The Global Advanced Li-ion and Beyond Lithium Batteries Market 2025-2035

0

cover

cover

  • Published: April 2025
  • Pages: 700
  • Tables: 186
  • Figures: 196

 

The battery technology landscape is undergoing a profound transformation as the industry shifts from conventional lithium-ion solutions toward advanced chemistries and beyond-lithium alternatives. While lithium-ion (Li-ion) technology currently dominates the global battery market with over 99% market share, emerging technologies are poised to capture approximately >25% of the market by 2035. This report provides an in-depth analysis of both advanced Li-ion batteries and beyond-lithium technologies that will revolutionize energy storage across multiple applications from 2025 to 2035. Report contents include:

  • Battery demand in GWh by technology type (2025-2035)
  • Market valuation in billions of dollars
  • Application-specific adoption curves
  • Regional market development
  • Material consumption trends for advanced anodes and cathodes
  • Analysis of Next-Generation Lithium-Ion Technologies:
    • Silicon and silicon-carbon composite anodes
    • High and ultra-high nickel cathode materials
    • Single crystal cathodes
    • Lithium-manganese-rich (LMR-NMC) formulations
    • Advanced electrolyte systems
    • Lithium manganese iron phosphate (LMFP)
  • Beyond-Lithium Solutions:
    • Semi-solid-state and solid-state batteries
    • Sodium-ion and sodium-sulfur systems
    • Lithium-sulfur batteries
    • Lithium-metal and anode-less designs
    • Zinc-based technologies
    • Redox flow batteries
    • Aluminum-ion batteries
  • Specialized Form Factors:
    • Flexible batteries
    • Transparent energy storage
    • Degradable batteries
    • Printed and 3D-printed solutions
  • Application Market analysis:
    • Electric Vehicle Ecosystem:
      • Passenger electric vehicles (BEV/PHEV)
      • Electric buses, trucks, and commercial vehicles
      • Micro-mobility solutions
      • Off-road applications including construction and marine
      • Battery sizing requirements by vehicle type
    • Grid Energy Storage:
      • Large-scale installations
      • Behind-the-meter commercial systems
      • Residential storage solutions
    • Consumer Electronics:
      • Next-generation devices
      • Wearable technology
      • Portable power applications
  • Supply Chain and Manufacturing Analysis
  • Advanced cathode production methods
  • Silicon anode manufacturing processes
  • Solid-state battery production techniques
  • Recycling technologies for lithium-ion and beyond-lithium batteries
  • Raw material requirements and supply chain considerations
  • The integration of AI in battery development and production
  • Technology readiness assessments and commercialization timelines
  • Application-specific battery selection frameworks
  • Regional competitive advantages in battery innovation
  • Material intensity and sustainability considerations
  • Emerging use cases for specialized battery technologies
  • Competitive Landscape. The report profiles over 350 companies across the battery value chain, from established manufacturers to innovative start-ups, with detailed analysis of their technology positioning, production capabilities, and strategic partnerships. Companies profiled include 2D Fab AB, 24M Technologies, Inc., 3DOM Inc., 6K Energy, Abound Energy, AC Biode, ACCURE Battery Intelligence, Addionics, Advano, Agora Energy Technologies, Aionics Inc., AirMembrane Corporation, Allegro Energy Pty. Ltd., Alsym Energy, Altairnano / Yinlong, Altris AB, Aluma Power, Altech Batteries Ltd., Ambri, Inc., AMO Greentech, Ampcera, Inc., Amprius, Inc., AMTE Power, Anaphite Limited, Anthro Energy, APB Corporation, Appear Inc., Ateios Systems, Atlas Materials, Australian Advanced Materials, Australian Vanadium Limited, Australia VRFB ESS Company (AVESS), Avanti Battery Company, AZUL Energy Co., Ltd, BAK Power Battery, BASF, BattGenie Inc., Basquevolt, Bedimensional S.p.A, Beijing WeLion New Energy Technology, Bemp Research Company, BenAn Energy Technology, BGT Materials Ltd., Big Pawer, Biwatt Power, Black Diamond Structures, LLC, Blackstone Resources, Blue Current, Inc., Blue Solutions, Blue Spark Technologies, Inc., Bodi, Inc., Brill Power, BrightVolt, Inc., Broadbit Batteries Oy, BTR New Energy Materials, Inc., BYD Company Limited, Cabot Corporation, California Lithium Battery, CAMX Power, CAPCHEM, CarbonScape Ltd., CBAK Energy Technology, Inc., CCL Design, CEC Science & Technology Co., Ltd, Contemporary Amperex Technology Co Ltd (CATL), CellCube, CellsX, Central Glass Co., Ltd., CENS Materials Ltd., CERQ, Ceylon Graphene Technologies (Pvt) Ltd, Cham Battery Technology, Chasm Advanced Materials, Inc., Chemix, Chengdu Baisige Technology Co., Ltd., China Sodium-ion Times, Citrine Informatics, Clarios, Clim8, CMBlu Energy AG, Connexx Systems Corp, Conovate, Coreshell, Customcells, Cymbet, Daejoo Electronic Materials, Dalian Rongke Power, DFD, Dotz Nano, Dreamweaver International, Eatron Technologies, Ecellix, Echion Technologies, EcoPro BM, ElecJet, Elestor, Elegus Technologies, E-Magy, Energy Storage Industries, Enerpoly AB, Enfucell Oy, Enevate, EnPower Greentech, Enovix, Ensurge Micropower ASA, E-Zinc, Eos Energy, Enzinc, Eonix Energy, ESS Tech, EthonAI, EVE Energy Co., Ltd, Exencell New Energy, Factorial Energy, Faradion Limited, Farasis Energy, FDK Corporation, Feon Energy, Inc., FinDreams Battery Co., Ltd., FlexEnergy LLC, Flow Aluminum, Inc., Flux XII, Forge Nano, Inc., Forsee Power, Fraunhofer Institute for Electronic Nano Systems (ENAS), Front Edge Technology, Fuelium, Fuji Pigment Co., Ltd., Fujitsu Laboratories Ltd., Corporation Guangzhou Automobile New Energy (GAC), Ganfeng Lithium, GDI, Gelion Technologies Pty Ltd., Geyser Batteries Oy, General Motors (GM), Global Graphene Group, Gnanomat S.L., Gotion High Tech, GQenergy srl, Grafentek, Grafoid, Graphene Batteries AS, Graphene Manufacturing Group Pty Ltd (GMG), Great Power Energy, Green Energy Storage S.r.l. (GES), GRST, Shenzhen Grepow Battery Co., Ltd. (Grepow), Group14 Technologies, Inc., Guoke Tanmei New Materials, GUS Technology, H2 Inc., Hansol Chemical, HE3DA Ltd., Hexalayer LLC, High Performance Battery Holding AG, HiNa Battery Technologies Limited, Hirose Paper Mfg Co., Ltd., HiT Nano, Hitachi Zosen Corporation, Horizontal Na Energy, HPQ Nano Silicon Powders Inc., Hua Na New Materials, Hybrid Kinetic Group, HydraRedox Iberia S.L., IBU-tec Advanced Materials AG, Idemitsu Kosan Co., Ltd., Ilika plc, Indi Energy, INEM Technologies, Inna New Energy, Innolith, InnovationLab, Inobat, Intecells, Intellegens, Invinity Energy Systems, Ionblox, Inc., Ionic Materials, Ionic Mineral Technologies, Ion Storage Systems LLC, Iontra, I-Ten SA, Janaenergy Technology, Jenax, Inc., Jiana Energy, JIOS Aerogel, JNC Corporation, Johnson Energy Storage, Inc., Johnson Matthey, Jolt Energy Storage, JR Energy Solution, Kemiwatt, Kite Rise Technologies GmbH, KoreaGraph, Korid Energy / AVESS, Koura, Kusumoto Chemicals, Largo, Inc., Le System Co., Ltd, Lepu Sodium Power, LeydenJar Technologies, LG Energy Solutions, LiBest, Inc., Libode New Material, LiCAP Technologies, Inc., Li-Fun Technology, Li-Metal Corp, LiNa Energy, LIND Limited, Lionrock Batteries, LionVolt BV, Li-S Energy, Lithium Werks BV, LIVA Power Management Systems GmbH, Lucky Sodium Storage, Lyten, Inc., Merck & Co., Inc., Microvast, Mitsubishi Chemical Corporation, Monolith AI, Moonwat, mPhase Technologies, Murata Manufacturing Co., Ltd., NanoGraf Corporation, Nacoe Energy, nanoFlocell, Nanom, Nanomakers, Nano One Materials, NanoPow AS, Nanoramic Laboratories, Nanoresearch, Inc., Nanotech Energy Inc., Natrium Energy, Natron Energy, Nawa Techonologies, NDB, NEC Corporation, NEI Corporation, Neo Battery Materials Ltd., New Dominion Enterprises, Nexeon, NGK Insulators Ltd., NIO, Inc., Nippon Chemicon, Nippon Electric Glass, Noco-noco, Noon Energy, Nordische Technologies, Novonix, Nuriplan Co., Ltd., Nuvola Technology, Nuvvon, Nyobolt, OneD Battery Sciences, Our Next Energy (ONE), Paraclete Energy, Paragonage, PEAK Energy, Piersica, Pinflow Energy Storage, PJP Eye Ltd., Polarium, PolyJoule, PolyPlus Battery Company, Posco Chemical, PowerCo SE, prelonic technologies, Prieto Battery, Primearth EV Energy Co., Ltd., Prime Batteries Technology, Primus Power, Printed Energy Pty Ltd., ProfMOF AS and more.....

