The Global Market for Wearable Sensors and Actuators 2025-2035

0

cover

  • Published: January 2025
  • Pages: 1,012
  • Tables: 84
  • Figures: 81

 

The Global Market for Wearable Sensors and Actuators continues to experience robust growth, with total wearable device shipments exceeding 1.2 billion units in 2024. The sensor and actuator component market shows even stronger growth, exceeding 5 billion units in 2024.

Consumer wearables represent the largest market segment, driven by increasing demand for health monitoring, fitness tracking, and augmented reality applications. Key product categories include smartwatches, fitness bands, and True Wireless Stereo (TWS) systems. These devices commonly integrate pressure sensors, inertial measurement units (IMUs), and microphones. The medical wearables segment focuses on continuous glucose monitoring (CGM) devices and hearing aids, aimed at reducing healthcare costs and enabling remote patient monitoring. MEMS pressure sensors and photoplethysmography (PPG) modules generate significant revenue in this sector. Industrial applications are experiencing growth through Industry 4.0 initiatives and 5G implementation, with emphasis on employee wellness monitoring and task guidance systems. These applications primarily utilize IMUs, microphones, and eCompass sensors.

Technological advancement is driven by several key trends:

  • Integration of AI/ML capabilities at the sensor level
  • Development of 300mm fab production to scale manufacturing
  • Innovation in MEMS microspeakers
  • Increased investment in non-invasive glucose monitoring
  • Enhanced sensor fusion combining multiple technologies

The market saw significant developments in 2024, including Samsung's entry into the smart ring sector and increased adoption of MEMS microspeakers in TWS earbuds. Companies like Meta and Snap have introduced advanced AR headsets, creating new opportunities for sensor integration. Future growth areas include:

  • Expansion of hearables technology
  • Development of non-invasive glucose monitoring solutions
  • Advanced AR/VR headset applications
  • Integration of AI for enhanced functionality without additional hardware

 

The industry is consolidating around primary form factors including watches, rings, and patches, with AI-driven software improvements expected to expand sensor capabilities. Manufacturers are focusing on combining design excellence with enhanced functionality and user experience, while meeting increasingly stringent medical standards for biosignal detection. This dynamic market continues to evolve through technological innovation, with particular emphasis on improving sensor accuracy, expanding AI capabilities, and developing new applications across consumer, medical, and industrial sectors.

The Global Market for Wearable Sensors and Actuators 2025-2035 provides detailed analysis and forecasts for the rapidly expanding wearable sensors and actuators market, examining key technologies, materials, applications, and market opportunities through 2035. The report offers deep insights into this dynamic sector that sits at the intersection of consumer electronics, healthcare, sports/fitness, and industrial applications. Key Technologies Covered include:

  • Motion and inertial sensors (accelerometers, gyroscopes, magnetometers)
  • Optical sensors (PPG, spectroscopy, photodetectors)
  • Force and pressure sensors
  • Strain sensors
  • Chemical and biosensors
  • Quantum sensors
  • Wearable electrodes
  • Haptic actuators
  • Piezoelectric actuators
  • Shape memory alloys
  • Electroactive polymers
  • Emerging sensor technologies

 

Materials and Components Analysis:

  • Substrate materials (polymers, textiles, elastomers)
  • Conductive materials (metals, conductive polymers, carbon-based)
  • Energy storage materials
  • Smart materials
  • Biocompatible materials
  • Packaging materials
  • Emerging materials (2D materials, metamaterials)

 

Application Markets:

  • Healthcare and medical monitoring
  • Consumer electronics and smartwatches
  • Sports and fitness tracking
  • Industrial and enterprise applications
  • Military and defense
  • Entertainment and gaming
  • Automotive applications
  • Emerging applications

 

The report provides detailed analysis of:

  • Market drivers and trends
  • Manufacturing processes
  • Supply chain dynamics
  • Regulatory landscape
  • Patent analysis
  • Competitive landscape
  • Regional market analysis
  • Investment opportunities
  • Detailed market forecasts 2025-2035
  • Analysis of 300+ companies. Companies profiled include Abbott Diabetes Care, AAC Technologies, Analog Devices, Apple, ams OSRAM, Bosch Sensortec, Dexcom, Fitbit, Garmin, Google, Honeywell, Huawei, Infineon Technologies, Knowles, Magic Leap, Meta, Microsoft, muRata, Omron, Philips Healthcare, Qualcomm, Rockley Photonics, Samsung, Sensirion, Silicon Labs, Sony, STMicroelectronics, TDK Group, TE Connectivity, Valencell, Aidar Health, Biolinq, Bloomlife, CardiacSense, Cipher Skin, Empatica, Epicore Biosystems, Oura, PhotonWear, GraphWear Technologies, Movano, Nanowear, Nutromics, Quantum Operation, Plantiga, Rockley Photonics, Somalytics, StretchSense, and Vitality, TDK, and TE Connectivity. The comprehensive company coverage spans the entire wearable sensor and actuator ecosystem from established market leaders to innovative start-ups across consumer electronics, healthcare, sports/fitness, and industrial applications.
  • Technology assessment and roadmaps

 

Who Should Buy This Report:

  • Wearable technology companies
  • Sensor and actuator manufacturers
  • Electronics companies
  • Healthcare organizations
  • Sports/fitness companies
  • Material suppliers
  • Investment firms
  • R&D organizations
  • Strategic planners
  • Product developers

 

 

 

1             EXECUTIVE SUMMARY            37

  • 1.1        Wearable technology                37
  • 1.2        Key functions of wearable technology           41
  • 1.3        Evolution of sensors and actuators 42
  • 1.4        Advancements in AI and integrated sensors             43
  • 1.5        Technology roadmap 43
  • 1.6        Manufacturing processes      44
  • 1.7        Market trends 44
  • 1.8        Technology trends      46
  • 1.9        Market outlook             46

