The Global Carbon Dioxide Removal (CDR) Market 2025-2045

0

cover

cover

  • Published: February 2025
  • Pages: 256
  • Tables: 101
  • Figures: 59

 

The global carbon dioxide removal (CDR) market is experiencing rapid growth driven by increasing corporate commitments to net-zero targets and growing recognition of the need for negative emissions technologies. Current market size is estimated at approximately $2 billion, with projections suggesting expansion to $50 billion by 2030 and potentially exceeding $250 billion by 2035.

The market encompasses various technologies, with direct air capture (DAC), bioenergy with carbon capture and storage (BECCS), and enhanced weathering representing the leading engineered approaches. Natural solutions including afforestation, soil carbon sequestration, and ocean-based methods complement these technological approaches. Direct air capture, while currently small in scale, is attracting significant investment and corporate interest, with costs ranging from $200-900 per ton CO2 removed depending on technology and scale.

Technology development is advancing rapidly across multiple fronts. Direct air capture companies are scaling operations and reducing costs through improved designs and operational experience. Enhanced weathering projects are moving from research to commercial demonstration, while BECCS facilities are expanding in scale and efficiency. Novel approaches including bio-oil sequestration and mineralization technologies are emerging from research phases. Market growth is supported by increasing corporate demand for high-quality carbon removal credits, particularly from technology companies and financial institutions. Advanced market commitments and long-term purchase agreements are providing crucial revenue certainty for project developers. Government support through programs like the US 45Q tax credit and European Union innovation funding is improving project economics.

The voluntary carbon market is evolving to differentiate carbon removal credits from traditional avoidance credits, with removal credits commanding premium prices. Market infrastructure development includes new trading platforms, improved verification methodologies, and specialized financial products. Integration with existing carbon markets and development of standardized protocols are supporting market maturity.

Future market prospects are strong, driven by increasing recognition of the need for carbon dioxide removal to meet climate goals. Technological advancement and scaling effects are expected to reduce costs significantly, potentially reaching $100-200 per ton for some approaches by 2035. Market growth faces challenges including high current costs, infrastructure requirements, and regulatory uncertainty.

Key trends shaping future development include integration of multiple CDR approaches, development of regional removal hubs, and increasing focus on permanence and verification. The market is likely to see consolidation among technology providers while maintaining diversity in removal approaches. Success requires parallel development of supporting infrastructure, particularly CO2 transport and storage networks.

Policy support is expected to strengthen globally, with carbon pricing mechanisms and regulatory frameworks evolving to support CDR deployment. International cooperation on standards and protocols could accelerate market development while ensuring environmental integrity. The sector is attracting increasing investment from both venture capital and strategic industrial players, supporting continued innovation and scaling.

The market outlook suggests significant growth potential, with estimates indicating the need for gigatonne-scale removal capacity by 2050. Achievement of this scale requires sustained commitment to technology development, infrastructure investment, and supportive policy frameworks. Integration with broader climate mitigation efforts and careful consideration of environmental impacts will be crucial for sustainable market growth.

The Global Carbon Dioxide Removal (CDR) Market 2025-2045 provides detailed insights into technologies, market trends, and growth opportunities through 2045. The report examines the transformation from conventional carbon reduction approaches to active carbon removal solutions, offering crucial market forecasts and competitive intelligence across all major CDR technologies and approaches. The study provides extensive coverage of key technologies including Direct Air Capture (DAC), Bioenergy with Carbon Capture and Storage (BECCS), Enhanced Weathering, Ocean-based CDR, and nature-based solutions. It analyzes major application areas, market drivers, and deployment challenges while offering detailed market forecasts from 2025-2045 segmented by technology and geography.