 

 

 

 

 

1             RESEARCH METHODOLOGY              43

  • 1.1        Report scope 43
  • 1.2        Research methodology           44

 

2             EXECUTIVE SUMMARY            45

  • 2.1        The Li-ion Battery Market in 2025     45
  • 2.2        Global Market Forecasts to 2035     46
    • 2.2.1    Addressable markets                46
    • 2.2.2    Li-ion battery pack demand for XEV (GWh) 47
    • 2.2.3    Li-ion battery market value for XEV ($B)       48
    • 2.2.4    Semi-solid-state battery market forecast (GWh)    49
    • 2.2.5    Semi-solid-state battery market value ($B)               52
    • 2.2.6    Solid-state battery market forecast (GWh) 53
    • 2.2.7    Sodium-ion  battery market forecast (GWh)              56
    • 2.2.8    Sodium-ion battery market value ($B)          57
    • 2.2.9    Li-ion battery demand versus beyond Li-ion batteries demand   58
    • 2.2.10 BEV car cathode forecast (GWh)      60
    • 2.2.11 BEV anode forecast (GWh)   61
    • 2.2.12 BEV anode forecast ($B)        63
    • 2.2.13 EV cathode forecast (GWh)  64
    • 2.2.14 EV Anode forecast (GWh)      65
    • 2.2.15 Advanced anode forecast (GWh)      66
    • 2.2.16 Advanced anode forecast (S$B)        68
  • 2.3        The global market for advanced Li-ion batteries     70
    • 2.3.1    Electric vehicles           71
      • 2.3.1.1 Market overview           71
      • 2.3.1.2 Battery Electric Vehicles        71
      • 2.3.1.3 Electric buses, vans and trucks         73
        • 2.3.1.3.1           Electric medium and heavy duty trucks       73
        • 2.3.1.3.2           Electric light commercial vehicles (LCVs)  73
        • 2.3.1.3.3           Electric buses               74
        • 2.3.1.3.4           Micro EVs         75
      • 2.3.1.4 Electric off-road           76
        • 2.3.1.4.1           Construction vehicles              76
        • 2.3.1.4.2           Electric trains 78
        • 2.3.1.4.3           Electric boats 78
      • 2.3.1.5 Market demand and forecasts           80
    • 2.3.2    Grid storage    83
      • 2.3.2.1 Market overview           83
      • 2.3.2.2 Technologies  83
      • 2.3.2.3 Market demand and forecasts           84
    • 2.3.3    Consumer electronics             85
      • 2.3.3.1 Market overview           85
      • 2.3.3.2 Technologies  85
      • 2.3.3.3 Market demand and forecasts           86
    • 2.3.4    Stationary batteries   86
      • 2.3.4.1 Market overview           86
      • 2.3.4.2 Technologies  87
      • 2.3.4.3 Market demand and forecasts           88
    • 2.3.5    Market Forecasts        88
  • 2.4        Market drivers                90
  • 2.5        Battery market megatrends  93
  • 2.6        Advanced materials for batteries      95
  • 2.7        Motivation for battery development beyond lithium            96
  • 2.8        Battery chemistries   96

 

