilization of renewable energy sources like solar, wind, and geothermal to power manufacturing facilities.
  • Waste reduction: Minimizing waste generation through improved materials utilization, recycling, and re-use.
  • Emissions reduction: Lowering air emissions, water discharges, and carbon footprint through abatement technologies and greener chemistries.
  • Resource conservation: Optimizing use of natural resources like water, minerals, and forestry through efficiency, closed-loop systems, and product circularity.
  • Eco-design- Designing products that are energy efficient, durable, non-toxic and recyclable.
  • Supply chain sustainability: Managing social and environmental impacts across the entire supply chain lifecycle; procurement and logistics to reduce environmental impact

 

The Global Market for Sustainable Electronics and Semiconductor Manufacturing 2025-2035 offers an in-depth analysis of the sustainable electronics landscape, providing strategic insights for businesses, investors, and technology leaders seeking to navigate the complex intersection of technological advancement and environmental responsibility. Report contents include: 

  • Analysis of global PCB and integrated circuit (IC) revenues
  • Emerging sustainable technologies and market trends
  • Advanced digital manufacturing techniques
  • Renewable energy integration
  • Innovative materials development
  • Circular economy strategies in electronics production
  • Sustainability Drivers and Challenges 
    • Environmental impact mitigation
    • Regulatory compliance
    • Resource efficiency
    • Waste reduction strategies
  • Sustainable Manufacturing Processes
    • Closed-loop manufacturing models
    • Advanced robotics and automation
    • AI and machine learning analytics
    • Internet of Things (IoT) integration
    • Additive manufacturing techniques
  • Material Innovation
    • Bio-based materials
    • Recycled and advanced chemical recycling approaches
    • Biodegradable substrates
    • Green and lead-free soldering technologies
    • Sustainable substrate development
  • Semiconductor and PCB Transformation
    • Sustainable integrated circuit manufacturing
    • Flexible and printed electronics
    • Eco-friendly patterning and metallization
    • Advanced oxidation methods
    • Water management in semiconductor production
  • Market Projections and Revenue Analysis
    • Global PCB manufacturing (2018-2035)
    • Sustainable PCB market segments
    • Sustainable integrated circuit revenues
    • Substrate type market penetration
  • Company Profiles. In-depth analyses of 50+  companies providing green materials, equipment, and manufacturing services. Companies profiled include DP Patterning, Elephantech, Infineon Technologies, Jiva Materials, Samsung, Syenta, and Tactotek. Additional information on bio-based battery, conductive ink, green & lead-free solder and halogen-free FR4, data center sustainability companies.
  • Data Center Sustainability
  • Green Energy Solutions
  • Carbon Reduction Strategies
  • Recycling Technologies
  • End-of-Life Electronics Management
  • Regulatory and Certification Landscape
    • Global sustainability regulations
    • Emerging certification standards
    • Compliance strategies for electronics manufacturers

 

The Global Market for Sustainable Electronics and Semiconductor Manufacturing 2025-2035 provides a strategic roadmap for technological transformation. As the world increasingly demands environmentally responsible technology solutions, this report provides the critical insights needed to lead, innovate, and succeed in the sustainable electronics ecosystem.

 

1             INTRODUCTION          16

  • 1.1        Sustainable electronics & semiconductor manufacturing              16
  • 1.2        Drivers for sustainable electronics  17
  • 1.3        Environmental Impacts of Electronics Manufacturing       18
    • 1.3.1    E-Waste Generation  18
    • 1.3.2    Carbon Emissions     18
    • 1.3.3    Resource Utilization  19
    • 1.3.4    Waste Minimization  19
    • 1.3.5    Supply Chain Impacts             20
  • 1.4        New opportunities from sustainable electronics   20
  • 1.5        Regulations     21
    • 1.5.1    Certifications 22
  • 1.6        Powering sustainable electronics (Bio-based batteries)   22
  • 1.7        Bioplastics in injection moulded electronics parts              23