Key features include:

  • Comprehensive analysis of carbon credit markets and pricing mechanisms
  • Detailed technology assessments and commercialization roadmaps
  • In-depth coverage of over 140 companies shaping the industry. Companies profiled include 3R-BioPhosphate, 44.01, 8Rivers, AirCapture, Air Liquide, Air Quality Solutions, AspiraDAC, Avnos, Banyu Carbon, BC Biocarbon, Biochar Now, Bio-Logica Carbon, Biomacon, Biosorra, Blusink, Brineworks, Calcin8 Technologies, Cambridge Carbon Capture, Capchar, Captura Corporation, Captur Tower, Capture6, Carba, Carbon Blade, Carbon Blue, Carbon CANTONNE, Carbon Capture Inc., Carbon Clean, Carbon Collect, CarbonCure Technologies, CarbonFree, CarbonQuest, CarbonStar Systems, Carbon Engineering, Carbon Reform, CarbonZero, Carbyon, Charm Industrial, Chiyoda Corporation, Clairity Technology, Climeworks, CO280, CO2CirculAir, Cool Planet Energy, CREW Carbon, C-Quester, Cquestr8, Decarbontek, Deep Sky, Drax, Ebb Carbon, EcoCera, EcoLocked, Eion Carbon, E-Quester, Equatic, Equinor, Freres Biochar, Funga, GigaBlue, Graphyte, Grassroots Biochar, GreenCap Solutions, Green Sequest, Greenlyte Carbon Technologies, Gulf Coast Sequestration, Heimdal CCU, Heirloom Carbon Technologies, High Hopes Labs, Holy Grail, Hydrocell, Hyvegeo, Infinitree, InnoSepra, Inplanet, InterEarth, ION Clean Energy, Kawasaki Heavy Industries, Levidian Nanosystems, Limenet, Lithos Carbon, Mantel Capture, Mercurius Biorefining, Minera Systems, Mission Zero Technologies, MOFWORX, Mosaic Materials, Myno Carbon, NEG8 Carbon, NeoCarbon, NetZero, Neustark, Nevel, Novocarbo, novoMOF, Noya, Nuada Carbon Capture, Occidental Petroleum, OCOchem, Octavia Carbon, Onnu, Parallel Carbon and more.
  • Analysis of policy frameworks and regulatory environments
  • Environmental impact and sustainability considerations
  • Strategic insights into market opportunities and challenges
  • Regional market analysis covering major global regions
  • Detailed cost analysis and economic viability assessments

 

The report provides particular focus on emerging technologies and innovative approaches, including mineralization-based CDR, soil carbon sequestration, and hybrid solutions. It examines the crucial role of carbon markets, pricing mechanisms, and verification systems in driving industry growth.

Extended coverage includes:

  • Technology readiness levels across all CDR approaches
  • Supply chain analysis and value chain optimization
  • Investment trends and funding analysis
  • Corporate commitments and market drivers
  • Infrastructure requirements and deployment challenges
  • Environmental impact assessments
  • Policy and regulatory frameworks

 

 

 

1             EXECUTIVE SUMMARY            16

  • 1.1        Main sources of carbon dioxide emissions 16
  • 1.2        CO2 as a commodity                17
  • 1.3        History and evolution of carbon markets     18
  • 1.4        Meeting climate targets          19
  • 1.5        Mitigation costs of CDR technologies            19
  • 1.6        Market map    22
  • 1.7        CDR in voluntary carbon markets     24
  • 1.8        CDR investments        24
  • 1.9        Carbon Dioxide Removal (CDR) and Carbon Capture, Utilization, and Storage (CCUS)               25
  • 1.10     Market size      26
    • 1.10.1 Carbon dioxide removal capacity by technology    27
    • 1.10.2 DACCS Carbon Removal       28
    • 1.10.3 BECCS Carbon Removal        30
    • 1.10.4 Biochar and Biomass Burial Carbon Removal         31
    • 1.10.5 Mineralization Carbon Removal        33
    • 1.10.6 Ocean-based Carbon Removal         35

 

