- Published: January 2025
- Pages: 1,012
- Tables: 84
- Figures: 81
The Global Market for Wearable Sensors and Actuators continues to experience robust growth, with total wearable device shipments exceeding 1.2 billion units in 2024. The sensor and actuator component market shows even stronger growth, exceeding 5 billion units in 2024.
Consumer wearables represent the largest market segment, driven by increasing demand for health monitoring, fitness tracking, and augmented reality applications. Key product categories include smartwatches, fitness bands, and True Wireless Stereo (TWS) systems. These devices commonly integrate pressure sensors, inertial measurement units (IMUs), and microphones. The medical wearables segment focuses on continuous glucose monitoring (CGM) devices and hearing aids, aimed at reducing healthcare costs and enabling remote patient monitoring. MEMS pressure sensors and photoplethysmography (PPG) modules generate significant revenue in this sector. Industrial applications are experiencing growth through Industry 4.0 initiatives and 5G implementation, with emphasis on employee wellness monitoring and task guidance systems. These applications primarily utilize IMUs, microphones, and eCompass sensors.
Technological advancement is driven by several key trends:
- Integration of AI/ML capabilities at the sensor level
- Development of 300mm fab production to scale manufacturing
- Innovation in MEMS microspeakers
- Increased investment in non-invasive glucose monitoring
- Enhanced sensor fusion combining multiple technologies
The market saw significant developments in 2024, including Samsung's entry into the smart ring sector and increased adoption of MEMS microspeakers in TWS earbuds. Companies like Meta and Snap have introduced advanced AR headsets, creating new opportunities for sensor integration. Future growth areas include:
- Expansion of hearables technology
- Development of non-invasive glucose monitoring solutions
- Advanced AR/VR headset applications
- Integration of AI for enhanced functionality without additional hardware
The industry is consolidating around primary form factors including watches, rings, and patches, with AI-driven software improvements expected to expand sensor capabilities. Manufacturers are focusing on combining design excellence with enhanced functionality and user experience, while meeting increasingly stringent medical standards for biosignal detection. This dynamic market continues to evolve through technological innovation, with particular emphasis on improving sensor accuracy, expanding AI capabilities, and developing new applications across consumer, medical, and industrial sectors.
The Global Market for Wearable Sensors and Actuators 2025-2035 provides detailed analysis and forecasts for the rapidly expanding wearable sensors and actuators market, examining key technologies, materials, applications, and market opportunities through 2035. The report offers deep insights into this dynamic sector that sits at the intersection of consumer electronics, healthcare, sports/fitness, and industrial applications. Key Technologies Covered include:
- Motion and inertial sensors (accelerometers, gyroscopes, magnetometers)
- Optical sensors (PPG, spectroscopy, photodetectors)
- Force and pressure sensors
- Strain sensors
- Chemical and biosensors
- Quantum sensors
- Wearable electrodes
- Haptic actuators
- Piezoelectric actuators
- Shape memory alloys
- Electroactive polymers
- Emerging sensor technologies
Materials and Components Analysis:
- Substrate materials (polymers, textiles, elastomers)
- Conductive materials (metals, conductive polymers, carbon-based)
- Energy storage materials
- Smart materials
- Biocompatible materials
- Packaging materials
- Emerging materials (2D materials, metamaterials)
Application Markets:
- Healthcare and medical monitoring
- Consumer electronics and smartwatches
- Sports and fitness tracking
- Industrial and enterprise applications
- Military and defense
- Entertainment and gaming
- Automotive applications
- Emerging applications
The report provides detailed analysis of:
- Market drivers and trends
- Manufacturing processes
- Supply chain dynamics
- Regulatory landscape
- Patent analysis
- Competitive landscape
- Regional market analysis
- Investment opportunities
- Detailed market forecasts 2025-2035
- Analysis of 300+ companies. Companies profiled include Abbott Diabetes Care, AAC Technologies, Analog Devices, Apple, ams OSRAM, Bosch Sensortec, Dexcom, Fitbit, Garmin, Google, Honeywell, Huawei, Infineon Technologies, Knowles, Magic Leap, Meta, Microsoft, muRata, Omron, Philips Healthcare, Qualcomm, Rockley Photonics, Samsung, Sensirion, Silicon Labs, Sony, STMicroelectronics, TDK Group, TE Connectivity, Valencell, Aidar Health, Biolinq, Bloomlife, CardiacSense, Cipher Skin, Empatica, Epicore Biosystems, Oura, PhotonWear, GraphWear Technologies, Movano, Nanowear, Nutromics, Quantum Operation, Plantiga, Rockley Photonics, Somalytics, StretchSense, and Vitality, TDK, and TE Connectivity. The comprehensive company coverage spans the entire wearable sensor and actuator ecosystem from established market leaders to innovative start-ups across consumer electronics, healthcare, sports/fitness, and industrial applications.
