The Global Market for Nanocoatings 2025-2035

0

cover

cover

  • Published: February 2025
  • Pages: 710
  • Tables: 200
  • Figures: 173

 

Nanocoatings represent one of the most commercially successful applications of nanotechnology, with a global market estimated at approximately $9.7 billion in 2024. This market is projected to grow at a CAGR of 14-16% to reach over $20 billion by 2030, driven by expanding applications across multiple industries and increasing demand for enhanced material performance. Nanocoatings are thin films with thicknesses typically ranging from 1-100 nanometers that incorporate nanoscale materials to impart specific functional properties to surfaces. These coatings offer remarkable advantages over conventional coatings, including superior hardness, scratch resistance, chemical resistance, anti-corrosion properties, self-cleaning capabilities, antimicrobial protection, and enhanced thermal and electrical conductivity.

The development of nanocoatings is being accelerated by several key factors. Stringent environmental regulations worldwide are driving the shift toward more sustainable coating technologies with lower VOC emissions, reduced environmental impact, and elimination of hazardous substances. Simultaneously, industries face increasing performance demands that conventional coatings cannot satisfy, particularly in harsh environments or specialized applications requiring multifunctional properties.

The automotive sector represents one of the largest application areas, utilizing nanocoatings for scratch-resistant clear coats, anti-fingerprint interior surfaces, hydrophobic windshields, and anti-corrosion underbody protection. The construction industry has embraced nanocoatings for self-cleaning facades, anti-graffiti surfaces, thermal insulation, and enhanced durability of structural materials. In electronics, nanocoatings provide water resistance, EMI shielding, and improved thermal management for devices. Healthcare applications have grown significantly, with antimicrobial nanocoatings for medical devices, implants, and hospital surfaces helping to combat healthcare-associated infections. The aerospace and defense sectors utilize advanced nanocoatings for thermal protection, ice prevention, and radar absorption. Energy applications include efficiency-enhancing coatings for solar panels and protective coatings for wind turbine blades.

Recent technological trends show a shift toward multifunctional nanocoatings that combine several properties in a single application. Smart nanocoatings with stimuli-responsive characteristics—changing properties in response to temperature, light, or electrical signals—are gaining traction. Bio-based and environmentally friendly nanocoatings derived from renewable resources represent a growing segment aligned with sustainability goals. The market faces certain challenges, including relatively high costs compared to conventional coatings, technical complexity in manufacturing, and ongoing regulatory scrutiny regarding potential environmental and health impacts of nanomaterials. However, continuous innovation and economies of scale are gradually addressing these limitations.es.

The future outlook for nanocoatings remains exceptionally positive, with several emerging trends. Self-healing nanocoatings capable of automatically repairing damage are approaching commercial viability. Graphene-based nanocoatings offer remarkable potential for ultra-thin, highly conductive, and exceptionally strong protective layers. The integration of nanocoatings with Internet of Things (IoT) technologies is enabling real-time monitoring of surface conditions and performance. As manufacturing processes become more cost-effective and scalable, and as regulatory frameworks mature, nanocoatings are poised to transition from specialized applications to mainstream use across virtually all industrial sectors, representing one of the most promising areas in advanced materials technology.

The Global Market for Nanocoatings 2025-2035 provides an in-depth analysis of the rapidly evolving nanocoatings industry, which is revolutionizing surface enhancement technologies across multiple sectors. This detailed study examines the current market landscape, technological innovations, competitive dynamics, and growth projections for the next decade in this high-potential field.

This report provides exhaustive coverage of various nanocoating technologies and their applications, including:

  • Anti-microbial and anti-viral nanocoatings, which have seen unprecedented growth following the global pandemic
  • Self-cleaning and photocatalytic coatings transforming building maintenance
  • Anti-corrosion solutions extending infrastructure lifespans
  • Hydrophobic and superhydrophobic coatings revolutionizing water and stain repellency
  • Thermal barrier and flame-retardant systems enhancing safety standards
  • Self-healing technologies that automatically repair surface damage
  • Smart coatings with embedded sensors for real-time monitoring
  • UV-resistant and barrier coatings for extended product lifecycles

 

For each technology, the report analyzes current market penetration, technological readiness, competitive positioning, and future growth potential. The report segments the market by key end-user industries, providing granular insights into adoption trends, application-specific requirements, and growth forecasts for:

  • Automotive and transportation, where nanocoatings are revolutionizing everything from exterior finishes to component protection
  • Construction and architecture, with innovations in self-cleaning facades, thermal management, and air purification
  • Electronics and consumer devices benefiting from water resistance, scratch protection, and enhanced durability
  • Healthcare and medical devices utilizing antimicrobial protection and biocompatibility enhancements
  • Aerospace and defense applications requiring extreme performance in harsh environments
  • Energy generation and storage systems achieving improved efficiency and durability
  • Marine industry solutions combating biofouling and corrosion
  • Textiles and apparel with enhanced functionality and protection
  • Household care and indoor air quality improvement technologies

 

The report provides comprehensive profiles of 400+ key companies shaping the nanocoatings market, from established multinational corporations to innovative startups. Companies profiled include Aculon, Alchemy, Coval Technologies, Deepsmartech, FendX Technologies, Forge Nano, Gerdau Graphene, HydroGraph, HZO, Melodea, NaDing New Material, NEO Battery Materials, Nfinite Nanotechnology Inc., Optitne,  SunHydrogen, Swift Coat, Tesla Nanocoatings and 3E Nano. 

 

Detailed regional analyses cover North America, Europe, Asia-Pacific, Latin America, and the Middle East & Africa, highlighting:

  • Regional adoption rates and market sizes
  • Regulatory environments and compliance requirements
  • Local manufacturing capabilities and supply chain dynamics
  • Region-specific growth drivers and challenges
  • Country-level market forecasts for major economies

 

The forward-looking sections of the report examine emerging trends and opportunities including:

  • Integration of AI and machine learning in nanocoating development
  • Bio-inspired and environmentally sustainable nanomaterials
  • Advanced manufacturing techniques reducing production costs
  • Convergence with other emerging technologies like 3D printing and IoT
  • New market applications currently in R&D stages

 

All market projections are based on rigorous methodologies combining:

  • Primary research with industry experts, technology developers, and end-users
  • Comprehensive analysis of commercialization timelines for emerging technologies
  • Evaluation of regulatory impacts on market development
  • Assessment of technical challenges and adoption barriers
  • Price sensitivity and value chain analyses

 

1             RESEARCH METHODOLOGY              46

  • 1.1        Aims and objectives of the study      46
  • 1.2        Market definition         47
    • 1.2.1    Properties of nanomaterials 47
    • 1.2.2    Categorization               48

 

2             EXECUTIVE SUMMARY            50

  • 2.1        Ultra-high performance, multi-functional coatings              50
  • 2.2        Advantages over traditional coatings             50
  • 2.3        Improvements and disruption in traditional coatings markets      52
  • 2.4        End user market for nanocoatings   54
  • 2.5        Global market size, historical and estimated to 2035         57
    • 2.5.1    Global revenues for nanocoatings 2010-2035        57
      • 2.5.1.1 By type                57
      • 2.5.1.2 By market         58
    • 2.5.2    Regional demand for nanocoatings 59
  • 2.6        Market challenges      59

 