2             INTRODUCTION          38

  • 2.1        Conventional CDR on land   38
    • 2.1.1    Wetland and peatland restoration   39
    • 2.1.2    Cropland, grassland, and agroforestry         39
  • 2.2        Main CDR methods   40
  • 2.3        Novel CDR methods 41
  • 2.4        Market drivers                42
  • 2.5        Value chain     43
  • 2.6        Deployment of carbon dioxide removal technologies         46

 

3             CARBON CREDITS      47

  • 3.1        Description     47
  • 3.2        Carbon pricing              47
  • 3.3        Carbon Removal vs Carbon Avoidance Offsetting 49
  • 3.4        Carbon credit certification    49
  • 3.5        Carbon registries         50
  • 3.6        Carbon credit quality                51
  • 3.7        Voluntary Carbon Credits      51
    • 3.7.1    Definition         51
    • 3.7.2    Purchasing      51
    • 3.7.3    Market players               52
    • 3.7.4    Pricing 52
  • 3.8        Compliance Carbon Credits                53
    • 3.8.1    Definition         53
    • 3.8.2    Market players               54
    • 3.8.3    Pricing 54
  • 3.9        Durable carbon dioxide removal (CDR) credits        55
  • 3.10     Corporate commitments       56
  • 3.11     Increasing government support and regulations    57
  • 3.12     Advancements in carbon offset project verification and monitoring        58
  • 3.13     Potential for blockchain technology in carbon credit trading         58
  • 3.14     Buying and Selling Carbon Credits  59
    • 3.14.1 Carbon credit exchanges and trading platforms     59
    • 3.14.2 Over-the-counter (OTC) transactions            60
    • 3.14.3 Pricing mechanisms and factors affecting carbon credit prices  60
  • 3.15     Certification    61
  • 3.16     Challenges and risks 61
  • 3.17     Market size      63

 

4             BIOMASS WITH CARBON REMOVAL AND STORAGE (BICRS)        65

  • 4.1        Feedstocks      66
  • 4.2        BiCRS Conversion Pathways                66
  • 4.3        Bioenergy with carbon capture and storage (BECCS)         69
    • 4.3.1    Biomass conversion 71
    • 4.3.2    CO₂ capture technologies     71
    • 4.3.3    BECCS facilities           73
    • 4.3.4    Cost analysis 74
    • 4.3.5    BECCS carbon credits             75
    • 4.3.6    Challenges      75
  • 4.4        BIOCHAR          78
    • 4.4.1    What is biochar?         78
    • 4.4.2    Properties of biochar 80
    • 4.4.3    Feedstocks      82
    • 4.4.4    Production processes              83
      • 4.4.4.1 Sustainable production          83
      • 4.4.4.2 Pyrolysis            84
      • 4.4.4.3 Gasification    86
      • 4.4.4.4 Hydrothermal carbonization (HTC)  86
      • 4.4.4.5 Torrefaction     86
      • 4.4.4.6 Equipment manufacturers   87
    • 4.4.5    Biochar pricing             88
    • 4.4.6    Biochar carbon credits            88
      • 4.4.6.1 Overview           89
      • 4.4.6.2 Removal and reduction credits          89
      • 4.4.6.3 The advantage of biochar      89
      • 4.4.6.4 Prices  89
      • 4.4.6.5 Buyers of biochar credits       90
      • 4.4.6.6 Competitive materials and technologies    90
  • 4.5        Approaches beyond BECCS and biochar    91
    • 4.5.1    Bio-oil based CDR      91
    • 4.5.2    Integration of biomass-derived carbon into steel and concrete   92
    • 4.5.3    Bio-based construction materials for CDR 92

 