- Technology assessment and roadmaps
Who Should Buy This Report:
- Wearable technology companies
- Sensor and actuator manufacturers
- Electronics companies
- Healthcare organizations
- Sports/fitness companies
- Material suppliers
- Investment firms
- R&D organizations
- Strategic planners
- Product developers
1 EXECUTIVE SUMMARY 37
- 1.1 Wearable technology 37
- 1.2 Key functions of wearable technology 41
- 1.3 Evolution of sensors and actuators 42
- 1.4 Advancements in AI and integrated sensors 43
- 1.5 Technology roadmap 43
- 1.6 Manufacturing processes 44
- 1.7 Market trends 44
- 1.8 Technology trends 46
- 1.9 Market outlook 46
2 SENSOR TECHNOLOGIES 49
- 2.1 Motion Sensors 49
- 2.1.1 Technology and Components 49
- 2.1.1.1 Inertial Measurement Units (IMUs) 49
- 2.1.1.1.1 MEMs accelerometers 50
- 2.1.1.1.2 MEMS Gyroscopes 50
- 2.1.1.1.3 IMUs in smart-watches 50
- 2.1.1.2 Tunneling magnetoresistance sensors (TMR) 51
- 2.1.1.1 Inertial Measurement Units (IMUs) 49
- 2.1.2 Applications 52
- 2.1.1 Technology and Components 49
- 2.2 Optical Sensors 53
- 2.2.1 Overview 56
- 2.2.2 Technology and Components 56
- 2.2.2.1 Photoplethysmography (PPG) 56
- 2.2.2.2 Spectroscopy 57
- 2.2.2.3 Photodetectors 58
- 2.2.3 Applications 59
- 2.2.3.1 Heart Rate Optical Sensors 59
- 2.2.3.2 Pulse Oximetry Optical Sensors 60
- 2.2.3.2.1 Blood oxygen measurement 60
- 2.2.3.2.2 Wellness and Medical Applications 61
- 2.2.3.2.3 Consumer Pulse Oximetry 61
- 2.2.3.2.4 Pediatric Applications 61
- 2.2.3.2.5 Skin Patches 62
- 2.2.3.3 Blood Pressure Optical Sensors 62
- 2.2.3.3.1 Commercialization 62
- 2.2.3.3.2 Oscillometric blood pressure measurement 63
- 2.2.3.3.3 Combination of PPG and ECG 63
- 2.2.3.3.4 Non-invasive Blood Pressure Sensing 63
- 2.2.3.3.5 Blood Pressure Hearables 64
- 2.2.3.4 Non-Invasive Glucose Monitoring Optical Sensors 64
- 2.2.3.4.1 Overview 64
- 2.2.3.4.2 Other Optical Approaches 65
- 2.2.3.5 fNIRS Optical Sensors 65
- 2.2.3.5.1 Overview 66
- 2.2.3.5.2 Brain-Computer Interfaces 66
- 2.3 Force Sensors 67
- 2.3.1 Overview 67
- 2.3.1.1 Piezoresistive force sensing 68
- 2.3.1.2 Thin film pressure sensors 68
- 2.3.2 Technology and Components 68
- 2.3.2.1 Materials 69
- 2.3.2.2 Piezoelectric polymers 69
- 2.3.2.3 Temperature sensing and Remote Patient Monitoring (RPM) integration 70
- 2.3.2.4 Wearable force and pressure sensors 70
- 2.3.1 Overview 67
- 2.4 Strain Sensors 70
- 2.4.1 Overview 70
- 2.4.2 Technology and Components 70
- 2.4.3 Applications 71
- 2.4.3.1 Healthcare 71
- 2.4.3.2 Wearable Strain Sensors 71
- 2.4.3.3 Temperature Sensors 71
- 2.5 Chemical Sensors 73
- 2.5.1 Overview 73
- 2.5.2 Optical Chemical Sensors 75
- 2.5.3 Technology and Components 75
- 2.5.3.1 Continuous Glucose Monitoring 75
- 2.5.3.2 Commercial CGM systems 76
- 2.5.4 Applications 77
- 2.5.4.1 Sweat-based glucose monitoring 78
- 2.5.4.2 Tear glucose measurement 78
- 2.5.4.3 Salivary glucose monitoring 78
- 2.5.4.4 Breath analysis for glucose monitoring 78
- 2.5.4.5 Urine glucose monitoring 79
- 2.6 Biosensors 79
- 2.6.1 Overview 79
- 2.6.2 Applications 80
- 2.6.2.1 Wearable Alcohol Sensors 80
- 2.6.2.2 Wearable Lactate Sensors 80
- 2.6.2.3 Wearable Hydration Sensors 80
- 2.6.2.4 Smart diaper technology 81
- 2.6.2.5 Ultrasound technology 81
- 2.6.2.6 Microneedle technology for continuous fluid sampling 81
- 2.7 Quantum Sensors 82
- 2.7.1 Magnetometry 82
- 2.7.2 Tunneling magnetoresistance sensors 83
- 2.7.3 Chip-scale atomic clocks 84
- 2.7.4 Performance advantages 85
- 2.7.5 Integration challenges 85
- 2.7.6 Application areas 85
- 2.7.7 Market readiness 86
- 2.8 Wearable Electrodes 86
- 2.8.1 Overview 86
- 2.8.2 Applications 86
- 2.8.2.1 Skin Patches and E-textiles 87
- 2.8.3 Technology and Components 87
- 2.8.3.1 Electrode Selection 88
- 2.8.3.2 E-textiles 88
- 2.8.3.3 Microneedle electrodes 89
- 2.8.3.4 Electronic Skins 90
- 2.8.4 Applications 91
- 2.8.4.1 Electrocardiogram (ECG) wearable electrodes 92
- 2.8.4.2 Electroencephalography (EEG) wearable electrodes represent 93
- 2.8.4.3 Electromyography (EMG) wearable electrodes 94
- 2.8.4.4 Bioimpedance wearable electrodes 94
- 2.9 Emerging Sensor Technologies 96
- 2.9.1 Biological Sensors 96
