
cover
- Published: February 2025
- Pages: 1,900
- Tables: 337
- Figures: 234
The Global Industrial Decarbonization Market 2025-2035 provides an in-dpeth analysis of industrial decarbonization trends and data from 2025 to 2035. The research covers technologies that reduce industrial carbon emissions while maintaining productivity and competitiveness. The report includes green hydrogen, carbon capture, industrial electrification, and green steel production with market forecasts across major sectors. Each technology section features cost benchmarking and carbon reduction metrics to support investment decisions. Regional coverage spans North America, Europe, Asia-Pacific, and emerging markets, including carbon pricing mechanisms and regulatory frameworks. The competitive landscape lists technology providers and industrial companies with their capabilities and market positions.
Report Contents include:
- Market Overview
- Current Industrial Emissions
- Regulatory Landscape
- Technology Readiness Levels
- Green Steel Technologies
- Production Technologies
- Advanced Materials
- Market Applications
- Market Forecast 2025-2035
- Green Hydrogen
- Production Technologies
- Electrolyzer Technologies
- Storage and Transport
- Industrial Applications
- Market Forecast 2025-2035
- Carbon Capture and Storage
- Direct Air Capture
- Biomass Carbon Removal
- Mineralization Methods
- Ocean-based Removal
- Market Forecast 2025-2035
- Industrial Heat Decarbonization
- Electric Heating Technologies
- Heat Pumps
- Biomass Solutions
- Advanced Technologies
- Market Forecast 2025-2035
- Electrification of Industrial Processes
- Electric Process Heating
- Electrochemical Processes
- Motors and Drives
- Market Forecast 2025-2035
- Circular Economy Solutions
- Advanced Sorting Technologies
- Recycling Technologies
- Materials Recovery
- Waste-to-Energy
- Market Forecast 2025-2035
- Environmental Technologies
- Water Treatment
- Air Quality Management
- Soil Remediation
- Digital Environmental Solutions
- Market Forecast 2025-2035
- Green Building Technologies
- Sustainable Materials
- Carbon Capture in Construction
- Energy Efficiency Solutions
- Market Forecast 2025-2035
- Competitive Landscape
- Technology Providers
- Industrial Implementers
- Infrastructure Requirements
- Grid Integration
- CO₂ Transport Networks
- Hydrogen Infrastructure
- Implementation Costs and Strategies
- Future Outlook and Scenarios
Over 1,000 companies are profiled including 1414 Degrees, A.Virtual, Aclarity, Adaptavate, Advanced Ionics, Allozymes, Adsorbi, Aerogel Core, Allonia, AGITEC International, Air Liquide, Air Products, Antora Energy, Aker Carbon Capture, Alchemy, Algoma Steel, Alison Hi-Tech, Alstom, Ambrell, Ambri, Andritz, Antora Energy, Aperam BioEnergia, ArcelorMittal, Ardent, Armacell International, Asahi Kasei, Autarkize, Augury, AutoGrid, BASF, Basilisk, Battery Pollution Technologies, Beltran Technologies, Betolar, Bio Fab NZ, Biohm, Biomason, BioZeroc, Blastr Green Steel, Blue Planet Systems, Blueshift Materials, Boreal Laser, Boston Metal, BP, Braincube, Brimstone, C-Zero, Cabot Corporation, Calgon Carbon, Cambridge Carbon Capture, Cambridge Electric Cement, Canvass Analytics, Carbogenics, CarbiCrete, Carbonaide, Carbon Clean, Carbon Engineering, CarbonCure, Carbon8 Systems, Carbon Ridge CEIA Power, Charbone Hydrogen, Chevron, China Baowu Steel Group, Chromalox, Chumpower, Clariant, Climeworks, Cummins, Coagtech, De Nora, Despatch Industries, Dow Chemical, Doosan Heavy Industries, Eaton, Electra Steel, Electric Hydrogen, Enapter, Electrified Thermal Solutions, Epoch Biodesign, Evoqua, Fero Labs, Fluor, FLSmidth, Fortescue, GE, GH Induction, Gradiant, Green Hydrogen Systems, HPNOw, H2 Green Steel, H2Pro, HeatXcel, Heliogen, Heatrix GmbH, Honeywell, Hysata, IDOM, ION Clean Energy Ionomr Innovations, ITM Power, JFE Steel, Johnson Controls, Johnson Matthey, Kaneka, Kawasaki Heavy Industries, Kobe Steel, Kurita Water, Linde, LyondellBasell, MAN Energy, McPhy Energy, Metso Outotec, Microwave Chemical, Mitsubishi Heavy Industries, Modultherm, Nanjing Iron & Steel, Nel Hydrogen, Neustark, Nippon Steel, Novobiom,Ohmium, Ovivo, Pall Corporation, Phoenix Contact, Plenesys, Pluvion, Puraffinity, Promethean Particles, Pyrolyze, Quantafuel, Regal Rexnord, Repsol, Rondo Energy,Sabic, Salzgitter AG, Samsung Engineering, Sany Heavy Industry, Schneider Electric, Shell, Siemens, Siemens Energy, Smart Ops, SSAB, Starfire Industries, Statkraft, Stamicarbon, Stiesdal, Stoffu, Sublime Systems, Sunfire, Sunthru, Svante, Sympower, Tata Steel, Tenova, ThermCell, ThermFLEX, Thermon, ThyssenKrupp, Toshiba, Total Energies, Toyo Engineering, Trane Technologies, Umicore, UBreathe, Valmet, Vattenfall, Veolia, Vestas, Verdagy, Wärtsilä, Waste Management, Watlow, WEG, WesTech Engineering, Wood, Wärtsilä, Xcel Energy, Xylem, Yokogawa, Yosemite Clean Energy, ZeaChem, ZeePure, ZEG Power, Zenyatta and more......
1 EXECUTIVE SUMMARY 92
- 1.1 Key findings and market opportunities 93
- 1.2 Market drivers and challenges 94
- 1.3 Investment landscape 96
- 1.4 Future outlook 98
2 GREEN STEEL 100
- 2.1 Current Steelmaking processes 100
- 2.2 "Double carbon" (carbon peak and carbon neutrality) goals and ultra-low emissions requirements 101
- 2.3 What is green steel? 103
- 2.3.1 Properties 104
- 2.3.2 Decarbonization target and policies 105
- 2.3.2.1 EU Carbon Border Adjustment Mechanism (CBAM) 107
- 2.3.3 Advances in clean production technologies 107
- 2.4 Production technologies 108
- 2.4.1 The role of hydrogen 108
- 2.4.2 Comparative analysis 109
- 2.4.3 Hydrogen Direct Reduced Iron (DRI) 110
- 2.4.4 Electrolysis 111
- 2.4.5 Carbon Capture, Utilization and Storage (CCUS) 112
- 2.4.6 Biochar replacing coke 114
- 2.4.7 Hydrogen Blast Furnace 114
- 2.4.8 Renewable energy powered processes 115
- 2.4.9 Flash ironmaking 116
- 2.4.10 Hydrogen Plasma Iron Ore Reduction 117
- 2.4.11 Ferrous Bioprocessing 118
- 2.4.12 Microwave Processing 119
- 2.4.13 Additive Manufacturing 119
- 2.4.14 Technology readiness level (TRL) 120
- 2.5 Advanced materials in green steel 120
- 2.5.1 Composite electrodes 120
- 2.5.2 Solid oxide materials 121
- 2.5.3 Hydrogen storage metals 121
- 2.5.4 Carbon composite steels 122
- 2.5.5 Coatings and membranes 122
- 2.5.6 Sustainable binders 122
- 2.5.7 Iron ore catalysts 123
- 2.5.8 Carbon capture materials 123
- 2.5.9 Waste gas utilization 124
- 2.6 Advantages and disadvantages of green steel 124
- 2.7 Markets and applications 125
- 2.8 Energy Savings and Cost Reduction in Steel Production 126
- 2.9 Digitalization 126
- 2.10 Biomass Steel Production and Sustainable Green Steel Production Chai 126
- 2.11 The Global Maket for Green Steel 128
- 2.11.1 Global steel production 128
- 2.11.1.1 Steel prices 128
- 2.11.1.2 Green steel prices 128
- 2.11.2 Green steel plants and production, current and planned 129
- 2.11.3 Market map 130
- 2.11.4 SWOT analysis 131
- 2.11.5 Market trends and opportunities 132
- 2.11.6 Industry developments, funding and innovation 2022-2025 132
- 2.11.7 Market growth drivers 138
- 2.11.8 Market challenges 139
- 2.11.9 End-use industries 140
- 2.11.9.1 Automotive 140
- 2.11.9.1.1 Market overview 140
- 2.11.9.1.2 Applications 142
- 2.11.9.2 Construction 143
- 2.11.9.2.1 Market overview 143
- 2.11.9.2.2 Applications 143
- 2.11.9.3 Consumer appliances 144
- 2.11.9.3.1 Market overview 144
- 2.11.9.3.2 Applications 145
- 2.11.9.4 Machinery 145
- 2.11.9.4.1 Market overview 146
- 2.11.9.4.2 Applications 146
- 2.11.9.5 Rail 146
- 2.11.9.5.1 Market overview 146
- 2.11.9.5.2 Applications 147
- 2.11.9.6 Packaging 147
- 2.11.9.6.1 Market overview 147
- 2.11.9.6.2 Applications 148
- 2.11.9.7 Electronics 148
- 2.11.9.7.1 Market overview 148
- 2.11.9.7.2 Applications 149
- 2.11.9.1 Automotive 140
- 2.11.1 Global steel production 128
- 2.12 Global market production and demand 150
- 2.12.1 Production Capacity 2020-2035 150
- 2.12.2 Production vs. Demand 2020-2035 152
- 2.12.3 Revenues 2020-2035 152
- 2.12.4 Competitive landscape 156
- 2.12.5 Future market outlook 157
- 2.13 Company profiles 158 (46 company profiles)
3 GREEN HYDROGEN 194
- 3.1 Hydrogen classification 195
- 3.1.1 Hydrogen colour shades 195
- 3.2 Global energy demand and consumption 196
- 3.3 The hydrogen economy and production 196
- 3.4 Removing CO₂ emissions from hydrogen production 198
- 3.5 Hydrogen value chain 199
- 3.5.1 Production 200
- 3.5.2 Transport and storage 200
- 3.5.3 Utilization 200
- 3.6 National hydrogen initiatives, policy and regulation 201
- 3.7 Hydrogen certification 203
- 3.8 Carbon pricing 204
- 3.9 Market challenges 204
- 3.10 Industry developments 2020-2024 205
- 3.11 Market map 218
- 3.12 Global hydrogen production 220
- 3.12.1 Industrial applications 221
- 3.12.2 Hydrogen energy 222
- 3.12.2.1 Stationary use 222
- 3.12.2.2 Hydrogen for mobility 222
- 3.12.3 Current Annual H2 Production 223
- 3.12.4 Hydrogen production processes 224
- 3.12.4.1 Hydrogen as by-product 225
- 3.12.4.2 Reforming 225
- 3.12.4.2.1 SMR wet method 225
- 3.12.4.2.2 Oxidation of petroleum fractions 225
- 3.12.4.2.3 Coal gasification 226
- 3.12.4.3 Reforming or coal gasification with CO2 capture and storage 226
- 3.12.4.4 Steam reforming of biomethane 226
- 3.12.4.5 Water electrolysis 227
- 3.12.4.6 The "Power-to-Gas" concept 228
- 3.12.4.7 Fuel cell stack 229
- 3.12.4.8 Electrolysers 230
- 3.12.4.9 Other 231
- 3.12.4.9.1 Plasma technologies 231
- 3.12.4.9.2 Photosynthesis 232
- 3.12.4.9.3 Bacterial or biological processes 232
- 3.12.4.9.4 Oxidation (biomimicry) 233
- 3.12.5 Production costs 234
- 3.12.6 Global hydrogen demand forecasts 235
- 3.12.7 Hydrogen Production in the United States 236
- 3.12.7.1 Gulf Coast 236
- 3.12.7.2 California 237
- 3.12.7.3 Midwest 237
- 3.12.7.4 Northeast 237
- 3.12.7.5 Northwest 238
- 3.12.8 DOE Hydrogen Hubs 238
- 3.12.9 US Hydrogen Electrolyzer Capacities, Planned and Installed 239
- 3.13 Green hydrogen production 241
- 3.13.1 Overview 241
- 3.13.2 Green hydrogen projects 242
- 3.13.3 Motivation for use 243
- 3.13.4 Decarbonization 244
- 3.13.5 Comparative analysis 245
- 3.13.6 Role in energy transition 245
- 3.13.7 Renewable energy sources 246
- 3.13.7.1 Wind power 247
- 3.13.7.2 Solar Power 247
- 3.13.7.3 Nuclear 247
- 3.13.7.4 Capacities 247