3             LI-ION BATTERIES       98

  • 3.1        Types of Lithium Batteries     102
  • 3.2        Anode materials          104
    • 3.2.1    Graphite            105
    • 3.2.2    Lithium Titanate           105
    • 3.2.3    Lithium Metal 106
    • 3.2.4    Silicon anodes              106
  • 3.3        SWOT analysis              106
  • 3.4        Trends in the Li-ion battery market  107
  • 3.5        Li-ion technology roadmap  108
  • 3.6        Silicon anodes              109
    • 3.6.1    Benefits             110
    • 3.6.2    Silicon anode performance  111
    • 3.6.3    Development in li-ion batteries          113
      • 3.6.3.1 Manufacturing silicon              114
      • 3.6.3.2 Commercial production         115
      • 3.6.3.3 Costs  117
      • 3.6.3.4 Value chain     117
      • 3.6.3.5 Markets and applications      118
        • 3.6.3.5.1           EVs       119
        • 3.6.3.5.2           Consumer electronics             120
        • 3.6.3.5.3           Energy Storage              121
        • 3.6.3.5.4           Portable Power Tools 121
        • 3.6.3.5.5           Emergency Backup Power     121
      • 3.6.3.6 Future outlook              122
    • 3.6.4    Consumption 122
      • 3.6.4.1 By anode material type            123
      • 3.6.4.2 By end use market      123
    • 3.6.5    Alloy anode materials              124
    • 3.6.6    Silicon-carbon composites  124
    • 3.6.7    Silicon oxides and coatings  125
    • 3.6.8    Carbon nanotubes in Li-ion  125
    • 3.6.9    Graphene coatings for Li-ion               126
    • 3.6.10 Prices  126
    • 3.6.11 Companies     126
  • 3.7        Li-ion electrolytes        127
  • 3.8        Cathodes          128
    • 3.8.1    Materials           128
      • 3.8.1.1 High and Ultra-High nickel cathode materials         129
        • 3.8.1.1.1           Types   129
        • 3.8.1.1.2           Benefits             130
        • 3.8.1.1.3           Stability             130
        • 3.8.1.1.4           Single Crystal Cathodes         134
        • 3.8.1.1.5           Commercial activity  135
        • 3.8.1.1.6           Manufacturing              135
        • 3.8.1.1.7           High manganese content       135
      • 3.8.1.2 Lithium-Manganese-Rich (Li-Mn-Rich, LMR-NMC)               136
        • 3.8.1.2.1           Li-Mn-rich cathodes LMR-NMC         137
        • 3.8.1.2.2           Stability             138
        • 3.8.1.2.3           Energy density               139
        • 3.8.1.2.4           Commercialization    140
      • 3.8.1.3 Lithium Cobalt Oxide(LiCoO2) — LCO          141
      • 3.8.1.4 Lithium Iron Phosphate(LiFePO4) — LFP     142
      • 3.8.1.5 Lithium Manganese Oxide (LiMn2O4) — LMO          142
      • 3.8.1.6 Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) — NMC 143
      • 3.8.1.7 Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) — NCA       144
      • 3.8.1.8 Lithium manganese phosphate (LiMnP)      145
      • 3.8.1.9 Lithium manganese iron phosphate (LiMnFePO4 or LMFP)             145
        • 3.8.1.9.1           Key characteristics    146
        • 3.8.1.9.2           LMFP energy density 147
        • 3.8.1.9.3           Costs  148
        • 3.8.1.9.4           Saft phosphate-based cathodes       148
        • 3.8.1.9.5           Commercialization    150
      • 3.8.1.10            Lithium nickel manganese oxide (LNMO)    151
        • 3.8.1.10.1        Overview           151
        • 3.8.1.10.2        LNMO energy density               152
        • 3.8.1.10.3        LNMO material intensity         153
      • 3.8.1.11            Graphite and LTO        155
      • 3.8.1.12            Silicon 156
      • 3.8.1.13            Lithium metal 157
      • 3.8.1.14            Zero-Cobalt NMx         158
    • 3.8.2    Alternative Cathode Production        158
      • 3.8.2.1 Production/Synthesis               158
      • 3.8.2.2 Commercial development    159
      • 3.8.2.3 Recycling cathodes    163
    • 3.8.3    Comparison of key lithium-ion cathode materials 164
    • 3.8.4    Emerging cathode material synthesis methods      165
    • 3.8.5    Cathode coatings        165
  • 3.9        Binders and conductive additives    166
    • 3.9.1    Materials           166
  • 3.10     Separators       166
    • 3.10.1 Materials           166
  • 3.11     Platinum group metals            167
  • 3.12     Li-ion battery market players               167
  • 3.13     Li-ion recycling              168
    • 3.13.1 Comparison of recycling techniques              170
    • 3.13.2 Hydrometallurgy          171
      • 3.13.2.1            Method overview         171
        • 3.13.2.1.1        Solvent extraction       172
      • 3.13.2.2            SWOT analysis              173
    • 3.13.3 Pyrometallurgy              174
      • 3.13.3.1            Method overview         174
      • 3.13.3.2            SWOT analysis              175
    • 3.13.4 Direct recycling             175
      • 3.13.4.1            Method overview         175
        • 3.13.4.1.1        Electrolyte separation              177
        • 3.13.4.1.2        Separating cathode and anode materials   177
        • 3.13.4.1.3        Binder removal             177
        • 3.13.4.1.4        Relithiation      178
        • 3.13.4.1.5        Cathode recovery and rejuvenation                178
        • 3.13.4.1.6        Hydrometallurgical-direct hybrid recycling                179
      • 3.13.4.2            SWOT analysis              179
    • 3.13.5 Other methods             180
      • 3.13.5.1            Mechanochemical Pretreatment      180
      • 3.13.5.2            Electrochemical Method        180
      • 3.13.5.3            Ionic Liquids   181
    • 3.13.6 Recycling of Specific Components 181
      • 3.13.6.1            Anode (Graphite)         181
      • 3.13.6.2            Cathode            181
      • 3.13.6.3            Electrolyte        182
    • 3.13.7 Recycling of Beyond Li-ion Batteries               182
      • 3.13.7.1            Conventional vs Emerging Processes            182
  • 3.14     Global revenues           183

 

4             LITHIUM-METAL BATTERIES 185

  • 4.1        Technology description           185
  • 4.2        Lithium-metal anodes             186
    • 4.2.1    Overview           186
    • 4.2.2    Li-metal without solid-electrolytes  187
  • 4.3        Challenges      187
  • 4.4        Energy density               188
  • 4.5        Anode-less Cells         189
    • 4.5.1    Overview           189
    • 4.5.2    Benefits             189
    • 4.5.3    Key companies             189
  • 4.6        Lithium-metal and solid-state batteries       190
  • 4.7        Hybrid batteries            190
  • 4.8        Applications   191
  • 4.9        SWOT analysis              192
  • 4.10     Product developers    193

 

5             LITHIUM-SULFUR BATTERIES              194

  • 5.1        Technology description           194
    • 5.1.1    Operating principle of Li-S     195
    • 5.1.2    Advantages     195
    • 5.1.3    Challenges      196
    • 5.1.4    Commercialization    197
  • 5.2        SWOT analysis              199
  • 5.3        Global revenues           200
  • 5.4        Product developers    201

 

6             LITHIUM TITANATE OXIDE (LTO) AND NIOBATE BATTERIES              202

  • 6.1        Technology description           202
    • 6.1.1    Lithium titanate oxide (LTO) 202
    • 6.1.2    Niobium titanium oxide (NTO)            203
      • 6.1.2.1 Niobium tungsten oxide          204
      • 6.1.2.2 Vanadium oxide anodes         204
  • 6.2        Global revenues           205
  • 6.3        Product developers    207

 

7             SODIUM-ION (NA-ION) BATTERIES 209

  • 7.1        Technology description           209
    • 7.1.1    Cathode materials     209
      • 7.1.1.1 Layered transition metal oxides        209
        • 7.1.1.1.1           Types   209
        • 7.1.1.1.2           Cycling performance 210
        • 7.1.1.1.3           Advantages and disadvantages        211
        • 7.1.1.1.4           Market prospects for LO SIB 211
      • 7.1.1.2 Polyanionic materials               211
        • 7.1.1.2.1           Advantages and disadvantages        212
        • 7.1.1.2.2           Types   212
        • 7.1.1.2.3           Market prospects for Poly SIB             213
      • 7.1.1.3 Prussian blue analogues (PBA)          213
        • 7.1.1.3.1           Types   214
        • 7.1.1.3.2           Advantages and disadvantages        214
        • 7.1.1.3.3           Market prospects for PBA-SIB             215
    • 7.1.2    Anode materials          215
      • 7.1.2.1 Hard carbons 216
      • 7.1.2.2 Carbon black 217
      • 7.1.2.3 Graphite            218
      • 7.1.2.4 Carbon nanotubes     221
      • 7.1.2.5 Graphene         222
      • 7.1.2.6 Alloying materials       223
      • 7.1.2.7 Sodium Titanates        224
      • 7.1.2.8 Sodium Metal 224
    • 7.1.3    Electrolytes     224
  • 7.2        Comparative analysis with other battery types        225
  • 7.3        Cost comparison with Li-ion                226
  • 7.4        Growing applications in automotive               227
  • 7.5        Materials in sodium-ion battery cells             227
  • 7.6        SWOT analysis              229
  • 7.7        Global revenues           231
  • 7.8        Product developers    232
    • 7.8.1    Battery Manufacturers            232
    • 7.8.2    Large Corporations    233
    • 7.8.3    Automotive Companies          233
    • 7.8.4    Chemicals and Materials Firms         233

 

8             SODIUM-SULFUR BATTERIES             234

  • 8.1        Technology description           234
  • 8.2        Applications   235
  • 8.3        SWOT analysis              236

 

9             ALUMINIUM-ION BATTERIES               238

  • 9.1        Technology description           238
  • 9.2        SWOT analysis              239
  • 9.3        Commercialization    240
  • 9.4        Global revenues           241
  • 9.5        Product developers    241