 

2             SUSTAINABLE ELECTRONICS & SEMICONDUCTORS MANUFACTURING  25

  • 2.1        Conventional electronics manufacturing   25
  • 2.2        Benefits of Sustainable Electronics manufacturing             25
  • 2.3        Challenges in adopting Sustainable Electronics manufacturing 26
  • 2.4        Approaches    27
    • 2.4.1    Closed-Loop Manufacturing               27
    • 2.4.2    Digital Manufacturing              27
      • 2.4.2.1 Advanced robotics & automation    27
      • 2.4.2.2 AI & machine learning analytics        28
      • 2.4.2.3 Internet of Things (IoT)             28
      • 2.4.2.4 Additive manufacturing          28
      • 2.4.2.5 Virtual prototyping     28
      • 2.4.2.6 Blockchain-enabled supply chain traceability         28
    • 2.4.3    Renewable Energy Usage      29
    • 2.4.4    Energy Efficiency         30
    • 2.4.5    Materials Efficiency   31
    • 2.4.6    Sustainable Chemistry            31
    • 2.4.7    Recycled Materials    32
    • 2.4.7.1 Advanced chemical recycling             33
    • 2.4.8    Bio-Based Materials  36
  • 2.5        Greening the Supply Chain   38
    • 2.5.1    Key focus areas            39
    • 2.5.2    Sustainability activities from major electronics brands    42
    • 2.5.3    Key challenges              42
    • 2.5.4    Use of digital technologies    42

 