3             INTRODUCTION          61

  • 3.1        Properties         61
  • 3.2        Benefits of using nanocoatings          62
    • 3.2.1    Types of nanocoatings             63
  • 3.3        Production and synthesis methods 64
    • 3.3.1    Film coatings techniques analysis  66
    • 3.3.2    Superhydrophobic coatings on substrates 67
    • 3.3.3    Electrospray and electrospinning     68
    • 3.3.4    Chemical and electrochemical deposition                69
      • 3.3.4.1 Chemical vapor deposition (CVD)   69
      • 3.3.4.2 Physical vapor deposition (PVD)       70
      • 3.3.4.3 Atomic layer deposition (ALD)            71
      • 3.3.4.4 Aerosol coating            72
      • 3.3.4.5 Layer-by-layer Self-assembly (LBL) 72
      • 3.3.4.6 Sol-gel process             72
      • 3.3.4.7 Etching               74
  • 3.4        Hydrophobic coatings and surfaces               75
    • 3.4.1    Hydrophilic coatings 75
    • 3.4.2    Hydrophobic coatings              75
      • 3.4.2.1 Properties         76
      • 3.4.2.2 Application in facemasks      76
  • 3.5        Superhydrophobic coatings and surfaces  77
    • 3.5.1    Properties         77
      • 3.5.1.1 Antibacterial use         78
    • 3.5.2    Durability issues          78
    • 3.5.3    Nanocellulose               78
  • 3.6        Photocatalytic coatings for exterior self-cleaning and interior disinfection          79
  • 3.7        Oleophobic and omniphobic coatings and surfaces           81
    • 3.7.1    Synthesis          82
    • 3.7.2    SLIPS   82
    • 3.7.3    Covalent bonding       83
    • 3.7.4    Applications   83
  • 3.8        Nanomaterials used in nanocoatings            84
    • 3.8.1    Graphene         90
      • 3.8.1.1 Properties and coatings applications            90
        • 3.8.1.1.1           Anti-corrosion coatings           92
        • 3.8.1.1.2           Graphene oxide            93
          • 3.8.1.1.2.1      Anti-bacterial activity               93
          • 3.8.1.1.2.2      Anti-viral activity          93
        • 3.8.1.1.3           Reduced graphene oxide (rGO)          94
        • 3.8.1.1.4           Anti-icing          95
        • 3.8.1.1.5           Barrier coatings            95
        • 3.8.1.1.6           Heat protection            96
        • 3.8.1.1.7           Smart windows            97
    • 3.8.2    Carbon nanotubes (MWCNT and SWCNT) 97
      • 3.8.2.1 Properties and applications 97
        • 3.8.2.1.1           Conductive films and coatings           97
        • 3.8.2.1.2           EMI shielding 97
        • 3.8.2.1.3           Anti-fouling     98
        • 3.8.2.1.4           Flame retardant           98
        • 3.8.2.1.5           Antimicrobial activity                99
        • 3.8.2.1.6           SWCNTs            99
          • 3.8.2.1.6.1      Properties and applications 99
    • 3.8.3    Fullerenes        101
      • 3.8.3.1 Properties         101
      • 3.8.3.2 Applications   102
      • 3.8.3.3 Antimicrobial activity                102
    • 3.8.4    Silicon dioxide/silica nanoparticles (Nano-SiO2)  103
      • 3.8.4.1 Properties and applications 103
        • 3.8.4.1.1           Antimicrobial and antiviral activity  104
        • 3.8.4.1.2           Easy-clean and dirt repellent               104
        • 3.8.4.1.3           Anti-fogging    104
        • 3.8.4.1.4           Scratch and wear resistance               105
        • 3.8.4.1.5           Anti-reflection               105
    • 3.8.5    Nanosilver       105
      • 3.8.5.1 Properties and applications 105
        • 3.8.5.1.1           Anti-bacterial 107
      • 3.8.5.2 Silver nanocoatings   108
      • 3.8.5.3 Antimicrobial silver paints    108
        • 3.8.5.3.1           Anti-reflection               109
        • 3.8.5.3.2           Textiles               109
        • 3.8.5.3.3           Wound dressings        109
        • 3.8.5.3.4           Consumer products  109
        • 3.8.5.3.5           Air filtration     109
    • 3.8.6    Titanium dioxide nanoparticles (nano-TiO2)            110
      • 3.8.6.1 Properties and applications 110
        • 3.8.6.1.1           Improving indoor air quality  111
        • 3.8.6.1.2           Medical facilities         112
        • 3.8.6.1.3           Waste Water Treatment           112
        • 3.8.6.1.4           UV protection coatings            112
        • 3.8.6.1.5           Antimicrobial coating indoor light activation            113
    • 3.8.7    Aluminium oxide nanoparticles (Al2O3-NPs)           113
      • 3.8.7.1 Properties and applications 113
    • 3.8.8    Zinc oxide nanoparticles (ZnO-NPs)               114
      • 3.8.8.1 Properties and applications 114
        • 3.8.8.1.1           UV protection 114
        • 3.8.8.1.2           Anti-bacterial 115
    • 3.8.9    Dendrimers     117
      • 3.8.9.1 Properties and applications 117
    • 3.8.10 Nanodiamonds            118
      • 3.8.10.1            Properties and applications 118
    • 3.8.11 Nanocellulose (Cellulose nanofibers, cellulose nanocrystals and bacterial cellulose)               121
      • 3.8.11.1            Properties and applications 121
        • 3.8.11.1.1        Cellulose nanofibers (CNF)  122
        • 3.8.11.1.2        NanoCrystalline Cellulose (NCC)    123
          • 3.8.11.1.2.1   Properties         124
          • 3.8.11.1.2.1.1 High aspect ratio         125
          • 3.8.11.1.2.1.2 High strength 125
          • 3.8.11.1.2.1.3 Rheological properties             125
          • 3.8.11.1.2.1.4 Optical properties       125
          • 3.8.11.1.2.1.5 Barrier 125
        • 3.8.11.1.3        Bacterial Cellulose (BCC)     126
        • 3.8.11.1.4        Abrasion and scratch resistance      126
        • 3.8.11.1.5        UV-resistant   127
        • 3.8.11.1.6        Superhydrophobic coatings 127
        • 3.8.11.1.7        Gas barriers    128
        • 3.8.11.1.8        Anti-bacterial 128
    • 3.8.12 Chitosan nanoparticles          128
      • 3.8.12.1            Properties         128
      • 3.8.12.2            Wound dressings        130
      • 3.8.12.3            Packaging coatings and films              130
      • 3.8.12.4            Food storage  130
    • 3.8.13 Copper nanoparticles              130
      • 3.8.13.1            Properties         130
      • 3.8.13.2            Application in antimicrobial nanocoatings 131

 