 

10          SOLID STATE BATTERIES         243

  • 10.1     Technology description           243
    • 10.1.1 Solid-state electrolytes            245
  • 10.2     Features and advantages      246
  • 10.3     Technical specifications         247
  • 10.4     Types   250
  • 10.5     Microbatteries               252
    • 10.5.1 Introduction    252
    • 10.5.2 Materials           252
    • 10.5.3 Applications   253
    • 10.5.4 3D designs      253
      • 10.5.4.1            3D printed batteries   253
  • 10.6     Bulk type solid-state batteries            254
  • 10.7     SWOT analysis              254
  • 10.8     Limitations      255
  • 10.9     Global revenues           257
  • 10.10  Product developers    258

 

11          FLEXIBLE BATTERIES 260

  • 11.1     Technology description           260
  • 11.2     Technical specifications         262
    • 11.2.1 Approaches to flexibility         262
  • 11.3     Flexible electronics    266
  • 11.4     Flexible materials        267
  • 11.5     Flexible and wearable Metal-sulfur batteries            268
  • 11.6     268
  • 11.7     Flexible and wearable Metal-air batteries   269
  • 11.8     Flexible Lithium-ion Batteries             269
    • 11.8.1 Types of Flexible/stretchable LIBs    272
      • 11.8.1.1            Flexible planar LiBs   272
      • 11.8.1.2            Flexible Fiber LiBs       273
      • 11.8.1.3            Flexible micro-LiBs    273
      • 11.8.1.4            Stretchable lithium-ion batteries      275
      • 11.8.1.5            Origami and kirigami lithium-ion batteries  276
  • 11.9     Flexible Li/S batteries                277
    • 11.9.1 Components  278
    • 11.9.2 Carbon nanomaterials            278
  • 11.10  Flexible lithium-manganese dioxide (Li–MnO2) batteries 279
  • 11.11  Flexible zinc-based batteries               279
    • 11.11.1              Components  280
      • 11.11.1.1         Anodes              280
      • 11.11.1.2         Cathodes          280
    • 11.11.2              Challenges      280
    • 11.11.3              Flexible zinc-manganese dioxide (Zn–Mn) batteries             281
    • 11.11.4              Flexible silver–zinc (Ag–Zn) batteries              282
    • 11.11.5              Flexible Zn–Air batteries          283
    • 11.11.6              Flexible zinc-vanadium batteries      284
  • 11.12  Fiber-shaped batteries             284
    • 11.12.1              Carbon nanotubes     284
    • 11.12.2              Types   285
    • 11.12.3              Applications   286
    • 11.12.4              Challenges      286
  • 11.13  Energy harvesting combined with wearable energy storage devices         286
  • 11.14  SWOT analysis              289
  • 11.15  Global revenues           290
  • 11.16  Product developers    291

 

12          TRANSPARENT BATTERIES    294

  • 12.1     Technology description           294
  • 12.2     Components  295
  • 12.3     SWOT analysis              296
  • 12.4     Market outlook             297

 

13          DEGRADABLE BATTERIES      298

  • 13.1     Technology description           298
  • 13.2     Components  299
  • 13.3     SWOT analysis              300
  • 13.4     Market outlook             301
  • 13.5     Product developers    301

 

14          PRINTED BATTERIES 302

  • 14.1     Technical specifications         302
  • 14.2     Components  303
  • 14.3     Design 304
  • 14.4     Key features    305
  • 14.5     Printable current collectors  305
  • 14.6     Printable electrodes  306
  • 14.7     Materials           306
  • 14.8     Applications   307
  • 14.9     Printing techniques    307
  • 14.10  Lithium-ion (LIB) printed batteries    309
  • 14.11  Zinc-based printed batteries                310
  • 14.12  3D Printed batteries   313
    • 14.12.1              3D Printing techniques for battery manufacturing 314
    • 14.12.2              Materials for 3D printed batteries     315
      • 14.12.2.1         Electrode materials   315
      • 14.12.2.2         Electrolyte Materials 316
  • 14.13  SWOT analysis              316
  • 14.14  Global revenues           317
  • 14.15  Product developers    319

 

15          REDOX FLOW BATTERIES      321

  • 15.1     Technology description           321
  • 15.2     Types   323
    • 15.2.1 Vanadium redox flow batteries (VRFB)          324
      • 15.2.1.1            Technology description           324
      • 15.2.1.2            SWOT analysis              326
      • 15.2.1.3            Market players               327
    • 15.2.2 Zinc-bromine flow batteries (ZnBr)  328
      • 15.2.2.1            Technology description           328
      • 15.2.2.2            SWOT analysis              330
      • 15.2.2.3            Market players               331
    • 15.2.3 Polysulfide bromine flow batteries (PSB)     332
      • 15.2.3.1            Technology description           332
      • 15.2.3.2            SWOT analysis              333
    • 15.2.4 Iron-chromium flow batteries (ICB) 334
      • 15.2.4.1            Technology description           334
      • 15.2.4.2            SWOT analysis              335
      • 15.2.4.3            Market players               336
    • 15.2.5 All-Iron flow batteries                336
      • 15.2.5.1            Technology description           336
      • 15.2.5.2            SWOT analysis              338
      • 15.2.5.3            Market players               339
    • 15.2.6 Zinc-iron (Zn-Fe) flow batteries          339
      • 15.2.6.1            Technology description           339
      • 15.2.6.2            SWOT analysis              340
      • 15.2.6.3            Market players               341
    • 15.2.7 Hydrogen-bromine (H-Br) flow batteries      342
      • 15.2.7.1            Technology description           342
      • 15.2.7.2            SWOT analysis              344
      • 15.2.7.3            Market players               345
    • 15.2.8 Hydrogen-Manganese (H-Mn) flow batteries             345
      • 15.2.8.1            Technology description           345
      • 15.2.8.2            SWOT analysis              346
      • 15.2.8.3            Market players               347
    • 15.2.9 Organic flow batteries              348
      • 15.2.9.1            Technology description           348
      • 15.2.9.2            SWOT analysis              350
      • 15.2.9.3            Market players               351
    • 15.2.10              Emerging Flow-Batteries         351
      • 15.2.10.1         Semi-Solid Redox Flow Batteries      351
      • 15.2.10.2         Solar Redox Flow Batteries   352
      • 15.2.10.3         Air-Breathing Sulfur Flow Batteries  352
      • 15.2.10.4         Metal–CO2 Batteries 353
    • 15.2.11              Hybrid Flow Batteries               353
      • 15.2.11.1         Zinc-Cerium Hybrid Flow Batteries  353
        • 15.2.11.1.1     Technology description           353
      • 15.2.11.2         Zinc-Polyiodide Flow Batteries           354
        • 15.2.11.2.1     Technology description           354
      • 15.2.11.3         Zinc-Nickel Hybrid Flow Batteries    356
        • 15.2.11.3.1     Technology description           356
    • 15.2.11.4         Zinc-Bromine Hybrid Flow Batteries               357
        • 15.2.11.4.1     Technology description           357
    • 15.2.11.5         Vanadium-Polyhalide Flow Batteries              358
      • 15.2.11.5.1     Technology description           358
  • 15.3     Markets for redox flow batteries         359
  • 15.4     Global revenues           362

 

16          ZN-BASED BATTERIES              363

  • 16.1     Technology description           363
    • 16.1.1 Zinc-Air batteries         364
    • 16.1.2 Zinc-ion batteries        365
    • 16.1.3 Zinc-bromide 366
  • 16.2     Market outlook             366
  • 16.3     Product developers    367

 

