The Global Quantum Sensors Market 2025-2035

0

cover

cover

  • Published: March 2025
  • Pages: 189
  • Tables: 70
  • Figures: 37

 

Quantum sensing is emerging as the quantum technology with the most immediate market potential. Quantum sensors represent a revolutionary class of measurement devices that leverage fundamental quantum mechanical phenomena to achieve unprecedented sensitivity, precision, and capabilities beyond classical limitations. These advanced instruments exploit quantum properties such as superposition, entanglement, quantum coherence, and quantum states of matter to detect and measure physical quantities with extraordinary accuracy. At their core, quantum sensors operate by making quantum systems interact with the physical parameter being measured. This interaction causes detectable changes in the quantum state that can be precisely monitored. Unlike classical sensors that are limited by electronic noise and other physical constraints, quantum sensors can approach or reach fundamental limits imposed by quantum mechanics itself, such as the Heisenberg uncertainty principle or the standard quantum limit.

Several distinct technologies comprise the quantum sensing family. Superconducting Quantum Interference Devices (SQUIDs) use quantum effects in superconducting loops to detect incredibly small magnetic fields. Nitrogen-Vacancy (NV) centers in diamond utilize quantum states of atomic defects for sensing magnetic fields, electric fields, and temperature with nanoscale spatial resolution. Atomic vapor cell technologies like those used in atomic clocks and magnetometers leverage quantum states of atoms for precise time-keeping and field detection. Cold atom interferometers exploit wave-like properties of matter for measuring gravity, acceleration, and rotation with extraordinary precision.

The defining characteristics of quantum sensors include their ability to achieve unprecedented sensitivity, their capacity to perform measurements traceable to fundamental physical constants (providing intrinsic calibration), their potential for operating across extreme environmental conditions, and their capability to measure quantities that conventional sensors cannot detect. Many quantum sensors can also provide vector information (direction and magnitude) rather than just scalar values, and can operate across exceptionally wide dynamic ranges or frequency bands without hardware modifications. As fabrication techniques advance and supporting technologies mature, quantum sensors are transitioning from specialized laboratory instruments to field-deployable systems, opening new possibilities for measurement in numerous scientific and industrial applications.

The current market landscape is characterized by a segmentation based on both technology type and application domains. Atomic clocks represent the most mature sector, followed by magnetic sensors (predominantly SQUIDs and NV-based magnetometers) at approximately 30%. Quantum gravimeters, RF sensors, and other specialized quantum sensing technologies comprise the remaining market share. Commercial adoption is accelerating in several key sectors. Telecommunications companies are deploying atomic clocks and beginning to explore quantum RF sensors for next-generation network infrastructure. The healthcare sector is investigating NV-diamond sensors for advanced MRI and neural imaging applications. Resource exploration companies are field-testing quantum gravimeters for enhanced subsurface mapping, while the semiconductor industry is exploring quantum sensors for advanced quality control.

The Global Quantum Sensors Market 2025-2035 is an in-depth analysis of the rapidly evolving quantum sensing landscape, providing essential intelligence for investors, technology companies, and end-users navigating this transformative field. Report contents include: 