4             MARKET ANALYSIS BY NANOCOATINGS TYPE         132

  • 4.1        ANTI-FINGERPRINT NANOCOATINGS           132
    • 4.1.1    Market overview           132
    • 4.1.2    Market assessment   133
    • 4.1.3    Market drivers and trends      134
    • 4.1.4    Applications   135
      • 4.1.4.1 Touchscreens 136
      • 4.1.4.2 Spray-on anti-fingerprint coating      137
    • 4.1.5    Global market revenues          138
    • 4.1.6    Product developers    138
  • 4.2        ANTI-FOG NANOCOATINGS 140
    • 4.2.1    Types of anti-fog coatings      145
    • 4.2.2    Biomimetic anti-fogging materials   147
    • 4.2.3    Markets and applications      148
      • 4.2.3.1 Automotive      148
      • 4.2.3.2 Solar panels   149
      • 4.2.3.3 Healthcare and medical         149
      • 4.2.3.4 Display devices and eyewear (optics)           150
      • 4.2.3.5 Food packaging and agricultural films          150
    • 4.2.4    Global market revenues          152
    • 4.2.5    Product developers    153
  • 4.3        ANTI-MICROBIAL AND ANTI-VIRAL NANOCOATINGS          155
    • 4.3.1    Market overview           158
    • 4.3.2    Market assessment   160
    • 4.3.3    Market drivers and trends      160
    • 4.3.4    Applications   163
    • 4.3.5    Global revenues           164
    • 4.3.6    Product developers    166
  • 4.4        ANTI-CORROSION NANOCOATINGS             167
    • 4.4.1    Market overview           167
    • 4.4.2    Market assessment   169
    • 4.4.3    Market drivers and trends      169
    • 4.4.4    Applications   170
      • 4.4.4.1 Smart self-healing coatings  172
      • 4.4.4.2 Superhydrophobic coatings 172
      • 4.4.4.3 Graphene         173
    • 4.4.5    Global market revenues          175
    • 4.4.6    Product developers    175
  • 4.5        ABRASION & WEAR-RESISTANT NANOCOATINGS 176
    • 4.5.1    Market overview           176
    • 4.5.2    Market assessment   178
    • 4.5.3    Market drivers and trends      178
    • 4.5.4    Applications   179
    • 4.5.5    Global market revenues          180
    • 4.5.6    Product developers    180
  • 4.6        BARRIER NANOCOATINGS    181
    • 4.6.1    Market assessment   181
    • 4.6.2    Market drivers and trends      182
    • 4.6.3    Applications   182
      • 4.6.3.1 Food and Beverage Packaging           188
      • 4.6.3.2 Moisture protection   188
      • 4.6.3.3 Graphene         189
    • 4.6.4    Global market revenues          189
    • 4.6.5    Product developers    190
  • 4.7        ANTI-FOULING AND EASY-TO-CLEAN NANOCOATINGS   191
    • 4.7.1    Market overview           191
    • 4.7.2    Market assessment   192
    • 4.7.3    Market drivers and trends      192
    • 4.7.4    Applications   193
      • 4.7.4.1 Hydrophobic and olephobic coatings            193
      • 4.7.4.2 Anti-graffiti      193
    • 4.7.5    Global market revenues          194
    • 4.7.6    Product developers    195
  • 4.8        SELF-CLEANING NANOCOATINGS  196
    • 4.8.1    Market overview           196
    • 4.8.2    Market assessment   197
    • 4.8.3    Market drivers and trends      197
    • 4.8.4    Applications   198
    • 4.8.5    Global market revenues          202
    • 4.8.6    Product developers    203
  • 4.9        PHOTOCATALYTIC NANOCOATINGS              204
    • 4.9.1    Market overview           204
    • 4.9.2    Market assessment   205
    • 4.9.3    Market drivers and trends      206
    • 4.9.4    Applications   207
      • 4.9.4.1 Self-Cleaning coatings-glass              207
      • 4.9.4.2 Self-cleaning coatings-building and construction surfaces            208
      • 4.9.4.3 Photocatalytic oxidation (PCO) indoor air filters     209
      • 4.9.4.4 Water treatment           210
      • 4.9.4.5 Medical facilities         210
      • 4.9.4.6 Antimicrobial coating indoor light activation            210
    • 4.9.5    Global market revenues          211
    • 4.9.6    Product developers    212
  • 4.10     UV-RESISTANT NANOCOATINGS      214
    • 4.10.1 Market overview           214
    • 4.10.2 Market assessment   214
    • 4.10.3 Market drivers and trends      215
    • 4.10.4 Applications   215
      • 4.10.4.1            Textiles               216
      • 4.10.4.2            Wood coatings              216
    • 4.10.5 Global market revenues          217
    • 4.10.6 Product developers    218
  • 4.11     THERMAL BARRIER AND FLAME RETARDANT NANOCOATINGS  218
    • 4.11.1 Market overview           218
    • 4.11.2 Market assessment   219
    • 4.11.3 Market drivers and trends      220
    • 4.11.4 Applications   220
    • 4.11.5 Global market revenues          221
    • 4.11.6 Product developers    222
  • 4.12     ANTI-ICING AND DE-ICING NANOCOATINGS          223
    • 4.12.1 Market overview           223
    • 4.12.2 Market assessment   224
    • 4.12.3 Market drivers and trends      225
    • 4.12.4 Applications   226
      • 4.12.4.1            Hydrophobic and superhydrophobic coatings (HSH)          226
      • 4.12.4.2            Heatable coatings      227
      • 4.12.4.3            Anti-freeze protein coatings 228
    • 4.12.5 Global market revenues          229
    • 4.12.6 Product developers    230
  • 4.13     ANTI-REFLECTIVE NANOCOATINGS               231
    • 4.13.1 Market overview           231
    • 4.13.2 Market assessment   232
    • 4.13.3 Market drivers and trends      232
    • 4.13.4 Applications   233
    • 4.13.5 Global market revenues          234
    • 4.13.6 Product developers    235
  • 4.14     SELF-HEALING NANOCOATINGS     236
    • 4.14.1 Market overview           236
      • 4.14.1.1            Extrinsic self-healing 237
      • 4.14.1.2            Capsule-based             238
      • 4.14.1.3            Vascular self-healing 238
      • 4.14.1.4            Intrinsic self-healing 238
      • 4.14.1.5            Healing volume            239
    • 4.14.2 Market assessment   241
    • 4.14.3 Applications   241
      • 4.14.3.1            Self-healing coatings                242
      • 4.14.3.2            Anti-corrosion               242
      • 4.14.3.3            Scratch repair                242
      • 4.14.3.4            Polyurethane clear coats       243
      • 4.14.3.5            Micro-/nanocapsules               245
      • 4.14.3.6            Microvascular networks         246
      • 4.14.3.7            Reversible polymers  246
      • 4.14.3.8            Click polymerization 246
      • 4.14.3.9            Polyampholyte hydrogels      247
      • 4.14.3.10         Shape memory             247
    • 4.14.4 Global market revenues          247
    • 4.14.5 Product developers    249
  • 4.15     OTHER TYPES 250
    • 4.15.1 Bio-inspired nanocoatings    250
      • 4.15.1.1            Overview           250
      • 4.15.1.2            Types and Applications           250
      • 4.15.1.3            Companies     251
    • 4.15.2 Smart coatings with embedded sensors     252
      • 4.15.2.1            Overview           252
      • 4.15.2.2            Types and Applications           252
      • 4.15.2.3            Companies     253
    • 4.15.3 Nuclear and radiation-resistant coatings    254
      • 4.15.3.1            Overview           254

 