 

2             SENSOR TECHNOLOGIES     49

  • 2.1        Motion Sensors            49
    • 2.1.1    Technology and Components             49
      • 2.1.1.1 Inertial Measurement Units (IMUs) 49
        • 2.1.1.1.1           MEMs accelerometers             50
        • 2.1.1.1.2           MEMS Gyroscopes     50
        • 2.1.1.1.3           IMUs in smart-watches           50
      • 2.1.1.2 Tunneling magnetoresistance sensors (TMR)          51
    • 2.1.2    Applications   52
  • 2.2        Optical Sensors           53
    • 2.2.1    Overview           56
    • 2.2.2    Technology and Components             56
      • 2.2.2.1 Photoplethysmography (PPG)             56
      • 2.2.2.2 Spectroscopy 57
      • 2.2.2.3 Photodetectors             58
    • 2.2.3    Applications   59
      • 2.2.3.1 Heart Rate Optical Sensors  59
      • 2.2.3.2 Pulse Oximetry Optical Sensors        60
        • 2.2.3.2.1           Blood oxygen measurement 60
        • 2.2.3.2.2           Wellness and Medical Applications                61
        • 2.2.3.2.3           Consumer Pulse Oximetry    61
        • 2.2.3.2.4           Pediatric Applications              61
        • 2.2.3.2.5           Skin Patches   62
      • 2.2.3.3 Blood Pressure Optical Sensors        62
        • 2.2.3.3.1           Commercialization    62
        • 2.2.3.3.2           Oscillometric blood pressure measurement            63
        • 2.2.3.3.3           Combination of PPG and ECG            63
        • 2.2.3.3.4           Non-invasive Blood Pressure Sensing           63
        • 2.2.3.3.5           Blood Pressure Hearables     64
      • 2.2.3.4 Non-Invasive Glucose Monitoring Optical Sensors              64
        • 2.2.3.4.1           Overview           64
        • 2.2.3.4.2           Other Optical Approaches    65
      • 2.2.3.5 fNIRS Optical Sensors             65
        • 2.2.3.5.1           Overview           66
        • 2.2.3.5.2           Brain-Computer Interfaces   66
  • 2.3        Force Sensors               67
    • 2.3.1    Overview           67
      • 2.3.1.1 Piezoresistive force sensing 68
      • 2.3.1.2 Thin film pressure sensors    68
    • 2.3.2    Technology and Components             68
      • 2.3.2.1 Materials           69
      • 2.3.2.2 Piezoelectric polymers            69
      • 2.3.2.3 Temperature sensing and Remote Patient Monitoring (RPM) integration 70
      • 2.3.2.4 Wearable force and pressure sensors           70
  • 2.4        Strain Sensors               70
    • 2.4.1    Overview           70
    • 2.4.2    Technology and Components             70
    • 2.4.3    Applications   71
      • 2.4.3.1 Healthcare       71
      • 2.4.3.2 Wearable Strain Sensors        71
      • 2.4.3.3 Temperature Sensors               71
  • 2.5        Chemical Sensors      73
    • 2.5.1    Overview           73
    • 2.5.2    Optical Chemical Sensors    75
    • 2.5.3    Technology and Components             75
      • 2.5.3.1 Continuous Glucose Monitoring       75
      • 2.5.3.2 Commercial CGM systems  76
    • 2.5.4    Applications   77
      • 2.5.4.1 Sweat-based glucose monitoring    78
      • 2.5.4.2 Tear glucose measurement  78
      • 2.5.4.3 Salivary glucose monitoring 78
      • 2.5.4.4 Breath analysis for glucose monitoring        78
      • 2.5.4.5 Urine glucose monitoring      79
  • 2.6        Biosensors      79
    • 2.6.1    Overview           79
    • 2.6.2    Applications   80
      • 2.6.2.1 Wearable Alcohol Sensors    80
      • 2.6.2.2 Wearable Lactate Sensors    80
      • 2.6.2.3 Wearable Hydration Sensors               80
      • 2.6.2.4 Smart diaper technology        81
      • 2.6.2.5 Ultrasound technology            81
      • 2.6.2.6 Microneedle technology for continuous fluid sampling    81
  • 2.7        Quantum Sensors      82
    • 2.7.1    Magnetometry              82
    • 2.7.2    Tunneling magnetoresistance sensors         83
    • 2.7.3    Chip-scale atomic clocks      84
    • 2.7.4    Performance advantages      85
    • 2.7.5    Integration challenges             85
    • 2.7.6    Application areas        85
    • 2.7.7    Market readiness        86
  • 2.8        Wearable Electrodes 86
    • 2.8.1    Overview           86
    • 2.8.2    Applications   86
      • 2.8.2.1 Skin Patches and E-textiles   87
    • 2.8.3    Technology and Components             87
      • 2.8.3.1 Electrode Selection   88
      • 2.8.3.2 E-textiles           88
      • 2.8.3.3 Microneedle electrodes          89
      • 2.8.3.4 Electronic Skins           90
    • 2.8.4    Applications   91
      • 2.8.4.1 Electrocardiogram (ECG) wearable electrodes        92
      • 2.8.4.2 Electroencephalography (EEG) wearable electrodes represent   93
      • 2.8.4.3 Electromyography (EMG) wearable electrodes        94
      • 2.8.4.4 Bioimpedance wearable electrodes               94
  • 2.9        Emerging Sensor Technologies          96
    • 2.9.1    Biological Sensors      96
      • 2.9.1.1 DNA sensors  97
      • 2.9.1.2 Protein sensors            97
      • 2.9.1.3 Enzyme-based detection       98
      • 2.9.1.4 Lab-on-chip integration          99
      • 2.9.1.5 Manufacturing challenges    100
      • 2.9.1.6 Market potential          101
      • 2.9.1.7 Future developments               102
    • 2.9.2    Soft Sensors   103
      • 2.9.2.1 Material technologies               104
      • 2.9.2.2 Design approaches   105
      • 2.9.2.3 Manufacturing methods         106
      • 2.9.2.4 Performance characteristics               107
      • 2.9.2.5 Integration challenges             108
      • 2.9.2.6 Applications   109
      • 2.9.2.7 Market outlook             110
    • 2.9.3    Self-Powered Sensors              111
      • 2.9.3.1 Energy harvesting       112
      • 2.9.3.2 Power management  113
      • 2.9.3.3 Performance metrics                114
      • 2.9.3.4 Integration methods  115
      • 2.9.3.5 Application requirements      116
      • 2.9.3.6 Market potential          117
      • 2.9.3.7 Technology roadmap 118
  • 2.10     Integration and Packaging    119
    • 2.10.1 System Integration     119
      • 2.10.1.1            Multi-sensor fusion   120
      • 2.10.1.2            Signal conditioning    121
      • 2.10.1.3            Power management  122
      • 2.10.1.4            Communication interfaces   123
      • 2.10.1.5            Form factor optimization       124
      • 2.10.1.6            Cost considerations  125
    • 2.10.2 Packaging Technologies         126
      • 2.10.2.1            Material selection       127
      • 2.10.2.2            Hermeticity      128
      • 2.10.2.3            Thermal management             129
      • 2.10.2.4            Reliability testing         130
      • 2.10.2.5            Manufacturing processes      131
      • 2.10.2.6            Cost analysis 132
    • 2.10.3 Interconnect Solutions           133
      • 2.10.3.1            Wire bonding 134
      • 2.10.3.2            Flip chip             135
      • 2.10.3.3            Through-silicon vias  136
      • 2.10.3.4            Flexible interconnects              137
      • 2.10.3.5            Reliability considerations      138
      • 2.10.3.6            Manufacturing challenges    139