- 3.13.7.5 Costs 247
- 3.13.8 SWOT analysis 248
- 3.14 Electrolyzer technologies 250
- 3.14.1 Introduction 250
- 3.14.2 Main types 251
- 3.14.3 Balance of Plant 252
- 3.14.4 Characteristics 254
- 3.14.5 Advantages and disadvantages 256
- 3.14.6 Electrolyzer market 256
- 3.14.6.1 Market trends 256
- 3.14.6.2 Market landscape 257
- 3.14.6.3 Innovations 258
- 3.14.6.4 Cost challenges 259
- 3.14.6.5 Scale-up 260
- 3.14.6.6 Manufacturing challenges 260
- 3.14.6.7 Market opportunity and outlook 261
- 3.14.7 Alkaline water electrolyzers (AWE) 262
- 3.14.7.1 Technology description 262
- 3.14.7.2 AWE plant 264
- 3.14.7.3 Components and materials 265
- 3.14.7.4 Costs 266
- 3.14.7.5 Companies 266
- 3.14.8 Anion exchange membrane electrolyzers (AEMEL) 268
- 3.14.8.1 Technology description 268
- 3.14.8.2 AEMEL plant 269
- 3.14.8.3 Components and materials 270
- 3.14.8.3.1 Catalysts 271
- 3.14.8.3.2 Anion exchange membranes (AEMs) 271
- 3.14.8.3.3 Materials 272
- 3.14.8.4 Costs 274
- 3.14.8.5 Companies 274
- 3.14.9 Proton exchange membrane electrolyzers (PEMEL) 276
- 3.14.9.1 Technology description 276
- 3.14.9.2 PEMEL plant 278
- 3.14.9.3 Components and materials 279
- 3.14.9.3.1 Membranes 280
- 3.14.9.3.2 Advanced PEMEL stack designs 280
- 3.14.9.3.3 Plug-and-Play & Customizable PEMEL Systems 281
- 3.14.9.3.4 PEMELs and proton exchange membrane fuel cells (PEMFCs) 282
- 3.14.9.4 Costs 283
- 3.14.9.5 Companies 283
- 3.14.10 Solid oxide water electrolyzers (SOEC) 285
- 3.14.10.1 Technology description 285
- 3.14.10.2 SOEC plant 287
- 3.14.10.3 Components and materials 287
- 3.14.10.3.1 External process heat 288
- 3.14.10.3.2 Clean Syngas Production 288
- 3.14.10.3.3 Nuclear power 289
- 3.14.10.3.4 SOEC and SOFC cells 289
- 3.14.10.3.4.1 Tubular cells 289
- 3.14.10.3.4.2 Planar cells 290
- 3.14.10.3.5 SOEC Electrolyte 290
- 3.14.10.4 Costs 291
- 3.14.10.5 Companies 292
- 3.14.11 Other types 293
- 3.14.11.1 Overview 293
- 3.14.11.2 CO₂ electrolysis 294
- 3.14.11.2.1 Electrochemical CO₂ Reduction 295
- 3.14.11.2.2 Electrochemical CO₂ Reduction Catalysts 296
- 3.14.11.2.3 Electrochemical CO₂ Reduction Technologies 296
- 3.14.11.2.4 Low-Temperature Electrochemical CO₂ Reduction 297
- 3.14.11.2.5 High-Temperature Solid Oxide Electrolyzers 298
- 3.14.11.2.6 Cost 298
- 3.14.11.2.7 Challenges 299
- 3.14.11.2.8 Coupling H₂ and Electrochemical CO₂ 300
- 3.14.11.2.9 Products 300
- 3.14.11.3 Seawater electrolysis 301
- 3.14.11.3.1 Direct Seawater vs Brine (Chlor-Alkali) Electrolysis 302
- 3.14.11.3.2 Key Challenges & Limitations 302
- 3.14.11.4 Protonic Ceramic Electrolyzers (PCE) 303
- 3.14.11.5 Microbial Electrolysis Cells (MEC) 304
- 3.14.11.6 Photoelectrochemical Cells (PEC) 305
- 3.14.11.7 Companies 306
- 3.14.12 Costs 306
- 3.14.13 Water and land use for green hydrogen production 309
- 3.14.14 Electrolyzer manufacturing capacities 311
- 3.15 Hydrogen storage and transport 313
- 3.15.1 Market overview 314
- 3.15.2 Hydrogen transport methods 315
- 3.15.2.1 Pipeline transportation 315
- 3.15.2.2 Road or rail transport 315
- 3.15.2.3 Maritime transportation 315
- 3.15.2.4 On-board-vehicle transport 316
- 3.15.3 Hydrogen compression, liquefaction, storage 316
- 3.15.3.1 Solid storage 316
- 3.15.3.2 Liquid storage on support 317
- 3.15.3.3 Underground storage 317
- 3.15.3.4 Subsea Hydrogen Storage 317
- 3.15.4 Market players 318
- 3.16 Hydrogen utilization 319
- 3.16.1 Hydrogen Fuel Cells 319
- 3.16.2 Market overview 320
- 3.16.2.1 PEM fuel cells (PEMFCs) 320
- 3.16.2.2 Solid oxide fuel cells (SOFCs) 321
- 3.16.2.3 Alternative fuel cells 321
- 3.16.3 Alternative fuel production 322
- 3.16.3.1 Solid Biofuels 322
- 3.16.3.2 Liquid Biofuels 322
- 3.16.3.3 Gaseous Biofuels 323
- 3.16.3.4 Conventional Biofuels 323
- 3.16.3.5 Advanced Biofuels 323
- 3.16.3.6 Feedstocks 324
- 3.16.3.7 Production of biodiesel and other biofuels 326
- 3.16.3.8 Renewable diesel 326
- 3.16.3.9 Biojet and sustainable aviation fuel (SAF) 327
- 3.16.3.10 Electrofuels (E-fuels, power-to-gas/liquids/fuels) 330
- 3.16.3.10.1 Hydrogen electrolysis 333
- 3.16.3.10.2 eFuel production facilities, current and planned 336
- 3.16.4 Hydrogen Vehicles 340
- 3.16.4.1 Market overview 340
- 3.16.5 Aviation 342
- 3.16.5.1 Market overview 342
- 3.16.6 Ammonia production 342
- 3.16.6.1 Market overview 342
- 3.16.6.2 Decarbonisation of ammonia production 344
- 3.16.6.3 Green ammonia synthesis methods 345
- 3.16.6.3.1 Haber-Bosch process 346
- 3.16.6.3.2 Biological nitrogen fixation 346
- 3.16.6.3.3 Electrochemical production 347
- 3.16.6.3.4 Chemical looping processes 347
- 3.16.6.4 Blue ammonia 347
- 3.16.6.4.1 Blue ammonia projects 347
- 3.16.6.5 Chemical energy storage 348
- 3.16.6.5.1 Ammonia fuel cells 348
- 3.16.6.5.2 Marine fuel 349
- 3.16.7 Methanol production 352
- 3.16.7.1 Market overview 352
- 3.16.7.2 Methanol-to gasoline technology 352
- 3.16.7.2.1 Production processes 353
- 3.16.7.2.1.1 Anaerobic digestion 354
- 3.16.7.2.1.2 Biomass gasification 354
- 3.16.7.2.1.3 Power to Methane 355
- 3.16.7.2.1 Production processes 353
- 3.16.8 Steelmaking 356
- 3.16.8.1 Market overview 356
- 3.16.8.2 Comparative analysis 358
- 3.16.8.3 Hydrogen Direct Reduced Iron (DRI) 359
- 3.16.9 Power & heat generation 360
- 3.16.9.1 Market overview 360
- 3.16.9.1.1 Power generation 361
- 3.16.9.1.2 Heat Generation 361
- 3.16.9.1 Market overview 360
- 3.16.10 Maritime 361
- 3.16.10.1 Market overview 361
- 3.16.11 Fuel cell trains 362
- 3.16.11.1 Market overview 362
- 3.17 Company profiles 363 (130 company profiles)
4 CARBON CAPTURE AND STORAGE 456
- 4.1 Main sources of carbon dioxide emissions 456
- 4.2 CO2 as a commodity 457
- 4.3 History and evolution of carbon markets 459
- 4.4 Meeting climate targets 460
- 4.5 Mitigation costs of CDR technologies 460
- 4.6 Market map 462
- 4.7 CDR in voluntary carbon markets 465
- 4.8 CDR investments 466
- 4.9 Carbon Dioxide Removal (CDR) and Carbon Capture, Utilization, and Storage (CCUS) 467
- 4.10 Market size 467
- 4.10.1 Carbon dioxide removal capacity by technology 468
- 4.10.2 DACCS Carbon Removal 469
- 4.10.3 BECCS Carbon Removal 471
- 4.10.4 Biochar and Biomass Burial Carbon Removal 472
- 4.10.5 Mineralization Carbon Removal 474
- 4.10.6 Ocean-based Carbon Removal 476
- 4.11 Introduction 479
- 4.11.1 Conventional CDR on land 479
- 4.11.1.1 Wetland and peatland restoration 480
- 4.11.1.2 Cropland, grassland, and agroforestry 480
- 4.11.2 Main CDR methods 481
- 4.11.3 Novel CDR methods 482
- 4.11.4 Market drivers 483
- 4.11.5 Value chain 484
- 4.11.6 Deployment of carbon dioxide removal technologies 487
- 4.11.1 Conventional CDR on land 479
- 4.12 Carbon credits 488
- 4.12.1 Description 488
- 4.12.2 Carbon pricing 488
- 4.12.3 Carbon Removal vs Carbon Avoidance Offsetting 490
- 4.12.4 Carbon credit certification 491
- 4.12.5 Carbon registries 491
- 4.12.6 Carbon credit quality 492
- 4.12.7 Voluntary Carbon Credits 492
- 4.12.7.1 Definition 492
- 4.12.7.2 Purchasing 493
- 4.12.7.3 Market players 493
- 4.12.7.4 Pricing 494
- 4.12.8 Compliance Carbon Credits 494
- 4.12.8.1 Definition 494
- 4.12.8.2 Market players 495
- 4.12.8.3 Pricing 495
- 4.12.9 Durable carbon dioxide removal (CDR) credits 496
- 4.12.10 Corporate commitments 498
- 4.12.11 Increasing government support and regulations 498
- 4.12.12 Advancements in carbon offset project verification and monitoring 499
- 4.12.13 Potential for blockchain technology in carbon credit trading 499
- 4.12.14 Buying and Selling Carbon Credits 500
- 4.12.14.1 Carbon credit exchanges and trading platforms 500
- 4.12.14.2 Over-the-counter (OTC) transactions 501
- 4.12.14.3 Pricing mechanisms and factors affecting carbon credit prices 502
- 4.12.15 Certification 502
- 4.12.16 Challenges and risks 503
- 4.13 Biomass with Carbon Removal and Storage (BiCRS) 505
- 4.13.1 Feedstocks 506
- 4.13.2 BiCRS Conversion Pathways 506
- 4.13.3 Bioenergy with carbon capture and storage (BECCS) 509
- 4.13.3.1 Biomass conversion 511
- 4.13.3.2 CO₂ capture technologies 511
- 4.13.3.3 BECCS facilities 514
- 4.13.3.4 Cost analysis 515
- 4.13.4 Market size 515
- 4.13.4.1 BECCS carbon credits 516
- 4.13.4.2 Challenges 516
- 4.13.5 Biochar 519
- 4.13.5.1 What is biochar? 520
- 4.13.5.2 Properties of biochar 521
- 4.13.5.3 Feedstocks 523
- 4.13.5.4 Production processes 524
- 4.13.5.4.1 Sustainable production 524
- 4.13.5.4.2 Pyrolysis 525
- 4.13.5.4.2.1 Slow pyrolysis 525
- 4.13.5.4.2.2 Fast pyrolysis 526
- 4.13.5.4.3 Gasification 527
- 4.13.5.4.4 Hydrothermal carbonization (HTC) 527
- 4.13.5.4.5 Torrefaction 527
- 4.13.5.4.6 Equipment manufacturers 528
- 4.13.5.5 Biochar pricing 529
- 4.13.5.6 Biochar carbon credits 530
- 4.13.5.6.1 Overview 530
- 4.13.5.6.2 Removal and reduction credits 530
- 4.13.5.6.3 The advantage of biochar 530
- 4.13.5.6.4 Prices 531
- 4.13.5.6.5 Buyers of biochar credits 531
- 4.13.5.6.6 Competitive materials and technologies 531
- 4.13.6 Approaches beyond BECCS and biochar 532
- 4.13.6.1 Bio-oil based CDR 532
- 4.13.6.2 Integration of biomass-derived carbon into steel and concrete 533
- 4.13.6.3 Bio-based construction materials for CDR 534
- 4.14 Direct Air Capture and Storage (DACCS) 535
- 4.14.1 Description 535
- 4.14.2 Deployment 537
- 4.14.3 Point source carbon capture versus Direct Air Capture 538
- 4.14.4 DAC and other Energy Sources 539
- 4.14.5 Deployment and Scale-Up 540
- 4.14.6 Costs 540
- 4.14.7 Technologies 542
- 4.14.7.1 Solid sorbents 545
- 4.14.7.2 Liquid sorbents 547
- 4.14.7.3 Liquid solvents 548
- 4.14.7.4 Airflow equipment integration 549
- 4.14.7.5 Passive Direct Air Capture (PDAC) 549
- 4.14.7.6 Direct conversion 549
- 4.14.7.7 Co-product generation 550
- 4.14.7.8 Low Temperature DAC 550
- 4.14.7.9 Regeneration methods 550
- 4.14.7.10 Commercialization and plants 550
- 4.14.7.11 Metal-organic frameworks (MOFs) in DAC 551
- 4.14.8 DAC plants and projects-current and planned 551
- 4.14.9 Markets for DAC 556
- 4.14.10 Cost analysis 557
- 4.14.11 Challenges 560
- 4.14.12 SWOT analysis 561
- 4.14.13 Players and production 562
- 4.15 Mineralization-based CDR 564
- 4.15.1 Overview 564
- 4.15.2 Storage in CO₂-Derived Concrete 566
- 4.15.3 Oxide Looping 567
- 4.15.4 Enhanced Weathering 568
- 4.15.4.1 Overview 568
- 4.15.4.2 Benefits 568
- 4.15.4.3 Monitoring, Reporting, and Verification (MRV) 569