- 2.9.1.1 DNA sensors 97
- 2.9.1.2 Protein sensors 97
- 2.9.1.3 Enzyme-based detection 98
- 2.9.1.4 Lab-on-chip integration 99
- 2.9.1.5 Manufacturing challenges 100
- 2.9.1.6 Market potential 101
- 2.9.1.7 Future developments 102
- 2.9.2 Soft Sensors 103
- 2.9.2.1 Material technologies 104
- 2.9.2.2 Design approaches 105
- 2.9.2.3 Manufacturing methods 106
- 2.9.2.4 Performance characteristics 107
- 2.9.2.5 Integration challenges 108
- 2.9.2.6 Applications 109
- 2.9.2.7 Market outlook 110
- 2.9.3 Self-Powered Sensors 111
- 2.9.3.1 Energy harvesting 112
- 2.9.3.2 Power management 113
- 2.9.3.3 Performance metrics 114
- 2.9.3.4 Integration methods 115
- 2.9.3.5 Application requirements 116
- 2.9.3.6 Market potential 117
- 2.9.3.7 Technology roadmap 118
- 2.9.1 Biological Sensors 96
- 2.10 Integration and Packaging 119
- 2.10.1 System Integration 119
- 2.10.1.1 Multi-sensor fusion 120
- 2.10.1.2 Signal conditioning 121
- 2.10.1.3 Power management 122
- 2.10.1.4 Communication interfaces 123
- 2.10.1.5 Form factor optimization 124
- 2.10.1.6 Cost considerations 125
- 2.10.2 Packaging Technologies 126
- 2.10.2.1 Material selection 127
- 2.10.2.2 Hermeticity 128
- 2.10.2.3 Thermal management 129
- 2.10.2.4 Reliability testing 130
- 2.10.2.5 Manufacturing processes 131
- 2.10.2.6 Cost analysis 132
- 2.10.3 Interconnect Solutions 133
- 2.10.3.1 Wire bonding 134
- 2.10.3.2 Flip chip 135
- 2.10.3.3 Through-silicon vias 136
- 2.10.3.4 Flexible interconnects 137
- 2.10.3.5 Reliability considerations 138
- 2.10.3.6 Manufacturing challenges 139
- 2.10.1 System Integration 119
3 ACTUATOR TECHNOLOGIES 140
- 3.1 Overview 140
- 3.1.1 Applications 140
- 3.1.2 Types 141
- 3.1.3 Electrical stimulation technologies 142
- 3.2 Haptic Actuators 143
- 3.2.1 Linear Resonant Actuators (LRA) 144
- 3.2.1.1 Manufacturing challenges 144
- 3.2.1.2 Operating principles 145
- 3.2.1.3 Resonant frequency optimization 146
- 3.2.1.4 Driver circuitry 147
- 3.2.1.5 Force output characteristics 148
- 3.2.1.6 Power consumption 148
- 3.2.1.7 Size considerations 149
- 3.2.1.8 Manufacturing methods 150
- 3.2.1.9 Cost analysis 151
- 3.2.2 Eccentric Rotating Mass (ERM) 152
- 3.2.2.1 Design principles 152
- 3.2.2.2 Speed control 153
- 3.2.2.3 Force output 154
- 3.2.2.4 Power requirements 155
- 3.2.2.5 Integration challenges 156
- 3.2.2.6 Application requirements 156
- 3.2.2.7 Future developments 157
- 3.2.3 Advanced Haptic Technologies 158
- 3.2.3.1 Multi-axis haptics 159
- 3.2.3.2 Variable force feedback 160
- 3.2.3.3 Precision control 161
- 3.2.3.4 Integration methods 162
- 3.2.3.5 Power optimization 163
- 3.2.3.6 Application-specific designs 164
- 3.2.3.7 Market opportunities 164
- 3.2.1 Linear Resonant Actuators (LRA) 144
- 3.3 Vibrational Motors 166
- 3.3.1 DC Motors 166
- 3.3.2 Piezoelectric Motors 168
- 3.4 Piezoelectric Actuators 170
- 3.4.1 Piezoelectric Actuators 170
- 3.4.1.1 Bulk Piezoelectric Actuators 170
- 3.4.1.2 Thin Film Piezoelectric Actuators 171
- 3.4.1 Piezoelectric Actuators 170
- 3.5 Shape Memory Alloys 173
- 3.5.1 NiTi-based Actuators 173
- 3.5.1.1 Material properties 173
- 3.5.1.2 Phase transformation 174
- 3.5.1.3 Force generation 175
- 3.5.1.4 Response characteristics 176
- 3.5.1.5 Control methods 177
- 3.5.1.6 Applications 178
- 3.5.1.7 Manufacturing 179
- 3.5.2 Other Shape Memory Materials 180
- 3.5.2.1 Copper-based alloys 180
- 3.5.2.2 Magnetic shape memory alloys 181
- 3.5.2.3 Performance comparison 182
- 3.5.2.4 Manufacturing processes 183
- 3.5.2.5 Application requirements 184
- 3.5.2.6 Market opportunities 185
- 3.5.1 NiTi-based Actuators 173
- 3.6 Electroactive Polymers 186
- 3.6.1 Dielectric Elastomers 187
- 3.6.1.1 Material selection 187
- 3.6.1.2 Operating principles 188
- 3.6.1.3 Performance characteristics 189
- 3.6.1.4 Manufacturing methods 190
- 3.6.1.5 Integration challenges 191
- 3.6.1.6 Applications 192
- 3.6.2 Ionic Polymer-Metal Composites 192
- 3.6.2.1 Material composition 193
- 3.6.2.2 Operating mechanisms 194
- 3.6.2.3 Performance metrics 195
- 3.6.2.4 Manufacturing processes 196
- 3.6.2.5 Integration methods 196
- 3.6.2.6 Applications 197
- 3.6.2.7 Market potential 198
- 3.6.3 Conducting Polymers 199