  • Market Analysis: Detailed examination of the global quantum sensors market with segmentation by sensor type, volume projections, pricing trends, and end-use industry applications from 2025 to 2035.
  • Technology Deep Dives: Comprehensive coverage of all major quantum sensing technologies, including atomic clocks, magnetic field sensors (SQUIDs, OPMs, TMRs, NV-centers), quantum gravimeters, gyroscopes, image sensors, RF field sensors, and emerging NEMS/MEMS technologies.
  • Investment Landscape: Analysis of funding trends, major investment rounds, and government initiatives worldwide that are accelerating quantum sensing commercialization.
  • Competitive Intelligence: Detailed profiles of 50+ companies developing quantum sensing technologies, from established defense contractors to innovative startups. 
  • Application Roadmaps: Strategic insights into adoption timelines for key industries including healthcare, defense, environmental monitoring, oil and gas, transportation, and financial services.
  • Technology Readiness Assessment: Evaluation of current technological readiness levels (TRLs) for different quantum sensing modalities, helping stakeholders understand commercialization timelines.
  • Each quantum sensing technology is analyzed in dedicated chapters covering:
    • Technology principles and operating mechanisms
    • Market opportunities and application areas
    • Development roadmaps and commercialization timelines
    • Key players and competitive landscape analysis
    • SWOT analysis for each specific technology
    • Market forecasts and growth projections
  • End-Use Industry Analysis: Detailed examination of how quantum sensors are transforming:
      • Healthcare and Life Sciences (medical imaging, drug discovery, biosensing)
      • Defense and Military (navigation systems, underwater detection, communications)
      • Environmental Monitoring (climate research, geological surveys, disaster prediction)
      • Oil and Gas (exploration, surveying, pipeline monitoring)
      • Transportation (autonomous vehicles, aerospace navigation)
      • Other emerging applications (finance, agriculture, construction, mining)
  • Case Studies: Real-world implementations demonstrating quantum sensing advantages in healthcare diagnostics, military navigation, environmental monitoring, high-frequency trading, and quantum communication networks.
  • Company Profiles: Comprehensive profiles of 57 companies active in the quantum sensing ecosystem, including technology approaches, funding status, partnerships, and commercial progress. Companies profiled include Airbus, Aquark Technologies, Artilux, Atomionics, Bosch Quantum Sensing, Cerca Magnetics, Chipiron, Chiral Nano AG, Covesion, Delta g, EuQlid, Exail Quantum Sensors, Genesis Quantum Technology, ID Quantique, Infleqtion, Ligentec, M Squared Lasers, Mag4Health, Menlo Systems GmbH, Mesa Quantum, Miraex, Neuranics, Nomad Atomics, Nu Quantum, NVision, Phasor Innovation, PhotonForce, Polariton Technologies, Q.ANT, Qaisec, Q-CTRL, Qnami, QT Sense B.V., QuantaMap and more.....

 

The report combines rigorous quantitative market projections with qualitative expert analysis to provide actionable intelligence on the quantum sensing revolution. With quantum sensors poised to disrupt multiple industries through capabilities that surpass classical limits, this comprehensive market analysis serves as the definitive guide to navigating the opportunities and challenges in this rapidly developing field. Featuring exclusive data on market sizing, competitive benchmarking of quantum sensing technologies, and detailed analysis of over 50 company profiles, the "Global Quantum Sensors Market 2025-2035" report is an essential resource for anyone seeking to understand and capitalize on the quantum sensing revolution that will transform measurement capabilities across industries worldwide.

 

 

1             EXECUTIVE SUMMARY            

  • 1.1        First and second quantum revolutions         12
  • 1.2        Current quantum technology market landscape   14
    • 1.2.1    Key developments      15
  • 1.3        Investment Landscape            16
  • 1.4        Global government initiatives             17
  • 1.5        Industry developments 2020-2025 18
  • 1.6        Challenges for quantum technologies adoption    27
  • 1.7        Market Drivers               29
  • 1.8        Market and technology challenges  30
  • 1.9        Technology Trends and Innovations                32
    • 1.10     Market Forecast and Future Outlook             32
    • 1.10.1 Short-term Outlook (2025-2027)      32
    • 1.10.2 Medium-term Outlook (2028-2031) 33
    • 1.10.3 Long-term Outlook (2032-2035)       33
  • 1.11     Emerging Applications and Use Cases         34
  • 1.12     Benchmarking of Quantum Sensor Technologies  35
  • 1.13     Potential Disruptive Technologies    39
  • 1.14     Global market for quantum sensors               41
    • 1.14.1 By sensor type               41
    • 1.14.2 By volume        44
    • 1.14.3 By sensor price             45
    • 1.14.4 By end use industry   46

 

2             INTRODUCTION         

  • 2.1        What is quantum sensing?   47
  • 2.2        Types of quantum sensors    47
    • 2.2.1    Comparison between classical and quantum sensors      48
  • 2.3        Quantum Sensing Principles               49
  • 2.4        Value proposition for quantum sensors       50
  • 2.5        Current Technological Readiness Levels     52
  • 2.6        SWOT analysis              52

 

3             ATOMIC CLOCKS        

  • 3.1        Technology Overview                54
  • 3.2        Markets              55
  • 3.3        Roadmap         56
  • 3.4        High frequency oscillators    58
    • 3.4.1    Emerging oscillators  59
  • 3.5        Caesium atoms            59
  • 3.6        Self-calibration             60
  • 3.7        New atomic clock technologies        60
  • 3.8        Optical atomic clocks              60
    • 3.8.1    Chip-scale optical clocks      62
  • 3.9        Companies     64
  • 3.10     SWOT analysis              64
  • 3.11     Market forecasts         66