- 4.15.4.4 Applications 569
- 4.15.4.5 Commercial activity and companies 570
- 4.15.4.6 Challenges and Risks 572
- 4.15.5 Cost analysis 572
- 4.15.6 SWOT analysis 573
- 4.16 Afforestation/Reforestation 575
- 4.16.1 Overview 575
- 4.16.2 Carbon dioxide removal methods 575
- 4.16.2.1 Nature-based CDR 575
- 4.16.2.2 Land-based CDR 577
- 4.16.3 Technologies 577
- 4.16.3.1 Remote Sensing 578
- 4.16.3.2 Drone technology and robotics 578
- 4.16.3.3 Automated forest fire detection systems 578
- 4.16.3.4 AI/ML 579
- 4.16.3.5 Genetics 579
- 4.16.4 Trends and Opportunities 579
- 4.16.5 Challenges and Risks 580
- 4.16.5.1 SWOT analysis 581
- 4.17 Soil carbon sequestration (SCS) 582
- 4.17.1 Overview 582
- 4.17.2 Practices 583
- 4.17.3 Measuring and Verifying 584
- 4.17.4 Companies 585
- 4.17.5 Trends and Opportunities 585
- 4.17.6 Carbon credits 586
- 4.17.7 Challenges and Risks 587
- 4.17.8 SWOT analysis 589
- 4.18 Ocean-based CDR 591
- 4.18.1 Overview 591
- 4.18.2 CO₂ capture from seawater 592
- 4.18.3 Ocean fertilisation 593
- 4.18.3.1 Biotic Methods 593
- 4.18.3.2 Coastal blue carbon ecosystems 594
- 4.18.3.3 Algal Cultivation 594
- 4.18.3.4 Artificial Upwelling 594
- 4.18.4 Ocean alkalinisation 595
- 4.18.4.1 Electrochemical ocean alkalinity enhancement 595
- 4.18.4.2 Direct Ocean Capture 596
- 4.18.4.3 Artificial Downwelling 596
- 4.18.5 Monitoring, Reporting, and Verification (MRV) 597
- 4.18.6 Ocean-based CDR Carbon Credits 597
- 4.18.7 Trends and Opportunities 597
- 4.18.8 Ocean-based carbon credits 597
- 4.18.9 Cost analysis 598
- 4.18.10 Challenges and Risks 598
- 4.18.11 SWOT analysis 598
- 4.18.12 Companies 599
- 4.19 Company profiles 600 (143 company profiles)
5 INDUSTRIAL HEAT DECARBONIZATION 696
- 5.1 Market overview 696
- 5.1.1 Industrial Heat: Current State and Decarbonization Imperative 696
- 5.1.2 Industrial Decarbonization Incentives 698
- 5.1.3 Technology Maturity Overview 699
- 5.2 Cost Competitiveness Analysis 700
- 5.2.1 Carbon Abatement Potential 701
- 5.3 Technologies 703
- 5.3.1 Electric Heating 703
- 5.3.1.1 Resistance Heating 704
- 5.3.1.1.1 Direct Resistance 704
- 5.3.1.1.2 Indirect Resistance 705
- 5.3.1.1.3 Infrared Heating 706
- 5.3.1.2 Induction Heating 708
- 5.3.1.2.1 High-Frequency Systems 708
- 5.3.1.2.2 Medium-Frequency Systems 709
- 5.3.1.2.3 Low-Frequency Systems 710
- 5.3.1.3 Microwave Heating 711
- 5.3.1.3.1 Single-Mode Systems 712
- 5.3.1.3.2 Multi-Mode Systems 713
- 5.3.1.3.3 Advanced Control Systems 714
- 5.3.1.4 Plasma Heating 716
- 5.3.1.4.1 Thermal Plasma 716
- 5.3.1.4.2 Non-Thermal Plasma 717
- 5.3.1.4.3 Hybrid Plasma Systems 719
- 5.3.1.1 Resistance Heating 704
- 5.3.2 Heat Pumps 719
- 5.3.2.1 High-Temperature Systems 719
- 5.3.2.1.1 Vapor Compression 719
- 5.3.2.1.2 Absorption Systems 719
- 5.3.2.1.3 Hybrid Configurations 719
- 5.3.2.2 Integration Strategies 720
- 5.3.2.2.1 Process Integration 721
- 5.3.2.2.2 Cascade Systems 721
- 5.3.2.2.3 Multi-Source Integration 722
- 5.3.2.3 Emerging Technologies 722
- 5.3.2.3.1 Chemical Heat Pumps 723
- 5.3.2.3.2 Magnetocaloric Systems 723
- 5.3.2.3.3 Thermoacoustic Heat Pumps 724
- 5.3.2.1 High-Temperature Systems 719
- 5.3.3 Biomass Solutions 725
- 5.3.3.1 Advanced Feedstock Processing 725
- 5.3.3.1.1 Torrefaction 726
- 5.3.3.1.2 Pelletization 726
- 5.3.3.1.3 Gasification 727
- 5.3.3.2 Combustion Technologies 728
- 5.3.3.2.1 Fluidized Bed Systems 729
- 5.3.3.2.2 Grate Firing Systems 730
- 5.3.3.2.3 6.4.2.3 Pulverized Biomass 731
- 5.3.3.3 Emerging Biomass Technologies 731
- 5.3.3.3.1 Supercritical Water Gasification 731
- 5.3.3.3.2 Plasma-Assisted Combustion 732
- 5.3.3.3.3 Chemical Looping 733
- 5.3.3.1 Advanced Feedstock Processing 725
- 5.3.4 Advanced and Emerging Technologies 734
- 5.3.4.1 Solar Thermal 734
- 5.3.4.1.1 Concentrated Solar Power 735
- 5.3.4.1.2 Solar-Hydrogen Hybrid Systems 735
- 5.3.4.2 Geothermal 737
- 5.3.4.2.1 Deep Geothermal 737
- 5.3.4.2.2 Enhanced Geothermal Systems 739
- 5.3.4.3 Novel Heat Storage 740
- 5.3.4.3.1 Thermochemical Storage 740
- 5.3.4.3.2 Phase Change Materials 741
- 5.3.4.3.3 Molten Salt Systems 742
- 5.3.4.4 Artificial Intelligence and Digital Technologies 744
- 5.3.4.4.1 Predictive Maintenance 745
- 5.3.4.4.2 Process Optimization 745
- 5.3.4.4.3 Digital Twins 747
- 5.3.4.1 Solar Thermal 734
- 5.3.1 Electric Heating 703
- 5.4 Markets and Applications 748
- 5.4.1 Process Industries 748
- 5.4.1.1 Chemical Industry 749
- 5.4.1.2 Food Processing 750
- 5.4.1.3 Paper and Pulp 751
- 5.4.1.4 Glass and Ceramics 752
- 5.4.2 Metal Processing 754
- 5.4.2.1 Steel Industry 754
- 5.4.2.2 Aluminum Production 755
- 5.4.2.3 Other Metals 756
- 5.4.3 Building Materials 757
- 5.4.3.1 Cement Production 758
- 5.4.3.2 Brick Manufacturing 759
- 5.4.3.3 Other Materials 760
- 5.4.1 Process Industries 748
- 5.5 System Integration 762
- 5.5.1 Heat Recovery Systems 762
- 5.5.1.1 Technology Options 763
- 5.5.1.2 Efficiency Analysis 764
- 5.5.1.3 Implementation Strategies 765
- 5.5.2 Process Optimization 766
- 5.5.2.1 Energy Management 767
- 5.5.2.2 Control Systems 768
- 5.5.2.3 Performance Monitoring 769
- 5.5.1 Heat Recovery Systems 762
- 5.6 Market Analysis 771
- 5.6.1 Cost Analysis 771
- 5.6.2 Future Outlook 772
- 5.7 Company profiles 772 (45 company profiles)
6 ELECTRIFICATION OF INDUSTRIAL PROCESSES 809
- 6.1 Grid Integration and Power Systems 810
- 6.1.1 Grid Requirements 810
- 6.1.1.1 Power Quality 811
- 6.1.1.2 Capacity Planning 811
- 6.1.1.3 Smart Grid Integration 813
- 6.1.2 Energy Storage Systems 814
- 6.1.2.1 Battery Storage 814
- 6.1.2.2 Thermal Storage 815
- 6.1.2.3 Hybrid Systems 816
- 6.1.3 Renewable Energy Integration 818
- 6.1.3.1 Solar PV Integration 818
- 6.1.3.2 Wind Power Integration 819
- 6.1.3.3 Hybrid Power Systems 820
- 6.1.1 Grid Requirements 810
- 6.2 Electric Process Heating 823
- 6.2.1 Resistance Heating Systems 824
- 6.2.1.1 Direct Resistance Heating 825
- 6.2.1.2 Indirect Resistance Heating 826
- 6.2.1.3 Immersion Heating 827
- 6.2.1.4 Advanced Control Systems 828
- 6.2.2 Induction Technology 830
- 6.2.2.1 High-Frequency Systems 830
- 6.2.3 Medium-Frequency Systems 831
- 6.2.3.1 Low-Frequency Systems 832
- 6.2.3.2 Advanced Power Supply 833
- 6.2.4 Infrared Heating 835
- 6.2.4.1 Short-wave Systems 836
- 6.2.4.2 Medium-wave Systems 837
- 6.2.4.3 Long-wave Systems 838
- 6.2.4.4 Hybrid Solutions 839
- 6.2.5 Dielectric Heating 841
- 6.2.5.1 Microwave Systems 841
- 6.2.5.2 Radio Frequency Systems 842
- 6.2.5.3 Advanced Control 843
- 6.2.6 Plasma Systems 845
- 6.2.6.1 Thermal Plasma 846
- 6.2.6.2 Non-Thermal Plasma 847
- 6.2.6.3 Hybrid Plasma Systems 848
- 6.2.1 Resistance Heating Systems 824
- 6.3 Electrochemical Processes 850
- 6.3.1 Advanced Electrolysis Systems 850
- 6.3.1.1 Alkaline Electrolysis 850
- 6.3.1.2 PEM Electrolysis 851
- 6.3.1.3 Solid Oxide Electrolysis 852
- 6.3.2 Electrochemical Reactors 854
- 6.3.2.1 Flow Reactors 855
- 6.3.2.2 Batch Reactors 856
- 6.3.2.3 Novel Designs 856
- 6.3.3 Membrane Technologies 858
- 6.3.3.1 Ion Exchange Membranes 858
- 6.3.3.2 Ceramic Membranes 859
- 6.3.3.3 Composite Membranes 860
- 6.3.1 Advanced Electrolysis Systems 850
- 6.4 Electric Motors and Drives 862
- 6.4.1 Advanced Motor Technologies 862
- 6.4.1.1 Permanent Magnet Motors 863
- 6.4.1.2 Synchronous Reluctance Motors 864
- 6.4.1.3 High-Speed Motors 865
- 6.4.1 Advanced Motor Technologies 862
- 6.5 Emerging Technologies 866
- 6.5.1 Digital Twin Technologies 866
- 6.5.1.1 Process Modeling 867
- 6.5.1.2 Real-time Optimization 868
- 6.5.2 AI and Machine Learning 868
- 6.5.2.1 Predictive Maintenance 868
- 6.5.2.2 Process Optimization 869
- 6.5.2.3 Energy Management 870
- 6.5.3 Novel Heating Technologies 871
- 6.5.3.1 Ultrasonic Heating 871
- 6.5.3.2 Electron Beam Processing 872
- 6.5.3.3 Laser Processing 873
- 6.5.1 Digital Twin Technologies 866
- 6.6 Applications 873
- 6.6.1 Chemical Industry 873
- 6.6.1.1 Process Electrification 874
- 6.6.1.2 Energy Integration 875
- 6.6.2 Metal Processing 875
- 6.6.2.1 Melting and Casting 875
- 6.6.2.2 Heat Treatment 876
- 6.6.2.3 Surface Processing 877
- 6.6.3 Food and Beverage 878
- 6.6.3.1 Heating Processes 878
- 6.6.3.2 Cooling Systems 879
- 6.6.3.3 Process Integration 880
- 6.6.4 Mining and Minerals 880
- 6.6.4.1 Equipment Electrification 880
- 6.6.4.2 Process Conversion 881
- 6.6.4.3 Energy Management 882
- 6.6.1 Chemical Industry 873
- 6.7 Company profiles 883 (245 company profiles)
7 CIRCULAR ECONOMY SOLUTIONS 975
- 7.1 Advanced Sorting and Detection Technologies 975
- 7.1.1 Artificial Intelligence and Machine Learning 975
- 7.1.2 Computer Vision Systems 976
- 7.1.3 Deep Learning Algorithms 977
- 7.1.4 Real-time Sorting 979
- 7.2 Spectroscopic Technologies 981
- 7.2.1 NIR Spectroscopy 981
- 7.2.2 Raman Spectroscopy 982
- 7.2.3 X-ray Technologies 983
- 7.2.4 Robotic Sorting Systems 987
- 7.2.5 Automated Processing Lines 988
- 7.2.6 Quality Control Systems 989
- 7.3 Recycling Technologies 990
- 7.3.1 Pyrolysis 991
- 7.3.1.1 Non-catalytic 992
- 7.3.1.2 Catalytic 993
- 7.3.1.2.1 Polystyrene pyrolysis 994
- 7.3.1.2.2 Pyrolysis for production of bio fuel 995
- 7.3.1.2.3 Used tires pyrolysis 998
- 7.3.1.2.3.1 Conversion to biofuel 999
- 7.3.1.2.4 Co-pyrolysis of biomass and plastic wastes 1000
- 7.3.1.3 Companies and capacities 1000
- 7.3.2 Gasification 1002
- 7.3.2.1 Technology overview 1002
- 7.3.2.1.1 Syngas conversion to methanol 1003
- 7.3.2.1.2 Biomass gasification and syngas fermentation 1007
- 7.3.2.1.3 Biomass gasification and syngas thermochemical conversion 1007
- 7.3.2.2 Companies and capacities (current and planned) 1008
- 7.3.2.1 Technology overview 1002
- 7.3.3 Dissolution 1008
- 7.3.3.1 Technology overview 1009
- 7.3.3.2 Companies and capacities (current and planned) 1010
- 7.3.4 Depolymerisation 1010
- 7.3.4.1 Hydrolysis 1012
- 7.3.4.1.1 Technology overview 1012
- 7.3.4.1.2 SWOT analysis 1014
- 7.3.4.2 Enzymolysis 1014
- 7.3.4.2.1 Technology overview 1014
- 7.3.4.2.2 SWOT analysis 1015
- 7.3.4.3 Methanolysis 1016
- 7.3.4.3.1 Technology overview 1016
- 7.3.4.3.2 SWOT analysis 1017
- 7.3.4.4 Glycolysis 1018
- 7.3.4.4.1 Technology overview 1018
- 7.3.4.4.2 SWOT analysis 1019
- 7.3.4.5 Aminolysis 1020
- 7.3.4.5.1 Technology overview 1020
- 7.3.4.5.2 SWOT analysis 1021
- 7.3.4.6 Companies and capacities (current and planned) 1021