5             DIRECT AIR CAPTURE AND STORAGE (DACCS)      94

  • 5.1        Description     94
  • 5.2        Deployment    96
  • 5.3        Point source carbon capture versus Direct Air Capture     97
  • 5.4        DAC and other Energy Sources          98
  • 5.5        Deployment and Scale-Up    99
  • 5.6        Costs  99
  • 5.7        Technologies  101
    • 5.7.1    Solid sorbents               104
    • 5.7.2    Liquid sorbents            106
    • 5.7.3    Liquid solvents             107
    • 5.7.4    Airflow equipment integration            108
    • 5.7.5    Passive Direct Air Capture (PDAC)   108
    • 5.7.6    Direct conversion        108
    • 5.7.7    Co-product generation            109
    • 5.7.8    Low Temperature DAC             109
    • 5.7.9    Regeneration methods            109
    • 5.7.10 Commercialization and plants           109
    • 5.7.11 Metal-organic frameworks (MOFs) in DAC  110
  • 5.8        DAC plants and projects-current and planned        110
  • 5.9        Markets for DAC           115
  • 5.10     Cost analysis 116
  • 5.11     Challenges      119
  • 5.12     SWOT analysis              120
  • 5.13     Players and production           121

 

6             MINERALIZATION-BASED CDR           123

  • 6.1        Overview           123
  • 6.2        Storage in CO₂-Derived Concrete     125
  • 6.3        Oxide Looping               126
  • 6.4        Enhanced Weathering              127
    • 6.4.1    Overview           127
    • 6.4.2    Benefits             127
    • 6.4.3    Monitoring, Reporting, and Verification (MRV)         128
    • 6.4.4    Applications   128
    • 6.4.5    Commercial activity and companies             129
    • 6.4.6    Challenges and Risks               131
  • 6.5        Cost analysis 131
  • 6.6        SWOT analysis              132

 

7             AFFORESTATION/REFORESTATION 134

  • 7.1        Overview           134
  • 7.2        Carbon dioxide removal methods    134
    • 7.2.1    Nature-based CDR     134
    • 7.2.2    Land-based CDR         135
  • 7.3        Technologies  136
    • 7.3.1    Remote Sensing           136
    • 7.3.2    Drone technology and robotics         137
    • 7.3.3    Automated forest fire detection systems    137
    • 7.3.4    AI/ML   138
    • 7.3.5    Genetics            138
  • 7.4        Trends and Opportunities      138
  • 7.5        Challenges and Risks               139
  • 7.6   SWOT analysis              140

 

8             SOIL CARBON SEQUESTRATION (SCS)        141

  • 8.1        Overview           141
  • 8.2        Practices           142
  • 8.3        Measuring and Verifying         143
  • 8.4        Companies     144
  • 8.5        Trends and Opportunities      144
  • 8.6        Carbon credits              145
  • 8.7        Challenges and Risks               146
  • 8.8        SWOT analysis              148

 

9             OCEAN-BASED CARBON DIOXIDE REMOVAL          150

  • 9.1        Overview           150
  • 9.2        CO₂ capture from seawater  151
  • 9.3        Ocean fertilisation      151
    • 9.3.1    Biotic Methods             152
    • 9.3.2    Coastal blue carbon ecosystems     153
    • 9.3.3    Algal Cultivation           153
    • 9.3.4    Artificial Upwelling     153
  • 9.4        Ocean alkalinisation 154
    • 9.4.1    Electrochemical ocean alkalinity enhancement    154
    • 9.4.2    Direct Ocean Capture              155
    • 9.4.3    Artificial Downwelling              155
  • 9.5        Monitoring, Reporting, and Verification (MRV)         155
  • 9.6        Ocean-based CDR Carbon Credits 156
  • 9.7        Trends and Opportunities      156
  • 9.8        Ocean-based carbon credits               156
  • 9.9        Cost analysis 156
  • 9.10     Challenges and Risks               157
  • 9.11     SWOT analysis              157
  • 9.12     Companies     158

 

10          COMPANY PROFILES                159 (143 company profiles)

 

11          ABBREVIATIONS          251

 

12          RESEARCH METHODOLOGY              252

 

13          REFERENCES 253

 