 

4             QUANTUM MAGNETIC FIELD SENSORS      

  • 4.1        Technology overview 68
  • 4.2        Motivation for use       69
  • 4.3        Market opportunity    71
  • 4.4        Superconducting Quantum Interference Devices (Squids)             73
    • 4.4.1    Applications   74
    • 4.4.2    Key players      76
    • 4.4.3    SWOT analysis              76
  • 4.5        Optically Pumped Magnetometers (OPMs)               77
    • 4.5.1    Applications   77
    • 4.5.2    Key players      78
    • 4.5.3    SWOT analysis              78
  • 4.6        Tunneling Magneto Resistance Sensors (TMRs)     79
    • 4.6.1    Applications   80
    • 4.6.2    Key players      81
    • 4.6.3    SWOT analysis              81
  • 4.7        Nitrogen Vacancy Centers (N-V Centers)     82
    • 4.7.1    Applications   82
    • 4.7.2    Key players      83
    • 4.7.3    SWOT analysis              83
  • 4.8        Market forecasts         84

 

5             QUANTUM GRAVIMETERS     

  • 5.1        Technology overview 86
  • 5.2        Applications   87
  • 5.3        Roadmap         89
  • 5.4        Key players      90
  • 5.5        Market forecasts         91
  • 5.6        SWOT analysis              92

 

6             QUANTUM GYROSCOPES    

  • 6.1        Technology description           94
    • 6.1.1    Inertial Measurement Units (IMUs) 95
    • 6.1.2    Atomic quantum gyroscopes              96
  • 6.2        Applications   97
  • 6.3        Roadmap         100
  • 6.4        Key players      101
  • 6.5        SWOT analysis              102

 

7             QUANTUM IMAGE SENSORS               

  • 7.1        Technology overview 103
  • 7.2        Applications   104
  • 7.3        SWOT analysis              105
  • 7.4        Market forecast            106
  • 7.5        Key players      107

 

8             QUANTUM RADAR     

  • 8.1        Technology overview 108
  • 8.2        Applications   109
  •  

9             QUANTUM CHEMICAL SENSORS     

  • 9.1        Technology overview 111
  • 9.2        Commercial activities              111

 

10          QUANTUM RADIO FREQUENCY FIELD SENSORS  

  • 10.1     Overview           112
  • 10.2     Rydberg Atom Based Electric Field Sensors and Radio Receivers              116
    • 10.2.1 Principles         116
    • 10.2.2 Commercialization    117
  • 10.3     Nitrogen-Vacancy Centre Diamond Electric Field Sensors and Radio Receivers              118
    • 10.3.1 Principles         118
    • 10.3.2 Applications   119
  • 10.4     Market 121

 

11          QUANTUM NEMS AND MEMS             

  • 11.1     Technology overview 127
  • 11.2     Types   128
  • 11.3     Applications   128
  • 11.4     Challenges      129

 

12          CASE STUDIES             

  • 12.1     Quantum Sensors in Healthcare: Early Disease Detection             130
  • 12.2     Military Applications: Enhanced Navigation Systems         130
  • 12.3     Environmental Monitoring     131
  • 12.4     Financial Sector: High-Frequency Trading  131
  • 12.5     Quantum Internet: Secure Communication Networks       132

 

13          END-USE INDUSTRIES            

  • 13.1     Healthcare and Life Sciences             133
    • 13.1.1 Medical Imaging          133
    • 13.1.2 Drug Discovery             134
    • 13.1.3 Biosensing      134
  • 13.2     Defense and Military 134
    • 13.2.1 Navigation Systems   135
    • 13.2.2 Underwater Detection             135
    • 13.2.3 Communication Systems      135
  • 13.3     Environmental Monitoring     136
    • 13.3.1 Climate Change Research    137
    • 13.3.2 Geological Surveys    137
    • 13.3.3 Natural Disaster Prediction  137
    • 13.3.4 Other Applications     138
  • 13.4     Oil and Gas     138
    • 13.4.1 Exploration and Surveying     139
    • 13.4.2 Pipeline Monitoring   139
    • 13.4.3 Other Applications     140
  • 13.5     Transportation and Automotive         141
    • 13.5.1 Autonomous Vehicles              141
    • 13.5.2 Aerospace Navigation              141
    • 13.5.3 Other Applications     142
  • 13.6     Other Industries           142
    • 13.6.1 Finance and Banking 142
    • 13.6.2 Agriculture       142
    • 13.6.3 Construction  143
    • 13.6.4 Mining 143