- 7.3.4.1 Hydrolysis 1012
- 7.3.5 Other advanced chemical recycling technologies 1022
- 7.3.5.1 Hydrothermal cracking 1022
- 7.3.5.2 Pyrolysis with in-line reforming 1023
- 7.3.5.3 Microwave-assisted pyrolysis 1024
- 7.3.5.4 Plasma pyrolysis 1024
- 7.3.5.5 Plasma gasification 1025
- 7.3.5.6 Supercritical fluids 1025
- 7.3.5.7 Carbon fiber recycling 1026
- 7.3.5.7.1 Processes 1026
- 7.3.5.7.2 Companies 1028
- 7.3.6 Advanced recycling of thermoset materials 1029
- 7.3.6.1 Thermal recycling 1030
- 7.3.6.1.1 Energy Recovery Combustion 1030
- 7.3.6.1.2 Anaerobic Digestion 1030
- 7.3.6.1.3 Pyrolysis Processing 1031
- 7.3.6.1.4 Microwave Pyrolysis 1032
- 7.3.6.2 Solvolysis 1033
- 7.3.6.3 Catalyzed Glycolysis 1034
- 7.3.6.4 Alcoholysis and Hydrolysis 1034
- 7.3.6.5 Ionic liquids 1035
- 7.3.6.6 Supercritical fluids 1036
- 7.3.6.7 Plasma 1037
- 7.3.6.8 Companies 1038
- 7.3.6.1 Thermal recycling 1030
- 7.3.7 Comparison with Traditional Recycling Methods 1039
- 7.3.7.1 Mechanical Recycling Limitations 1040
- 7.3.7.2 Energy Efficiency Comparison 1040
- 7.3.7.3 Quality of Output Comparison 1041
- 7.3.7.4 Cost Analysis 1042
- 7.3.8 Environmental Impact Assessment 1043
- 7.3.8.1 Carbon Footprint Analysis 1043
- 7.3.8.2 Energy Consumption Assessment 1045
- 7.3.8.3 Waste Reduction Potential 1046
- 7.3.8.4 Sustainability Metrics 1048
- 7.3.9 Emerging Technologies 1049
- 7.3.9.1 AI and Machine Learning Applications 1049
- 7.3.9.1.1 Sorting Optimization 1050
- 7.3.9.1.2 Process Control 1050
- 7.3.9.1.3 Quality Prediction 1052
- 7.3.9.1.4 Maintenance Prediction 1053
- 7.3.9.1 AI and Machine Learning Applications 1049
- 7.3.1 Pyrolysis 991
- 7.4 Materials Recovery 1053
- 7.4.1 Critical Raw Materials 1054
- 7.4.2 Global market forecasts 1054
- 7.4.2.1 By Material Type (2025-2040) 1054
- 7.4.2.2 By Recovery Source (2025-2040) 1056
- 7.4.3 Metals and minerals processed and extracted 1058
- 7.4.3.1 Copper 1058
- 7.4.3.1.1 Global copper demand and trends 1058
- 7.4.3.1.2 Markets and applications 1059
- 7.4.3.1.3 Copper extraction and recovery 1060
- 7.4.3.2 Nickel 1061
- 7.4.3.2.1 Global nickel demand and trends 1061
- 7.4.3.2.2 Markets and applications 1061
- 7.4.3.2.3 Nickel extraction and recovery 1062
- 7.4.3.3 Cobalt 1063
- 7.4.3.3.1 Global cobalt demand and trends 1063
- 7.4.3.3.2 Markets and applications 1064
- 7.4.3.3.3 Cobalt extraction and recovery 1065
- 7.4.3.4 Rare Earth Elements (REE) 1066
- 7.4.3.4.1 Global Rare Earth Elements demand and trends 1066
- 7.4.3.4.2 Markets and applications 1066
- 7.4.3.4.3 Rare Earth Elements extraction and recovery 1067
- 7.4.3.4.4 Recovery of REEs from secondary resources 1067
- 7.4.3.5 Lithium 1068
- 7.4.3.5.1 Global lithium demand and trends 1068
- 7.4.3.5.2 Markets and applications 1069
- 7.4.3.5.3 Lithium extraction and recovery 1070
- 7.4.3.6 Gold 1070
- 7.4.3.6.1 Global gold demand and trends 1070
- 7.4.3.6.2 Markets and applications 1071
- 7.4.3.6.3 Gold extraction and recovery 1071
- 7.4.3.7 Uranium 1072
- 7.4.3.7.1 Global uranium demand and trends 1072
- 7.4.3.7.2 Markets and applications 1072
- 7.4.3.7.3 Uranium extraction and recovery 1073
- 7.4.3.8 Zinc 1074
- 7.4.3.8.1 Global Zinc demand and trends 1074
- 7.4.3.8.2 Markets and applications 1074
- 7.4.3.8.3 Zinc extraction and recovery 1075
- 7.4.3.9 Manganese 1076
- 7.4.3.9.1 Global manganese demand and trends 1076
- 7.4.3.9.2 Markets and applications 1076
- 7.4.3.9.3 Manganese extraction and recovery 1077
- 7.4.3.10 Tantalum 1077
- 7.4.3.10.1 Global tantalum demand and trends 1077
- 7.4.3.10.2 Markets and applications 1078
- 7.4.3.10.3 Tantalum extraction and recovery 1079
- 7.4.3.11 Niobium 1079
- 7.4.3.11.1 Global niobium demand and trends 1079
- 7.4.3.11.2 Markets and applications 1080
- 7.4.3.11.3 Niobium extraction and recovery 1080
- 7.4.3.12 Indium 1081
- 7.4.3.12.1 Global indium demand and trends 1081
- 7.4.3.12.2 Markets and applications 1081
- 7.4.3.12.3 Indium extraction and recovery 1082
- 7.4.3.13 Gallium 1082
- 7.4.3.13.1 Global gallium demand and trends 1083
- 7.4.3.13.2 Markets and applications 1083
- 7.4.3.13.3 Gallium extraction and recovery 1083
- 7.4.3.14 Germanium 1084
- 7.4.3.14.1 Global germanium demand and trends 1084
- 7.4.3.14.2 Markets and applications 1084
- 7.4.3.14.3 Germanium extraction and recovery 1085
- 7.4.3.15 Antimony 1085
- 7.4.3.15.1 Global antimony demand and trends 1085
- 7.4.3.15.2 Markets and applications 1086
- 7.4.3.15.3 Antimony extraction and recovery 1086
- 7.4.3.16 Scandium 1087
- 7.4.3.16.1 Global scandium demand and trends 1087
- 7.4.3.16.2 Markets and applications 1087
- 7.4.3.16.3 Scandium extraction and recovery 1088
- 7.4.3.17 Graphite 1088
- 7.4.3.17.1 Global graphite demand and trends 1088
- 7.4.3.17.2 Markets and applications 1089
- 7.4.3.17.3 Graphite extraction and recovery 1090
- 7.4.3.1 Copper 1058
- 7.4.4 Recovery sources 1091
- 7.4.4.1 Primary sources 1092
- 7.4.4.2 Secondary sources 1093
- 7.4.4.2.1 Extraction 1096
- 7.4.4.2.1.1 Hydrometallurgical extraction 1097
- 7.4.4.2.1.1.1 Overview 1097
- 7.4.4.2.1.1.2 Lixiviants 1098
- 7.4.4.2.1.1.3 SWOT analysis 1099
- 7.4.4.2.1.2 Pyrometallurgical extraction 1100
- 7.4.4.2.1.2.1 Overview 1100
- 7.4.4.2.1.2.2 SWOT analysis 1100
- 7.4.4.2.1.3 Biometallurgy 1102
- 7.4.4.2.1.3.1 Overview 1102
- 7.4.4.2.1.3.2 SWOT analysis 1103
- 7.4.4.2.1.4 Ionic liquids and deep eutectic solvents 1104
- 7.4.4.2.1.4.1 Overview 1104
- 7.4.4.2.1.4.2 SWOT analysis 1106
- 7.4.4.2.1.5 Electroleaching extraction 1107
- 7.4.4.2.1.5.1 Overview 1107
- 7.4.4.2.1.5.2 SWOT analysis 1108
- 7.4.4.2.1.6 Supercritical fluid extraction 1109
- 7.4.4.2.1.6.1 Overview 1109
- 7.4.4.2.1.6.2 SWOT analysis 1109
- 7.4.4.2.2 Recovery 1111
- 7.4.4.2.2.1 Solvent extraction 1111
- 7.4.4.2.2.1.1 Overview 1111
- 7.4.4.2.2.1.2 Rare-Earth Element Recovery 1111
- 7.4.4.2.2.1.3 WOT analysis 1112
- 7.4.4.2.2.2 Ion exchange recovery 1114
- 7.4.4.2.2.2.1 Overview 1114
- 7.4.4.2.2.2.2 SWOT analysis 1115
- 7.4.4.2.2.3 Ionic liquid (IL) and deep eutectic solvent (DES) recovery 1116
- 7.4.4.2.2.3.1 Overview 1116
- 7.4.4.2.2.3.2 SWOT analysis 1118
- 7.4.4.2.2.4 Precipitation 1120
- 7.4.4.2.2.4.1 Overview 1120
- 7.4.4.2.2.4.2 Coagulation and flocculation 1121
- 7.4.4.2.2.4.3 SWOT analysis 1122
- 7.4.4.2.2.5 Biosorption 1123
- 7.4.4.2.2.5.1 Overview 1123
- 7.4.4.2.2.5.2 SWOT analysis 1124
- 7.4.4.2.2.6 Electrowinning 1126
- 7.4.4.2.2.6.1 Overview 1126
- 7.4.4.2.2.6.2 SWOT analysis 1127
- 7.4.4.2.2.7 Direct materials recovery 1128
- 7.4.4.2.2.7.1 Overview 1128
- 7.4.4.2.2.7.2 Rare-earth Oxide (REO) Processing Using Molten Salt Electrolysis 1129
- 7.4.4.2.2.7.3 Rare-earth Magnet Recycling by Hydrogen Decrepitation 1129
- 7.4.4.2.2.7.4 Direct Recycling of Li-ion Battery Cathodes by Sintering 1130
- 7.4.4.2.2.7.5 SWOT analysis 1130
- 7.4.5 Metal Recovery Technologies 1134
- 7.4.5.1 Pyrometallurgy 1134
- 7.4.5.2 Hydrometallurgy 1134
- 7.4.5.3 Biometallurgy 1135
- 7.4.5.4 Supercritical Fluid Extraction 1135
- 7.4.5.5 Electrokinetic Separation 1136
- 7.4.5.6 Mechanochemical Processing 1136
- 7.4.6 Global market 2025-2040 1138
- 7.4.6.1 Ktonnes 1139
- 7.4.6.2 Revenues 1140
- 7.4.6.3 Regional 1141
- 7.5 Company profiles 1144 (339 company profiles)
8 ENVIRONMENTAL TECHNOLOGIES 1378
- 8.1 Market Overview 1378
- 8.2 Water Treatment Technologies 1379
- 8.2.1 Advanced Membrane Systems 1379
- 8.2.1.1 Next-Generation Membranes 1380
- 8.2.1.1.1 Graphene-Based Membranes 1381
- 8.2.1.1.2 Biomimetic Membranes 1381
- 8.2.1.1.3 Mixed Matrix Membranes 1381
- 8.2.1.2 Membrane Processes 1382
- 8.2.1.2.1 Ultrafiltration Advances 1382
- 8.2.1.2.2 Reverse Osmosis Innovations 1383
- 8.2.1.2.3 Forward Osmosis Systems 1384
- 8.2.1.3 Anti-Fouling Technologies 1385
- 8.2.1.3.1 Surface Modifications 1387
- 8.2.1.3.2 Dynamic Membrane Systems 1388
- 8.2.1.3.3 Cleaning Innovations 1390
- 8.2.1.1 Next-Generation Membranes 1380
- 8.2.2 Advanced Oxidation Processes (AOP) 1391
- 8.2.2.1 Photocatalytic Systems 1391
- 8.2.2.1.1 Novel Catalysts 1392
- 8.2.2.1.2 Reactor Designs 1393
- 8.2.2.1.3 Process Integration 1394
- 8.2.2.2 Electrochemical AOPs 1395
- 8.2.2.2.1 Electrode Materials 1395
- 8.2.2.2.2 Process Optimization 1396
- 8.2.2.2.3 Scale-up Solutions 1398
- 8.2.2.1 Photocatalytic Systems 1391
- 8.2.3 Biological Treatment Systems 1399
- 8.2.3.1 Advanced Bioreactors 1399
- 8.2.3.1.1 Membrane Bioreactors 1399
- 8.2.3.1.2 Moving Bed Systems 1400
- 8.2.3.1.3 Granular Sludge Technology 1401
- 8.2.3.2 Microbial Solutions 1404
- 8.2.3.2.1 Enhanced Microbial Consortia 1405
- 8.2.3.3 Bioaugmentation 1406
- 8.2.3.3.1 Synthetic Biology Applications 1408
- 8.2.3.1 Advanced Bioreactors 1399
- 8.2.1 Advanced Membrane Systems 1379
- 8.3 Air Quality Management 1409
- 8.3.1 Advanced Emission Control 1410
- 8.3.1.1 Particulate Matter Control 1411
- 8.3.1.1.1 Advanced Filtration 1412
- 8.3.1.1.2 Electrostatic Systems 1413
- 8.3.1.1.3 Wet Scrubbers 1414
- 8.3.1.2 Gas Treatment Systems 1415
- 8.3.1.2.1 Catalytic Technologies 1416
- 8.3.1.2.2 Plasma Treatment 1417
- 8.3.1.2.3 Biological Gas Treatment 1419
- 8.3.1.3 Smart Monitoring Systems 1420
- 8.3.1.3.1 Real-time Sensors 1420
- 8.3.1.3.2 Network Integration 1421
- 8.3.1.3.3 Predictive Analytics 1422
- 8.3.1.1 Particulate Matter Control 1411
- 8.3.1 Advanced Emission Control 1410
- 8.4 Soil and Groundwater Remediation 1423
- 8.4.1 In-Situ Technologies 1423
- 8.4.1.1 Chemical Treatment 1424
- 8.4.1.1.1 Advanced Oxidation 1425
- 8.4.1.1.2 Reduction Technologies 1426
- 8.4.1.1.3 Stabilization Methods 1427
- 8.4.1.2 Biological Remediation 1428
- 8.4.1.2.1 Bioaugmentation 1428
- 8.4.1.2.2 Phytoremediation 1429
- 8.4.1.2.3 Mycoremediation 1431
- 8.4.1.1 Chemical Treatment 1424
- 8.4.1 In-Situ Technologies 1423
- 8.5 Digital Environmental Technologies 1433
- 8.5.1 Environmental IoT 1433
- 8.5.1.1 Sensor Networks 1434
- 8.5.1.2 Data Integration 1435
- 8.5.1.3 Analytics Platforms 1436
- 8.5.2 AI and Machine Learning 1437
- 8.5.2.1 Predictive Monitoring 1438
- 8.5.2.2 Process Optimization 1440
- 8.5.2.3 Risk Assessment 1441
- 8.5.1 Environmental IoT 1433
- 8.6 Emerging Technologies 1443
- 8.6.1 Novel Materials 1443
- 8.6.1.1 Nanomaterials 1446
- 8.6.1.2 Bio-based Materials 1447
- 8.6.1.3 Smart Materials 1449
- 8.6.1.4 Plasma Systems 1449
- 8.6.1.5 Supercritical Fluids 1450
- 8.6.1.6 Electrochemical Processes 1451