17          AI BATTERY TECHNOLOGY   367

  • 17.1     Overview           367
  • 17.2     Applications   368
    • 17.2.1 Machine Learning       368
      • 17.2.1.1            Overview           368
    • 17.2.2 Material Informatics  370
      • 17.2.2.1            Overview           370
      • 17.2.2.2            Companies     372
    • 17.2.3 Cell Testing      373
      • 17.2.3.1            Overview           373
      • 17.2.3.2            Companies     375
    • 17.2.4 Cell Assembly and Manufacturing  377
      • 17.2.4.1            Overview           377
      • 17.2.4.2            Companies     379
    • 17.2.5 Battery Analytics         380
      • 17.2.5.1            Overview           380
      • 17.2.5.2            Companies     382
    • 17.2.6 Second Life Assessment       383
    • 17.2.6.1            Overview           383
    • 17.2.6.2            Companies     384

 

18          PRINTED SUPERCAPACITORS            385

  • 18.1     Overview           385
  • 18.2     Printing methods         385
  • 18.3     Electrode materials   386
  • 18.4     Electrolytes     387

 

19          COMPANY PROFILES                394 (376 company profiles)

 

20          REFERENCES 676

 

List of Tables

  • Table 1. Trends in the Li-ion market in 2025.             45
  • Table 2. Total addressable markets.               46
  • Table 3. Li-ion battery pack demand for XEV (GWh) 2019-2035. 47
  • Table 4. Li-ion battery market value for XEV (in $B) 2019-2035.   48
  • Table 5. Semi-solid-state battery market forecast (GWh) 2019-2035.     49
  • Table 6. Semi-solid-state battery market forecast, GWh,  by electrolyte types 2019-2035.      51
  • Table 7. Semi-solid-state battery market value ($B) 2019-2035. 52
  • Table 8. Solid-state battery market forecast (GWh) 2019-2035.  53
  • Table 9. Solid-state battery market forecast, GWh, by electrolyte types 2019-2035.    55
  • Table 10. Sodium-ion battery market forecast (GWh) 2019-2035.             56
  • Table 11. Sodium-ion battery market value ($B) 2019-2035.         57
  • Table 12. Li-ion battery demand versus beyond Li-ion batteries demand 2019-2035.  58
  • Table 13. BEV car cathode forecast (GWh) 2019-2035.     60
  • Table 14. BEV anode forecast (GWh) 2019-2035.  61
  • Table 15. BEV anode forecast ($B) 2019-2035.       63
  • Table 16. EV cathode forecast (GWh) 2019-2035. 64
  • Table 17. EV Anode forecast (GWh) 2019-2035.     65
  • Table 18. Advanced anode forecast (GWh) 2019-2035.    66
  • Table 19. Advanced anode forecast (S$B) 2019-2035.      68
  • Table 20. Battery chemistries used in electric buses.         74
  • Table 21. Micro EV types         75
  • Table 22. Battery Sizes for Different Vehicle Types.               77
  • Table 23. Competing technologies for batteries in electric boats.              79
  • Table 24. Electric bus, truck and van battery forecast (GWh), 2018-2035.           81
  • Table 25. Competing technologies for batteries in grid storage.  83
  • Table 26. Competing technologies for batteries in consumer electronics             85
  • Table 27. Competing technologies for sodium-ion batteries in grid storage.       87
  • Table 28. Total Addressable Markets (GWh) for Advanced Li-ion and Beyond Li-ion Batteries.                88
  • Table 29. BEV Car Cathode Forecast (GWh).            89
  • Table 30. EV Cathode Forecast (GWh) (Including buses, trucks, vans).  89
  • Table 31. BEV Anode Forecast (GWh).           89
  • Table 32. EV Anode Forecast (GWh) (Including buses, trucks, vans).       89
  • Table 33.Consumer Devices Anode Forecast.         90
  • Table 34.Advanced Anode Forecast (GWh)                90
  • Table 35. Market drivers for use of advanced materials and technologies in batteries. 91
  • Table 36. Battery market megatrends.           93
  • Table 37. Advanced materials for batteries.               95
  • Table 38. Commercial Li-ion battery cell composition.     98
  • Table 39.  Lithium-ion (Li-ion) battery supply chain.            101
  • Table 40. Types of lithium battery.    102
  • Table 41. Comparison of Li-ion battery anode materials. 104
  • Table 42. Trends in the Li-ion battery market.           107
  • Table 43. Si-anode performance summary.              111
  • Table 44. Manufacturing methods for nano-silicon anodes.          114
  • Table 45. Market Players' Production Capacites.   115
  • Table 46. Strategic Partnerships and Agreements.                115
  • Table 47. Markets and applications for silicon anodes.     119
  • Table 48. Anode material consumption by type (tonnes). 123
  • Table 49. Anode material consumption by end use market (tonnes).       123
  • Table 50. Anode materials prices, current and forecasted 9USD/kg).      126
  • Table 51. Silicon-anode companies.              126
  • Table 52. Li-ion battery cathode materials.                128
  • Table 53. Key technology trends shaping lithium-ion battery cathode development.    129
  • Table 54. Benefits of High and Ultra-High Nickel NMC.      130
  • Table 55. High-nickel Products Table.            134
  • Table 56. Properties of Lithium Cobalt Oxide) as a cathode material for lithium-ion batteries.               141
  • Table 57. Properties of lithium iron phosphate (LiFePO4 or LFP) as a cathode material for lithium-ion batteries.          142
  • Table 58. Properties of Lithium Manganese Oxide cathode material.       143
  • Table 59. Properties of Lithium Nickel Manganese Cobalt Oxide (NMC).               144
  • Table 60. Properties of Lithium Nickel Cobalt Aluminum Oxide   144
  • Table 61. Alternative Cathode Production Routes.               158
  • Table 62. Alternative cathode synthesis routes.     159
  • Table 63. Alternative Cathode Production Companies.     159
  • Table 64. Alternative Cathode Production Routes 161
  • Table 65. Recycled cathode materials facilities and capactites. 164
  • Table 66. Comparison table of key lithium-ion cathode materials              164
  • Table 67. Li-ion battery Binder and conductive additive materials.            166
  • Table 68. Li-ion battery Separator materials.            167
  • Table 69. Li-ion battery market players.        167
  • Table 70. Typical lithium-ion battery recycling process flow.         169
  • Table 71. Main feedstock streams that can be recycled for lithium-ion batteries.            169
  • Table 72. Comparison of LIB recycling methods.   170
  • Table 73. Comparison of conventional and emerging processes for recycling beyond lithium-ion batteries.          183
  • Table 74. Global revenues for Li-ion batteries, 2018-2035, by market (Billions USD).    183
  • Table 75. Applications for Li-metal batteries.           192
  • Table 76. Li-metal battery developers            193
  • Table 77. Comparison of the theoretical energy densities of lithium-sulfur batteries versus other common battery types.           196
  • Table 78. Global revenues for Lithium-sulfur, 2018-2035, by market (Billions USD).      200
  • Table 79. Lithium-sulphur battery product developers.     201
  • Table 80. Global revenues for Lithium titanate and niobate batteries, 2018-2035, by market (Billions USD).  205
  • Table 81. Product developers in Lithium titanate and niobate batteries.                207
  • Table 82. Comparison of cathode materials.            209
  • Table 83.  Layered transition metal oxide cathode materials for sodium-ion batteries. 210
  • Table 84. General cycling performance characteristics of common layered transition metal oxide cathode materials.     210
  • Table 85. Polyanionic materials for sodium-ion battery cathodes.             211
  • Table 86. Comparative analysis of different polyanionic materials.           212
  • Table 87.  Common types of Prussian Blue Analogue materials used as cathodes or anodes in sodium-ion batteries.  214
  • Table 88. Comparison of Na-ion battery anode materials.              215
  • Table 89. Hard Carbon producers for sodium-ion battery anodes.            216
  • Table 90. Comparison of carbon materials in sodium-ion battery anodes.          217