- 3.6.3.1 Material types 199
- 3.6.3.2 Operating principles 200
- 3.6.3.3 Response characteristics 202
- 3.6.3.4 Manufacturing methods 203
- 3.6.3.5 Applications 205
- 3.6.3.6 Market opportunities 207
- 3.6.1 Dielectric Elastomers 187
- 3.7 Micro-pumps and Valves 209
- 3.7.1 Mechanical Micro-pumps 209
- 3.7.2 Non-mechanical Micro-pumps 211
- 3.7.3 Microvalves 214
- 3.8 Novel Actuator Technologies 214
- 3.8.1 Thermal Actuators 214
- 3.8.2 Magnetic Actuators 216
- 3.8.3 Hybrid Actuators 218
- 3.9 Integration and Control 220
- 3.9.1 Driver Electronics 220
- 3.9.1.1 Circuit design 222
- 3.9.1.2 Power management 224
- 3.9.1.3 Control algorithms 226
- 3.9.1.4 Integration methods 227
- 3.9.1.5 Cost considerations 229
- 3.9.2 System Integration 231
- 3.9.2.1 Packaging solutions 232
- 3.9.2.2 Interface requirements 234
- 3.9.2.3 Performance optimization 236
- 3.9.2.4 Manufacturing challenges 238
- 3.9.2.5 Cost analysis 238
- 3.9.3 Future Trends 238
- 3.9.3.1 Miniaturization 238
- 3.9.3.2 Energy efficiency 238
- 3.9.3.3 Smart materials 238
- 3.9.3.4 Novel applications 238
- 3.9.3.5 Market projections 238
- 3.9.1 Driver Electronics 220
4 MATERIALS AND COMPONENTS 238
- 4.1 Substrates and Flexible Electronics 238
- 4.1.1 Polymers 240
- 4.1.1.1 Polyimide 242
- 4.1.1.2 PET 243
- 4.1.1.3 PEEK 245
- 4.1.1.4 PEN 245
- 4.1.1.5 Processing methods 247
- 4.1.1.6 Thermal properties 249
- 4.1.1.7 Mechanical characteristics 250
- 4.1.1.8 Cost analysis 252
- 4.1.1.9 Market trends 254
- 4.1.2 Textiles 256
- 4.1.2.1 Natural fibers 257
- 4.1.2.2 Synthetic fibers 259
- 4.1.2.3 Conductive textiles 261
- 4.1.2.4 Integration methods 261
- 4.1.2.5 Washability 261
- 4.1.2.6 Durability testing 261
- 4.1.2.7 Manufacturing processes 261
- 4.1.2.8 Market opportunities 261
- 4.1.3 Elastomers 261
- 4.1.3.1 Silicone-based materials 263
- 4.1.3.2 TPU 265
- 4.1.3.3 Natural rubber 266
- 4.1.3.4 Synthetic elastomers 268
- 4.1.3.5 Stretchability 270
- 4.1.3.6 Recovery characteristics 272
- 4.1.3.7 Processing methods 273
- 4.1.3.8 Applications 275
- 4.1.1 Polymers 240
- 4.2 Conductive Materials 277
- 4.2.1 Metals 277
- 4.2.1.1 Silver 279
- 4.2.1.2 Copper 280
- 4.2.1.3 Gold 282
- 4.2.1.4 Nanoparticle inks 284
- 4.2.1.5 Processing methods 285
- 4.2.1.6 Conductivity metrics 287
- 4.2.1.7 Cost considerations 289
- 4.2.1.8 Market analysis 291
- 4.2.2 Conductive polymers 292
- 4.2.2.1 Polyaniline 292
- 4.2.2.2 Polypyrrole 294
- 4.2.2.3 Processing techniques 296
- 4.2.2.4 Conductivity ranges 297
- 4.2.2.5 Stability 299
- 4.2.2.6 Applications 301
- 4.2.2.7 Market trends 303
- 4.2.3 Carbon-based materials 304
- 4.2.3.1 Graphene 304
- 4.2.3.2 Carbon nanotubes 306
- 4.2.3.3 Carbon black 308
- 4.2.3.4 Processing methods 310
- 4.2.3.5 Performance metrics 311
- 4.2.3.6 Cost analysis 313
- 4.2.3.7 Market opportunities 315
- 4.2.1 Metals 277
- 4.3 Energy Storage Materials 317
- 4.3.1 Battery Materials 317
- 4.3.1.1 Cathode materials 318
- 4.3.1.2 Anode materials 320
- 4.3.1.3 Electrolytes 322
- 4.3.1.4 Separators 324
- 4.3.1.5 Manufacturing processes 325
- 4.3.1.6 Performance metrics 327
- 4.3.1.7 Safety considerations 329
- 4.3.2 Supercapacitor Materials 330
- 4.3.2.1 Electrode materials 332
- 4.3.2.2 Electrolytes 334
- 4.3.2.3 Separators 336
- 4.3.2.4 Manufacturing methods 337
- 4.3.2.5 Performance characteristics 339
- 4.3.2.6 Applications 341
- 4.3.3 Energy Harvesting Materials 343
- 4.3.3.1 Piezoelectric materials 344
- 4.3.3.2 Thermoelectric materials 348
- 4.3.3.3 Photovoltaic materials 349
- 4.3.3.4 Processing methods 351
- 4.3.3.5 Efficiency metrics 353
- 4.3.1 Battery Materials 317
- 4.4 Packaging Materials 354
- 4.4.1 Encapsulation Materials 354
- 4.4.2 Adhesives and Bonding 358
- 4.5 Smart Materials 362
- 4.5.1 Shape Memory Materials 362
- 4.5.1.1 Alloys 364
- 4.5.1.2 Polymers 365
- 4.5.1.3 Processing techniques 367
- 4.5.1.4 Performance characteristics 369
- 4.5.1.5 Applications 371
- 4.5.1.6 Market trends 372
- 4.5.2 Chromic Materials 374
- 4.5.2.1 Thermochromic 374
- 4.5.2.2 Electrochromic 377
- 4.5.2.3 Photochromic 381
- 4.5.2.4 Manufacturing methods 384
- 4.5.2.5 Applications 388
- 4.5.2.6 Market opportunities 389
- 4.5.1 Shape Memory Materials 362