 

3             ACTUATOR TECHNOLOGIES               140

  • 3.1        Overview         140
    • 3.1.1    Applications   140
    • 3.1.2    Types   141
    • 3.1.3    Electrical stimulation technologies 142
  • 3.2        Haptic Actuators         143
    • 3.2.1    Linear Resonant Actuators (LRA)      144
      • 3.2.1.1 Manufacturing challenges    144
      • 3.2.1.2 Operating principles  145
      • 3.2.1.3 Resonant frequency optimization    146
      • 3.2.1.4 Driver circuitry               147
      • 3.2.1.5 Force output characteristics               148
      • 3.2.1.6 Power consumption  148
      • 3.2.1.7 Size considerations   149
      • 3.2.1.8 Manufacturing methods         150
      • 3.2.1.9 Cost analysis 151
    • 3.2.2    Eccentric Rotating Mass (ERM)         152
      • 3.2.2.1 Design principles        152
      • 3.2.2.2 Speed control                153
      • 3.2.2.3 Force output   154
      • 3.2.2.4 Power requirements  155
      • 3.2.2.5 Integration challenges             156
      • 3.2.2.6 Application requirements      156
      • 3.2.2.7 Future developments               157
    • 3.2.3    Advanced Haptic Technologies         158
      • 3.2.3.1 Multi-axis haptics       159
      • 3.2.3.2 Variable force feedback          160
      • 3.2.3.3 Precision control         161
      • 3.2.3.4 Integration methods  162
      • 3.2.3.5 Power optimization    163
      • 3.2.3.6 Application-specific designs               164
      • 3.2.3.7 Market opportunities 164
  • 3.3        Vibrational Motors      166
    • 3.3.1    DC Motors       166
    • 3.3.2    Piezoelectric Motors 168
  • 3.4        Piezoelectric Actuators           170
    • 3.4.1    Piezoelectric Actuators           170
      • 3.4.1.1 Bulk Piezoelectric Actuators                170
      • 3.4.1.2 Thin Film Piezoelectric Actuators      171
  • 3.5        Shape Memory Alloys               173
    • 3.5.1    NiTi-based Actuators                173
      • 3.5.1.1 Material properties     173
      • 3.5.1.2 Phase transformation              174
      • 3.5.1.3 Force generation          175
      • 3.5.1.4 Response characteristics      176
      • 3.5.1.5 Control methods         177
      • 3.5.1.6 Applications   178
      • 3.5.1.7 Manufacturing              179
    • 3.5.2    Other Shape Memory Materials         180
      • 3.5.2.1 Copper-based alloys 180
      • 3.5.2.2 Magnetic shape memory alloys         181
      • 3.5.2.3 Performance comparison     182
      • 3.5.2.4 Manufacturing processes      183
      • 3.5.2.5 Application requirements      184
      • 3.5.2.6 Market opportunities 185
  • 3.6        Electroactive Polymers           186
    • 3.6.1    Dielectric Elastomers              187
      • 3.6.1.1 Material selection       187
      • 3.6.1.2 Operating principles  188
      • 3.6.1.3 Performance characteristics               189
      • 3.6.1.4 Manufacturing methods         190
      • 3.6.1.5 Integration challenges             191
      • 3.6.1.6 Applications   192
    • 3.6.2    Ionic Polymer-Metal Composites     192
      • 3.6.2.1 Material composition               193
      • 3.6.2.2 Operating mechanisms          194
      • 3.6.2.3 Performance metrics                195
      • 3.6.2.4 Manufacturing processes      196
      • 3.6.2.5 Integration methods  196
      • 3.6.2.6 Applications   197
      • 3.6.2.7 Market potential          198
    • 3.6.3    Conducting Polymers               199
      • 3.6.3.1 Material types                199
      • 3.6.3.2 Operating principles  200
      • 3.6.3.3 Response characteristics      202
      • 3.6.3.4 Manufacturing methods         203
      • 3.6.3.5 Applications   205
      • 3.6.3.6 Market opportunities 207
  • 3.7        Micro-pumps and Valves       209
    • 3.7.1    Mechanical Micro-pumps     209
    • 3.7.2    Non-mechanical Micro-pumps         211
    • 3.7.3    Microvalves     214
  • 3.8        Novel Actuator Technologies               214
    • 3.8.1    Thermal Actuators      214
    • 3.8.2    Magnetic Actuators    216
    • 3.8.3    Hybrid Actuators          218
  • 3.9        Integration and Control           220
    • 3.9.1    Driver Electronics        220
      • 3.9.1.1 Circuit design 222
      • 3.9.1.2 Power management  224
      • 3.9.1.3 Control algorithms     226
      • 3.9.1.4 Integration methods  227
      • 3.9.1.5 Cost considerations  229
    • 3.9.2    System Integration     231
      • 3.9.2.1 Packaging solutions  232
      • 3.9.2.2 Interface requirements            234
      • 3.9.2.3 Performance optimization    236
      • 3.9.2.4 Manufacturing challenges    238
      • 3.9.2.5 Cost analysis 238
    • 3.9.3    Future Trends 238
      • 3.9.3.1 Miniaturization              238
      • 3.9.3.2 Energy efficiency         238
      • 3.9.3.3 Smart materials           238
      • 3.9.3.4 Novel applications     238
      • 3.9.3.5 Market projections     238