5             END USE MARKETS       255

  • 5.1        AVIATION AND AEROSPACE 256
    • 5.1.1    Market drivers and trends      257
    • 5.1.2    Applications   258
      • 5.1.2.1 Thermal protection    259
      • 5.1.2.2 Icing prevention            259
      • 5.1.2.3 Conductive and anti-static   260
      • 5.1.2.4 Corrosion resistant    260
      • 5.1.2.5 Insect contamination               261
    • 5.1.3    Global market size     261
      • 5.1.3.1 Market analysis            261
      • 5.1.3.2 Global revenues 2010-2035 263
    • 5.1.4    Companies     265
  • 5.2        AUTOMOTIVE 269
    • 5.2.1    Market drivers and trends      269
    • 5.2.2    Applications   269
      • 5.2.2.1 Anti-scratch nanocoatings   270
      • 5.2.2.2 Conductive coatings 270
      • 5.2.2.3 Hydrophobic and oleophobic             270
      • 5.2.2.4 Anti-corrosion               271
      • 5.2.2.5 UV-resistance                271
      • 5.2.2.6 Thermal barrier             271
      • 5.2.2.7 Flame retardant           271
      • 5.2.2.8 Anti-fingerprint             272
      • 5.2.2.9 Anti-bacterial 272
      • 5.2.2.10            Self-healing     272
    • 5.2.3    Global market size     272
      • 5.2.3.1 Market analysis            272
      • 5.2.3.2 Global revenues 2010-2035 275
    • 5.2.4    Companies     276
  • 5.3        CONSTRUCTION AND BUILDINGS  280
    • 5.3.1    Market drivers and trends      280
    • 5.3.2    Applications   280
      • 5.3.2.1 Protective coatings for glass, concrete and other construction materials             281
      • 5.3.2.2 Photocatalytic nano-TiO2 coatings 281
      • 5.3.2.3 Anti-graffiti      283
      • 5.3.2.4 UV-protection                283
      • 5.3.2.5 Titanium dioxide nanoparticles         284
      • 5.3.2.6 Zinc oxide nanoparticles        284
      • 5.3.2.7 Smart glass     284
        • 5.3.2.7.1           Electrochromic (EC) smart glass      284
          • 5.3.2.7.1.1      Technology description           284
          • 5.3.2.7.1.2      Materials           286
            • 5.3.2.7.1.2.1  Inorganic metal oxides            286
            • 5.3.2.7.1.2.2  Organic EC materials                286
            • 5.3.2.7.1.2.3  Nanomaterials              287
        • 5.3.2.7.2           Suspended particle device (SPD) smart glass         287
          • 5.3.2.7.2.1      Technology description           287
          • 5.3.2.7.2.2      Benefits             287
          • 5.3.2.7.2.3      Shortcomings 288
          • 5.3.2.7.2.4      Application in residential and commercial windows           288
        • 5.3.2.7.3           Polymer dispersed liquid crystal (PDLC) smart glass          289
          • 5.3.2.7.3.1      Technology description           289
          • 5.3.2.7.3.2      Types   291
            • 5.3.2.7.3.2.1  Laminated Switchable PDLC Glass 291
            • 5.3.2.7.3.2.2  Self-adhesive Switchable PDLC Film             291
          • 5.3.2.7.3.3      Benefits             292
          • 5.3.2.7.3.4      Shortcomings 292
          • 5.3.2.7.3.5      Application in residential and commercial windows           292
            • 5.3.2.7.3.5.1  Interior glass  292
      • 5.3.2.8 Electrokinetic glass   293
      • 5.3.2.9 Heat insulation solar glass (HISG)   294
      • 5.3.2.10            Quantum dot solar glass       295
    • 5.3.3    Global market size     296
      • 5.3.3.1 Market analysis            296
      • 5.3.3.2 Global revenues 2010-2035 298
    • 5.3.4    Companies     300
  • 5.4        ELECTRONICS              303
    • 5.4.1    Market drivers                303
    • 5.4.2    Applications   304
      • 5.4.2.1 Transparent functional coatings        304
      • 5.4.2.2 Anti-reflective coatings for displays                304
      • 5.4.2.3 Waterproof coatings  305
      • 5.4.2.4 Conductive nanocoatings and films               306
      • 5.4.2.5 Anti-fingerprint             307
      • 5.4.2.6 Anti-abrasion 307
      • 5.4.2.7 Conductive      308
      • 5.4.2.8 Self-healing consumer electronic device coatings               308
      • 5.4.2.9 Flexible and stretchable electronics               309
    • 5.4.3    Global market size     310
      • 5.4.3.1 Market analysis            310
      • 5.4.3.2 Global revenues 2010-2035 312
    • 5.4.4    Companies     314
  • 5.5        HOUSEHOLD CARE, SANITARY AND INDOOR AIR QUALITY           316
    • 5.5.1    Market drivers and trends      316
    • 5.5.2    Applications   317
      • 5.5.2.1 Self-cleaning and easy-to-clean       317
      • 5.5.2.2 Food preparation and processing    317
      • 5.5.2.3 Indoor pollutants and air quality       317
    • 5.5.3    Global market size     318
      • 5.5.3.1 Market analysis            318
      • 5.5.3.2 Global revenues 2010-2035 321
    • 5.5.4    Companies     322
  • 5.6        MARINE             326
    • 5.6.1    Market drivers and trends      326
    • 5.6.2    Applications   326
    • 5.6.3    Global market size     327
      • 5.6.3.1 Market analysis            327
      • 5.6.3.2 Global revenues 2010-2035 330
    • 5.6.4    Companies     331
  • 5.7        MEDICAL & HEALTHCARE     333
    • 5.7.1    Market drivers and trends      334
    • 5.7.2    Applications   335
      • 5.7.2.1 Anti-fouling coatings 335
      • 5.7.2.2 Anti-microbial, anti-viral and infection control        336
      • 5.7.2.3 Medical textiles            336
      • 5.7.2.4 Nanosilver       336
      • 5.7.2.5 Medical device coatings         337
    • 5.7.3    Global market size     338
      • 5.7.3.1 Market analysis            338
      • 5.7.3.2 Global revenues 2010-2035 339
    • 5.7.4    Companies     340
  • 5.8        MILITARY AND DEFENCE        343
    • 5.8.1    Market drivers and trends      343
    • 5.8.2    Applications   344
      • 5.8.2.1 Textiles               344
      • 5.8.2.2 Military equipment     344
      • 5.8.2.3 Chemical and biological protection                344
      • 5.8.2.4 Decontamination        344
      • 5.8.2.5 Thermal barrier             345
      • 5.8.2.6 EMI/ESD Shielding      345
      • 5.8.2.7 Anti-reflection               345
    • 5.8.3    Global market size     345
      • 5.8.3.1 Market analysis            345
      • 5.8.3.2 Global market revenues 2010-2035               348
    • 5.8.4    Companies     349
  • 5.9        PACKAGING    352
    • 5.9.1    Market drivers and trends      352
    • 5.9.2    Applications   353
      • 5.9.2.1 Barrier films    353
      • 5.9.2.2 Anti-microbial               354
      • 5.9.2.3 Biobased and active packaging         355
    • 5.9.3    Global market size     355
      • 5.9.3.1 Market analysis            355
      • 5.9.3.2 Global market revenues 2010-2035               358
    • 5.9.4    Companies     359
  • 5.10     TEXTILES AND APPAREL          362
    • 5.10.1 Market drivers and trends      362
    • 5.10.2 Applications   363
      • 5.10.2.1            Protective textiles       363
      • 5.10.2.2            UV-resistant textile coatings                367
      • 5.10.2.3            Conductive coatings 367
        • 5.10.2.3.1        Graphene         367
    • 5.10.3 Global market size     369
      • 5.10.3.1            Market analysis            369
      • 5.10.3.2            Global market revenues 2010-2035               371
    • 5.10.4 Companies     373
  • 5.11     ENERGY STORAGE AND GENERATION         376
    • 5.11.1 Market drivers and trends      376
    • 5.11.2 Applications   377
      • 5.11.2.1            Wind energy    377
      • 5.11.2.2            Solar    377
      • 5.11.2.3            Anti-reflection               379
      • 5.11.2.4            Gas turbine coatings 379
    • 5.11.3 Global market size     379
      • 5.11.3.1            Market analysis            379
      • 5.11.3.2            Global market revenues 2010-2035               382
    • 5.11.4 Companies     383
  • 5.12     OIL AND GAS  387
    • 5.12.1 Market drivers and trends      387
    • 5.12.2 Applications   388
      • 5.12.2.1            Anti-corrosion pipelines         390
      • 5.12.2.2            Drilling in sub-zero climates 390
    • 5.12.3 Global market size     391
      • 5.12.3.1            Market analysis            391
      • 5.12.3.2            Global market revenues 2010-2035               391
    • 5.12.4 Companies     393
  • 5.13     TOOLS AND MACHINING       396
    • 5.13.1 Market drivers and trends      396
    • 5.13.2 Applications   396
    • 5.13.3 Global market size     396
      • 5.13.3.1            Market analysis            396
      • 5.13.3.2            Global market revenues 2010-2035               398
    • 5.13.4 Companies     400
  • 5.14     ANTI-COUNTERFEITING         403
    • 5.14.1 Market drivers and trends      403
    • 5.14.2 Applications   403
    • 5.14.3 Global market size     404
      • 5.14.3.1            Market analysis            404
      • 5.14.3.2            Global market revenues 2010-2035               406
    • 5.14.4 Companies     408

