What is it?
Quantum batteries aim to exploit quantum phenomena, such as entanglement and coherence, to enhance the performance and efficiency of energy storage devices. Unlike classical batteries, quantum batteries have the potential to store and release energy in a fundamentally different way, leveraging the principles of quantum mechanics.
Why is it important?
Quantum effects could potentially enable the storage of more energy in a given volume or weight compared to classical batteries, leading to higher energy densities and more compact energy storage solutions. Quantum batteries may allow for faster charging and discharging rates, facilitated by quantum phenomena such as coherent energy transfer or quantum tunneling. By exploiting quantum principles, quantum batteries could potentially operate with higher efficiencies, reducing energy losses during charging, discharging, and storage processes. The unique properties of quantum batteries could enable new applications or technologies that are not feasible with classical battery systems, such as ultra-low-power devices, quantum computing, or quantum sensing.
What industries will it impact?
Electronics and consumer devices, Automotive and transportation, Renewable energy and grid storage, Aerospace and defense, Internet of Things (IoT).
Market players
Planckian, IonQ, Quantinuum.