3             SUSTAINABLE PRINTED CIRCUIT BOARD (PCB) MANUFACTURING          44

  • 3.1        Conventional PCB manufacturing   44
  • 3.2        Trends in PCBs              45
    • 3.2.1    High-Speed PCBs       45
    • 3.2.2    Flexible PCBs 45
    • 3.2.3    3D Printed PCBs          46
    • 3.2.4    Sustainable PCBs       47
  • 3.3        Reconciling sustainability with performance            47
  • 3.4        Sustainable supply chains   48
  • 3.5        Sustainability in PCB manufacturing             49
    • 3.5.1    Sustainable cleaning of PCBs             49
  • 3.6        Design of PCBs for sustainability     50
    • 3.6.1    Rigid    52
    • 3.6.2    Flexible               52
    • 3.6.3    Additive manufacturing          53
    • 3.6.4    In-mold elctronics (IME)         54
  • 3.7        Materials           55
    • 3.7.1    Low-energy epoxy resins        55
    • 3.7.2    Metal cores     55
    • 3.7.3    Recycled laminates   55
    • 3.7.4    Conductive inks           55
    • 3.7.5    Green and lead-free solder   57
    • 3.7.6    Biodegradable substrates     58
      • 3.7.6.1 Bacterial Cellulose     58
      • 3.7.6.2 Mycelium          60
      • 3.7.6.3 Lignin  61
      • 3.7.6.4 Cellulose Nanofibers               63
      • 3.7.6.5 Soy Protein      66
      • 3.7.6.6 Algae   66
      • 3.7.6.7 PHAs   67
    • 3.7.7    Biobased inks                68
  • 3.8        Substrates       68
    • 3.8.1    Halogen-free FR4        68
      • 3.8.1.1 FR4 limitations             68
      • 3.8.1.2 FR4 alternatives           69
      • 3.8.1.3 Bio-Polyimide 70
    • 3.8.2    Glass substrates         71
    • 3.8.3    Ceramic substrates   71
    • 3.8.4    Metal-core PCBs         72
    • 3.8.5    Biobased PCBs             72
      • 3.8.5.1 Polylactic acid              73
      • 3.8.5.2 Lignin-based Polymers            73
      • 3.8.5.3 Cellulose Composites             73
      • 3.8.5.4 Polyhydroxyalkanoates (PHA)             73
      • 3.8.5.5 Starch Blends                74
      • 3.8.5.6 Challenges      74
      • 3.8.5.7 Flexible (bio) polyimide PCBs             74
      • 3.8.5.8 Recent commercial activity  75
    • 3.8.6    Paper-based PCBs     76
    • 3.8.7    PCBs without solder mask   76
    • 3.8.8    Thinner dielectrics      77
    • 3.8.9    Recycled plastic substrates 77
    • 3.8.10 Flexible substrates     77
    • 3.8.11 Polyimide alternatives              77
  • 3.9        Sustainable patterning and metallization in electronics manufacturing 79
    • 3.9.1    Introduction    79
    • 3.9.2    Issues with sustainability      79
    • 3.9.3    Regeneration and reuse of etching chemicals         80
    • 3.9.4    Transition from Wet to Dry phase patterning             81
    • 3.9.5    Print-and-plate              81
    • 3.9.6    Approaches    82
      • 3.9.6.1 Direct Printed Electronics      82
      • 3.9.6.2 Photonic Sintering      83
      • 3.9.6.3 Biometallization          84
      • 3.9.6.4 Plating Resist Alternatives     84
      • 3.9.6.5 Laser-Induced Forward Transfer       85
      • 3.9.6.6 Electrohydrodynamic Printing            87
      • 3.9.6.7 Electrically conductive adhesives (ECAs    87
      • 3.9.6.8 Green electroless plating       88
      • 3.9.6.9 Smart Masking             89
      • 3.9.6.10            Component Integration           89
      • 3.9.6.11            Bio-inspired material deposition      90
      • 3.9.6.12            Multi-material jetting 90
      • 3.9.6.13            Vacuumless deposition          91
      • 3.9.6.14            Upcycling waste streams      91
  • 3.10     Sustainable attachment and integration of components 92
    • 3.10.1 Conventional component attachment materials   92
    • 3.10.2 Materials           93
      • 3.10.2.1            Conductive adhesives             93
      • 3.10.2.2            Biodegradable adhesives      94
      • 3.10.2.3            Magnets            94
      • 3.10.2.4            Bio-based solders      94
      • 3.10.2.5            Bio-derived solders   94
      • 3.10.2.6            Recycled plastics       95
      • 3.10.2.7            Nano adhesives           95
      • 3.10.2.8            Shape memory polymers       95
      • 3.10.2.9            Photo-reversible polymers    96
      • 3.10.2.10         Conductive biopolymers        97
    • 3.10.3 Processes        97
      • 3.10.3.1            Traditional thermal processing methods     98
      • 3.10.3.2            Low temperature solder          98
      • 3.10.3.3            Reflow soldering          101
      • 3.10.3.4            Induction soldering    101
      • 3.10.3.5            UV curing          102
      • 3.10.3.6            Near-infrared (NIR) radiation curing 102
      • 3.10.3.7            Photonic sintering/curing       102
      • 3.10.3.8            Hybrid integration       103

 

4             SUSTAINABLE INTEGRATED CIRCUITS          104

  • 4.1        IC manufacturing        104
  • 4.2        Sustainable IC manufacturing           104
  • 4.3        Wafer production        105
    • 4.3.1    Silicon 106
    • 4.3.2    Gallium nitride ICs     106
    • 4.3.3    Flexible ICs      106
    • 4.3.4    Fully printed organic ICs         107
  • 4.4        Oxidation methods    108
    • 4.4.1    Sustainable oxidation              108
    • 4.4.2    Metal oxides   109
    • 4.4.3    Recycling          110
    • 4.4.4    Thin gate oxide layers                110
    • 4.4.5    Substrate Oxidation  111
    • 4.4.6    Solution-Based Manufacturing         111
    • 4.4.7    MOSFET Transistors  111
    • 4.4.8    Silicon on Insulator (SOI) and Manufacturing          112
  • 4.5        Patterning and doping              113
    • 4.5.1    Processes        113
      • 4.5.1.1 Wet etching     113
      • 4.5.1.2 Dry plasma etching    113
      • 4.5.1.3 Lift-off patterning        114
      • 4.5.1.4 Surface doping             114
    • 4.5.2    Photolithography        115
    • 4.5.3    Green solvents and chemicals           116
  • 4.6        Metallization  117
    • 4.6.1    Evaporation    118
    • 4.6.2    Plating 118
    • 4.6.3    Printing              118
    • 4.6.3.1 Printed metal gates for organic thin film transistors            118
    • 4.6.4    Physical vapour deposition (PVD)    119
  • 4.7        Packaging        119
    • 4.7.1    Sustainable Semiconductor Packaging Technologies        119
    • 4.7.2    Glass interposer technology                120
  • 4.8        Water management  121
    • 4.8.1    Overview           121
    • 4.8.2    Ultra pure water (UPW)           121
    • 4.8.3    Semiconductor manufacturing water consumption            122
    • 4.8.4    Water Reuse   123