 

6             COMPANY PROFILES                410  (442 company profiles)

 

7             NANOCOATINGS COMPANIES NO LONGER TRADING      689

 

8             REFERENCES 692

 

LIST OF TABLES

  • Table 1: Categorization of nanomaterials.  48
  • Table 2: Properties of nanocoatings.              51
  • Table 3. Market drivers and trends in nanocoatings.            52
  • Table 4: End user markets for nanocoatings.            54
  • Table 5. Regional breakdown of the nanocoatings market.              59
  • Table 6: Market and technical challenges for nanocoatings.          59
  • Table 7.Nanocoatings Properties by Type    63
  • Table 8: Technology for synthesizing nanocoatings agents.            64
  • Table 9. Comparison of production methods for nanocoatings.  64
  • Table 10: Film coatings techniques.               66
  • Table 11. Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces.          76
  • Table 12: Disadvantages of commonly utilized superhydrophobic coating methods.   78
  • Table 13.  Synthesis and applications of oleophobic and omniphobic coatings.              82
  • Table 14. Applications of oleophobic & omniphobic coatings.      83
  • Table 15: Nanomaterials used in nanocoatings and applications.             85
  • Table 16: Graphene properties relevant to application in coatings.           91
  • Table 17: Uncoated vs. graphene coated (right) steel wire in corrosive environment solution after 30 days.    92
  • Table 18. Bactericidal characters of graphene-based materials. 94
  • Table 19: Market and applications for SWCNTs in coatings.           100
  • Table 20. Types of carbon-based nanoparticles as antimicrobial agent, their mechanisms of action and characteristics.            102
  • Table 21. Applications of nanosilver in coatings.    106
  • Table 22. Markets and applications for antimicrobial nanosilver nanocoatings.               108
  • Table 23. Antibacterial effects of ZnO NPs in different bacterial species.              116
  • Table 24. Market and applications for NDs in anti-friction and anti-corrosion coatings.              118
  • Table 25. Applications of nanocellulose in coatings.           122
  • Table 26: Applications of cellulose nanofibers(CNF).         122
  • Table 27: Applications of bacterial cellulose (BC).               126
  • Table 28. Mechanism of chitosan antimicrobial action.    129
  • Table 29. Market overview  for anti-fingerprint nanocoatings.       132
  • Table 30: Market assessment for anti-fingerprint nanocoatings. 133
  • Table 31. Market drivers and trends for anti-fingerprint nanocoatings.   134
  • Table 32: Anti-fingerprint coatings product and application developers.               138
  • Table 33. Types of anti-fog solutions.            141
  • Table 34. Typical surfaces with superwettability used in anti-fogging.    142
  • Table 35. Market Assessment for Anti-Fog Nanocoatings-Market Age, Market Forecast Growth to 2035, Price Sensitivity, Number of Competitors, Main Current Applications, Future Applications.   145
  • Table 36. Types of biomimetic materials and properties.  147
  • Table 37. Market overview of anti-fog coatings in automotive.      148
  • Table 38. Market overview of anti-fog coatings in solar panels.    149
  • Table 39. Market overview of anti-fog coatings in healthcare and medical.          150
  • Table 40. Market overview of anti-fog coatings in display devices and eyewear (optics).            150
  • Table 41. Market overview of anti-fog coatings in food packaging and agricultural films.            151
  • Table 42. Anti-fog nanocoatings product and application developers.    153
  • Table 43. Growth Modes of Bacteria and characteristics. 155
  • Table 44. Anti-microbial nanocoatings-Nanomaterials used, principles, properties and applications                158
  • Table 45. Market assessment for Anti-Microbial and Anti-Viral Nanocoatings    160
  • Table 46. Market drivers and trends for anti-microbial and anti-viral nanocoatings.      161
  • Table 47. Nanomaterials used in anti-microbial and anti-viral nanocoatings and applications.             163
  • Table 48: Anti-microbial and anti-viral nanocoatings product and application developers.       166
  • Table 49. Market overview for anti-corrosion nanocoatings.          167
  • Table 50: Market assessment for anti-corrosion nanocoatings.   169
  • Table 51. Market drivers and trends for use of anti-corrosion nanocoatings.      170
  • Table 52: Superior corrosion protection using graphene-added epoxy coatings, right, as compared to a commercial zinc-rich epoxy primer, left.     173
  • Table 53: Applications for anti-corrosion nanocoatings.  174
  • Table 54: Anti-corrosion nanocoatings product and application developers.     175
  • Table 55. Market overview for abrasion and wear-resistant nanocoatings.           176
  • Table 56. Market assessment for abrasion and wear-resistant nanocoatings     178
  • Table 57. Market driversaand trends for use of abrasion and wear resistant nanocoatings.      178
  • Table 58. Applications for abrasion and wear-resistant nanocoatings.   179
  • Table 59: Abrasion and wear resistant nanocoatings product and application developers.       180
  • Table 60.Market assessment for barrier nanocoatings and films.               181
  • Table 61. Market drivers and trends for barrier nanocoatings        182
  • Table 62. Applications of barrier nanocoatings.      182
  • Table 63: Barrier nanocoatings product and application developers.       190
  • Table 64. Anti-fouling and easy-to-clean nanocoatings-Nanomaterials used, principles, properties and applications.  191
  • Table 65. Market assessment for anti-fouling and easy-to-clean nanocoatings.              192
  • Table 66. Market drivers and trends for use of anti-fouling and easy to clean nanocoatings.   192
  • Table 67: Anti-fouling and easy-to-clean nanocoatings product and application developers. 195
  • Table 68. Market overview for self-cleaning nanocoatings.             196
  • Table 69. Market assessment for self-cleaning (bionic) nanocoatings.   197
  • Table 70. Market drivers and trends for self-cleaning nanocoatings.        197
  • Table 71. Self-cleaning (bionic) nanocoatings-Markets and applications.            199
  • Table 72: Self-cleaning (bionic) nanocoatings product and application developers.      203
  • Table 73. Market overview for photocatalytic nanocoatings.          204
  • Table 74. Market assessment for photocatalytic nanocoatings.  205
  • Table 75. Market drivers and trends in photocatalytic nanocoatings.       206
  • Table 76. Photocatalytic nanocoatings-Markets, applications and potential addressable market size by 2027.  211
  • Table 77: Self-cleaning (photocatalytic) nanocoatings product and application developers.   212
  • Table 78. Market overview for UV resistant nanocoatings.               214
  • Table 79: Market assessment for UV-resistant nanocoatings.       214
  • Table 80. Market drivers and trends in UV-resistant nanocoatings.           215
  • Table 81. UV-resistant nanocoatings-Markets, applications and potential addressable market.           217
  • Table 82: UV-resistant nanocoatings product and application developers.          218
  • Table 83. Market overview for thermal barrier and flame retardant nanocoatings.          218
  • Table 84. Market assessment for thermal barrier and flame retardant nanocoatings.  219
  • Table 85. Market drivers and trends in thermal barrier and flame retardant nanocoatings.       220
  • Table 86. Nanomaterials utilized in thermal barrier and flame retardant coatings and benefits thereof.                220
  • Table 87. Thermal barrier and flame retardant nanocoatings-Markets, applications and potential addressable markets.              221
  • Table 88: Thermal barrier and flame retardant nanocoatings product and application developers.     222
  • Table 89. Market overview for anti-icing and de-icing nanocoatings.        223
  • Table 90. Market assessment for anti-icing and de-icing nanocoatings. 224
  • Table 91. Market drivers and trends for use of anti-icing and de-icing nanocoatings.    225
  • Table 92: Nanomaterials utilized in anti-icing coatings and benefits thereof.      228
  • Table 93. Anti-icing and de-icing nanocoatings-Markets, applications and potential addressable markets.            229
  • Table 94: Anti-icing and de-icing nanocoatings product and application developers.   230
  • Table 95: Anti-reflective nanocoatings-Nanomaterials used, principles, properties and applications.                231
  • Table 96.Market Assessment for Anti-Reflective Nanocoatings. 232
  • Table 97. Market drivers and trends in Anti-reflective nanocoatings.        232