  • Table 91. Comparison between Natural and Synthetic Graphite.               219
  • Table 92. Properties of graphene, properties of competing materials, applications thereof.     222
  • Table 93. Comparison of carbon based anodes.    223
  • Table 94.  Alloying materials used in sodium-ion batteries.             224
  • Table 95. Na-ion electrolyte formulations. 225
  • Table 96. Pros and cons compared to other battery types.              225
  • Table 97. Cost comparison with Li-ion batteries.   226
  • Table 98. Key materials in sodium-ion battery cells.            227
  • Table 99. Global revenues for sodium-ion batteries, 2018-2035, by market (Billions USD).      231
  • Table 100. Product developers in aluminium-ion batteries.            241
  • Table 101. Types of solid-state electrolytes.              245
  • Table 102. Market segmentation and status for solid-state batteries.      246
  • Table 103. Solid electrolyte material comparison. 246
  • Table 104. Solid Electrolyte Material Comparison.               246
  • Table 105.  Typical process chains for manufacturing key components and assembly of solid-state batteries.          247
  • Table 106. Comparison between liquid and solid-state batteries.              251
  • Table 107. Limitations of solid-state thin film batteries.    255
  • Table 108. Global revenues for All-Solid State Batteries, 2018-2035, by market (Billions USD).             257
  • Table 109. Solid-state thin-film battery market players.    258
  • Table 110. Flexible battery applications and technical requirements.     262
  • Table 111. Comparison of Flexible and Traditional Lithium-Ion Batteries               263
  • Table 112. Material Choices for Flexible Battery Components.    263
  • Table 113. Flexible Li-ion battery prototypes.           270
  • Table 114. Thin film vs bulk solid-state batteries.   272
  • Table 115. Summary of fiber-shaped lithium-ion batteries.            274
  • Table 116. Types of fiber-shaped batteries.                285
  • Table 117. Global revenues for flexible batteries, 2018-2035, by market (Billions USD).             290
  • Table 118. Product developers in flexible batteries.             291
  • Table 119. Components of transparent batteries. 295
  • Table 120. Components of degradable batteries.  299
  • Table 121. Product developers in degradable batteries.    301
  • Table 122. Main components and properties of different printed battery types.               303
  • Table 123. Applications of printed batteries and their physical and electrochemical requirements.  307
  • Table 124. 2D and 3D printing techniques. 308
  • Table 125. Printing techniques applied to printed batteries.           309
  • Table 126. Main components and corresponding electrochemical values of lithium-ion printed batteries.          309
  • Table 127. Printing technique, main components and corresponding electrochemical values of printed batteries based on Zn–MnO2 and other battery types.       311
  • Table 128. Main 3D Printing techniques for battery manufacturing.         314
  • Table 129. Electrode Materials for 3D Printed Batteries.   315
  • Table 130. Global revenues for printed batteries, 2018-2035, by market (Billions USD).             317
  • Table 131. Product developers in printed batteries.             319
  • Table 132. Advantages and disadvantages of redox flow batteries.            322
  • Table 133. Comparison of different battery types. 323
  • Table 134. Summary of main flow battery types.    323
  • Table 135. Vanadium redox flow batteries (VRFB)-key features, advantages, limitations, performance, components and applications.          325
  • Table 136. Market players in Vanadium redox flow batteries (VRFB).        327
  • Table 137. Zinc-bromine (ZnBr) flow batteries-key features, advantages, limitations, performance, components and applications.          329
  • Table 138. Market players in Zinc-Bromine Flow Batteries (ZnBr).              331
  • Table 139. Polysulfide bromine flow batteries (PSB)-key features, advantages, limitations, performance, components and applications.          332
  • Table 140. Iron-chromium (ICB) flow batteries-key features, advantages, limitations, performance, components and applications.          335
  • Table 141. Market players in Iron-chromium (ICB) flow batteries.               336
  • Table 142. All-Iron flow batteries-key features, advantages, limitations, performance, components and applications.  337
  • Table 143. Market players in All-iron Flow Batteries.            339
  • Table 144. Zinc-iron (Zn-Fe) flow batteries-key features, advantages, limitations, performance, components and applications.          340
  • Table 145. Market players in Zinc-iron (Zn-Fe) Flow Batteries.       342
  • Table 146. Hydrogen-bromine (H-Br) flow batteries-key features, advantages, limitations, performance, components and applications.          343
  • Table 147. Market players in Hydrogen-bromine (H-Br) flow batteries.    345
  • Table 148. Hydrogen-Manganese (H-Mn) flow batteries-key features, advantages, limitations, performance, components and applications.         346
  • Table 149. Market players in Hydrogen-Manganese (H-Mn) Flow Batteries.         347
  • Table 150. Materials in Organic Redox Flow Batteries (ORFB).     348
  • Table 151. Key Active species for ORFBs     348
  • Table 152. Organic flow batteries-key features, advantages, limitations, performance, components and applications.  349
  • Table 153. Market players in Organic Redox Flow Batteries (ORFB).         351
  • Table 154. Zinc-Cerium Hybrid flow batteries-key features, advantages, limitations, performance, components and applications.          354
  • Table 155. Zinc-Polyiodide Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications.          355
  • Table 156. Zinc-Nickel Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications.          356
  • Table 157. Zinc-Bromine Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications.          357
  • Table 158. Vanadium-Polyhalide Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications.         358
  • Table 159. Redox flow battery value chain. 359
  • Table 160. Global revenues for redox flow batteries, 2018-2035, by type (millions USD).           362
  • Table 161. ZN-based battery product developers. 367
  • Table 162. Application of Artificial Intelligence (AI) in battery technology.             368
  • Table 163. Machine learning approaches.  369
  • Table 164. Types of Neural Networks.            370
  • Table 165. Companies in materials informatics for batteries.        372
  • Table 166. Data Forms for Cell Modelling.  374
  • Table 167. Algorithmic Approaches for Different Testing Modes. 374
  • Table 168. Companies in AI for cell testing for batteries.   376
  • Table 169.Algorithmic Approaches in Manufacturing and Cell Assembly:            377
  • Table 170. AI-based battery manufacturing players.            380
  • Table 171. Companies in AI for battery diagnostics and management.  383
  • Table 172. Algorithmic Approaches and Data Inputs/Outputs.    384
  • Table 173. Companies in AI for second-life battery assessment 384
  • Table 174. Methods for printing supercapacitors. 385
  • Table 175. Electrode Materials for printed supercapacitors.          386
  • Table 176. Electrolytes for printed supercapacitors.           388
  • Table 177. Main properties and components of printed supercapacitors.            388
  • Table 178. 3DOM separator. 398
  • Table 179. CATL sodium-ion battery characteristics.          444
  • Table 180. CHAM sodium-ion battery characteristics.       450
  • Table 181. Chasm SWCNT products.             451
  • Table 182. Faradion sodium-ion battery characteristics.  484
  • Table 183. HiNa Battery sodium-ion battery characteristics.         516
  • Table 184. Battery performance test specifications of J. Flex batteries.  538
  • Table 185. LiNa Energy battery characteristics.      556
  • Table 186. Natrium Energy battery characteristics.              576

 