 

4             MATERIALS AND COMPONENTS       238

  • 4.1        Substrates and Flexible Electronics                238
    • 4.1.1    Polymers           240
      • 4.1.1.1 Polyimide         242
      • 4.1.1.2 PET       243
      • 4.1.1.3 PEEK    245
      • 4.1.1.4 PEN      245
      • 4.1.1.5 Processing methods 247
      • 4.1.1.6 Thermal properties     249
      • 4.1.1.7 Mechanical characteristics  250
      • 4.1.1.8 Cost analysis 252
      • 4.1.1.9 Market trends 254
    • 4.1.2    Textiles               256
      • 4.1.2.1 Natural fibers 257
      • 4.1.2.2 Synthetic fibers            259
      • 4.1.2.3 Conductive textiles    261
      • 4.1.2.4 Integration methods  261
      • 4.1.2.5 Washability     261
      • 4.1.2.6 Durability testing         261
      • 4.1.2.7 Manufacturing processes      261
      • 4.1.2.8 Market opportunities 261
    • 4.1.3    Elastomers      261
      • 4.1.3.1 Silicone-based materials       263
      • 4.1.3.2 TPU       265
      • 4.1.3.3 Natural rubber               266
      • 4.1.3.4 Synthetic elastomers               268
      • 4.1.3.5 Stretchability  270
      • 4.1.3.6 Recovery characteristics       272
      • 4.1.3.7 Processing methods 273
      • 4.1.3.8 Applications   275
  • 4.2        Conductive Materials               277
    • 4.2.1    Metals 277
      • 4.2.1.1 Silver    279
      • 4.2.1.2 Copper               280
      • 4.2.1.3 Gold     282
      • 4.2.1.4 Nanoparticle inks       284
      • 4.2.1.5 Processing methods 285
      • 4.2.1.6 Conductivity metrics 287
      • 4.2.1.7 Cost considerations  289
      • 4.2.1.8 Market analysis            291
    • 4.2.2    Conductive polymers               292
      • 4.2.2.1 Polyaniline       292
      • 4.2.2.2 Polypyrrole       294
      • 4.2.2.3 Processing techniques            296
      • 4.2.2.4 Conductivity ranges  297
      • 4.2.2.5 Stability             299
      • 4.2.2.6 Applications   301
      • 4.2.2.7 Market trends 303
    • 4.2.3    Carbon-based materials        304
      • 4.2.3.1 Graphene         304
      • 4.2.3.2 Carbon nanotubes     306
      • 4.2.3.3 Carbon black 308
      • 4.2.3.4 Processing methods 310
      • 4.2.3.5 Performance metrics                311
      • 4.2.3.6 Cost analysis 313
      • 4.2.3.7 Market opportunities 315
  • 4.3        Energy Storage Materials        317
    • 4.3.1    Battery Materials         317
      • 4.3.1.1 Cathode materials     318
      • 4.3.1.2 Anode materials          320
      • 4.3.1.3 Electrolytes     322
      • 4.3.1.4 Separators       324
      • 4.3.1.5 Manufacturing processes      325
      • 4.3.1.6 Performance metrics                327
      • 4.3.1.7 Safety considerations              329
    • 4.3.2    Supercapacitor Materials      330
      • 4.3.2.1 Electrode materials   332
      • 4.3.2.2 Electrolytes     334
      • 4.3.2.3 Separators       336
      • 4.3.2.4 Manufacturing methods         337
      • 4.3.2.5 Performance characteristics               339
      • 4.3.2.6 Applications   341
    • 4.3.3    Energy Harvesting Materials 343
      • 4.3.3.1 Piezoelectric materials            344
      • 4.3.3.2 Thermoelectric materials      348
      • 4.3.3.3 Photovoltaic materials             349
      • 4.3.3.4 Processing methods 351
      • 4.3.3.5 Efficiency metrics       353
  • 4.4        Packaging Materials  354
    • 4.4.1    Encapsulation Materials         354
    • 4.4.2    Adhesives and Bonding          358
  • 4.5        Smart Materials            362
    • 4.5.1    Shape Memory Materials       362
      • 4.5.1.1 Alloys  364
      • 4.5.1.2 Polymers           365
      • 4.5.1.3 Processing techniques            367
      • 4.5.1.4 Performance characteristics               369
      • 4.5.1.5 Applications   371
      • 4.5.1.6 Market trends 372
    • 4.5.2    Chromic Materials      374
      • 4.5.2.1 Thermochromic           374
      • 4.5.2.2 Electrochromic             377
      • 4.5.2.3 Photochromic               381
      • 4.5.2.4 Manufacturing methods         384
      • 4.5.2.5 Applications   388
      • 4.5.2.6 Market opportunities 389
  • 4.6        Biocompatible Materials        391
    • 4.6.1    Polymeric Biomaterials           393
      • 4.6.1.1 Hydrogels         395
      • 4.6.1.2 Biodegradable polymers        396
      • 4.6.1.3 Processing methods 398
      • 4.6.1.4 Biocompatibility testing          400
      • 4.6.1.5 Applications   402
      • 4.6.1.6 Market analysis            405
    • 4.6.2    Metallic Biomaterials               407
      • 4.6.2.1 Titanium alloys             408
      • 4.6.2.2 Stainless steel               410
      • 4.6.2.3 Processing techniques            412
      • 4.6.2.4 Surface treatments    414
      • 4.6.2.5 Applications   415
      • 4.6.2.6 Market trends 417
  • 4.7        Emerging Materials    419
    • 4.7.1    2D Materials   419
    • 4.7.2    Metamaterials               421
    • 4.7.3    Hybrid Materials          424