- 4.6 Biocompatible Materials 391
- 4.6.1 Polymeric Biomaterials 393
- 4.6.1.1 Hydrogels 395
- 4.6.1.2 Biodegradable polymers 396
- 4.6.1.3 Processing methods 398
- 4.6.1.4 Biocompatibility testing 400
- 4.6.1.5 Applications 402
- 4.6.1.6 Market analysis 405
- 4.6.2 Metallic Biomaterials 407
- 4.6.2.1 Titanium alloys 408
- 4.6.2.2 Stainless steel 410
- 4.6.2.3 Processing techniques 412
- 4.6.2.4 Surface treatments 414
- 4.6.2.5 Applications 415
- 4.6.2.6 Market trends 417
- 4.6.1 Polymeric Biomaterials 393
- 4.7 Emerging Materials 419
- 4.7.1 2D Materials 419
- 4.7.2 Metamaterials 421
- 4.7.3 Hybrid Materials 424
5 APPLICATION MARKETS 427
- 5.1 Healthcare and Medical 427
- 5.1.1 Electronic skin patches 434
- 5.1.1.1 Electrochemical biosensors 435
- 5.1.1.2 Printed pH sensors 436
- 5.1.2 Remote patient monitoring 438
- 5.1.2.1 Vital signs monitoring 440
- 5.1.2.2 Chronic disease management 443
- 5.1.2.3 Post-operative care 445
- 5.1.2.4 Elderly care monitoring 446
- 5.1.2.5 Pregnancy and newborn monitoring 448
- 5.1.2.6 Medication adherence 450
- 5.1.2.7 Data analytics platforms 452
- 5.1.2.8 Regulatory compliance 454
- 5.1.3 Diagnostics 455
- 5.1.3.1 Continuous glucose monitoring 455
- 5.1.3.1.1 Minimally-invasive CGM sensors 457
- 5.1.3.1.2 Non-invasive CGM sensors 459
- 5.1.3.2 ECG/EKG monitoring 463
- 5.1.3.3 Sleep diagnostics 468
- 5.1.3.4 Temperature and respiratory monitoring 468
- 5.1.3.5 Early disease detection 471
- 5.1.3.6 Point-of-care diagnostics 472
- 5.1.3.7 Femtech devices 476
- 5.1.3.8 Smart footwear for health monitoring 479
- 5.1.3.9 Clinical validation 481
- 5.1.3.10 Market trends 483
- 5.1.3.11 Technology adoption 486
- 5.1.3.1 Continuous glucose monitoring 455
- 5.1.4 Therapy and drug delivery 488
- 5.1.4.1 Smart drug delivery systems 489
- 5.1.4.2 Transdermal delivery 490
- 5.1.4.3 Pain management 492
- 5.1.4.4 Neuromodulation 494
- 5.1.4.5 Rehabilitation therapy 495
- 5.1.4.6 Clinical outcomes 497
- 5.1.4.7 Patient compliance 499
- 5.1.4.8 Cost effectiveness 501
- 5.1.4.9 Market opportunities 502
- 5.1.4.10 Future developments 504
- 5.1.5 Rehabilitation 508
- 5.1.5.1 Motion tracking 508
- 5.1.5.2 Gait analysis 511
- 5.1.5.3 Physical therapy 513
- 5.1.5.4 Cognitive rehabilitation 515
- 5.1.5.5 Progress monitoring 516
- 5.1.5.6 Telerehabilitation 518
- 5.1.5.7 Market dynamics 520
- 5.1.1 Electronic skin patches 434
- 5.2 Consumer Electronics 523
- 5.2.1 Wrist-worn sensing technologies 525
- 5.2.2 Established sensor hardware 526
- 5.2.3 Non-Invasive Glucose Monitoring 526
- 5.2.4 Minimally invasive glucose monitoring 527
- 5.2.5 Wrist-worn communication technologies 528
- 5.2.6 Luxury and traditional watch industry 529
- 5.2.7 Smart-strap technologies 530
- 5.2.8 Sensing 531
- 5.2.9 Actuating 532
- 5.2.10 Smartwatches 537
- 5.2.10.1 Health monitoring features 537
- 5.2.10.2 Activity tracking 538
- 5.2.10.3 Communication functions 540
- 5.2.10.4 User interface 540
- 5.2.10.5 Battery life 540
- 5.2.10.6 Energy harvesting for powering smartwatches 540
- 5.2.10.7 Form factor evolution 541
- 5.2.10.8 Market leaders 541
- 5.2.10.9 Consumer adoption 542
- 5.2.10.10 Price trends 542
- 5.2.10.11 Future capabilities 542
- 5.2.11 Fitness trackers 542
- 5.2.11.1 Advanced biometric sensing 542
- 5.2.11.2 Wearable devices and apparel 543
- 5.2.11.3 Skin patches 543
- 5.2.11.4 Activity monitoring 544
- 5.2.11.5 Sleep tracking 545
- 5.2.11.6 Heart rate monitoring 548
- 5.2.11.7 Blood Pressure 548
- 5.2.11.8 Spectroscopic technologies 549
- 5.2.11.9 Social features 550
- 5.2.11.10 Market segmentation 552
- 5.2.11.11 Consumer preferences 554
- 5.2.12 Smart clothing 556
- 5.2.12.1 Integration technologies 558
- 5.2.12.2 Washing durability 559
- 5.2.12.3 Sensor types 561
- 5.2.12.4 Data collection 564
- 5.2.12.5 Fashion considerations 566
- 5.2.12.6 Manufacturing challenges 568
- 5.2.12.7 Market acceptance 571
- 5.2.12.8 Growth potential 575
- 5.2.13 AR/VR devices 576
- 5.2.13.1 Motion tracking 578
- 5.2.13.2 Haptic feedback 580
- 5.2.13.3 Eye tracking 582
- 5.2.13.4 XR controllers and sensing systems 583
- 5.2.13.5 XR positional and motion tracking systems 584
- 5.2.13.6 Wearable technology for XR 585