- 8.6.1 Novel Materials 1443
- 8.7 Company profiles 1452 (142 company profiles)
9 GREEN BUILDING TECHNOLOGIES 1565
- 9.1 Market overview 1567
- 9.1.1 Benefits of Sustainable Construction 1567
- 9.1.2 Global Trends and Drivers 1568
- 9.2 Global revenues 1569
- 9.2.1 By materials type 1569
- 9.2.2 By market 1571
- 9.3 Types of sustainable construction materials 1574
- 9.4 Established bio-based construction materials 1574
- 9.5 Hemp-based Materials 1576
- 9.5.1 Hemp Concrete (Hempcrete) 1576
- 9.5.2 Hemp Fiberboard 1576
- 9.5.3 Hemp Insulation 1577
- 9.6 Mycelium-based Materials 1577
- 9.6.1 Insulation 1578
- 9.6.2 Structural Elements 1578
- 9.6.3 Acoustic Panels 1578
- 9.6.4 Decorative Elements 1579
- 9.7 Sustainable Concrete and Cement Alternatives 1579
- 9.7.1 Geopolymer Concrete 1579
- 9.7.2 Recycled Aggregate Concrete 1580
- 9.7.3 Lime-Based Materials 1580
- 9.7.4 Self-healing concrete 1581
- 9.7.4.1 Bioconcrete 1582
- 9.7.4.2 Fiber concrete 1583
- 9.7.5 Microalgae biocement 1584
- 9.7.6 Carbon-negative concrete 1585
- 9.7.7 Biomineral binders 1586
- 9.7.8 Clinker substitutes 1586
- 9.7.9 Other Alternative cementitious materials 1587
- 9.8 Natural Fiber Composites 1589
- 9.8.1 Types of Natural Fibers 1589
- 9.8.2 Properties 1589
- 9.8.3 Applications in Construction 1590
- 9.9 Cellulose nanofibers 1591
- 9.9.1 Sandwich composites 1591
- 9.9.2 Cement additives 1591
- 9.9.3 Pump primers 1591
- 9.9.4 Insulation materials 1591
- 9.9.5 Coatings and paints 1592
- 9.9.6 3D printing materials 1592
- 9.10 Sustainable Insulation Materials 1593
- 9.10.1 Types of sustainable insulation materials 1593
- 9.10.2 Aerogel Insulation 1594
- 9.10.2.1 Silica aerogels 1596
- 9.10.2.1.1 Properties 1597
- 9.10.2.1.2 Thermal conductivity 1598
- 9.10.2.1.3 Mechanical 1598
- 9.10.2.1.4 Silica aerogel precursors 1598
- 9.10.2.1.5 Products 1598
- 9.10.2.1.5.1 Monoliths 1598
- 9.10.2.1.5.2 Powder 1599
- 9.10.2.1.5.3 Granules 1599
- 9.10.2.1.5.4 Blankets 1601
- 9.10.2.1.5.5 Aerogel boards 1602
- 9.10.2.1.5.6 Aerogel renders 1602
- 9.10.2.1.6 3D printing of aerogels 1603
- 9.10.2.1.7 Silica aerogel from sustainable feedstocks 1603
- 9.10.2.1.8 Silica composite aerogels 1604
- 9.10.2.1.8.1 Organic crosslinkers 1604
- 9.10.2.1.9 Cost of silica aerogels 1604
- 9.10.2.1.10 Main players 1605
- 9.10.2.2 Aerogel-like foam materials 1606
- 9.10.2.2.1 Properties 1606
- 9.10.2.2.2 Applications 1606
- 9.10.2.3 Metal oxide aerogels 1606
- 9.10.2.4 Organic aerogels 1607
- 9.10.2.4.1 Polymer aerogels 1607
- 9.10.2.5 Biobased and sustainable aerogels (bio-aerogels) 1609
- 9.10.2.5.1 Cellulose aerogels 1611
- 9.10.2.5.1.1 Cellulose nanofiber (CNF) aerogels 1611
- 9.10.2.5.1.2 Cellulose nanocrystal aerogels 1612
- 9.10.2.5.1.3 Bacterial nanocellulose aerogels 1612
- 9.10.2.5.2 Lignin aerogels 1612
- 9.10.2.5.3 Alginate aerogels 1613
- 9.10.2.5.4 Starch aerogels 1613
- 9.10.2.5.5 Chitosan aerogels 1614
- 9.10.2.5.1 Cellulose aerogels 1611
- 9.10.2.6 Carbon aerogels 1615
- 9.10.2.6.1 Carbon nanotube aerogels 1616
- 9.10.2.6.2 Graphene and graphite aerogels 1617
- 9.10.2.7 Additive manufacturing (3D printing) 1618
- 9.10.2.7.1 Carbon nitride 1618
- 9.10.2.7.2 Gold 1619
- 9.10.2.7.3 Cellulose 1619
- 9.10.2.7.4 Graphene oxide 1619
- 9.10.2.8 Hybrid aerogels 1620
- 9.10.2.1 Silica aerogels 1596
- 9.11 Carbon capture and utilization 1621
- 9.11.1 Overview 1621
- 9.11.2 Market structure 1623
- 9.11.3 CCUS technologies in the cement industry 1625
- 9.11.4 Products 1627
- 9.11.4.1 Carbonated aggregates 1627
- 9.11.4.2 Additives during mixing 1628
- 9.11.4.3 Carbonates from natural minerals 1629
- 9.11.4.4 Carbonates from waste 1629
- 9.11.5 Concrete curing 1630
- 9.11.6 Costs 1631
- 9.11.7 Challenges 1631
- 9.12 Alternative Fuels for Cement Production 1633
- 9.12.1 Fuel switching for cement kilns 1633
- 9.12.2 Kiln electrification 1635
- 9.12.3 Solar power for cement production 1638
- 9.13 Applications 1640
- 9.13.1 Residential Buildings 1641
- 9.13.2 Commercial and Office Buildings 1642
- 9.13.3 Infrastructure 1644
- 9.14 Company profiles 1646 (165 company profiles)
10 REFERENCES 1768
List of Tables
- Table 1. Properties of Green steels. 94
- Table 2. Global Decarbonization Targets and Policies related to Green Steel. 95
- Table 3. Estimated cost for iron and steel industry under the Carbon Border Adjustment Mechanism (CBAM). 97
- Table 4. Hydrogen-based steelmaking technologies. 99
- Table 5. Comparison of green steel production technologies. 99
- Table 6. Advantages and disadvantages of each potential hydrogen carrier. 101
- Table 7. CCUS in green steel production. 103
- Table 8. Biochar in steel and metal. 105
- Table 9. Hydrogen blast furnace schematic. 106
- Table 10. Applications of microwave processing in green steelmaking. 110
- Table 11. Applications of additive manufacturing (AM) in steelmaking. 110
- Table 12. Technology readiness level (TRL) for key green steel production technologies. 111
- Table 13. Coatings and membranes in green steel production. 113
- Table 14. Advantages and disadvantages of green steel. 115
- Table 15. Markets and applications: green steel. 116
- Table 16. Green Steel Plants - Current and Planned Production 120
- Table 17. Industry developments and innovation in Green steel, 2022-2025. 123
- Table 18. Summary of market growth drivers for Green steel. 129
- Table 19. Market challenges in Green steel. 130
- Table 20. Supply agreements between green steel producers and automakers. 131
- Table 21. Applications of green steel in the automotive industry. 133
- Table 22. Applications of green steel in the construction industry. 134
- Table 23. Applications of green steel in the consumer appliances industry. 136
- Table 24. Applications of green steel in machinery. 137
- Table 25. Applications of green steel in the rail industry. 138
- Table 26. Applications of green steel in the packaging industry. 139
- Table 27. Applications of green steel in the electronics industry. 140
- Table 28. Low-Emissions Steel Production Capacity 2020-2035 (Million Metric Tons). 141
- Table 29. Low-Emissions Steel Production vs. Demand 2020-2035 (Million Metric Tons) 143
- Table 30. Low-Emissions Steel Market Revenues 2020-2035. 143
- Table 31. Demand for Low-Emissions Steel by End-Use Industry 2020-2035 (Million Metric Tons). 143
- Table 32. Regional Demand for Low-Emissions Steel 2020-2035 (Million Metric Tons). 144
- Table 33. Regional Demand for Low-Emissions Steel 2020-2035, NORTH AMERICA (Million Metric Tons) 144
- Table 34. Regional Demand for Low-Emissions Steel 2020-2035, EUROPE (Million Metric Tons). 145
- Table 35. Regional Demand for Low-Emissions Steel 2020-2035, CHINA (Million Metric Tons). 145
- Table 36. Regional Demand for Low-Emissions Steel 2020-2035, INDIA (Million Metric Tons). 146
- Table 37. Regional Demand for Low-Emissions Steel 2020-2035, ASIA-PACIFIC (excluding China) (Million Metric Tons). 146
- Table 38. Regional Demand for Low-Emissions Steel 2020-2035, MIDDLE EAST & AFRICA (Million Metric Tons). 146
- Table 39. Regional Demand for Low-Emissions Steel 2020-2035, SOUTH AMERICA (Million Metric Tons). 147
- Table 40. Key players in Green steel, location and production methods. 147
- Table 41. Hydrogen colour shades, Technology, cost, and CO2 emissions. 186
- Table 42. Main applications of hydrogen. 188
- Table 43. Overview of hydrogen production methods. 188
- Table 44. National hydrogen initiatives. 193
- Table 45. Market challenges in the hydrogen economy and production technologies. 195
- Table 46. Green hydrogen industry developments 2020-2024. 196
- Table 47. Market map for hydrogen technology and production. 209
- Table 48. Industrial applications of hydrogen. 212
- Table 49. Hydrogen energy markets and applications. 213
- Table 50. Hydrogen production processes and stage of development. 215
- Table 51. Estimated costs of clean hydrogen production. 225
- Table 52. US Hydrogen Electrolyzer Capacities, current and planned, as of May 2023, by region. 231
- Table 53. Green hydrogen application markets. 233
- Table 54. Green hydrogen projects. 233
- Table 55. Traditional Hydrogen Production. 234
- Table 56. Hydrogen Production Processes. 235
- Table 57. Comparison of hydrogen types. 236
- Table 58. Characteristics of typical water electrolysis technologies 246
- Table 59. Advantages and disadvantages of water electrolysis technologies. 247
- Table 60. Classifications of Alkaline Electrolyzers. 253
- Table 61. Advantages & limitations of AWE. 254
- Table 62. Key performance characteristics of AWE. 254
- Table 63. Companies in the AWE market. 257
- Table 64. Comparison of Commercial AEM Materials. 264
- Table 65. Companies in the AMEL market. 265
- Table 66. Companies in the PEMEL market. 274
- Table 67. Companies in the SOEC market. 283
- Table 68. Other types of electrolyzer technologies 284
- Table 69. Electrochemical CO₂ Reduction Technologies/ 287
- Table 70. Cost Comparison of CO₂ Electrochemical Technologies. 289
- Table 71. Companies developing other electrolyzer technologies. 297
- Table 72. Electrolyzer Installations Forecast (GW), 2020-2040. 302
- Table 73. Global market size for Electrolyzers, 2018-2035 (US$B). 303
- Table 74. Market overview-hydrogen storage and transport. 305
- Table 75. Summary of different methods of hydrogen transport. 306
- Table 76. Market players in hydrogen storage and transport. 309
- Table 77. Market overview hydrogen fuel cells-applications, market players and market challenges. 311
- Table 78. Categories and examples of solid biofuel. 313
- Table 79. Comparison of biofuels and e-fuels to fossil and electricity. 315
- Table 80. Classification of biomass feedstock. 315
- Table 81. Biorefinery feedstocks. 316
- Table 82. Feedstock conversion pathways. 316
- Table 83. Biodiesel production techniques. 317
- Table 84. Advantages and disadvantages of biojet fuel 318
- Table 85. Production pathways for bio-jet fuel. 319
- Table 86. Applications of e-fuels, by type. 323
- Table 87. Overview of e-fuels. 323
- Table 88. Benefits of e-fuels. 324
- Table 89. eFuel production facilities, current and planned. 327
- Table 90. Market overview for hydrogen vehicles-applications, market players and market challenges. 332
- Table 91. Blue ammonia projects. 338