 

5             APPLICATION MARKETS         427

  • 5.1        Healthcare and Medical         427
    • 5.1.1    Electronic skin patches           434
      • 5.1.1.1 Electrochemical biosensors                435
      • 5.1.1.2 Printed pH sensors    436
    • 5.1.2    Remote patient monitoring  438
      • 5.1.2.1 Vital signs monitoring              440
      • 5.1.2.2 Chronic disease management           443
      • 5.1.2.3 Post-operative care    445
      • 5.1.2.4 Elderly care monitoring           446
      • 5.1.2.5 Pregnancy and newborn monitoring              448
      • 5.1.2.6 Medication adherence             450
      • 5.1.2.7 Data analytics platforms        452
      • 5.1.2.8 Regulatory compliance           454
    • 5.1.3    Diagnostics    455
      • 5.1.3.1 Continuous glucose monitoring        455
        • 5.1.3.1.1           Minimally-invasive CGM sensors     457
        • 5.1.3.1.2           Non-invasive CGM sensors  459
      • 5.1.3.2 ECG/EKG monitoring 463
      • 5.1.3.3 Sleep diagnostics       468
      • 5.1.3.4 Temperature and respiratory monitoring     468
      • 5.1.3.5 Early disease detection           471
      • 5.1.3.6 Point-of-care diagnostics      472
      • 5.1.3.7 Femtech devices         476
      • 5.1.3.8 Smart footwear for health monitoring           479
      • 5.1.3.9 Clinical validation       481
      • 5.1.3.10            Market trends 483
      • 5.1.3.11            Technology adoption 486
    • 5.1.4    Therapy and drug delivery      488
      • 5.1.4.1 Smart drug delivery systems               489
      • 5.1.4.2 Transdermal delivery 490
      • 5.1.4.3 Pain management      492
      • 5.1.4.4 Neuromodulation       494
      • 5.1.4.5 Rehabilitation therapy              495
      • 5.1.4.6 Clinical outcomes      497
      • 5.1.4.7 Patient compliance   499
      • 5.1.4.8 Cost effectiveness      501
      • 5.1.4.9 Market opportunities 502
      • 5.1.4.10            Future developments               504
    • 5.1.5    Rehabilitation                508
      • 5.1.5.1 Motion tracking            508
      • 5.1.5.2 Gait analysis  511
      • 5.1.5.3 Physical therapy          513
      • 5.1.5.4 Cognitive rehabilitation           515
      • 5.1.5.5 Progress monitoring  516
      • 5.1.5.6 Telerehabilitation         518
      • 5.1.5.7 Market dynamics        520
  • 5.2        Consumer Electronics             523
    • 5.2.1    Wrist-worn sensing technologies     525
    • 5.2.2    Established sensor hardware              526
    • 5.2.3    Non-Invasive Glucose Monitoring    526
    • 5.2.4    Minimally invasive glucose monitoring         527
    • 5.2.5    Wrist-worn communication technologies  528
    • 5.2.6    Luxury and traditional watch industry           529
    • 5.2.7    Smart-strap technologies      530
    • 5.2.8    Sensing              531
    • 5.2.9    Actuating          532
    • 5.2.10 Smartwatches               537
      • 5.2.10.1            Health monitoring features   537
      • 5.2.10.2            Activity tracking           538
      • 5.2.10.3            Communication functions    540
      • 5.2.10.4            User interface                540
      • 5.2.10.5            Battery life       540
      • 5.2.10.6            Energy harvesting for powering smartwatches        540
      • 5.2.10.7            Form factor evolution               541
      • 5.2.10.8            Market leaders              541
      • 5.2.10.9            Consumer adoption  542
      • 5.2.10.10         Price trends     542
      • 5.2.10.11         Future capabilities     542
    • 5.2.11 Fitness trackers            542
      • 5.2.11.1            Advanced biometric sensing               542
      • 5.2.11.2            Wearable devices and apparel           543
      • 5.2.11.3            Skin patches   543
      • 5.2.11.4            Activity monitoring     544
      • 5.2.11.5            Sleep tracking               545
      • 5.2.11.6            Heart rate monitoring               548
      • 5.2.11.7            Blood Pressure             548
      • 5.2.11.8            Spectroscopic technologies                549
      • 5.2.11.9            Social features              550
      • 5.2.11.10         Market segmentation               552
      • 5.2.11.11         Consumer preferences            554
    • 5.2.12 Smart clothing              556
      • 5.2.12.1            Integration technologies         558
      • 5.2.12.2            Washing durability     559
      • 5.2.12.3            Sensor types  561
      • 5.2.12.4            Data collection             564
      • 5.2.12.5            Fashion considerations          566