List of Tables

  • Table 1. History and Evolution of Carbon Credit Markets. 18
  • Table 2. Long-term marginal abatement costs of selected removal methods.   20
  • Table 3. Companies in Voluntary Carbon Markets.               24
  • Table 4. CDR investments and VC funding by company.   25
  • Table 5. CDR versus CCUS.  26
  • Table 6. Carbon dioxide removal capacity by technology (million metric tons of CO₂/year), 2020-2045.                27
  • Table 7. Carbon Dioxide Removal Revenues by Technology (Billion US$).             28
  • Table 8. DACCS Carbon Removal Capacity Forecast (Million Metric Tons CO₂/Year).   28
  • Table 9. DACCS Carbon Credit Revenue Forecast (Million US$). 29
  • Table 10. BECCS Carbon Removal Capacity Forecast (Million Metric Tons CO₂/Year). 30
  • Table 11. Biochar and Biomass Burial Carbon Removal Forecast (Million Metric Tons CO₂/Year).        31
  • Table 12. BiCRS Carbon Credit Revenue Forecast (Million US$). 32
  • Table 13. Mineralization Carbon Removal Forecast (Million Metric Tons CO₂/Year).       33
  • Table 14. Mineralization Carbon Credit Revenue Forecast (Million US$).              34
  • Table 15. Ocean-based Carbon Removal Forecast (Million Metric Tons CO₂/Year).        35
  • Table 16. Ocean-based Carbon Credit Revenue Forecast (Million US$).               36
  • Table 17. Global purchases of CO2 removal (tonnes) 2019-2024.             38
  • Table 18. Main CDR methods.            40
  • Table 19. Technology Readiness Level (TRL) for Carbon Dioxide Removal Methods.      41
  • Table 20. Carbon Dioxide Removal Technology Benchmarking.  41
  • Table 21. Novel CDR Methods.          42
  • Table 22. Market drivers for carbon dioxide removal (CDR).           42
  • Table 23. CDR Value Chain. 43
  • Table 24. Engineered Carbon Dioxide Removal Value Chain          45
  • Table 25. Carbon pricing and carbon markets          48
  • Table 26. Carbon Removal vs Emission Reduction Offsets.           49
  • Table 27. Carbon Crediting Programs.          50
  • Table 28. Voluntary Carbon Credits Key Market Players and Projects.     52
  • Table 29. Compliance Carbon Credits Key Market Players and Projects.               54
  • Table 30. Comparison of Voluntary and Compliance Carbon Credits.    54
  • Table 31. Durable Carbon Removal Buyers.              55
  • Table 32. Prices of CDR Credits.       56
  • Table 33. Major Corporate Carbon Credit Commitments.               57
  • Table 34. Key Carbon Market Regulations and Support Mechanisms.     57
  • Table 35. Carbon credit prices by company and technology.         58
  • Table 36. Carbon Credit Exchanges and Trading Platforms.            59
  • Table 37. OTC Carbon Market Characteristics.       60
  • Table 38. Challenges and Risks.       62
  • Table 39.Carbon Market 2024 and Forecast to 2035           63
  • Table 40. TRL of Biomass Conversion Processes and Products by Feedstock.   65
  • Table 41. BiCRS feedstocks. 66
  • Table 42. BiCRS conversion pathways.         66
  • Table 43. BiCRS Technological Challenges.              68
  • Table 44. CO₂ capture technologies for BECCS.     71
  • Table 45. Existing and planned capacity for sequestration of biogenic carbon. 73
  • Table 46. Existing facilities with capture and/or geologic sequestration of biogenic CO2.          74
  • Table 47. BECCS Challenges.             75
  • Table 48. Summary of key properties of biochar.   80
  • Table 49. Biochar physicochemical and morphological properties            80
