Published: December 18 2016 | No. of pages: 309 | 56 tables, 80 figures
Price: £995 (PDF download)
The Global Market for Nanotechnology in Flexible, Stretchable and Printable Electronics and Displays examines the markets, application developers and enabling technologies and materials.
The electronics industry will witness significant change and growth in the next decade, and the integration of nanomaterials into products in the electronics sector is gathering pace. Nanomaterials exhibit extraordinary electrical properties, and have a huge potential in electrical and electronic applications such as photovoltaics, sensors, remote health monitoring and medicine, semiconductor devices, displays, conductors, smart textiles and energy conversion devices (e.g., fuel cells, harvesters and batteries).
Market drivers for Nanotechnology in Flexible, Stretchable and Printable Electronics and Displays include:
- Scaling- Power requirement and performance no longer scale with feature size
- Growth of mobile wireless devices
- Growth in the Internet of Things increasing demand for low-power devices, RF and wireless, sensors, energy harvesting devices etc.
- Electronics entering every area of our lives
- Growth in flexible electronics needs in the automotive industry
- Growth in wearables and remote diagnostics in medicine and healthcare
- Demand for high-resolution, low-power displays
This report is based on an extensive market study of advances in fields such as nanotechnology, printed electronics electronics and conducting materials, and includes:
- Market drivers and trends
- Nanomaterials utilized in Flexible, Stretchable and Printable Electronics and Displays
- Applications
- Electronic textiles
- Electronic paper
- Wearable health monitoring
- Automotive HMI and displays
- QD displays market
- Touchscreens and ITO replacement
- Conductive films
- Electronics coatings
- Application developers
To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com
TABLE OF CONTENTS
1 RESEARCH METHODOLOGY………………………………………………………. 25
1.1 COMMERCIAL IMPACT RATING SYSTEM…………………………………….. 25
1.2 MARKET CHALLENGES RATING SYSTEM…………………………………….. 27
2 EXECUTIVE SUMMARY………………………………………………………………… 30
2.1 MARKET DRIVERS AND TRENDS…………………………………………………. 30
2.1.1 Scaling………………………………………………………………………………… 30
2.1.2 Growth of mobile wireless devices…………………………………………… 31
2.1.3 Internet of things (IoT)…………………………………………………………… 31
2.1.4 Data, logic and applications moving to the Cloud……………………….. 32
2.1.5 Ubiquitous electronics……………………………………………………………. 33
2.1.5.1 Growth in automotive interior electronics……………………………….. 33
2.1.5.2 Growth in wearable medical diagnostics………………………………… 33
2.1.6 Nanomaterials for new device design and architectures……………… 34
2.1.7 Carbon and 2D nanomaterials………………………………………………… 35
2.1.8 Industrial collaborations…………………………………………………………. 35
3 NANOMATERIALS………………………………………………………………………… 38
3.1 Properties of nanomaterials………………………………………………………….. 38
3.2 Categorization…………………………………………………………………………….. 39
4 NANOMATERIALS IN FLEXIBLE, STRETCHABLE & PRINTABLE ELECTRONICS & DISPLAYS…………………………………………………………………………………………… 41
4.1 CARBON NANOTUBES………………………………………………………………… 44
4.1.1 Properties…………………………………………………………………………….. 44
4.1.2 Applications………………………………………………………………………….. 45
4.1.3 Demand by market………………………………………………………………… 48
4.1.4 Technology readiness level (TRL)…………………………………………… 50
4.2 GRAPHENE………………………………………………………………………………… 52
4.2.1 Properties…………………………………………………………………………….. 52
4.2.2 Applications………………………………………………………………………….. 54
4.2.3 Demand by market………………………………………………………………… 59
4.2.4 Technology readiness level (TRL)…………………………………………… 60
4.3 NANOCELLULOSE……………………………………………………………………… 62
4.3.1 Properties…………………………………………………………………………….. 62
4.3.2 Applications………………………………………………………………………….. 65
4.3.3 Demand by market………………………………………………………………… 72
4.3.4 Technology readiness level (TRL)…………………………………………… 72
4.4 NANOSILVER……………………………………………………………………………… 73
4.4.1 Properties…………………………………………………………………………….. 73
4.4.2 Applications………………………………………………………………………….. 74
4.4.3 Demand by market………………………………………………………………… 76
4.4.4 Technology readiness level (TRL)…………………………………………… 77