      • 5.2.12.6            Manufacturing challenges    568
      • 5.2.12.7            Market acceptance    571
      • 5.2.12.8            Growth potential         575
    • 5.2.13 AR/VR devices               576
      • 5.2.13.1            Motion tracking            578
      • 5.2.13.2            Haptic feedback          580
      • 5.2.13.3            Eye tracking    582
      • 5.2.13.4            XR controllers and sensing systems               583
      • 5.2.13.5            XR positional and motion tracking systems               584
      • 5.2.13.6            Wearable technology for XR 585
      • 5.2.13.7            Wearable Gesture Sensors for XR    586
      • 5.2.13.8            Edge Sensing and AI  586
      • 5.2.13.9            VR Technology               586
      • 5.2.13.9.1        Overview           586
      • 5.2.13.9.2        VR Headset Types       587
      • 5.2.13.9.3        Future outlook for VR technology     587
      • 5.2.13.9.4        VR Lens Technology   588
      • 5.2.13.9.5        VR challenges                588
      • 5.2.13.9.6        Market growth               588
      • 5.2.13.10         AR Technology               589
        • 5.2.13.10.1     Overview           589
        • 5.2.13.10.2     AR and MR distinction             589
        • 5.2.13.10.3     AR for Assistive Technology  589
        • 5.2.13.10.4     Consumer AR market               590
        • 5.2.13.10.5     Optics Technology for AR and VR      594
        • 5.2.13.10.6     Optical Combiners    595
        • 5.2.13.10.7     AR display technology              596
        • 5.2.13.10.8     Challenges      596
      • 5.2.13.11         Metaverse         596
      • 5.2.13.12         Mixed Reality (MR) smart glasses     597
      • 5.2.13.13         User interaction           597
      • 5.2.13.14         Comfort factors           599
      • 5.2.13.15         Application development       601
      • 5.2.13.16         Market growth               604
      • 5.2.13.17         Technology trends      606
  • 5.3        Sports and Fitness     608
    • 5.3.1    Performance Monitoring        608
    • 5.3.2    Hydration sensors      612
    • 5.3.3    Wearable sweat sensors        613
    • 5.3.4    Injury Prevention          616
  • 5.4        Industrial and Enterprise        619
    • 5.4.1    Worker Safety 621
    • 5.4.2    Productivity Enhancement   625
  • 5.5        Military and Defense 630
    • 5.5.1    Soldier Systems           630
    • 5.5.2    Training and Simulation          635
  • 5.6        Entertainment and Gaming  641
    • 5.6.1    Motion Control              641
    • 5.6.2    Immersive Experiences           649
  • 5.7        Automotive      654
    • 5.7.1    Driver Monitoring        654
    • 5.7.2    Comfort and Control 656
  • 5.8        Emerging Applications             669
    • 5.8.1    Smart Homes 669
      • 5.8.1.1 Environmental monitoring    670
      • 5.8.1.2 Security applications               671
      • 5.8.1.3 Comfort optimization               673
      • 5.8.1.4 Market potential          675
    • 5.8.2    Personal Safety             676
      • 5.8.2.1 Emergency detection                677
      • 5.8.2.2 Environmental hazards           678
      • 5.8.2.3 Communication systems      680
      • 5.8.2.4 Market opportunities 682
    • 5.8.3    Fashion Technology   683
      • 5.8.3.1 Smart accessories     683
      • 5.8.3.2 Interactive clothing    685
      • 5.8.3.3 Design integration      687
      • 5.8.3.4 Market acceptance    689

 

6             MANUFACTURING AND FABRICATION         689

  • 6.1        Traditional Manufacturing Methods 690
  • 6.2        Printed Electronics     691
  • 6.3        Roll-to-Roll Processing            692
  • 6.4        Additive Manufacturing          696
  • 6.5        Integration Technologies        698
  • 6.6        Quality Control and Testing  700
  • 6.7        Cost Analysis 702

 

7             TECHNOLOGY TRENDS          704

  • 7.1        Miniaturization              704
  • 7.2        Energy Efficiency         709
  • 7.3        Wireless Technologies             716
  • 7.4        Data Processing and AI            723
  • 7.5        Materials Innovation 726
  • 7.6        Integration Trends       728
  • 7.7        Sustainability 736

 

8             MARKET FORECASTS                750

  • 8.1        Consumer Wearables              752
  • 8.2        Medical Wearables    755
  • 8.3        Industrial Wearables 757

 

9             COMPANY PROFILES                760 (342 company profiles)

 

10          REFERENCES 994

 