 

5             END OF LIFE   124

  • 5.1        Legislation       124
  • 5.2        Hazardous waste        125
  • 5.3        Emissions        126
  • 5.4        Water Usage   126

 

6             RECYCLING    128

  • 6.1        Mechanical recycling                129
  • 6.2        Electro-Mechanical Separation         130
  • 6.3        Chemical Recycling   130
  • 6.4        Electrochemical Processes  130
  • 6.5        Thermal Recycling      131
  • 6.6        Green Certification     131
  • 6.7        PCB recycling 132
    • 6.7.1    Overview           132
    • 6.7.2    Metal recovery from PCB manufacturing    132
    • 6.7.3    Recyclable PCBs         133
    • 6.7.4    Excess electronic component inventory management      133
    • 6.7.5    Electronic waste management and reuse   133

 

7             SUSTAINABILITY IN DATA CENTERS 135

  • 7.1        Overview           135
    • 7.1.1    Data center sustainability     135
    • 7.1.2    Carbon reductions     135
    • 7.1.3    Data center decarbonization               136
    • 7.1.4    Data center company sustainability activities         138
  • 7.2        Green Energy  139
    • 7.2.1    Data centers power consumption   139
    • 7.2.2    Microgrids        141
    • 7.2.3    Energy storage systems          142
    • 7.2.4    Solar    142
    • 7.2.5    Wind power     143
    • 7.2.6    Geothermal     144
    • 7.2.7    Nuclear              145
      • 7.2.7.1 Large-scale nuclear reactors               146
      • 7.2.7.2 Small modular reactors (SMRs)        146
      • 7.2.7.3 Nuclear fusion              147
    • 7.2.8    Fuel cells          147
      • 7.2.8.1 PEMFCs and SOFCs  148
    • 7.2.9    Batteries            149
      • 7.2.9.1 UPS battery technologies      149
      • 7.2.9.2 BESS (Battery Energy Storage Systems)       150
  • 7.3        Improved Energy Efficiency  151
    • 7.3.1    Thermal efficiency      152
    • 7.3.2    IT efficiency     152
    • 7.3.3    Electrical efficiency   155
  • 7.4        Carbon credits and CO2 offsetting 156
    • 7.4.1    CO2 emissions of data centers          156
    • 7.4.2    Carbon dioxide removal technology               157
    • 7.4.3    Low-carbon construction      160
      • 7.4.3.1 Green concrete             160
      • 7.4.3.2 Green Steel      162
  • 7.5        Companies     164

 

8             GLOBAL MARKET AND REVENUES 2018-2035        166

  • 8.1        Global PCB manufacturing industry               166
    • 8.1.1    PCB revenues 166
  • 8.2        Sustainable PCBs       167
  • 8.3        Sustainable ICs            170

 

9             COMPANY PROFILES                172 (55 company profiles)

 

10          RESEARCH METHODOLOGY              224

  • 10.1     Objectives of This Report       224

 

11          REFERENCES 225

 