- Table 92. Ammonia fuel cell technologies. 339
- Table 93. Market overview of green ammonia in marine fuel. 340
- Table 94. Summary of marine alternative fuels. 341
- Table 95. Estimated costs for different types of ammonia. 342
- Table 96. Comparison of biogas, biomethane and natural gas. 345
- Table 97. Hydrogen-based steelmaking technologies. 349
- Table 98. Comparison of green steel production technologies. 349
- Table 99. Advantages and disadvantages of each potential hydrogen carrier. 351
- Table 100. History and Evolution of Carbon Credit Markets. 450
- Table 101. Long-term marginal abatement costs of selected removal methods. 451
- Table 102. Companies in Voluntary Carbon Markets. 456
- Table 103. CDR investments and VC funding by company. 457
- Table 104. CDR versus CCUS. 458
- Table 105. Carbon dioxide removal capacity by technology (million metric tons of CO₂/year), 2020-2045. 459
- Table 106. Carbon Dioxide Removal Revenues by Technology (Billion US$). 460
- Table 107. DACCS Carbon Removal Capacity Forecast (Million Metric Tons CO₂/Year). 460
- Table 108. DACCS Carbon Credit Revenue Forecast (Million US$). 461
- Table 109. BECCS Carbon Removal Capacity Forecast (Million Metric Tons CO₂/Year). 462
- Table 110. Biochar and Biomass Burial Carbon Removal Forecast (Million Metric Tons CO₂/Year). 463
- Table 111. BiCRS Carbon Credit Revenue Forecast (Million US$). 464
- Table 112. Mineralization Carbon Removal Forecast (Million Metric Tons CO₂/Year). 465
- Table 113. Mineralization Carbon Credit Revenue Forecast (Million US$). 466
- Table 114. Ocean-based Carbon Removal Forecast (Million Metric Tons CO₂/Year). 467
- Table 115. Ocean-based Carbon Credit Revenue Forecast (Million US$). 468
- Table 116. Global purchases of CO2 removal (tonnes) 2019-2024. 470
- Table 117. Main CDR methods. 472
- Table 118. Technology Readiness Level (TRL) for Carbon Dioxide Removal Methods. 473
- Table 119. Carbon Dioxide Removal Technology Benchmarking. 473
- Table 120. Novel CDR Methods. 474
- Table 121. Market drivers for carbon dioxide removal (CDR). 474
- Table 122. CDR Value Chain. 475
- Table 123. Engineered Carbon Dioxide Removal Value Chain 477
- Table 124. Carbon pricing and carbon markets 480
- Table 125. Carbon Removal vs Emission Reduction Offsets. 481
- Table 126. Carbon Crediting Programs. 482
- Table 127. Voluntary Carbon Credits Key Market Players and Projects. 484
- Table 128. Compliance Carbon Credits Key Market Players and Projects. 486
- Table 129. Comparison of Voluntary and Compliance Carbon Credits. 486
- Table 130. Durable Carbon Removal Buyers. 487
- Table 131. Prices of CDR Credits. 488
- Table 132. Major Corporate Carbon Credit Commitments. 489
- Table 133. Key Carbon Market Regulations and Support Mechanisms. 489
- Table 134. Carbon credit prices by company and technology. 490
- Table 135. Carbon Credit Exchanges and Trading Platforms. 491
- Table 136. OTC Carbon Market Characteristics. 492
- Table 137. Challenges and Risks. 495
- Table 138. TRL of Biomass Conversion Processes and Products by Feedstock. 496
- Table 139. BiCRS feedstocks. 497
- Table 140. BiCRS conversion pathways. 498
- Table 141. BiCRS Technological Challenges. 499
- Table 142. CO₂ capture technologies for BECCS. 503
- Table 143. Existing and planned capacity for sequestration of biogenic carbon. 505
- Table 144. Existing facilities with capture and/or geologic sequestration of biogenic CO2. 505
- Table 145.Carbon Market 2024 and Forecast to 2035 506
- Table 146. BECCS Challenges. 508
- Table 147. Summary of key properties of biochar. 512
- Table 148. Biochar physicochemical and morphological properties 513
- Table 149. Biochar feedstocks-source, carbon content, and characteristics. 514
- Table 150. Biochar production technologies, description, advantages and disadvantages. 515
- Table 151. Comparison of slow and fast pyrolysis for biomass. 517
- Table 152. Comparison of thermochemical processes for biochar production. 519
- Table 153. Biochar production equipment manufacturers. 519
- Table 154. Competitive materials and technologies that can also earn carbon credits. 522
- Table 155. Bio-oil-based CDR pros and cons. 524
- Table 156. Advantages and disadvantages of DAC. 528
- Table 157. DAC vs Point-Source Carbon Capture. 529
- Table 158. Capture Cost of DAC. 532
- Table 159. Component Specific Capture Cost Contributions for DACCS. 532
- Table 160. CO₂ Capture/Separation Mechanisms in DAC. 534
- Table 161. Emerging solid sorbent materials for DAC. 537
- Table 162.Solid Sorbent vs Liquid Solvent-based DAC 538
- Table 163. Companies developing airflow equipment integration with DAC. 540
- Table 164. Companies developing Passive Direct Air Capture (PDAC) technologies. 540
- Table 165. Companies developing regeneration methods for DAC technologies. 541
- Table 166. DAC technology developers and production. 543
- Table 167. DAC projects in development. 547
- Table 168. Markets for DAC. 548
- Table 169. Costs summary for DAC. 549
- Table 170. Cost estimates of DAC. 551
- Table 171. Challenges for DAC technology. 552
- Table 172. TRLs of Direct Air Capture Companies. 554
- Table 173. DACCS Carbon Credit Sales by Company. 555
- Table 174. DAC companies and technologies. 555
- Table 175. Ex Situ Mineralization CDR Methods. 556
- Table 176. Source Materials for Ex Situ Mineralization. 557
- Table 177. Companies in CO₂-derived Concrete. 559
- Table 178. Enhanced Weathering Applications. 561
- Table 179. Enhanced Weathering Materials and Processes. 562
- Table 180. Enhanced Weathering Companies 563
- Table 181. Trends and Opportunities in Enhanced Weathering. 564
- Table 182. Challenges and Risks in Enhanced Weathering. 564
- Table 183. Cost analysis of enhanced weathering. 565
- Table 184. Nature-based CDR approaches. 567
- Table 185. Comparison of A/R and BECCS. 568
- Table 186. Forest Carbon Removal Projects. 569
- Table 187. Companies in Robotics in A/R. 570
- Table 188. Trends and Opportunities in Afforestation/Reforestation. 572
- Table 189.Challenges and Risks in Afforestation/Reforestation. 572
- Table 190. Soil Carbon Sequestration Methods. 575
- Table 191. Soil Sampling and Analysis Methods. 576
- Table 192. Remote Sensing and Modeling Techniques. 577
- Table 193. Companies Using Microbial Inoculation for Soil Carbon Sequestration. 577
- Table 194. Marketplaces for SCS-based CDR Credits. 579
- Table 195. Challenges and Risks in Soil Carbon Sequestration. 580
- Table 196. Ocean-based CDR methods. 583
- Table 197. Technology Readiness Level (TRL) Chart for Ocean-based CDR. 584
- Table 198. Benchmarking of Ocean-based CDR Methods. 584
- Table 199. Ocean-based CDR: Biotic Methods. 586
- Table 200. Market Players in Ocean-based CDR. 591
- Table 201. Levelized Cost of Heat by Technology. 693
- Table 202. Resistance Heating Applications by Temperature Range. 699
- Table 203. Induction Heating Efficiency by Frequency. 702
- Table 204. Microwave Heating Applications in Industry. 706
- Table 205. Plasma Technology Applications. 711
- Table 206. Industrial Heat Pump Specifications. 712
- Table 207. Emerging Heat Pump Technologies Comparison. 716
- Table 208. Biomass Feedstock Characteristics. 719
- Table 209. Biomass Combustion Technologies Comparison. 723
- Table 210. Emerging Biomass Technology Assessment. 725
- Table 211.Solar Thermal Industrial Applications. 728
- Table 212. Geothermal Technology Applications. 731
- Table 213. Heat Storage Technology Comparison. 734
- Table 214.Digital Technology Implementation Cases. 739
- Table 215.Grid Integration Requirements. 805
- Table 216. Storage Technology Comparison. 809
- Table 217. Renewable Integration Schemes. 814
- Table 218. Resistance Heating Applications. 821
- Table 219. Induction Heating Efficiency Analysis. 826
- Table 220. Dielectric Heating Technology Comparison. 836
- Table 221. Plasma Technology Applications. 841
- Table 222. Electrolysis Technology Comparison. 845
- Table 223. Reactor Technology Assessment. 849
- Table 224. Membrane Technology Applications. 853
- Table 225. Motor Technology Comparison. 857
- Table 226. Novel Heating Technology Assessment. 865
- Table 227. Spectroscopic Technology Comparison. 976
- Table 228. Robotics and Automation. 978
- Table 229. Advanced Robotics Applications. 981
- Table 230. Summary of non-catalytic pyrolysis technologies. 984
- Table 231. Summary of catalytic pyrolysis technologies. 985
- Table 232. Summary of pyrolysis technique under different operating conditions. 988
- Table 233. Biomass materials and their bio-oil yield. 989
- Table 234. Biofuel production cost from the biomass pyrolysis process. 989
- Table 235. Pyrolysis companies and plant capacities, current and planned. 992
- Table 236. Summary of gasification technologies. 994
- Table 237. Advanced recycling (Gasification) companies. 1000
- Table 238. Summary of dissolution technologies. 1001
- Table 239. Advanced recycling (Dissolution) companies 1002
- Table 240. Depolymerisation processes for PET, PU, PC and PA, products and yields. 1004
- Table 241. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 1004
- Table 242. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 1006
- Table 243. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 1008
- Table 244. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 1010
- Table 245. Summary of aminolysis technologies. 1012
- Table 246. Advanced recycling (Depolymerisation) companies and capacities (current and planned). 1013
- Table 247. Overview of hydrothermal cracking for advanced chemical recycling. 1014
- Table 248. Overview of Pyrolysis with in-line reforming for advanced chemical recycling. 1015
- Table 249. Overview of microwave-assisted pyrolysis for advanced chemical recycling. 1016
- Table 250. Overview of plasma pyrolysis for advanced chemical recycling. 1016
- Table 251. Overview of plasma gasification for advanced chemical recycling. 1017
- Table 252. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages. 1019
- Table 253. Retention rate of tensile properties of recovered carbon fibres by different recycling processes. 1020
- Table 254. Recycled carbon fiber producers, technology and capacity. 1020
- Table 255. Current thermoset recycling routes. 1021
- Table 256. Companies developing advanced thermoset recycing routes. 1030