List of Tables

  • Table 1. Types of wearable devices and applications.        38
  • Table 2. Types of wearable devices and the data collected.            39
  • Table 3. Wearable sensor types.        40
  • Table 4. Overview of Wearable Sensor Types.          40
  • Table 5. Value proposition of wearable sensors versus non wearable alternatives.        42
  • Table 6. Markets trends.         44
  • Table 7. Market Drivers in the Wearable Sensor Market.    44
  • Table 8. Markets for Wearable Sensors.       45
  • Table 9. Applications and Opportunities for TMRs in Wearables. 51
  • Table 10. Wearable Motion Sensors Applications. 51
  • Table 11. Applications of Photoplethysmography (PPG).  56
  • Table 12. Wearable Brands in Cardiovascular Clinical Research.               62
  • Table 13. Technologies for Cuff-less Blood Pressure.          63
  • Table 14. Market outlook for Wearable Blood Pressure Devices. 63
  • Table 15. Non-invasive glucose monitoring.             65
  • Table 16. fNIRS Companies. 66
  • Table 17. Comparing fNIRS to Other Non-invasive Brain Imaging Methods.        66
  • Table 18. Thin Film Pressure Sensor Architectures.              68
  • Table 19. Applications of Printed Force Sensors.   68
  • Table 20. Companies in Printed Strain Sensors.     71
  • Table 21. Types of Temperature Sensor.       72
  • Table 22. Technology Readiness Level for strain sensors. 73
  • Table 23. Commercial CGM Devices.            77
  • Table 24. Applications of Wearable Chemical Sensors.    78
  • Table 25. Market Outlook of Wearable Sensors for Novel Biometrics.     81
  • Table 26. Applications of Wearable OPMs – MEG. 82
  • Table 27. Applications and Market Opportunities for TMRs.           83
  • Table 28. Wearable Electrode Types.              86
  • Table 29. Applications of wearable electrodes.       86
  • Table 30. Printed Electrodes for Skin Patches and E-textiles.         87
  • Table 31. Companies in Wearable Electrodes.        88
  • Table 32. Materials and Manufacturing Approaches for Electronic Skins.             90
  • Table 33. Wearable electrodes Applications.           91
  • Table 34. Costs analysis of packaging technologies.          132
  • Table 35. Manufacturing challenges for Interconnects.     139
  • Table 36. Applications of Neuromuscular Electrical Stimulation (NMES) and Electrical Muscle Stimulation (EMS).     143
  • Table 37. Manufacturing methods for haptic actuators.    150
  • Table 38. Manufacturing methods for dielectric elastomers.         190
  • Table 39. Integration challenges for dielectric elastomers.             191
  • Table 40. Integration methods for ionic polymer-metal composites.        196
  • Table 41. Applications of ionic polymer-metal composites            197
  • Table 42. Drivers for Wearable Adoption and Innovation. 427
  • Table 43.Companies and products in wearable health monitoring and rehabilitation devices and products.          429
  • Table 44. Pregnancy and Newborn Monitoring Wearables.             449
  • Table 45. Technologies for minimally-invasive and non-invasive glucose detection-advantages and disadvantages.            457
  • Table 46. Commercial devices for non-invasive glucose monitoring not released or withdrawn from market.              459
  • Table 47. Minimally-invasive and non-invasive glucose monitoring products.   461
  • Table 48. ECG Patch Monitor and Clothing Products.         466
  • Table 49. PPG Wearable Electronics Companies and Products.  467
  • Table 50. Medical wearable companies applying products to temperate and respiratory monitoring and analysis.           470
  • Table 51. Femtech Wearable Electronics.   476
  • Table 52. Companies developing femtech wearable technology.                477
  • Table 53. Companies and products in smart foowtear and insolves.       480
  • Table 54. Companies and products, cosmetics and drug delivery patches.        489
  • Table 55. Wearable electronics drug delivery companies and products.               502
  • Table 56. Types of wearable sensors.            523
  • Table 57. Different sensing modalities that can be incorporated into wrist-worn wearable device.      531
  • Table 58. Overview of actuating at the wrist              532
  • Table 59. Key players in Wrist-Worn Technology.    535
  • Table 60. Wearable health monitors.             539
  • Table 61. Sports-watches, smart-watches and fitness trackers producers and products.         541
  • Table 62. Wearable sensors for sports performance.          544
  • Table 63. Example wearable sleep tracker products and prices. 545
  • Table 64. Sleep Headband Wearables. 547
  • Table 65. Wearable sensor products for monitoring sport performance.               554
  • Table 66. XR Headset OEM Comparison.    584
  • Table 67. Timeline of Modern VR.     587
  • Table 68. VR Headset Types.                587
  • Table 69. AR Outlook by Device Type              590
  • Table 70. AR Outlook by Computing Type.  590
  • Table 71. Augmented reality (AR) smart glass products.   591
  • Table 72. Companies developing wearable swear sensors.            615
  • Table 73.  Industrial Wearable Electronics Products.          619
  • Table 74.  Common printing methods used in printed electronics manufacturing in terms of resolution vs throughput.               691
  • Table 75. Applications of R2R electronics manufacturing.              693
  • Table 76. Technology readiness level for R2R manufacturing.      694
  • Table 77. Global Wearable Sensors and Actuators Sales Volume Forecast (millions USD), 2025-2035.                750
  • Table 78. Global Wearable Sensors and Actuators Sales Volume Forecast (Units), 2025-2035.            751
  • Table 79. Global Wearable Sensors and Actuators Sales Volume Forecast (millions USD), 2025-2035, for Consumer Wearables.     752
  • Table 80. Global Wearable Sensors and Actuators Sales Volume Forecast (Units), 2025-2035, for Consumer Wearables.            754
  • Table 81. Global Wearable Sensors and Actuators Sales Volume Forecast (millions USD), 2025-2035, for Medical Wearables.           755
  • Table 82. Global Wearable Sensors and Actuators Sales Volume Forecast (Units), 2025-2035, for Medical Wearables.  756
  • Table 83. Global Wearable Sensors and Actuators Sales Volume Forecast (millions USD), 2025-2035, for Industrial Wearables.       757
  • Table 84. Global Wearable Sensors and Actuators Sales Volume Forecast (Units), 2025-2035, for Industrial Wearables.               758

 