  • Table 50. Biochar feedstocks-source, carbon content, and characteristics.       82
  • Table 51. Biochar production technologies, description, advantages and disadvantages.       83
  • Table 52. Comparison of slow and fast pyrolysis for biomass.     85
  • Table 53. Comparison of thermochemical processes for biochar production.  87
  • Table 54. Biochar production equipment manufacturers.               87
  • Table 55. Competitive materials and technologies that can also earn carbon credits. 90
  • Table 56. Bio-oil-based CDR pros and cons.             92
  • Table 57. Advantages and disadvantages of DAC. 96
  • Table 58. DAC vs Point-Source Carbon Capture.   97
  • Table 59. Capture Cost of DAC.         100
  • Table 60. Component Specific Capture Cost Contributions for DACCS.                100
  • Table 61. CO₂ Capture/Separation Mechanisms in DAC.  102
  • Table 62. Emerging solid sorbent materials for DAC.           105
  • Table 63.Solid Sorbent vs Liquid Solvent-based DAC          106
  • Table 64. Companies developing airflow equipment integration with DAC.         108
  • Table 65. Companies developing Passive Direct Air Capture (PDAC) technologies.       108
  • Table 66. Companies developing regeneration methods for DAC technologies.               109
  • Table 67. DAC technology developers and production.     111
  • Table 68. DAC projects in development.      114
  • Table 69. Markets for DAC.    115
  • Table 70. Costs summary for DAC.  116
  • Table 71. Cost estimates of DAC.     118
  • Table 72. Challenges for DAC technology.  119
  • Table 73. TRLs of Direct Air Capture Companies.  121
  • Table 74. DACCS Carbon Credit Sales by Company.           122
  • Table 75. DAC companies and technologies.           122
  • Table 76. Ex Situ Mineralization CDR Methods.       123
  • Table 77. Source Materials for Ex Situ Mineralization.        124
  • Table 78. Companies in CO₂-derived Concrete.     126
  • Table 79. Enhanced Weathering Applications.        128
  • Table 80. Enhanced Weathering Materials and Processes.             129
  • Table 81. Enhanced Weathering Companies            130
  • Table 82. Trends and Opportunities in Enhanced Weathering.      131
  • Table 83. Challenges and Risks in Enhanced Weathering.               131
  • Table 84. Cost analysis of enhanced weathering.  132
  • Table 85. Nature-based CDR approaches. 134
  • Table 86. Comparison of A/R and BECCS.  135
  • Table 87. Forest Carbon Removal Projects.               136
  • Table 88. Companies in Robotics in A/R.     137
  • Table 89. Trends and Opportunities in Afforestation/Reforestation.          138
  • Table 90.Challenges and Risks in Afforestation/Reforestation.    139
  • Table 91. Soil Carbon Sequestration Methods.       142
  • Table 92. Soil Sampling and Analysis Methods.      143
  • Table 93. Remote Sensing and Modeling Techniques.        143
  • Table 94. Companies Using Microbial Inoculation for Soil Carbon Sequestration.          144
  • Table 95. Marketplaces for SCS-based CDR Credits.          146
  • Table 96. Challenges and Risks in Soil Carbon Sequestration.     146
  • Table 97. Ocean-based CDR methods.        150
  • Table 98. Technology Readiness Level (TRL) Chart for Ocean-based CDR.           150
  • Table 99. Benchmarking of Ocean-based CDR Methods. 151
  • Table 100. Ocean-based CDR: Biotic Methods.      152
  • Table 101. Market Players in Ocean-based CDR.   158