- 5.2.13.7 Wearable Gesture Sensors for XR 586
- 5.2.13.8 Edge Sensing and AI 586
- 5.2.13.9 VR Technology 586
- 5.2.13.9.1 Overview 586
- 5.2.13.9.2 VR Headset Types 587
- 5.2.13.9.3 Future outlook for VR technology 587
- 5.2.13.9.4 VR Lens Technology 588
- 5.2.13.9.5 VR challenges 588
- 5.2.13.9.6 Market growth 588
- 5.2.13.10 AR Technology 589
- 5.2.13.10.1 Overview 589
- 5.2.13.10.2 AR and MR distinction 589
- 5.2.13.10.3 AR for Assistive Technology 589
- 5.2.13.10.4 Consumer AR market 590
- 5.2.13.10.5 Optics Technology for AR and VR 594
- 5.2.13.10.6 Optical Combiners 595
- 5.2.13.10.7 AR display technology 596
- 5.2.13.10.8 Challenges 596
- 5.2.13.11 Metaverse 596
- 5.2.13.12 Mixed Reality (MR) smart glasses 597
- 5.2.13.13 User interaction 597
- 5.2.13.14 Comfort factors 599
- 5.2.13.15 Application development 601
- 5.2.13.16 Market growth 604
- 5.2.13.17 Technology trends 606
- 5.3 Sports and Fitness 608
- 5.3.1 Performance Monitoring 608
- 5.3.2 Hydration sensors 612
- 5.3.3 Wearable sweat sensors 613
- 5.3.4 Injury Prevention 616
- 5.4 Industrial and Enterprise 619
- 5.4.1 Worker Safety 621
- 5.4.2 Productivity Enhancement 625
- 5.5 Military and Defense 630
- 5.5.1 Soldier Systems 630
- 5.5.2 Training and Simulation 635
- 5.6 Entertainment and Gaming 641
- 5.6.1 Motion Control 641
- 5.6.2 Immersive Experiences 649
- 5.7 Automotive 654
- 5.7.1 Driver Monitoring 654
- 5.7.2 Comfort and Control 656
- 5.8 Emerging Applications 669
- 5.8.1 Smart Homes 669
- 5.8.1.1 Environmental monitoring 670
- 5.8.1.2 Security applications 671
- 5.8.1.3 Comfort optimization 673
- 5.8.1.4 Market potential 675
- 5.8.2 Personal Safety 676
- 5.8.2.1 Emergency detection 677
- 5.8.2.2 Environmental hazards 678
- 5.8.2.3 Communication systems 680
- 5.8.2.4 Market opportunities 682
- 5.8.3 Fashion Technology 683
- 5.8.3.1 Smart accessories 683
- 5.8.3.2 Interactive clothing 685
- 5.8.3.3 Design integration 687
- 5.8.3.4 Market acceptance 689
- 5.8.1 Smart Homes 669
6 MANUFACTURING AND FABRICATION 689
- 6.1 Traditional Manufacturing Methods 690
- 6.2 Printed Electronics 691
- 6.3 Roll-to-Roll Processing 692
- 6.4 Additive Manufacturing 696
- 6.5 Integration Technologies 698
- 6.6 Quality Control and Testing 700
- 6.7 Cost Analysis 702
7 TECHNOLOGY TRENDS 704
- 7.1 Miniaturization 704
- 7.2 Energy Efficiency 709
- 7.3 Wireless Technologies 716
- 7.4 Data Processing and AI 723
- 7.5 Materials Innovation 726
- 7.6 Integration Trends 728
- 7.7 Sustainability 736
8 MARKET FORECASTS 750
- 8.1 Consumer Wearables 752
- 8.2 Medical Wearables 755
- 8.3 Industrial Wearables 757
9 COMPANY PROFILES 760 (342 company profiles)
10 REFERENCES 994
List of Tables
- Table 1. Types of wearable devices and applications. 38
- Table 2. Types of wearable devices and the data collected. 39
- Table 3. Wearable sensor types. 40
- Table 4. Overview of Wearable Sensor Types. 40
- Table 5. Value proposition of wearable sensors versus non wearable alternatives. 42
- Table 6. Markets trends. 44
- Table 7. Market Drivers in the Wearable Sensor Market. 44
- Table 8. Markets for Wearable Sensors. 45
- Table 9. Applications and Opportunities for TMRs in Wearables. 51
- Table 10. Wearable Motion Sensors Applications. 51
- Table 11. Applications of Photoplethysmography (PPG). 56
- Table 12. Wearable Brands in Cardiovascular Clinical Research. 62
- Table 13. Technologies for Cuff-less Blood Pressure. 63
- Table 14. Market outlook for Wearable Blood Pressure Devices. 63
- Table 15. Non-invasive glucose monitoring. 65
- Table 16. fNIRS Companies. 66
- Table 17. Comparing fNIRS to Other Non-invasive Brain Imaging Methods. 66
- Table 18. Thin Film Pressure Sensor Architectures. 68
- Table 19. Applications of Printed Force Sensors. 68
- Table 20. Companies in Printed Strain Sensors. 71
- Table 21. Types of Temperature Sensor. 72
- Table 22. Technology Readiness Level for strain sensors. 73
- Table 23. Commercial CGM Devices. 77
- Table 24. Applications of Wearable Chemical Sensors. 78
- Table 25. Market Outlook of Wearable Sensors for Novel Biometrics. 81
- Table 26. Applications of Wearable OPMs – MEG. 82
- Table 27. Applications and Market Opportunities for TMRs. 83
- Table 28. Wearable Electrode Types. 86