List of Figures

  • Figure 1. Li-ion battery pack demand for XEV (in GWh) 2019-2035            48
  • Figure 2. Li-ion battery market value for XEV (in $B) 2019-2035. 49
  • Figure 3. Semi-solid-state battery market forecast (GWh) 2019-2035.   50
  • Figure 4. Semi-solid-state battery market forecast, GWh,  by electrolyte types 2019-2035.    52
  • Figure 5. Semi-solid-state battery market value ($B) 2019-2035.               53
  • Figure 6. Solid-state battery market forecast (GWh) 2019-2035. 54
  • Figure 7. Sodium-ion  battery market forecast (GWh) 2019-2035.             57
  • Figure 8. Sodium-ion battery market value ($B) 2019-2035.          58
  • Figure 9. Li-ion battery demand versus beyond Li-ion batteries demand 2019-2035.   59
  • Figure 10. BEV car cathode forecast (GWh) 2019-2035.   61
  • Figure 11. BEV anode forecast (GWh) 2019-2035. 62
  • Figure 12. BEV anode forecast ($B) 2019-2035.     64
  • Figure 13. EV cathode forecast (GWh) 2019-2035.               65
  • Figure 14. EV Anode forecast (GWh) 2019-2035.   66
  • Figure 15. Advanced anode forecast (GWh) 2019-2035.  67
  • Figure 16. Figure 17. Advanced anode forecast (S$B) 2019-2035.             69
  • Figure 18. Annual sales of battery electric vehicles and plug-in hybrid electric vehicles.            71
  • Figure 19. Electric car Li-ion demand forecast (GWh), 2018-2035.           80
  • Figure 20. EV Li-ion battery market (US$B), 2018-2035.   81
  • Figure 21. Electric bus, truck and van battery forecast (GWh), 2018-2035.         82
  • Figure 22. Micro EV Li-ion demand forecast (GWh).             83
  • Figure 23. Lithium-ion battery grid storage demand forecast (GWh), 2018-2035.            84
  • Figure 24. Sodium-ion grid storage units.    85
  • Figure 25. Salt-E Dog mobile battery.             87
  • Figure 26. I.Power Nest - Residential Energy Storage System Solution.   87
  • Figure 27. Costs of batteries to 2030.            95
  • Figure 28. Lithium Cell Design.          99
  • Figure 29. Functioning of a lithium-ion battery.       100
  • Figure 30. Li-ion battery cell pack.   101
  • Figure 31. Li-ion electric vehicle (EV) battery.           103
  • Figure 32. SWOT analysis: Li-ion batteries. 107
  • Figure 33. Li-ion technology roadmap.         108
  • Figure 34. Silicon anode value chain.            110
  • Figure 35. Market development timeline.    116
  • Figure 36. Silicon Anode Commercialization Timeline.      117
  • Figure 37. Silicon anode value chain.            118
  • Figure 38. Anode material consumption by type (tonnes).              123
  • Figure 39. Anode material consumption by end user market (tonnes).   124
  • Figure 40. Routes to high nickel cathode stabilisation       133
  • Figure 41. Routes to high-nickel cathodes. 134
  • Figure 42. Ultra-high Nickel Cathode Commercialization Timeline.          135
  • Figure 43. Li-cobalt structure.             141
  • Figure 44.  Li-manganese structure.               143
  • Figure 45. Typical direct, pyrometallurgical, and hydrometallurgical recycling methods for recovery of Li-ion battery active materials. 169
  • Figure 46. Flow chart of recycling processes of lithium-ion batteries (LIBs).       171
  • Figure 47. Hydrometallurgical recycling flow sheet.             172
  • Figure 48. SWOT analysis for Hydrometallurgy Li-ion Battery Recycling.                173
  • Figure 49. Umicore recycling flow diagram.              174
  • Figure 50. SWOT analysis for Pyrometallurgy Li-ion Battery Recycling.   175
  • Figure 51. Schematic of direct recycling process. 176
  • Figure 52. SWOT analysis for Direct Li-ion Battery Recycling.        180
  • Figure 53. Global revenues for Li-ion batteries, 2018-2035, by market (Billions USD).  184
  • Figure 54. Schematic diagram of a Li-metal battery.            185
  • Figure 55. SWOT analysis: Lithium-metal batteries.             193
  • Figure 56. Schematic diagram of Lithium–sulfur battery.  195
  • Figure 57. SWOT analysis: Lithium-sulfur batteries.             200
  • Figure 58. Global revenues for Lithium-sulfur, 2018-2035, by market (Billions USD).    201
  • Figure 59. Global revenues for Lithium titanate and niobate batteries, 2018-2035, by market (Billions USD).  207
  • Figure 60. Schematic of Prussian blue analogues (PBA).  214
  • Figure 61. Comparison of SEM micrographs of sphere-shaped natural graphite (NG; after several processing steps) and synthetic graphite (SG).       219
  • Figure 62. Overview of graphite production, processing and applications.          220
  • Figure 63. Schematic diagram of a multi-walled carbon nanotube (MWCNT).   221
  • Figure 64. Schematic diagram of a Na-ion battery.               229
  • Figure 65. SWOT analysis: Sodium-ion batteries.  230
  • Figure 66. Global revenues for sodium-ion batteries, 2018-2035, by market (Billions USD).    232
  • Figure 67.  Schematic of a Na–S battery.      234
  • Figure 68. SWOT analysis: Sodium-sulfur batteries.            237
  • Figure 69. Saturnose battery chemistry.      238
  • Figure 70. SWOT analysis: Aluminium-ion batteries.           240
  • Figure 71. Global revenues for aluminium-ion batteries, 2018-2035, by market (Billions USD).             241
  • Figure 72. Schematic illustration of all-solid-state lithium battery.            244
  • Figure 73. ULTRALIFE thin film battery.          245
  • Figure 74. Examples of applications of thin film batteries.               248
  • Figure 75. Capacities and voltage windows of various cathode and anode materials. 249
  • Figure 76. Traditional lithium-ion battery (left), solid state battery (right).             251
  • Figure 77. Bulk type compared to thin film type SSB.          254
  • Figure 78. SWOT analysis: All-solid state batteries.              255
  • Figure 79. Global revenues for All-Solid State Batteries, 2018-2035, by market (Billions USD).              258
  • Figure 80. Ragone plots of diverse batteries and the commonly used electronics powered by flexible batteries.          261
  • Figure 81. Various architectures for flexible and stretchable electrochemical energy storage.              264
  • Figure 82. Types of flexible batteries.             266
  • Figure 83. Flexible batteries on the market.               266
  • Figure 84. Materials and design structures in flexible lithium ion batteries.         270
  • Figure 85. Flexible/stretchable LIBs with different structures.       272
  • Figure 86. a–c) Schematic illustration of coaxial (a), twisted (b), and stretchable (c) LIBs.        275
  • Figure 87. a) Schematic illustration of the fabrication of the superstretchy LIB based on an MWCNT/LMO composite fiber and an MWCNT/LTO composite fiber. b,c) Photograph (b) and the schematic illustration (c) of a stretchable fiber-shaped battery under stretching conditions. d) Schematic illustration of the spring-like stretchable LIB. e) SEM images of a fiberat different strains. f) Evolution of specific capacitance with strain. d–f)                276
  • Figure 88. Origami disposable battery.          277
  • Figure 89. Zn–MnO2 batteries produced by Brightvolt.       279
  • Figure 90. Charge storage mechanism of alkaline Zn-based batteries and zinc-ion batteries. 281
  • Figure 91. Zn–MnO2 batteries produced by Blue Spark.    282
  • Figure 92. Ag–Zn batteries produced by Imprint Energy.    283