 

List of Figures

  • Figure 1. Carbon emissions by sector.          16
  • Figure 2. Overview of CCUS market 17
  • Figure 3. Pathways for CO2 use.        18
  • Figure 4. Cost estimates for long-distance CO2 transport.             21
  • Figure 5. Carbon Dioxide Removal Market Map.     23
  • Figure 6. Carbon dioxide removal capacity by technology (million metric tons of CO₂/year), 2020-2045.                27
  • Figure 7. Carbon dioxide removal revenues by technology (billion US$), 2020-2045.   28
  • Figure 8. DACCS Carbon Removal Capacity Forecast (Million Metric Tons CO₂/Year). 29
  • Figure 9. DACCS Carbon Credit Revenue Forecast (Million US$).               30
  • Figure 10. BECCS Carbon Removal Capacity Forecast (Million Metric Tons CO₂/Year).               31
  • Figure 11. Biochar and Biomass Burial Carbon Removal Forecast (Million Metric Tons CO₂/Year).      32
  • Figure 12. BiCRS Carbon Credit Revenue Forecast (Million US$).              33
  • Figure 13. Mineralization Carbon Removal Forecast (Million Metric Tons CO₂/Year).     34
  • Figure 14. Mineralization Carbon Credit Revenue Forecast (Million US$).            35
  • Figure 15. Ocean-based Carbon Removal Forecast (Million Metric Tons CO₂/Year).      36
  • Figure 16. Ocean-based Carbon Credit Revenue Forecast (Million US$).             37
  • Figure 17. BiCRS Value Chain.           65
  • Figure 18. Bioenergy with carbon capture and storage (BECCS) process.             70
  • Figure 19. Schematic of biochar production.           78
  • Figure 20. Biochars from different sources, and by pyrolyzation at different temperatures.      79
  • Figure 21. Compressed biochar.       82
  • Figure 22. Biochar production diagram.      83
  • Figure 23. Pyrolysis process and by-products in agriculture.         85
  • Figure 24. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.        95
  • Figure 25. Global CO2 capture from biomass and DAC in the Net Zero Scenario.            96
  • Figure 26.  DAC technologies.             103
  • Figure 27. Schematic of Climeworks DAC system.               104
  • Figure 28. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.                105
  • Figure 29.  Flow diagram for solid sorbent DAC.     105
  • Figure 30. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.           107
  • Figure 31. Global capacity of direct air capture facilities. 110
  • Figure 32. Global map of DAC and CCS plants.      115
  • Figure 33. Schematic of costs of DAC technologies.           117
  • Figure 35. Operating costs of generic liquid and solid-based DAC systems.       119
  • Figure 36. SWOT analysis: DACCS. 121
  • Figure 37. Capture of carbon dioxide from the atmosphere using bricks of calcium hydroxide.             125
  • Figure 38. Carbon capture using mineral carbonation.      127
  • Figure 39. SWOT analysis: enhanced weathering. 133
  • Figure 40. SWOT analysis: afforestation/reforestation.     140
  • Figure 41. Soil Carbon Sequestration Value Chain.              145
  • Figure 42. SWOT analysis: SCS.        149
  • Figure 43. SWOT analysis: Ocean-based CDR.       158
  • Figure 44. Schematic of carbon capture solar project.       163
  • Figure 45. Capchar prototype pyrolysis kiln.             171
  • Figure 46. Carbon Blade system.      174
  • Figure 47. CarbonCure Technology. 178
  • Figure 48. Direct Air Capture Process.          181
  • Figure 49. Orca facility.            187
  • Figure 50. Carbon Capture balloon.               206
  • Figure 51. Holy Grail DAC system.   207
  • Figure 52. Infinitree swing method. 209
  • Figure 53. Mosaic Materials MOFs. 217
  • Figure 54. Neustark modular plant. 220
  • Figure 55. OCOchem’s Carbon Flux Electrolyzer.   224
  • Figure 56. RepAir technology.              230
  • Figure 57. Soletair Power unit.            237
  • Figure 58. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right).   241
  • Figure 59. Takavator.  242

 

 

 

The Global Carbon Dioxide Removal (CDR) Market 2025-2045
The Global Carbon Dioxide Removal (CDR) Market 2025-2045
PDF download/by email.

The Global Carbon Dioxide Removal (CDR) Market 2025-2045
The Global Carbon Dioxide Removal (CDR) Market 2025-2045
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com