List of Tables

  • Table 1. Sustainability Index Benchmarking.            17
  • Table 2. Key factors driving adoption of green electronics.              17
  • Table 3. Key circular economy strategies for electronics. 20
  • Table 4. Regulations pertaining to sustainable electronics.            21
  • Table 5. Companies developing bio-based batteries for application in sustainable electronics.           23
  • Table 6. Benefits of Green Electronics Manufacturing        25
  • Table 7. Challenges in adopting Sustainable Electronics manufacturing.            26
  • Table 8. Major chipmakers' renewable energy road maps.              30
  • Table 9. Energy efficiency in sustainable electronics manufacturing.     30
  • Table 10. Recycling and Reuse Initiatives in Sustainable Electronics.      32
  • Table 11. Composition of plastic waste streams.  34
  • Table 12. Comparison of mechanical and advanced chemical recycling.             34
  • Table 13. Example chemically recycled plastic products.                35
  • Table 14. Bio-based and non-toxic materials in sustainable electronics.              36
  • Table 15. Key focus areas for enabling greener and ethically responsible electronics supply chains. 39
  • Table 16. Sustainability programs and disclosure from major electronics brands.         42
  • Table 17. PCB manufacturing process.        44
  • Table 18. Challenges in PCB manufacturing.           44
  • Table 19. 3D PCB manufacturing.    46
  • Table 20.  Comparison of some sustainable PCB alternatives against conventional options in terms of key performance factors.      47
  • Table 21. Sustainable PCB supply chain.    48
  • Table 22. Key areas where the PCB industry can improve sustainability.               49
  • Table 23. PCB Design Options and Sustainability. 50
  • Table 24. Improving sustainability of PCB design. 51
  • Table 25. PCB design options for sustainability.     52
  • Table 26.  Sustainability benefits and challenges associated with 3D printing. 54
  • Table 27. Conductive ink producers.              56
  • Table 28.  Green and lead-free solder companies.               58
  • Table 29. Biodegradable substrates for PCBs.         58
  • Table 30. Overview of mycelium fibers-description, properties, drawbacks and applications.               60
  • Table 31. Application of lignin in composites.          61
  • Table 32. Properties of lignins and their applications.        62
  • Table 33. Properties of flexible electronics‐cellulose nanofiber film (nanopaper).         64
  • Table 34. Companies developing cellulose nanofibers for electronics.   64
  • Table 35. Commercially available PHAs.     67
  • Table 36. Main limitations of the FR4 material system used for manufacturing printed circuit boards (PCBs).              68
  • Table 37. Halogen-free FR4 companies.      71
  • Table 38. Bioplastics for PCBs.          72
  • Table 39. Properties of biobased PCBs.       73
  • Table 40. Applications of flexible (bio) polyimide PCBs.    75
  • Table 41. Sustainability in Patterning and Metallization Processes.           79
  • Table 42. Main patterning and metallization steps in PCB fabrication and sustainable options.            79
  • Table 43. Sustainability issues with conventional metallization processes.        80
  • Table 44. Benefits of print-and-plate.             81
  • Table 45. Sustainable alternative options to standard plating resists used in printed circuit board (PCB) fabrication.     84
  • Table 46. Applications for laser induced forward transfer 85
  • Table 47. Copper versus silver inks in laser-induced forward transfer (LIFT) for electronics fabrication.                86
  • Table 48. Approaches for in-situ oxidation prevention.      86
  • Table 49. Market readiness and maturity of different lead-free solders and electrically conductive adhesives (ECAs) for electronics manufacturing. 88
  • Table 50. Advantages of green electroless plating.               88
  • Table 51. Sustainability for Patterning and Metallization Materials.           92
  • Table 52. Comparison of component attachment materials.        92
  • Table 53. Comparison between sustainable and conventional component attachment materials for printed circuit boards              93
  • Table 54. Comparison between the SMAs and SMPs.         95