  • Table 98. Market opportunity for anti-reflection nanocoatings.    234
  • Table 99: Anti-reflective nanocoatings product and application developers.      235
  • Table 100: Types of self-healing coatings and materials.  239
  • Table 101: Comparative properties of self-healing materials.       240
  • Table 102. Market Assessment of Self-Healing Nanocoatings.     241
  • Table 103: Types of self-healing nanomaterials.    243
  • Table 104: Companies producing polyurethane clear coat products for self-healing.  243
  • Table 105. Self-healing materials and coatings markets and applications.          248
  • Table 106: Self-healing nanocoatings product and application developers.        249
  • Table 107. Bio-inspired nanocoatings.          250
  • Table 108. Companies Developing Bio-Inspired Nanocoatings    251
  • Table 109. Smart coatings with embedded sensors.           252
  • Table 110. Companies Developing Smart Coatings with Embedded Sensors.   253
  • Table 111.Companies developing Nuclear and Radiation Resistant Nanocoatings.      254
  • Table 112. Market drivers and trends for nanocoatings in aviation and aerospace.        257
  • Table 113: Types of nanocoatings utilized in aerospace and application.              258
  • Table 114. Market analysis of nanocoatings in Aviation and Aerospace. 261
  • Table 115: Revenues for nanocoatings in the aerospace industry, 2010-2035, millions US$.  263
  • Table 116: Aerospace nanocoatings product developers.                265
  • Table 117: Market drivers and trends for nanocoatings in the automotive market.          269
  • Table 118: Anti-scratch automotive nanocoatings.              270
  • Table 119: Conductive automotive nanocoatings. 270
  • Table 120: Hydro- and oleophobic automotive nanocoatings.      270
  • Table 121: Anti-corrosion automotive nanocoatings.         271
  • Table 122: UV-resistance automotive nanocoatings.          271
  • Table 123: Thermal barrier automotive nanocoatings.       271
  • Table 124: Flame retardant automotive nanocoatings.      271
  • Table 125: Anti-fingerprint automotive nanocoatings.        272
  • Table 126: Anti-bacterial automotive nanocoatings.           272
  • Table 127: Self-healing automotive nanocoatings.               272
  • Table 128. Market analysis of nanocoatings in Automotive.            272
  • Table 129: Revenues for nanocoatings in the automotive industry, 2010-2035, millons US$, conservative and optimistic estimate.          275
  • Table 130: Automotive nanocoatings product developers.              276
  • Table 131: Market drivers and trends for nanocoatings in the construction market.       280
  • Table 132: Nanocoatings applied in the construction industry-type of coating, nanomaterials utilized and benefits.  280
  • Table 133: Photocatalytic nanocoatings-Markets and applications.         283
  • Table 134. Types of electrochromic materials and applications. 286
  • Table 135. Market analysis of nanocoatings in construction.         296
  • Table 136: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2035, millions US$.*                298
  • Table 137: Construction and Building Industry nanocoatings product developers.         300
  • Table 138: Market drivers for nanocoatings in electronics.              303
  • Table 139: Main companies in waterproof nanocoatings for electronics, products and synthesis methods.          306
  • Table 140: Conductive electronics nanocoatings. 307
  • Table 141: Anti-fingerprint electronics nanocoatings.        307
  • Table 142: Anti-abrasion electronics nanocoatings.            307
  • Table 143: Conductive electronics nanocoatings. 308
  • Table 144. Market analysis of nanocoatings in Electronics.            310
  • Table 145: Revenues for nanocoatings in electronics, 2010-2035, millions US$.            312
  • Table 146: Nanocoatings applications developers in electronics.              314
  • Table 147: Market drivers and trends for nanocoatings in household care, sanitary and indoor air quality.                316
  • Table 148. Market analysis of nanocoatings in household care, sanitary and indoor air quality.            318
  • Table 149: Revenues for nanocoatings in household care, sanitary and indoor air quality, 2010-2035, millions US$. 321
  • Table 150: Household care, sanitary and indoor air quality nanocoatings product developers.             322
  • Table 151: Market drivers and trends for nanocoatings in the marine industry. 326
  • Table 152: Nanocoatings applied in the marine industry-type of coating, nanomaterials utilized and benefits.            327
  • Table 153. Market analysis of nanocoatings in marine.      327
  • Table 154: Revenues for nanocoatings in the marine sector, 2010-2035, millions US$.              330
  • Table 155: Marine nanocoatings product developers.        331
  • Table 156: Market drivers and trends for nanocoatings in medicine and healthcare.     334
  • Table 157: Nanocoatings applied in the medical industry-type of coating, nanomaterials utilized, benefits and applications.    335
  • Table 158: Types of advanced coatings applied in medical devices and implants.         337
  • Table 159: Nanomaterials utilized in medical implants.   337
  • Table 160. Market analysis of nanocoatings in medical & healthcare.     338
  • Table 161: Revenues for nanocoatings in medical and healthcare, 2010-2035, millions US$. 339
  • Table 162: Medical and healthcare nanocoatings product developers.  340
  • Table 163: Market drivers and trends for nanocoatings in the military and defence industry.   343
  • Table 164. Market analysis of nanocoatings in Military and Defense.       345
  • Table 165: Revenues for nanocoatings in military and defence, 2010-2035, millions US$.       348
  • Table 166: Military and defence nanocoatings product and application developers.     349
  • Table 167: Market drivers and trends for nanocoatings in the packaging industry.          352
  • Table 168. Market analysis of nanocoatings in Packaging 355
  • Table 169: Revenues for nanocoatings in packaging, 2010-2035, millions US$.               358
  • Table 170: Packaging nanocoatings companies.   359
  • Table 171: Market drivers and trends for nanocoatings in the textiles and apparel industry.    362
  • Table 172: Applications in textiles, by advanced materials type and benefits thereof.  364
  • Table 173: Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications.    365
  • Table 174: Applications and benefits of graphene in textiles and apparel.            368
  • Table 175. Market analysis of nanocoatings in Textiles and Apparel.        369
  • Table 176: Revenues for nanocoatings in textiles and apparel, 2010-2035, US$.            371
  • Table 177: Textiles and apparel nanocoatings product developers.           373
  • Table 178: Market drivers and trends for nanocoatings in the energy industry.  376
  • Table 179. Market analysis of nanocoatings in Energy.       379
  • Table 180: Revenues for nanocoatings in energy, 2010-2035, millions US$.       382
  • Table 181. Energy storage nanocoatings product developers.       383
  • Table 182: Market drivers and trends for nanocoatings in the oil and gas exploration industry.              387
  • Table 183: Desirable functional properties for the oil and gas industry afforded by nanomaterials in coatings.           388
  • Table 184. Market analysis of nanocoatings in Oil and Gas.           391
  • Table 185: Revenues for nanocoatings in oil and gas, 2010-2035, US$. 391
  • Table 186: Oil and gas nanocoatings product developers.               393
  • Table 187: Market drivers and trends for nanocoatings in tools and machining.               396
  • Table 188. Market analysis of nanocoatings in Tools and Machining.       396
  • Table 189: Revenues for nanocoatings in Tools and manufacturing, 2010-2035, millions US$.             398
  • Table 190: Tools and manufacturing nanocoatings product and application developers.           400
  • Table 191. Market analysis of nanocoatings in Anti-couterfeiting.              404
  • Table 192: Revenues for nanocoatings in anti-counterfeiting, 2010-2035, US$.               406
  • Table 193: Anti-counterfeiting nanocoatings product and application developers.        408
  • Table 194. Carbodeon Ltd. Oy nanodiamond product list.              456
  • Table 195. Photocatalytic coating schematic.          494
  • Table 196. Natoco anti-fog coating properties.        598
  • Table 197. Film properties of MODIPER H. 613
  • Table 198. Ray-Techniques Ltd. nanodiamonds product list.         633
  • Table 199. Comparison of ND produced by detonation and laser synthesis.      634
  • Table 200. Nanocoatings companies no longer trading.   689