4.5 NANOWIRES………………………………………………………………………………. 78
4.5.1 Properties…………………………………………………………………………….. 78
4.5.2 Applications………………………………………………………………………….. 79
4.5.3 Demand by market………………………………………………………………… 80
4.5.4 Technology readiness level (TRL)…………………………………………… 82
4.6 QUANTUM DOTS……………………………………………………………………….. 83
4.6.1 Properties…………………………………………………………………………….. 83
4.6.2 Applications………………………………………………………………………….. 85
4.6.3 Demand by market………………………………………………………………… 89
4.6.4 Technology readiness level (TRL)…………………………………………… 90
4.7 GRAPHENE AND CARBON QUANTUM DOTS………………………………… 91
4.7.1 Properties…………………………………………………………………………….. 92
4.7.2 Applications………………………………………………………………………….. 94
4.8 2D MATERIALS…………………………………………………………………………… 94
4.8.1 Black phosphorus/Phosphorene……………………………………………… 96
4.8.1.1 Properties…………………………………………………………………………. 96
4.8.1.2 Applications in electronics……………………………………………………. 98
4.8.2 C2N……………………………………………………………………………………… 98
4.8.2.1 Properties…………………………………………………………………………. 99
4.8.2.2 Applications in electronics………………………………………………….. 100
4.8.3 Germanene………………………………………………………………………… 100
4.8.3.1 Properties……………………………………………………………………….. 100
4.8.3.2 Applications in electronics………………………………………………….. 101
4.8.4 Graphdiyne………………………………………………………………………… 101
4.8.4.1 Properties……………………………………………………………………….. 102
4.8.4.2 Applications in electronics………………………………………………….. 102
4.8.5 Graphane…………………………………………………………………………… 102
4.8.5.1 Properties……………………………………………………………………….. 103
4.8.5.2 Applications in electronics………………………………………………….. 103
4.8.5.3 Properties……………………………………………………………………….. 104
4.8.5.4 Applications in electronics………………………………………………….. 105
4.8.6 Molybdenum disulfide (MoS2)……………………………………………….. 105
4.8.6.1 Properties……………………………………………………………………….. 106
4.8.6.2 Applications in electronics………………………………………………….. 106
4.8.7 Rhenium disulfide (ReS2) and diselenide (ReSe2)…………………… 108
4.8.7.1 Properties……………………………………………………………………….. 109
4.8.7.2 Applications in electronics………………………………………………….. 109
4.8.8 Silicene………………………………………………………………………………. 109
4.8.8.1 Properties……………………………………………………………………….. 110
4.8.8.2 Applications in electronics………………………………………………….. 111
4.8.9 Stanene/tinene……………………………………………………………………. 112
4.8.9.1 Properties……………………………………………………………………….. 113
4.8.9.2 Applications in electronics………………………………………………….. 113
4.8.10 Tungsten diselenide…………………………………………………………….. 113
4.8.10.1 Properties…………………………………………………………………….. 114
4.8.10.2 Applications in electronics………………………………………………. 114
5 FLEXIBLE and STRETCHABLE ELECTRONICS, CONDUCTIVE FILMS AND DISPLAYS MARKETS…………………………………………………………………………………………. 116
5.1 MARKET DRIVERS AND TRENDS……………………………………………….. 116
5.1.1 ITO replacement for flexible electronics………………………………….. 116
5.1.2 Growth in the wearable electronics market……………………………… 118
5.1.3 Gowth of HMI and display systems in the automotive industry…… 119
5.1.4 Touch technology requirements…………………………………………….. 120
5.1.5 Energy needs of wearable devices………………………………………… 120
5.1.6 Increased power and performance of sensors with reduced cost.. 121
5.1.7 Growth in the printed sensors market…………………………………….. 121
5.1.8 Growth in the home diagnostics and point of care market…………. 121
5.2 APPLICATONS………………………………………………………………………….. 122
5.2.1 Transparent electrodes in flexible electronics………………………….. 122
5.2.1.1 SWNTs…………………………………………………………………………… 125
5.2.1.2 Double-walled carbon nanotubes……………………………………….. 126
5.2.1.3 Graphene……………………………………………………………………….. 127
5.2.1.4 Silver nanowires………………………………………………………………. 130
5.2.1.5 Nanocellulose………………………………………………………………….. 132
5.2.1.6 Copper nanowires……………………………………………………………. 135
5.2.1.7 Nanofibers………………………………………………………………………. 135
5.2.2 Wearable electronics……………………………………………………………. 136
5.2.2.1 Current state of the art……………………………………………………… 136
5.2.2.2 Nanotechnology solutions………………………………………………….. 138
5.2.3 Electronic paper………………………………………………………………….. 142
5.2.4 Wearable sensors……………………………………………………………….. 142
5.2.4.1 Current stage of the art…………………………………………………….. 142
5.2.4.2 Nanotechnology solutions………………………………………………….. 145
5.2.4.3 Wearable gas sensors………………………………………………………. 149