 

14          COMPANY PROFILES (57 company profiles)

 

15          APPENDICES 

  • 15.1     Research Methodology           184
  • 15.2     Glossary of Terms       185
  • 15.3     List of Abbreviations  188

 

16          REFERENCES 

 

List of Tables

  • Table 1. First and second quantum revolutions.     12
  • Table 2. Quantum Sensing Technologies and Applications.           13
  • Table 3. Global government initiatives in quantum technologies.               17
  • Table 4. Quantum technologies industry developments 2020-2025.       18
  • Table 5. Challenges for quantum technologies adoption. 28
  • Table 6. Market Drivers for Quantum Sensors.        29
  • Table 7. Market and technology challenges in quantum sensing.               31
  • Table 8. Technology Trends and Innovations in Quantum Sensors.           32
  • Table 9. Emerging Applications and Use Cases      34
  • Table 10. Benchmarking of Quantum Sensing Technologies by Type.       35
  • Table 11. Performance Metrics by Application Domain.   37
  • Table 12. Technology Readiness Levels (TRL) and Commercialization Status     37
  • Table 13. Comparative Performance Metrics.          38
  • Table 14.Current Research and Development Focus Areas            39
  • Table 15. Potential Disruptive Technologies.             40
  • Table 16. Global market for quantum sensors, by types, 2018-2035 (Millions USD).     41
  • Table 17. Global market for quantum sensors, by volume (Units), 2018-2035. 44
  • Table 18. Global market for quantum sensors, by sensor price, 2025-2035 (Units).      45
  • Table 19. Global market for quantum sensors, by end use industry, 2018-2035 (Millions USD).            46
  • Table 20.Types of Quantum Sensors              47
  • Table 21.  Comparison between classical and quantum sensors.             48
  • Table 22. Applications in quantum sensors.             49
  • Table 23. Technology approaches for enabling quantum sensing               50
  • Table 24. Value proposition for quantum sensors. 51
  • Table 25. Key challenges and limitations of quartz crystal clocks vs. atomic clocks.    54
  • Table 26. Atomic clocks End users and addressable markets.     55
  • Table 27. Key Market Inflection Points and Technology Transitions.          58
  • Table 28.  New modalities being researched to improve the fractional uncertainty of atomic clocks. 62
  • Table 29. Companies developing high-precision quantum time measurement 64
  • Table 30. Key players in atomic clocks.        65
  • Table 31. Global market for atomic clocks 2025-2035 (Billions USD).     66
  • Table 32. Comparative analysis of key performance parameters and metrics of magnetic field sensors.                69
  • Table 33. Types of magnetic field sensors. 70
  • Table 34. Market opportunity for different types of quantum magnetic field sensors.   71
  • Table 35. Applications of SQUIDs.   74
  • Table 36. Market opportunities for SQUIDs (Superconducting Quantum Interference Devices).           75
  • Table 37. Key players in SQUIDs.      76
  • Table 38. Applications of optically pumped magnetometers (OPMs).     77
  • Table 39. Key players in Optically Pumped Magnetometers (OPMs).        78
  • Table 40. Applications for TMR (Tunneling Magnetoresistance) sensors.               80
  • Table 41. Market players in TMR (Tunneling Magnetoresistance) sensors.            81
  • Table 42. Applications of N-V center magnetic field centers           82
  • Table 43. Key players in N-V center magnetic field sensors.           83
  • Table 44. Global market forecasts for quantum magnetic field sensors, by type, 2025-2035 (Millions USD).  84
  • Table 45. Applications of quantum gravimeters      87
  • Table 46. Comparative table between quantum gravity sensing and some other technologies commonly used for underground mapping.       87
  • Table 47. Key players in quantum gravimeters.        90
  • Table 48. Global market for Quantum gravimeters 2025-2035 (Millions USD).  91
  • Table 49. Comparison of quantum gyroscopes with MEMs gyroscopes and optical gyroscopes.         94
  • Table 50. Markets and applications for quantum gyroscopes.      99
  • Table 51. Key players in quantum gyroscopes.        101
  • Table 52. Types of quantum image sensors and their key features.            103
  • Table 53. Applications of quantum image sensors.              104
  • Table 54. Global market for quantum image sensors 2025-2035 (Millions USD).             106
  • Table 55. Key players in quantum image sensors. 107
  • Table 56. Comparison of quantum radar versus conventional radar and lidar technologies.   109
  • Table 57. Applications of quantum radar.   110
  • Table 58. Value Proposition of Quantum RF Sensors           112
  • Table 59. Types of Quantum RF Sensors      114
  • Table 60. Markets for Quantum RF Sensors               121
  • Table 61. Technology Transition Milestones.             125
  • Table 62. Application-Specific Adoption Timeline 126
  • Table 63.Types of Quantum NEMS and MEMS.        128
  • Table 64. Quantum Sensors in Healthcare and Life Sciences.      133
  • Table 65. Quantum Sensors in Defense and Military           134
  • Table 66. Quantum Sensors in Environmental Monitoring               136
  • Table 67. Quantum Sensors in Oil and Gas                138
  • Table 68. Quantum Sensors in Transportation.       141
  • Table 69.Glossary of terms.  185
  • Table 70. List of Abbreviations.          188