- Table 29. Applications of wearable electrodes. 86
- Table 30. Printed Electrodes for Skin Patches and E-textiles. 87
- Table 31. Companies in Wearable Electrodes. 88
- Table 32. Materials and Manufacturing Approaches for Electronic Skins. 90
- Table 33. Wearable electrodes Applications. 91
- Table 34. Costs analysis of packaging technologies. 132
- Table 35. Manufacturing challenges for Interconnects. 139
- Table 36. Applications of Neuromuscular Electrical Stimulation (NMES) and Electrical Muscle Stimulation (EMS). 143
- Table 37. Manufacturing methods for haptic actuators. 150
- Table 38. Manufacturing methods for dielectric elastomers. 190
- Table 39. Integration challenges for dielectric elastomers. 191
- Table 40. Integration methods for ionic polymer-metal composites. 196
- Table 41. Applications of ionic polymer-metal composites 197
- Table 42. Drivers for Wearable Adoption and Innovation. 427
- Table 43.Companies and products in wearable health monitoring and rehabilitation devices and products. 429
- Table 44. Pregnancy and Newborn Monitoring Wearables. 449
- Table 45. Technologies for minimally-invasive and non-invasive glucose detection-advantages and disadvantages. 457
- Table 46. Commercial devices for non-invasive glucose monitoring not released or withdrawn from market. 459
- Table 47. Minimally-invasive and non-invasive glucose monitoring products. 461
- Table 48. ECG Patch Monitor and Clothing Products. 466
- Table 49. PPG Wearable Electronics Companies and Products. 467
- Table 50. Medical wearable companies applying products to temperate and respiratory monitoring and analysis. 470
- Table 51. Femtech Wearable Electronics. 476
- Table 52. Companies developing femtech wearable technology. 477
- Table 53. Companies and products in smart foowtear and insolves. 480
- Table 54. Companies and products, cosmetics and drug delivery patches. 489
- Table 55. Wearable electronics drug delivery companies and products. 502
- Table 56. Types of wearable sensors. 523
- Table 57. Different sensing modalities that can be incorporated into wrist-worn wearable device. 531
- Table 58. Overview of actuating at the wrist 532
- Table 59. Key players in Wrist-Worn Technology. 535
- Table 60. Wearable health monitors. 539
- Table 61. Sports-watches, smart-watches and fitness trackers producers and products. 541
- Table 62. Wearable sensors for sports performance. 544
- Table 63. Example wearable sleep tracker products and prices. 545
- Table 64. Sleep Headband Wearables. 547
- Table 65. Wearable sensor products for monitoring sport performance. 554
- Table 66. XR Headset OEM Comparison. 584
- Table 67. Timeline of Modern VR. 587
- Table 68. VR Headset Types. 587
- Table 69. AR Outlook by Device Type 590
- Table 70. AR Outlook by Computing Type. 590
- Table 71. Augmented reality (AR) smart glass products. 591
- Table 72. Companies developing wearable swear sensors. 615
- Table 73. Industrial Wearable Electronics Products. 619
- Table 74. Common printing methods used in printed electronics manufacturing in terms of resolution vs throughput. 691
- Table 75. Applications of R2R electronics manufacturing. 693
- Table 76. Technology readiness level for R2R manufacturing. 694
- Table 77. Global Wearable Sensors and Actuators Sales Volume Forecast (millions USD), 2025-2035. 750
- Table 78. Global Wearable Sensors and Actuators Sales Volume Forecast (Units), 2025-2035. 751
- Table 79. Global Wearable Sensors and Actuators Sales Volume Forecast (millions USD), 2025-2035, for Consumer Wearables. 752
- Table 80. Global Wearable Sensors and Actuators Sales Volume Forecast (Units), 2025-2035, for Consumer Wearables. 754
- Table 81. Global Wearable Sensors and Actuators Sales Volume Forecast (millions USD), 2025-2035, for Medical Wearables. 755
- Table 82. Global Wearable Sensors and Actuators Sales Volume Forecast (Units), 2025-2035, for Medical Wearables. 756
- Table 83. Global Wearable Sensors and Actuators Sales Volume Forecast (millions USD), 2025-2035, for Industrial Wearables. 757
- Table 84. Global Wearable Sensors and Actuators Sales Volume Forecast (Units), 2025-2035, for Industrial Wearables. 758