  • Table 55. Comparison of conductive biopolymers versus conventional materials for printed circuit board fabrication.       97
  • Table 56. Comparison of curing and reflow processes used for attaching components in electronics assembly.        97
  • Table 57. Low temperature solder alloys.    99
  • Table 58. Thermally sensitive substrate materials.               99
  • Table 59. Limitations of existing IC production.      104
  • Table 60. Strategies for improving sustainability in integrated circuit (IC) manufacturing.         105
  • Table 61. Comparison of oxidation methods and level of sustainability. 108
  • Table 62. Sustainability Index for the Oxidation Processes.            109
  • Table 63. Stage of commercialization for oxides.   110
  • Table 64. Sustainable Oxidation Process Comparison.     111
  • Table 65. Wet and Dry Thermal Oxidation Comparison.   112
  • Table 66. Alternative doping techniques.     115
  • Table 67. Sustainability Index for Patterning.            117
  • Table 68. Sustainability Index for Metallization.      119
  • Table 69. Sustainability Index for Interconnection Techniques.    120
  • Table 70. Organic Substrates.             120
  • Table 71. UPW Specifications and Monitoring Methods.  121
  • Table 72. Water Management Techniques. 122
  • Table 73. UPW Upgrades and Reuse.             123
  • Table 74. Water Management Companies. 123
  • Table 75.  Metal content mg / Kg in Printed Circuit Boards (PCBs) from waste desktop computers.    129
  • Table 76. Chemical recycling methods for handling electronic waste.    130
  • Table 77.  Electrochemical processes for recycling metals from electronic waste          131
  • Table 78. Thermal recycling processes for electronic waste.         131
  • Table 79. Critical Semiconductor Materials and Recycling.            132
  • Table 80. Waste Reduction Techniques.      134
  • Table 81. Data Center Sustainability Metrics.           135
  • Table 82. Data Center CO2 Emissions.        135
  • Table 83. Total Carbon Emissions Breakdown.       136
  • Table 84. Global Data Center Hyperscalers.              136
  • Table 85. PUE and CUE metrics.        136
  • Table 86. Data Center Equipment Sustainability.  137
  • Table 87. Data center companies sustainability activity.  138
  • Table 88. Power sources for data centers.  139
  • Table 89. Benchmarking electricity sources.            140
  • Table 90. Decarbonization of Power.              140
  • Table 91 Renewable Energy Activities of Hyperscalers.     141
  • Table 92. Cost Comparison of Renewable Sources.            141
  • Table 93. Solar energy in data centers.          143
  • Table 94. Approaches to Wind-Powered Data Centers.     143
  • Table 95. Power Efficiency and Wind Turbine Models.        144
  • Table 96. Enhanced Geothermal Systems. 145
  • Table 97. Geothermal Power for Data Centers.        145
  • Table 98. SMR Projects.           146
  • Table 99. Fuel Cells for Data Centers.           148
  • Table 100. Battery Applications in Data Centers.   149
  • Table 101. Companies in Grid-scale Li-ion BESS.  150
  • Table 102. System Power Consumption and Metrics.         151
  • Table 103. Cooling Methods Overview.         152
  • Table 104. Power Demand.   153
  • Table 105. Power Forecast 2013-2035.        153
  • Table 106. Carbon Emissions by Type.          153
  • Table 107. GHG Emissions – Storage.            154
  • Table 108. CDR Credit Prices.             159
  • Table 109. Carbon credits Price range.         159
  • Table 110. Cement Decarbonization Technologies.             161
  • Table 111. Decarbonization Technologies for Steel.             162
  • Table 112. Global Data Center Lifecycle CO2e Forecast. 163
  • Table 113. Carbon-Free Energy Savings Forecast for Data Centers.          163
  • Table 114. Carbon Credits Forecast to 2035.           163
  • Table 115. Companies in sustainability for data centers   164
  • Table 116. Global PCB revenues 2018-2035 (billions USD), by substrate types.               166
  • Table 117. Global sustainable PCB revenues 2018-2035, by type (millions USD).           167
  • Table 118. Global sustainable ICs revenues 2018-2035, by type (millions USD).             170
  • Table 119. Oji Holdings CNF products.         204