 

LIST OF FIGURES

  • Figure 1. Water repellent nanocoating on wood.    50
  • Figure 2. Global revenues for nanocoatings, 2010-2035, millions USD, by type.               57
  • Figure 3: Global revenues for nanocoatings, 2010-2035, millions USD, by market.         58
  • Figure 4: Hydrophobic fluoropolymer nanocoatings on electronic circuit boards.          61
  • Figure 5: Nanocoatings synthesis techniques.        65
  • Figure 6. Techniques for constructing superhydrophobic coatings on substrates.          67
  • Figure 7: Electrospray deposition.   69
  • Figure 8: CVD technique.       70
  • Figure 9: Schematic of ALD. 72
  • Figure 10: SEM images of different layers of TiO2 nanoparticles in steel surface.            72
  • Figure 11: The coating system is applied to the surface.The solvent evaporates.              73
  • Figure 12: A first organization takes place where the silicon-containing bonding component (blue dots in figure 2) bonds covalently with the surface and cross-links with neighbouring molecules to form a strong three-dimensional.    74
  • Figure 13: During the curing, the compounds or- ganise themselves in a nanoscale monolayer. The fluorine-containing repellent component (red dots in figure 3) on top makes the glass hydro- phobic and oleophobic.    74
  • Figure 14: (a) Water drops on a lotus leaf.   75
  • Figure 15. A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°.   76
  • Figure 16: Contact angle on superhydrophobic coated surface. 77
  • Figure 17: Self-cleaning nanocellulose dishware. 79
  • Figure 18: Titanium dioxide-coated glass (left) and ordinary glass (right).             80
  • Figure 19:  Self-Cleaning mechanism utilizing photooxidation.   80
  • Figure 20: Schematic of photocatalytic air purifying pavement.   81
  • Figure 21: SLIPS repellent coatings.                83
  • Figure 22: Omniphobic coatings.      84
  • Figure 23: Graphair membrane coating.       91
  • Figure 24: Antimicrobial activity of Graphene oxide (GO).                93
  • Figure 25: Conductive graphene coatings for rotor blades.             95
  • Figure 26: Water permeation through a brick without (left) and with (right) “graphene paint” coating.                96
  • Figure 27: Graphene heat transfer coating.                96
  • Figure 28 Carbon nanotube cable coatings.              98
  • Figure 29 Formation of a protective CNT-based char layer during combustion of a CNT-modified coating.             98
  • Figure 30. Mechanism of antimicrobial activity of carbon nanotubes.    99
  • Figure 31: Fullerene schematic.        102
  • Figure 32: Hydrophobic easy-to-clean coating.      104
  • Figure 33: Anti-fogging nanocoatings on protective eyewear.         105
  • Figure 34: Silica nanoparticle anti-reflection coating on glass.    105
  • Figure 35 Anti-bacterials mechanism of silver nanoparticle coating.       108
  • Figure 36: Mechanism of photocatalysis on a surface treated with TiO2 nanoparticles.             110
  • Figure 37:  Schematic showing the self-cleaning phenomena on superhydrophilic surface.    111
  • Figure 38: Schematic of photocatalytic indoor air purification filter.         111
  • Figure 39: Schematic of photocatalytic water purification.             112
  • Figure 40. Schematic of antibacterial activity of ZnO NPs.              116
  • Figure 41: Types of nanocellulose.  121
  • Figure 42: CNF gel.     122
  • Figure 43: TEM image of cellulose nanocrystals.   124
  • Figure 44: Extracting CNC from trees.            124
  • Figure 45: An iridescent biomimetic cellulose multilayer film remains after water that contains cellulose nanocrystals evaporates.      125
  • Figure 46: CNC slurry.              126
  • Figure 47. TEM images of Burkholderia seminalis treated with (a, c) buffer (control) and (b, d) 2.0 mg/mL chitosan; (A: additional layer; B: membrane damage).      129
  • Figure 48. Anti-fingerprint nanocoating on glass.  132
  • Figure 49: Schematic of anti-fingerprint nanocoatings.     135
  • Figure 50: Toray anti-fingerprint film (left) and an existing lipophilic film (right). 136
  • Figure 51: Types of anti-fingerprint coatings applied to touchscreens.    136
  • Figure 52: Anti-fingerprint nanocoatings applications.      137
  • Figure 53: Revenues for anti-fingerprint nanocoatings, 2010 -2035 (millions USD).       138
  • Figure 54. Anti-fog goggles.  141
  • Figure 55. Hydrophilic effect.              146
  • Figure 56. Anti-fogging nanocoatings on protective eyewear.         146
  • Figure 57. Superhydrophilic zwitterionic polymer brushes.            147
  • Figure 58. Face shield with anti-fog coating.             149
  • Figure 59. Revenues for anti-fog nanocoatings, 2019-2035 (millions USD).        152
  • Figure 60. Schematic of anti-viral coating using nano-actives for inactivation of any adhered virus on the surfaces.          157
  • Figure 61. Face masks coated with antibacterial & antiviral nanocoating.           158
  • Figure 62. Nano-coated self-cleaning touchscreen.            165
  • Figure 63: Revenues for Anti-microbial and anti-viral nanocoatings, 2010-2035, (millions USD).         165
  • Figure 64: Nanovate CoP coating.    171
  • Figure 65: 2000 hour salt fog results for Teslan nanocoatings.      171
  • Figure 66: AnCatt proprietary polyaniline nanodispersion and coating structure.            172
  • Figure 67: Hybrid self-healing sol-gel coating.         172
  • Figure 68: Schematic of anti-corrosion via superhydrophobic surface.  173
  • Figure 69: Revenues for anti-corrosion nanocoatings, 2010-2035.           175
  • Figure 70: Revenues for abrasion and wear resistant nanocoatings, 2010-2035, (millions USD).         180
  • Figure 71: Nanocomposite oxygen barrier schematic.       188
  • Figure 72:  Schematic of barrier nanoparticles deposited on flexible substrates.            188
  • Figure 73. Revenues for barrier nanocoatings, 2010-2035, (millions USD).         189
  • Figure 74: Anti-fouling treatment for heat-exchangers.      193
  • Figure 75: Removal of graffiti after application of nanocoating.   194
  • Figure 76: Revenues for anti-fouling and easy-to-clean nanocoatings, 2010-2035, (millions USD).    194
  • Figure 77: Self-cleaning superhydrophobic coating schematic.  199
  • Figure 78. Revenues for self-cleaning (bionic) nanocoatings, 2010-2035, (Millions US$).         203
  • Figure 79.  Schematic showing the self-cleaning phenomena on superhydrophilic surface.    207
  • Figure 80: Schematic of photocatalytic air purifying pavement.   208
  • Figure 81:  Self-Cleaning mechanism utilizing photooxidation.   209
  • Figure 82: Photocatalytic oxidation (PCO) air filter.               209
  • Figure 83: Schematic of photocatalytic water purification.             210
  • Figure 84: Tokyo Station GranRoof. The titanium dioxide coating ensures long-lasting whiteness.      211
  • Figure 85. Revenues for self-cleaning (photocatalytic) nanocoatings, 2010-2035, (Millions US$).      212
  • Figure 86: Revenues for UV-resistant nanocoatings, 2010-2035 (millions USD).              217
  • Figure 87: Flame retardant nanocoating.    221