List of Figures
- Figure 1. Roadmap of wearable sensor technology. 43
- Figure 2. Roadmap for Wearable Optical Heart-rate Sensors. 60
- Figure 3. Technology roadmap for self-powered sensors. 118
- Figure 4. Actuator types. 141
- Figure 5. Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs. 434
- Figure 6. Graphene medical patch. 437
- Figure 7. Graphene-based E-skin patch. 437
- Figure 8. Bloomlife. 449
- Figure 9. Technologies for minimally-invasive and non-invasive glucose detection. 456
- Figure 10. Technologies for minimally-invasive and non-invasive glucose detection. 457
- Figure 11. Schematic of non-invasive CGM sensor. 460
- Figure 12. Adhesive wearable CGM sensor. 461
- Figure 13. VitalPatch. 464
- Figure 14. Wearable ECG-textile. 465
- Figure 15. Wearable ECG recorder. 466
- Figure 16. Nexkin™. 466
- Figure 17. Enfucell wearable temperature tag. 469
- Figure 18. TempTraQ wearable wireless thermometer. 470
- Figure 19. Brilliantly Warm. 478
- Figure 20. Ava Fertility tracker. 478
- Figure 21. S9 Pro breast pump. 479
- Figure 22. Tempdrop. 479
- Figure 23. Digitsole Smartshoe. 480
- Figure 24. D-mine Pump. 489
- Figure 25. Lab-on-Skin™. 489
- Figure 26. Roadmap of wearable sensor technology segmented by key biometrics. 525
- Figure 27. EmeTerm nausea relief wearable. 533
- Figure 28. Embr Wave for cooling and warming. 534
- Figure 29. dpl Wrist Wrap Light THerapy pain relief. 534
- Figure 30. Roadmap for Wrist-Worn Wearables. 536
- Figure 31. FitBit Sense Watch. 539
- Figure 32. Wearable bio-fluid monitoring system for monitoring of hydration. 543
- Figure 33. Beddr SleepTuner. 547
- Figure 34. Engo Eyewear. 591
- Figure 35. Lenovo ThinkReality A3. 592
- Figure 36. Magic Leap 1. 592
- Figure 37. Microsoft HoloLens 2. 592
- Figure 38. OPPO Air Glass AR. 593
- Figure 39. Snap Spectacles AR (4th gen). 593
- Figure 40. Vuzix Blade Upgraded. 594
- Figure 41. Nanowire skin hydration patch. 612
- Figure 42. NIX sensors. 613
- Figure 43. Wearable sweat sensor. 614
- Figure 44. Wearable graphene sweat sensor. 614
- Figure 45. Gatorade's GX Sweat Patch. 615
- Figure 46. Sweat sensor incorporated into face mask. 615
- Figure 47. Global Wearable Sensors and Actuators Sales Volume Forecast (millions USD), 2025-2035. 751
- Figure 48. Global Wearable Sensors and Actuators Sales Volume Forecast (Units), 2025-2035. 752
- Figure 49. Global Wearable Sensors and Actuators Sales Volume Forecast (millions USD), 2025-2035, for Consumer Wearables. 753
- Figure 50. Global Wearable Sensors and Actuators Sales Volume Forecast (Units), 2025-2035, for Consumer Wearables. 754
- Figure 51. Global Wearable Sensors and Actuators Sales Volume Forecast (millions USD), 2025-2035, for Medical Wearables. 756
- Figure 52. Global Wearable Sensors and Actuators Sales Volume Forecast (Units), 2025-2035, for Medical Wearables. 757
- Figure 53. Global Wearable Sensors and Actuators Sales Volume Forecast (millions USD), 2025-2035, for Industrial Wearables. 758
- Figure 54. Global Wearable Sensors and Actuators Sales Volume Forecast (Units), 2025-2035, for Industrial Wearables. 759
- Figure 55. Libre 3. 761
- Figure 56. Libre Sense Glucose Sport Biowearable. 761
- Figure 57. MIT and Amorepacific's chip-free skin sensor. 766
- Figure 58. Sigi™ Insulin Management System. 768
- Figure 59. Vitalgram®. 769
- Figure 60. PaciBreath. 784
- Figure 61. Neuronaute wearable. 794
- Figure 62. C2Sense sensors. 798
- Figure 63. Cogwear headgear. 808
- Figure 64. GX Sweat Patch. 821
- Figure 65. Epilog. 823
- Figure 66. eQ02+LIfeMontor. 825
- Figure 67. FloPatch. 830
- Figure 68. Humanox Shin Guard. 847
- Figure 69. Monarch™ Wireless Wearable Biosensor 872
- Figure 70. Neuphony Headband. 891
- Figure 71. Nextiles’ compression garments. 894
- Figure 72. Nextiles e-fabric. 895
- Figure 73. Nix Biosensors patch. 897
- Figure 74. Nowatch. 898
- Figure 75. Otolith wearable device. 911
- Figure 76. RootiRx. 934
- Figure 77. SenseGlove Nova. 941
- Figure 78. Softmatter compression garment. 951
- Figure 79. Softmatter sports bra with a woven ECG sensor. 952
- Figure 80. MoCap Pro Glove. 957
- Figure 81. Teslasuit. 968
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com