 

List of Figures

  • Figure 1. Quantum computing development timeline.       15
  • Figure 2.Quantum investments 2012-2024 (millions USD).            16
  • Figure 3.  National quantum initiatives and funding.           17
  • Figure 4. Quantum Sensors: Market and Technology Roadmap to 2040.              34
  • Figure 5. Global market for quantum sensors, by types, 2018-2035 (Millions USD).      43
  • Figure 6. Global market for quantum sensors, by volume, 2018-2035.   44
  • Figure 7. Global market for quantum sensors, by sensor price, 2025-2035 (Units).       45
  • Figure 8. Global market for quantum sensors, by end use industry, 2018-2035 (Millions USD).            46
  • Figure 9. Q.ANT quantum particle sensor.  52
  • Figure 10. Current Technological Readiness Levels: Quantum Sensors.               52
  • Figure 11. SWOT analysis for quantum sensors market.   53
  • Figure 12. Atomic clocks market roadmap.               58
  • Figure 13. Strontium lattice optical clock.  61
  • Figure 14. NIST's compact optical clock.    63
  • Figure 15. SWOT analysis for atomic clocks.            65
  • Figure 16. Global market for atomic clocks 2025-2035 (Billions USD).   67
  • Figure 17. Quantum Magnetometers Market Roadmap.   72
  • Figure 18.Principle of SQUID magnetometer.           73
  • Figure 19. SWOT analysis for SQUIDS.          77
  • Figure 20. SWOT analysis for OPMs 79
  • Figure 21. Tunneling magnetoresistance mechanism and TMR ratio formats.   80
  • Figure 22. SWOT analysis for TMR (Tunneling Magnetoresistance) sensors.        82
  • Figure 23. SWOT analysis for N-V Center Magnetic Field Sensors.             84
  • Figure 24. Global market forecasts for quantum magnetic field sensors, by type, 2025-2035 (Millions USD).  85
  • Figure 25. Quantum Gravimeter.       86
  • Figure 26. Quantum gravimeters Market roadmap.              90
  • Figure 27. Global market for Quantum gravimeters 2025-2035 (Millions USD). 92
  • Figure 28. SWOT analysis for Quantum Gravimeters.          93
  • Figure 29. Inertial Quantum Sensors Market roadmap.     101
  • Figure 30. SWOT analysis for Quantum Gyroscopes.          102
  • Figure 31. SWOT analysis for Quantum image sensing.    106
  • Figure 32. Global market for quantum image sensors 2025-2035 (Millions USD).           106
  • Figure 33. Principle of quantum radar.          108
  • Figure 34. Illustration of a quantum radar prototype.          109
  • Figure 35. Quantum RF Sensors Market Roadmap (2023-2035). 125
  • Figure 36. ColdQuanta Quantum Core (left), Physics Station (middle) and the atoms control chip (right).                154
  • Figure 37. SpinMagIC quantum sensor.       181

 

 

 

The Global Quantum Sensors Market 2025-2035
The Global Quantum Sensors Market 2025-2035
PDF download.

The Global Quantum Sensors Market 2025-2035
The Global Quantum Sensors Market 2025-2035
PDF and Print Editions (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com