  • Figure 93.  Wearable self-powered devices.              288
  • Figure 94. SWOT analysis: Flexible  batteries.          290
  • Figure 95. Global revenues for flexible batteries, 2018-2035, by market (Billions USD).              291
  • Figure 96. Transparent batteries.       294
  • Figure 97. SWOT analysis: Transparent batteries.  297
  • Figure 98. Degradable batteries.       298
  • Figure 99. SWOT analysis: Degradable batteries.   301
  • Figure 100. Various applications of printed paper batteries.          302
  • Figure 101.Schematic representation of the main components of a battery.      303
  • Figure 102. Schematic of a printed battery in a sandwich cell architecture, where the anode and cathode of the battery are stacked together.            305
  • Figure 103. Manufacturing Processes for Conventional Batteries (I), 3D Microbatteries (II), and 3D-Printed Batteries (III).                313
  • Figure 104. SWOT analysis: Printed batteries.          317
  • Figure 105. Global revenues for printed batteries, 2018-2035, by market (Billions USD).           318
  • Figure 106. Scheme of a redox flow battery.              322
  • Figure 107. Vanadium Redox Flow Battery schematic.       325
  • Figure 108. SWOT analysis: Vanadium redox flow batteries (VRFB)           327
  • Figure 109. Schematic of zinc bromine flow battery energy storage system.       329
  • Figure 110. SWOT analysis: Zinc-Bromine Flow Batteries (ZnBr).                331
  • Figure 111. SWOT analysis: Iron-chromium (ICB) flow batteries. 334
  • Figure 112. SWOT analysis: Iron-chromium (ICB) flow batteries. 336
  • Figure 113.  Schematic of All-Iron Redox Flow Batteries.  337
  • Figure 114. SWOT analysis: All-iron Flow Batteries.              339
  • Figure 115. SWOT analysis: Zinc-iron (Zn-Fe) flow batteries.          341
  • Figure 116. Schematic of Hydrogen-bromine flow battery.              343
  • Figure 117. SWOT analysis: Hydrogen-bromine (H-Br) flow batteries.      345
  • Figure 118. SWOT analysis: Hydrogen-Manganese (H-Mn) flow batteries.            347
  • Figure 119. SWOT analysis: Organic redox flow batteries (ORFBs) batteries.      351
  • Figure 120. Schematic of zinc-polyiodide redox flow battery (ZIB).            355
  • Figure 121. Redox flow batteries applications roadmap.  362
  • Figure 122. Global revenues for redox flow batteries, 2018-2035, by type (millions USD).         363
  • Figure 123. Main printing methods for supercapacitors.  385
  • Figure 124. 24M battery.         395
  • Figure 125. 3DOM battery.     397
  • Figure 126. AC biode prototype.        400
  • Figure 127. Schematic diagram of liquid metal battery operation.             410
  • Figure 128. Ampcera’s all-ceramic dense solid-state electrolyte separator sheets (25 um thickness, 50mm x 100mm size, flexible and defect free, room temperature ionic conductivity ~1 mA/cm).         412
  • Figure 129. Amprius battery products.          413
  • Figure 130. All-polymer battery schematic.               416
  • Figure 131. All Polymer Battery Module.      417
  • Figure 132. Resin current collector. 417
  • Figure 133. Ateios thin-film, printed battery.             419
  • Figure 134. The structure of aluminum-sulfur battery from Avanti Battery.           422
  • Figure 135. Containerized NAS® batteries. 424
  • Figure 136. 3D printed lithium-ion battery. 431
  • Figure 137. Blue Solution module.   432
  • Figure 138. TempTraq wearable patch.          434
  • Figure 139. Schematic of a fluidized bed reactor which is able to scale up the generation of SWNTs using the CoMoCAT process.              452
  • Figure 140. Carhartt X-1 Smart Heated Vest.            457
  • Figure 141. Cymbet EnerChip™          461
  • Figure 142. Rongke Power 400 MWh VRFB. 463
  • Figure 143. E-magy nano sponge structure.              470
  • Figure 144. Enerpoly zinc-ion battery.            472
  • Figure 145. SoftBattery®.        473
  • Figure 146. ASSB All-Solid-State Battery by EGI 300 Wh/kg.           475
  • Figure 147. Roll-to-roll equipment working with ultrathin steel substrate.            476
  • Figure 148. 40 Ah battery cell.             483
  • Figure 149. FDK Corp battery.             486
  • Figure 150. 2D paper batteries.          494
  • Figure 151. 3D Custom Format paper batteries.     494
  • Figure 152. Fuji carbon nanotube products.             495
  • Figure 153. Gelion Endure battery.   499
  • Figure 154. Gelion GEN3 lithium sulfur batteries.  499
  • Figure 155. Grepow flexible battery.                509
  • Figure 156. HPB solid-state battery.                515
  • Figure 157. HiNa Battery pack for EV.            517
  • Figure 158. JAC demo EV powered by a HiNa Na-ion battery.        517
  • Figure 159. Nanofiber Nonwoven Fabrics from Hirose.      518
  • Figure 160. Hitachi Zosen solid-state battery.          520
  • Figure 161. Ilika solid-state batteries.            525
  • Figure 162. TAeTTOOz printable battery materials.               529
  • Figure 163. Ionic Materials battery cell.        533
  • Figure 164. Schematic of Ion Storage Systems solid-state battery structure.     535
  • Figure 165. ITEN micro batteries.      537
  • Figure 166. Kite Rise’s A-sample sodium-ion battery module.      545
  • Figure 167. LiBEST flexible battery.  550
  • Figure 168. Li-FUN sodium-ion battery cells.            553
  • Figure 169. LiNa Energy battery.        555
  • Figure 170. 3D solid-state thin-film battery technology.    558
  • Figure 171. Lyten batteries.   561
  • Figure 172. Cellulomix production process.              564
  • Figure 173. Nanobase versus conventional products.        564
  • Figure 174. Nanotech Energy battery.            575
  • Figure 175. Hybrid battery powered electrical motorbike concept.           578
  • Figure 176. NBD battery.         579
  • Figure 177. Schematic illustration of three-chamber system for SWCNH production. 580
  • Figure 178. TEM images of carbon nanobrush.       581
  • Figure 179. EnerCerachip.     585
  • Figure 180. Cambrian battery.            598
  • Figure 181. Printed battery.   602
  • Figure 182. Prieto Foam-Based 3D Battery.               603
  • Figure 183. Printed Energy flexible battery. 606
  • Figure 184. ProLogium solid-state battery. 608
  • Figure 185. QingTao solid-state batteries.   609
  • Figure 186. Schematic of the quinone flow battery.              612
  • Figure 187. Sakuú Corporation 3Ah Lithium Metal Solid-state Battery.   617
  • Figure 188. Salgenx S3000 seawater flow battery. 619
  • Figure 189. Samsung SDI's sixth-generation prismatic batteries.                620
  • Figure 190. SES Apollo batteries.      625
  • Figure 191. Sionic Energy battery cell.           633
  • Figure 192. Solid Power battery pouch cell.               636
  • Figure 193. Stora Enso lignin battery materials.      638
  • Figure 194.TeraWatt Technology solid-state battery             649
  • Figure 195. Zeta Energy 20 Ah cell.  674
  • Figure 196. Zoolnasm batteries.        675

 

 

The Global Advanced Li-ion and Beyond Lithium Batteries Market 2025-2035
The Global Advanced Li-ion and Beyond Lithium Batteries Market 2025-2035
PDF download.

The Global Advanced Li-ion and Beyond Lithium Batteries Market 2025-2035
The Global Advanced Li-ion and Beyond Lithium Batteries Market 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com