List of Figures

  • Figure 1. Roadmap of wearable sensor technology.             43
  • Figure 2. Roadmap for Wearable Optical Heart-rate Sensors.       60
  • Figure 3. Technology roadmap for self-powered sensors. 118
  • Figure 4. Actuator types.         141
  • Figure 5. Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs.                434
  • Figure 6. Graphene medical patch. 437
  • Figure 7. Graphene-based E-skin patch.      437
  • Figure 8. Bloomlife.   449
  • Figure 9. Technologies for minimally-invasive and non-invasive glucose detection.       456
  • Figure 10. Technologies for minimally-invasive and non-invasive glucose detection.    457
  • Figure 11. Schematic of non-invasive CGM sensor.             460
  • Figure 12. Adhesive wearable CGM sensor.               461
  • Figure 13. VitalPatch.                464
  • Figure 14. Wearable ECG-textile.      465
  • Figure 15. Wearable ECG recorder.  466
  • Figure 16. Nexkin™.     466
  • Figure 17. Enfucell wearable temperature tag.        469
  • Figure 18. TempTraQ wearable wireless thermometer.       470
  • Figure 19. Brilliantly Warm.  478
  • Figure 20. Ava Fertility tracker.            478
  • Figure 21. S9 Pro breast pump.          479
  • Figure 22. Tempdrop. 479
  • Figure 23. Digitsole Smartshoe.        480
  • Figure 24. D-mine Pump.       489
  • Figure 25. Lab-on-Skin™.        489
  • Figure 26. Roadmap of wearable sensor technology segmented by key biometrics.      525
  • Figure 27. EmeTerm nausea relief wearable.             533
  • Figure 28. Embr Wave for cooling and warming.     534
  • Figure 29. dpl Wrist Wrap Light THerapy pain relief.              534
  • Figure 30. Roadmap for Wrist-Worn Wearables.    536
  • Figure 31. FitBit Sense Watch.            539
  • Figure 32. Wearable bio-fluid monitoring system for monitoring of hydration.   543
  • Figure 33. Beddr SleepTuner. 547
  • Figure 34. Engo Eyewear.        591
  • Figure 35. Lenovo ThinkReality A3.  592
  • Figure 36. Magic Leap 1.         592
  • Figure 37. Microsoft HoloLens 2.      592
  • Figure 38. OPPO Air Glass AR.            593
  • Figure 39. Snap Spectacles AR (4th gen).    593
  • Figure 40. Vuzix Blade Upgraded.     594
  • Figure 41. Nanowire skin hydration patch.  612
  • Figure 42. NIX sensors.           613
  • Figure 43. Wearable sweat sensor.  614
  • Figure 44. Wearable  graphene sweat sensor.          614
  • Figure 45. Gatorade's GX Sweat Patch.         615
  • Figure 46. Sweat sensor incorporated into face mask.      615
  • Figure 47. Global Wearable Sensors and Actuators Sales Volume Forecast (millions USD), 2025-2035.                751
  • Figure 48. Global Wearable Sensors and Actuators Sales Volume Forecast (Units), 2025-2035.          752
  • Figure 49. Global Wearable Sensors and Actuators Sales Volume Forecast (millions USD), 2025-2035, for Consumer Wearables.     753
  • Figure 50. Global Wearable Sensors and Actuators Sales Volume Forecast (Units), 2025-2035, for Consumer Wearables.            754
  • Figure 51. Global Wearable Sensors and Actuators Sales Volume Forecast (millions USD), 2025-2035, for Medical Wearables.           756
  • Figure 52. Global Wearable Sensors and Actuators Sales Volume Forecast (Units), 2025-2035, for Medical Wearables.  757
  • Figure 53. Global Wearable Sensors and Actuators Sales Volume Forecast (millions USD), 2025-2035, for Industrial Wearables.       758
  • Figure 54. Global Wearable Sensors and Actuators Sales Volume Forecast (Units), 2025-2035, for Industrial Wearables.               759
  • Figure 55. Libre 3.       761
  • Figure 56. Libre Sense Glucose Sport Biowearable.             761
  • Figure 57. MIT and Amorepacific's chip-free skin sensor. 766
  • Figure 58. Sigi™ Insulin Management System.          768
  • Figure 59. Vitalgram®.               769
  • Figure 60. PaciBreath.              784
  • Figure 61. Neuronaute wearable.     794
  • Figure 62. C2Sense sensors.               798
  • Figure 63. Cogwear headgear.            808
  • Figure 64. GX Sweat Patch.   821
  • Figure 65. Epilog.         823
  • Figure 66. eQ02+LIfeMontor.               825
  • Figure 67. FloPatch.   830
  • Figure 68. Humanox Shin Guard.      847
  • Figure 69. Monarch™ Wireless Wearable Biosensor             872
  • Figure 70. Neuphony Headband.      891
  • Figure 71. Nextiles’ compression garments.             894
  • Figure 72. Nextiles e-fabric.  895
  • Figure 73. Nix Biosensors patch.       897
  • Figure 74. Nowatch.   898
  • Figure 75. Otolith wearable device. 911
  • Figure 76. RootiRx.     934
  • Figure 77. SenseGlove Nova.              941
  • Figure 78. Softmatter compression garment.           951
  • Figure 79. Softmatter sports bra with a woven ECG sensor.           952
  • Figure 80. MoCap Pro Glove.               957
  • Figure 81. Teslasuit.   968

 

The Global Market for Wearable Sensors and Actuators 2025-2035
The Global Market for Wearable Sensors and Actuators 2025-2035
PDF download.

The Global Market for Wearable Sensors and Actuators 2025-2035
The Global Market for Wearable Sensors and Actuators 2025-2035
PDF and Two Volume Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com