- Table 257. Energy Efficiency Comparison. 1032
- Table 258. Quality of Output Comparison. 1033
- Table 259. Cost Analysis of advanced plastic recycling versus traditional recycling methods. 1035
- Table 260. Carbon Footprint Analysis. 1035
- Table 261. Energy Consumption Assessment. 1037
- Table 262. Primary global suppliers of critical raw materials. 1046
- Table 263. Global critical raw materials recovery market by material types (2025-2040), by ktonnes. 1046
- Table 264. Global critical raw materials recovery market by material types (2025-2040), by value (Billions USD). 1047
- Table 265. Global critical raw materials recovery market by recovery source (2025-2040), in ktonnes. 1048
- Table 266. Global critical raw materials recovery market by recovery source (2025-2040), by value (Billions USD). 1049
- Table 267. Markets and applications: copper. 1051
- Table 268. Technologies and Techniques for Copper Extraction and Recovery. 1052
- Table 269. Markets and applications: nickel. 1054
- Table 270. Technologies and Techniques for Nickel Extraction and Recovery. 1055
- Table 271. Markets and applications: cobalt. 1056
- Table 272. Technologies and Techniques for Cobalt Extraction and Recovery. 1057
- Table 273. Markets and applications: rare earth elements. 1058
- Table 274. Technologies and Techniques for Rare Earth Elements Extraction and Recovery. 1059
- Table 275. Markets and applications: lithium. 1061
- Table 276. Technologies and Techniques for Lithium Extraction and Recovery. 1062
- Table 277. Markets and applications: gold. 1063
- Table 278. Technologies and Techniques for Gold Extraction and Recovery. 1064
- Table 279. Markets and applications: uranium. 1065
- Table 280. Technologies and Techniques for Uranium Extraction and Recovery. 1065
- Table 281. Markets and applications: zinc. 1066
- Table 282. Zinc Extraction and Recovery Technologies. 1067
- Table 283. Markets and applications: manganese. 1068
- Table 284. Manganese Extraction and Recovery Technologies. 1069
- Table 285. Markets and applications: tantalum. 1070
- Table 286. Tantalum Extraction and Recovery Technologies. 1071
- Table 287. Markets and applications: niobium. 1072
- Table 288. Niobium Extraction and Recovery Technologies. 1073
- Table 289. Markets and applications: indium. 1074
- Table 290. Indium Extraction and Recovery Technologies. 1074
- Table 291. Markets and applications: gallium. 1075
- Table 292. Gallium Extraction and Recovery Technologies. 1075
- Table 293. Markets and applications: germanium. 1076
- Table 294. Germanium Extraction and Recovery Technologies. 1077
- Table 295. Markets and applications: antimony. 1078
- Table 296. Antimony Extraction and Recovery Technologies. 1078
- Table 297. Markets and applications: scandium. 1079
- Table 298. Scandium Extraction and Recovery Technologies. 1080
- Table 299. Graphite Markets and Applications. 1081
- Table 300. Graphite Extraction and Recovery Techniques and Technologies. 1082
- Table 301. Comparison of Primary vs Secondary Production for Key Materials. 1084
- Table 302. Environmental Impact Comparison: Primary vs Secondary Production. 1085
- Table 303. Technologies for critical material recovery from secondary sources. 1085
- Table 304. Technologies for critical raw material recovery from secondary sources. 1086
- Table 305. Critical raw material extraction technologies. 1088
- Table 306. Pyrometallurgical extraction methods. 1092
- Table 307. Bioleaching processes and their applicability to critical materials. 1094
- Table 308. Comparative analysis of metal recovery technologies. 1124
- Table 309. Technology readiness of critical material recovery technologies by secondary material sources. 1125
- Table 310. Global recovered critical raw electronics material, 2025-2040 (ktonnes). 1132
- Table 311. Global recovered critical raw electronics material market, 2025-2040 (billions USD). 1132
- Table 312. Recovered critical raw electronics material market, by region, 2025-2040 (ktonnes). 1134
- Table 313. Membrane Performance Comparison. 1373
- Table 314. Electrochemical AOP Performance. 1390
- Table 315. Microbial Treatment Efficiency. 1400
- Table 316. Gas Treatment System Performance. 1411
- Table 317. In-Situ Treatment Comparison. 1419
- Table 318.Biological Treatment Processes. 1423
- Table 319. Global trends and drivers in sustainable construction materials. 1560
- Table 320. Global revenues in sustainable construction materials, by materials type, 2020-2035 (millions USD). 1562
- Table 321. Global revenues in sustainable construction materials, by market, 2020-2035 (millions USD). 1564
- Table 322. Established bio-based construction materials. 1567
- Table 323. Types of self-healing concrete. 1573
- Table 324. General properties and value of aerogels. 1587
- Table 325. Key properties of silica aerogels. 1589
- Table 326. Chemical precursors used to synthesize silica aerogels. 1590
- Table 327. Commercially available aerogel-enhanced blankets. 1593
- Table 328. Main manufacturers of silica aerogels and product offerings. 1597
- Table 329. Typical structural properties of metal oxide aerogels. 1599
- Table 330. Polymer aerogels companies. 1601
- Table 331. Types of biobased aerogels. 1602
- Table 332. Carbon aerogel companies. 1608
- Table 333. Conversion pathway for CO2-derived building materials. 1614
- Table 334. Carbon capture technologies and projects in the cement sector 1617
- Table 335. Carbonation of recycled concrete companies. 1622
- Table 336. Current and projected costs for some key CO2 utilization applications in the construction industry. 1623
- Table 337. Market challenges for CO2 utilization in construction materials. 1623
List of Figures
- Figure 1. Share of (a) production, (b) energy consumption and (c) CO2 emissions from different steel making routes. 91
- Figure 2. Transition to hydrogen-based production. 92
- Figure 3. CO2 emissions from steelmaking (tCO2/ton crude steel). 94
- Figure 4. CO2 emissions of different process routes for liquid steel. 97
- Figure 5. Hydrogen Direct Reduced Iron (DRI) process. 101
- Figure 6. Molten oxide electrolysis process. 103
- Figure 7. Steelmaking with CCS. 104
- Figure 8. Flash ironmaking process. 108
- Figure 9. Hydrogen Plasma Iron Ore Reduction process. 109
- Figure 10. Green steel market map. 121
- Figure 11. SWOT analysis: Green steel. 122
- Figure 12. Low-Emissions Steel Production Capacity 2020-2035 (Million Metric Tons). 142
- Figure 13. ArcelorMittal decarbonization strategy. 151
- Figure 14. HYBRIT process schematic. 161
- Figure 15. Schematic of HyREX technology. 173
- Figure 16. EAF Quantum. 174
- Figure 17. Hydrogen value chain. 192
- Figure 18. Current Annual H2 Production. 215
- Figure 19. Principle of a PEM electrolyser. 218
- Figure 20. Power-to-gas concept. 220
- Figure 21. Schematic of a fuel cell stack. 221
- Figure 22. High pressure electrolyser - 1 MW. 222
- Figure 23. Global hydrogen demand forecast. 226
- Figure 24. U.S. Hydrogen Production by Producer Type. 227
- Figure 25. Segmentation of regional hydrogen production capacities in the US. 229
- Figure 26. Current of planned installations of Electrolyzers over 1MW in the US. 230
- Figure 27. SWOT analysis: green hydrogen. 240
- Figure 28. Types of electrolysis technologies. 242
- Figure 29. Typical Balance of Plant including Gas processing. 244
- Figure 30. Schematic of alkaline water electrolysis working principle. 255
- Figure 31. Alkaline water electrolyzer. 256
- Figure 32. Typical system design and balance of plant for an AEM electrolyser. 261
- Figure 33. Schematic of PEM water electrolysis working principle. 268
- Figure 34. Typical system design and balance of plant for a PEM electrolyser. 270
- Figure 35. Schematic of solid oxide water electrolysis working principle. 277
- Figure 36. Typical system design and balance of plant for a solid oxide electrolyser. 278
- Figure 37. Estimated annual electrolyser manufacturing capacity, by manufacture's headquarters (a) and by type and origin (b), 2021-2024. 302
- Figure 38. Electrolyzer Installations Forecast (GW), 2020-2040. 303
- Figure 39. Global market size for Electrolyzers, 2018-2035 (US$B) 304
- Figure 40. Process steps in the production of electrofuels. 322
- Figure 41. Mapping storage technologies according to performance characteristics. 323
- Figure 42. Production process for green hydrogen. 325
- Figure 43. E-liquids production routes. 326
- Figure 44. Fischer-Tropsch liquid e-fuel products. 326
- Figure 45. Resources required for liquid e-fuel production. 327
- Figure 46. Levelized cost and fuel-switching CO2 prices of e-fuels. 329
- Figure 47. Cost breakdown for e-fuels. 331
- Figure 48. Hydrogen fuel cell powered EV. 332
- Figure 49. Green ammonia production and use. 335
- Figure 50. Classification and process technology according to carbon emission in ammonia production. 336
- Figure 51. Schematic of the Haber Bosch ammonia synthesis reaction. 337
- Figure 52. Schematic of hydrogen production via steam methane reformation. 337
- Figure 53. Estimated production cost of green ammonia. 342
- Figure 54. Renewable Methanol Production Processes from Different Feedstocks. 344
- Figure 55. Production of biomethane through anaerobic digestion and upgrading. 345
- Figure 56. Production of biomethane through biomass gasification and methanation. 346
- Figure 57. Production of biomethane through the Power to methane process. 346
- Figure 58. Transition to hydrogen-based production. 348
- Figure 59. CO2 emissions from steelmaking (tCO2/ton crude steel). 348
- Figure 60. Hydrogen Direct Reduced Iron (DRI) process. 351
- Figure 61. Three Gorges Hydrogen Boat No. 1. 353
- Figure 62. PESA hydrogen-powered shunting locomotive. 354
- Figure 63. Symbiotic™ technology process. 356
- Figure 64. Alchemr AEM electrolyzer cell. 359
- Figure 65. Domsjö process. 375
- Figure 66. EL 2.1 AEM Electrolyser. 378
- Figure 67. Enapter – Anion Exchange Membrane (AEM) Water Electrolysis. 379
- Figure 68. Direct MCH® process. 380
- Figure 69. FuelPositive system. 386
- Figure 70. Using electricity from solar power to produce green hydrogen. 390
- Figure 71. Left: a typical single-stage electrolyzer design, with a membrane separating the hydrogen and oxygen gasses. Right: the two-stage E-TAC process. 398