  • Figure 88: Revenues for thermal barrier and flame retardant nanocoatings, 2010-2035, (millions USD).                222
  • Figure 89: Nanocoated surface in comparison to existing surfaces.         227
  • Figure 90: NANOMYTE® SuperAi, a Durable Anti-ice Coating.       227
  • Figure 91: SLIPS coating schematic.               227
  • Figure 92: Carbon nanotube based anti-icing/de-icing device.     228
  • Figure 93: CNT anti-icing nanocoating.        228
  • Figure 94: Revenues for anti-icing and de-icing nanocoatings, 2010-2035, (millions USD).      230
  • Figure 95: Schematic of AR coating utilizing nanoporous coating.             233
  • Figure 96: Demo solar panels coated with nanocoatings.               234
  • Figure 97: Revenues for anti-reflective nanocoatings, 2010-2035, (millions USD).         235
  • Figure 98: Schematic of self-healing polymers. Capsule based (a), vascular (b), and intrinsic (c) schemes for self-healing materials.  Red and blue colours indicate chemical species which react (purple) to heal damage.       237
  • Figure 99: Stages of self-healing mechanism.         237
  • Figure 100: Self-healing mechanism in vascular self-healing systems.  238
  • Figure 101: Comparison of self-healing systems.  239
  • Figure 102: Self-healing coating on glass.  243
  • Figure 103: Schematic of the self-healing concept using microcapsules with a healing agent inside.                245
  • Figure 104: Revenues for self-healing nanocoatings, 2010-2035, millions USD.              248
  • Figure 105 Nanocoatings market by end user sector, 2010-2035, USD. 256
  • Figure 106. Revenues for nanocoatings in the aerospace industry, 2010-2035, millions US$. 264
  • Figure 107: Revenues for nanocoatings in the automotive industry, 2010-2035, millions US$.              276
  • Figure 108: Mechanism of photocatalytic NOx oxidation on active concrete road.         282
  • Figure 109: Jubilee Church in Rome, the outside coated with nano photocatalytic TiO2 coatings.       282
  • Figure 110: FN® photocatalytic coating, applied in the Project of Ecological Sound Barrier, in Prague.                283
  • Figure 111 Smart window film coatings based on indium tin oxide nanocrystals.           284
  • Figure 112. Typical setup of an electrochromic device (ECD).      285
  • Figure 113. Electrochromic smart glass schematic.            285
  • Figure 114. SPD smart windows schematic.             287
  • Figure 115. SPD film lamination.      288
  • Figure 116. SPD smart film schematic. Control the transmittance of light and glare by adjusting AC voltage to the SPD Film.          289
  • Figure 117. PDLC schematic.              290
  • Figure 118. Schematic of PDLC film and self-adhesive PDLC film.            291
  • Figure 119. Smart glass made with polymer dispersed liquid crystal (PDLC) technology.          293
  • Figure 120. Cross-section of Electro Kinetic Film. 294
  • Figure 121. Schematic of HISG.         294
  • Figure 122. UbiQD PV windows.        295
  • Figure 123: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2035, millions US$.   299
  • Figure 124: Reflection of light on anti-glare coating for display.   305
  • Figure 125: Nanocoating submerged in water.         305
  • Figure 126: Phone coated in WaterBlock submerged in water tank.          306
  • Figure 127: Self-healing patent schematic.                308
  • Figure 128: Self-healing glass developed at the University of Tokyo.         309
  • Figure 129: Royole flexible display.  309
  • Figure 130: Revenues for nanocoatings in electronics, 2010-2035, millions US$.          313
  • Figure 131: Revenues for nanocoatings in household care, sanitary and indoor air quality, 2010-2035, millions US$. 322
  • Figure 132: Revenues for nanocoatings in the marine sector, 2010-2035, millions US$.            331
  • Figure 133: Anti-bacertial sol-gel nanoparticle silver coating.       336
  • Figure 134: Revenues for nanocoatings in medical and healthcare, 2010-2035, millions US$.              340
  • Figure 135: Revenues for nanocoatings in military and defence, 2010-2035, millions US$.     349
  • Figure 136: Nanocomposite oxygen barrier schematic.     354
  • Figure 137: Oso fresh food packaging incorporating antimicrobial silver.              354
  • Figure 138: Revenues for nanocoatings in packaging, 2010-2035, millions US$.             359
  • Figure 139: Omniphobic-coated fabric.       363
  • Figure 140: Work out shirt incorporating ECG sensors, flexible lights and heating elements.   369
  • Figure 141: Revenues for nanocoatings in textiles and apparel, 2010-2035, millions US$.       372
  • Figure 142: Self-Cleaning Hydrophobic Coatings on solar panels.            378
  • Figure 143: Znshine Graphene Series solar coatings.          378
  • Figure 144: Nanocoating for solar panels.  379
  • Figure 145: Revenues for nanocoatings in energy, 2010-2035, US$.         383
  • Figure 146: Oil-Repellent self-healing nanocoatings.         390
  • Figure 147: Revenues for nanocoatings in oil and gas exploration, 2010-2035, US$.    392
  • Figure 148: Revenues for nanocoatings in Tools and manufacturing, 2010-2035, millons US$.             399
  • Figure 149: Security tag developed by Nanotech Security.               403
  • Figure 150: Revenues for nanocoatings in anti-counterfeiting, 2010-2035, US$.             407
  • Figure 151. 3E Nano's first low-emissivity pilot project in Vancouver.      412
  • Figure 152. CuanSave film.   473
  • Figure 153. Lab tests on DSP coatings.         484
  • Figure 154: Self-healing mechanism of SmartCorr coating.           492
  • Figure 155. Laser-functionalized glass.        505
  • Figure 156. Proprietary atmospheric CVD production.      511
  • Figure 157. GrapheneCA anti-bacterial and anti-viral coating.     516
  • Figure 158. Self-healing polymer-coated materials.            535
  • Figure 159. Microlyte® Matrix bandage for surgical wounds.          539
  • Figure 160. Self-cleaning nanocoating applied to face masks.    546
  • Figure 161: Carbon nanotube paint product.            556
  • Figure 162. QDSSC Module. 569
  • Figure 163. NanoSeptic surfaces.    592
  • Figure 164. NascNanoTechnology personnel shown applying MEDICOAT to airport luggage carts.     598
  • Figure 165. Schematic of MODOPER H series Anti-fog agents.    613
  • Figure 166: Quantum dot sheet.        615
  • Figure 167. Test performance after 6 weeks ACT II according to Scania STD4445.          628
  • Figure 168. SQ dots production process.    654
  • Figure 169: 2 wt.% CNF suspension.            656
  • Figure 170. BiNFi-s Dry Powder.         657
  • Figure 171. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.        657
  • Figure 172: Silk nanofiber (right) and cocoon of raw material.       658
  • Figure 173. Applications of Titanystar.          685

 

 

The Global Market for Nanocoatings 2025-2035
The Global Market for Nanocoatings 2025-2035
PDF download/by email.

The Global Market for Nanocoatings 2025-2035
The Global Market for Nanocoatings 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com