 

List of Figures

  • Figure 1. Closed-loop manufacturing.          27
  • Figure 2. Sustainable supply chain for electronics.              39
  • Figure 3. Flexible PCB.             46
  • Figure 4. Vapor degreasing.  50
  • Figure 5. Multi-layered PCB. 51
  • Figure 6. 3D printed PCB.       53
  • Figure 7. In-mold electronics prototype devices and products.   54
  • Figure 8. Silver nanocomposite ink after sintering and resin bonding of discrete electronic components.                56
  • Figure 9. Typical structure of mycelium-based foam.         61
  • Figure 10. Flexible electronic substrate made from CNF. 64
  • Figure 11. CNF composite.   65
  • Figure 12. Oji CNF transparent sheets.         65
  • Figure 13. Electronic components using cellulose nanofibers as insulating materials.               66
  • Figure 14. BLOOM masterbatch from Algix.               66
  • Figure 15. Dell's Concept Luna laptop.         76
  • Figure 16.  Direct-write, precision dispensing, and 3D printing platform for 3D printed electronics.    82
  • Figure 17. 3D printed circuit boards from Nano Dimension.          83
  • Figure 18. Photonic sintering.             83
  • Figure 19. Laser-induced forward transfer (LIFT).  85
  • Figure 20. Material jetting 3d printing.           90
  • Figure 21. Material jetting 3d printing product.        91
  • Figure 22. The molecular mechanism of the shape memory effect under different stimuli.     96
  • Figure 23. Supercooled Soldering™ Technology.     100
  • Figure 24. Reflow soldering schematic.        101
  • Figure 25. Schematic diagram of induction heating reflow.             102
  • Figure 26. Fully-printed organic thin-film transistors and circuitry on one-micron-thick polymer films.                108
  • Figure 27. Types of PCBs after dismantling waste computers and monitors.      128
  • Figure 28. Global PCB revenues 2018-2035 (billions USD), by substrate types. 167
  • Figure 29. Global sustainable PCB revenues 2018-2035, by type (millions USD).            169
  • Figure 30. Global sustainable ICs revenues 2018-2035, by type (millions USD).              171
  • Figure 31. Piezotech® FC.       177
  • Figure 32. PowerCoat® paper.             178
  • Figure 33. BeFC® biofuel cell and digital platform.                180
  • Figure 34. DPP-360 machine.             183
  • Figure 35. P-Flex® Flexible Circuit.   185
  • Figure 36. Fairphone 4.            187
  • Figure 37. In2tec’s fully recyclable flexible circuit board assembly.          193
  •  Figure 38. C.L.A.D. system. 195
  • Figure 39. Soluboard immersed in water.    197
  • Figure 40. Infineon PCB before and after immersion.         197
  • Figure 41. Nano OPS Nanoscale wafer printing system.   200
  • Figure 42. PulpaTronics' paper RFID tag.      207
  • Figure 43. Stora Enso lignin battery materials.         213
  • Figure 44. 3D printed electronics.    215
  • Figure 45. Tactotek IME device.          216
  • Figure 46. TactoTek® IMSE® SiP - System In Package.          217
  • Figure 47. Eco-friendly NFC tag label (left) and paper-based antenna substrate (right).              218
  • Figure 48. Illustration of the layer structures of an NFC tag label using PET film as the antenna substrate (left) and Toppan’s new eco-friendly NFC tag label using a paper-based substrate (right).        219
  • Figure 49. Verde Bio-based resins.  222

 

The Global Market for Sustainable Electronics and Semiconductor Manufacturing 2025-2035
The Global Market for Sustainable Electronics and Semiconductor Manufacturing 2025-2035
PDF download/by email.

The Global Market for Sustainable Electronics and Semiconductor Manufacturing 2025-2035
The Global Market for Sustainable Electronics and Semiconductor Manufacturing 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com