- Figure 72. Hystar PEM electrolyser. 404
- Figure 73. OCOchem’s Carbon Flux Electrolyzer. 416
- Figure 74. CO2 hydrogenation to jet fuel range hydrocarbons process. 419
- Figure 75. The Plagazi ® process. 424
- Figure 76. Sunfire process for Blue Crude production. 436
- Figure 77. O12 Reactor. 444
- Figure 78. Sunglasses with lenses made from CO2-derived materials. 444
- Figure 79. CO2 made car part. 444
- Figure 80. Carbon emissions by sector. 448
- Figure 81. Overview of CCUS market 449
- Figure 82. Pathways for CO2 use. 450
- Figure 83. Cost estimates for long-distance CO2 transport. 453
- Figure 84. Carbon Dioxide Removal Market Map. 455
- Figure 85. Carbon dioxide removal capacity by technology (million metric tons of CO₂/year), 2020-2045. 460
- Figure 86. Carbon dioxide removal revenues by technology (billion US$), 2020-2045. 460
- Figure 87. DACCS Carbon Removal Capacity Forecast (Million Metric Tons CO₂/Year). 461
- Figure 88. DACCS Carbon Credit Revenue Forecast (Million US$). 462
- Figure 89. BECCS Carbon Removal Capacity Forecast (Million Metric Tons CO₂/Year). 463
- Figure 90. Biochar and Biomass Burial Carbon Removal Forecast (Million Metric Tons CO₂/Year). 464
- Figure 91. BiCRS Carbon Credit Revenue Forecast (Million US$). 465
- Figure 92. Mineralization Carbon Removal Forecast (Million Metric Tons CO₂/Year). 466
- Figure 93. Mineralization Carbon Credit Revenue Forecast (Million US$). 467
- Figure 94. Ocean-based Carbon Removal Forecast (Million Metric Tons CO₂/Year). 468
- Figure 95. Ocean-based Carbon Credit Revenue Forecast (Million US$). 469
- Figure 96. BiCRS Value Chain. 497
- Figure 97. Bioenergy with carbon capture and storage (BECCS) process. 501
- Figure 98. Schematic of biochar production. 510
- Figure 99. Biochars from different sources, and by pyrolyzation at different temperatures. 511
- Figure 100. Compressed biochar. 514
- Figure 101. Biochar production diagram. 515
- Figure 102. Pyrolysis process and by-products in agriculture. 517
- Figure 103. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse. 527
- Figure 104. Global CO2 capture from biomass and DAC in the Net Zero Scenario. 528
- Figure 105. DAC technologies. 535
- Figure 106. Schematic of Climeworks DAC system. 536
- Figure 107. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland. 537
- Figure 108. Flow diagram for solid sorbent DAC. 537
- Figure 109. Direct air capture based on high temperature liquid sorbent by Carbon Engineering. 539
- Figure 110. Global capacity of direct air capture facilities. 543
- Figure 111. Global map of DAC and CCS plants. 548
- Figure 112. Schematic of costs of DAC technologies. 550
- Figure 113. Operating costs of generic liquid and solid-based DAC systems. 552
- Figure 114. SWOT analysis: DACCS. 554
- Figure 115. Capture of carbon dioxide from the atmosphere using bricks of calcium hydroxide. 559
- Figure 116. Carbon capture using mineral carbonation. 560
- Figure 117. SWOT analysis: enhanced weathering. 566
- Figure 118. SWOT analysis: afforestation/reforestation. 574
- Figure 119. Soil Carbon Sequestration Value Chain. 579
- Figure 120. SWOT analysis: SCS. 582
- Figure 121. SWOT analysis: Ocean-based CDR. 591
- Figure 122. Schematic of carbon capture solar project. 597
- Figure 123. Capchar prototype pyrolysis kiln. 605
- Figure 124. Carbon Blade system. 608
- Figure 125. CarbonCure Technology. 612
- Figure 126. Direct Air Capture Process. 615
- Figure 127. Orca facility. 621
- Figure 128. Carbon Capture balloon. 641
- Figure 129. Holy Grail DAC system. 642
- Figure 130. Infinitree swing method. 644
- Figure 131. Mosaic Materials MOFs. 652
- Figure 132. Neustark modular plant. 656
- Figure 133. OCOchem’s Carbon Flux Electrolyzer. 660
- Figure 134. RepAir technology. 666
- Figure 135. Soletair Power unit. 673
- Figure 136. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right). 677
- Figure 137. Takavator. 679
- Figure 138. Global Industrial Heat Consumption by Sector. 688
- Figure 139. Carbon Emissions from Industrial Heat, By Region. 689
- Figure 140. Technology Readiness Levels by Solution. 691
- Figure 141. Marginal Abatement Cost Curve. 694
- Figure 142. AI-Enabled Sorting Systems. 972
- Figure 143. Schematic layout of a pyrolysis plant. 983
- Figure 144. Waste plastic production pathways to (A) diesel and (B) gasoline 987
- Figure 145. Schematic for Pyrolysis of Scrap Tires. 991
- Figure 146. Used tires conversion process. 992
- Figure 147. Total syngas market by product in MM Nm³/h of Syngas, 2021. 996
- Figure 148. Overview of biogas utilization. 997
- Figure 149. Biogas and biomethane pathways. 998
- Figure 150. Products obtained through the different solvolysis pathways of PET, PU, and PA. 1003
- Figure 151. SWOT analysis-Hydrolysis for advanced chemical recycling. 1006
- Figure 152. SWOT analysis-Enzymolysis for advanced chemical recycling. 1007
- Figure 153. SWOT analysis-Methanolysis for advanced chemical recycling. 1009
- Figure 154. SWOT analysis-Glycolysis for advanced chemical recycling. 1011
- Figure 155. SWOT analysis-Aminolysis for advanced chemical recycling. 1013
- Figure 156. Global critical raw materials recovery market by material types (2025-2040), by ktonnes. 1047
- Figure 157. Global critical raw materials recovery market by material types (2025-2040), by value (Billions USD). 1048
- Figure 158. Global critical raw materials recovery market by recovery source (2025-2040), by ktonnes. 1049
- Figure 159. Global critical raw materials recovery market by recovery source (2025-2040), by value. 1050
- Figure 160. Copper demand outlook. 1051
- Figure 161. Global nickel demand outlook. 1053
- Figure 162. Global cobalt demand outlook. 1056
- Figure 163. Global lithium demand outlook. 1061
- Figure 164. Global graphite demand outlook. 1081
- Figure 165. Solvent extraction (SX) in hydrometallurgy. 1090
- Figure 166. SWOT analysis: hydrometallurgical extraction. 1092
- Figure 167. SWOT analysis: pyrometallurgical extraction of critical materials. 1093
- Figure 168. SWOT analysis: biometallurgy for critical material extraction. 1096
- Figure 169. SWOT analysis: ionic liquids and deep eutectic solvents for critical material extraction. 1099
- Figure 170. SWOT analysis: electrochemical leaching for critical material extraction. 1101
- Figure 171. SWOT analysis: supercritical fluid extraction technology. 1102
- Figure 172. SWOT analysis: solvent extraction recovery technology. 1106
- Figure 173. SWOT analysis: ion exchange resin recovery technology. 1108
- Figure 174. SWOT analysis: ionic liquids and deep eutectic solvents for critical material recovery. 1112
- Figure 175. SWOT analysis: precipitation for critical material recovery. 1115
- Figure 176. SWOT analysis: biosorption for critical material recovery. 1118
- Figure 177. SWOT analysis: electrowinning for critical material recovery. 1120
- Figure 178. SWOT analysis: direct critical material recovery technology. 1123
- Figure 179. Global Li-ion battery recycling market, 2025-2040 (chemistry). 1131
- Figure 180. Global recovered critical raw electronics materials market, 2025-2040 (ktonnes) 1132
- Figure 181. Global recovered critical raw electronics material market, 2025-2040 (Billion USD). 1133
- Figure 182. Recovered critical raw electronics material market, by region, 2025-2040 (ktonnes). 1135
- Figure 183. NewCycling process. 1144
- Figure 184. ChemCyclingTM prototypes. 1147
- Figure 185. ChemCycling circle by BASF. 1148
- Figure 186. Recycled carbon fibers obtained through the R3FIBER process. 1149
- Figure 187. Cassandra Oil process. 1159
- Figure 188. CuRe Technology process. 1166
- Figure 189. MoReTec. 1206
- Figure 190. Chemical decomposition process of polyurethane foam. 1209
- Figure 191. OMV ReOil process. 1220
- Figure 192. Schematic Process of Plastic Energy’s TAC Chemical Recycling. 1224
- Figure 193. Easy-tear film material from recycled material. 1243
- Figure 194. Polyester fabric made from recycled monomers. 1247
- Figure 195. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right). 1257
- Figure 196. Teijin Frontier Co., Ltd. Depolymerisation process. 1261
- Figure 197. The Velocys process. 1267
- Figure 198. The Proesa® Process. 1268
- Figure 199. Worn Again products. 1270
- Figure 200. Bioreactor Configurations. 1394
- Figure 201. Global revenues in sustainable construction materials, by materials type, 2020-2035 (millions USD). 1563
- Figure 202. Global revenues in sustainable construction materials, by market, 2020-2035 (millions USD). 1566
- Figure 203. Luum Temple, constructed from Bamboo. 1566
- Figure 204. Typical structure of mycelium-based foam. 1569
- Figure 205. Commercial mycelium composite construction materials. 1570
- Figure 206. Self-healing concrete test study with cracked concrete (left) and self-healed concrete after 28 days (right). 1573
- Figure 207. Self-healing bacteria crack filler for concrete. 1574
- Figure 208. Self-healing bio concrete. 1575
- Figure 209. Microalgae based biocement masonry bloc. 1577
- Figure 210. Classification of aerogels. 1587
- Figure 211. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner. 1589
- Figure 212. Monolithic aerogel. 1591
- Figure 213. Aerogel granules. 1592
- Figure 214. Internal aerogel granule applications. 1592
- Figure 215. 3D printed aerogels. 1595
- Figure 216. Lignin-based aerogels. 1605
- Figure 217. Fabrication routes for starch-based aerogels. 1606
- Figure 218. Graphene aerogel. 1609
- Figure 219. Schematic of CCUS in cement sector. 1615
- Figure 220. Carbon8 Systems’ ACT process. 1620
- Figure 221. CO2 utilization in the Carbon Cure process. 1620
- Figure 222. Aizawa self-healing concrete. 1640
- Figure 223. ArcelorMittal decarbonization strategy. 1653
- Figure 224. Thermal Conductivity Performance of ArmaGel HT. 1656
- Figure 225. SLENTEX® roll (piece). 1659
- Figure 226. Biozeroc Biocement. 1662
- Figure 227. Carbon Re’s DeltaZero dashboard. 1674
- Figure 228. Neustark modular plant. 1716
- Figure 229. HIP AERO paint. 1724
- Figure 230. Sunthru Aerogel pane. 1737
- Figure 231. Quartzene®. 1739
- Figure 232. Schematic of HyREX technology. 1745
- Figure 233. EAF Quantum. 1746
- Figure 234. CNF insulation flat plates. 1749
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com