5.2.4.4 Wearable strain sensors……………………………………………………. 149
5.2.4.5 Wearable tactile sensors…………………………………………………… 150
5.2.5 Wearable health monitoring………………………………………………….. 150
5.2.5.1 Current state of the art……………………………………………………… 150
5.2.5.2 Nanotechnology solutions………………………………………………….. 154
5.2.6 Wearable energy storage and harvesting devices……………………. 159
5.2.6.1 Current state of the art……………………………………………………… 159
5.2.6.2 Nanotechnology solutions………………………………………………….. 162
5.2.7 Automotive HMI and displays………………………………………………… 167
5.2.8 Quantum dot displays………………………………………………………….. 169
5.2.8.1 On-edge (edge optic)……………………………………………………….. 176
5.2.8.2 On-surface (film)………………………………………………………………. 177
5.2.8.3 On-chip…………………………………………………………………………… 178
5.2.8.4 Quantum rods………………………………………………………………….. 179
5.2.8.5 Quantum converters with red phosphors……………………………… 180
5.3 MARKET SIZE AND OPPORTUNITY……………………………………………. 181
5.3.1 Touch panel and ITO replacement………………………………………… 181
5.3.2 Displays……………………………………………………………………………… 187
5.3.3 Wearable electronics……………………………………………………………. 191
5.3.4 Wearable health monitoring………………………………………………….. 194
5.3.5 Wearable energy storage and harvesting devices……………………. 195
5.4 MARKET CHALLENGES…………………………………………………………….. 201
5.4.1 Manufacturing…………………………………………………………………….. 201
5.4.2 Competing materials……………………………………………………………. 201
5.4.3 Cost in comparison to ITO……………………………………………………. 201
5.4.4 Fabricating SWNT devices……………………………………………………. 202
5.4.5 Fabricating graphene devices……………………………………………….. 202
5.4.6 Problems with transfer and growth…………………………………………. 203
5.4.7 Improving sheet resistance…………………………………………………… 204
5.4.8 High surface roughness of silver nanowires…………………………….. 205
5.4.9 Electrical properties……………………………………………………………… 205
5.4.10 Difficulties in display panel integration…………………………………….. 205
5.5 APPLICATION AND PRODUCT DEVELOPERS……………………………… 207-239 (70 company profiles)
6 CONDUCTIVE INKS AND PRINTED ELECTRONICS………………… 240
6.1 MARKET DRIVERS AND TRENDS……………………………………………….. 240
6.1.1 Increased demand for printed electronics……………………………….. 240
6.1.2 Limitations of existing conductive inks…………………………………….. 240
6.1.3 Growth in the 3D printing market…………………………………………… 241
6.1.4 Growth in the printed sensors market…………………………………….. 242
6.2 APPLICATIONS…………………………………………………………………………. 242
6.3 MARKET SIZE AND OPPORTUNITY……………………………………………. 244
6.3.1 Total market size…………………………………………………………………. 244
6.3.2 Nanotechnology and nanomaterials opportunity………………………. 245
6.4 MARKET CHALLENGES…………………………………………………………….. 247
6.5 APPLICATION AND PRODUCT DEVELOPERS……………………………… 249-261 (26 company profiles)
7 ELECTRONICS COATINGS………………………………………………………… 262
7.1 MARKET DRIVERS AND TRENDS……………………………………………….. 262
7.1.1 Demand for multi-functional, active coatings……………………………. 262
7.1.2 Waterproofing and permeability…………………………………………….. 264
7.1.3 Improved aesthetics and reduced maintenance………………………. 266
7.1.4 Proliferation of touch panels………………………………………………….. 266
7.1.5 Need for efficient moisture and oxygen protection in flexible and organic electronics 267
7.1.6 Electronics packaging………………………………………………………….. 267
7.1.7 Growth in the optical and optoelectronic devices market…………… 267
7.1.8 Improved performance and cost over traditional AR coatings…….. 268
7.1.9 Growth in the solar energy market…………………………………………. 268
7.2 APPLICATIONS…………………………………………………………………………. 269
7.2.1 Waterproof nanocoatings……………………………………………………… 272
7.2.1.1 Barrier films…………………………………………………………………….. 272
7.2.1.2 Hydrophobic coatings……………………………………………………….. 273
7.2.2 Anti-fingerprint nanocoatings………………………………………………… 273
7.2.3 Anti-reflection nanocoatings………………………………………………….. 275
7.3 MARKET SIZE AND OPPORTUNITY……………………………………………. 277
7.3.1 Total market size…………………………………………………………………. 277
7.3.1.1 Anti-fingerprint nanocoatings……………………………………………… 277
7.3.1.2 Anti-reflective nanocoatings……………………………………………….. 277
7.3.1.3 Waterproof nanocoatings………………………………………………….. 279
7.4 MARKET CHALLENGES…………………………………………………………….. 280
7.4.1 Durability……………………………………………………………………………. 280
7.4.2 Dispersion………………………………………………………………………….. 281
7.4.3 Cost…………………………………………………………………………………… 281
7.5 APPLICATION AND PRODUCT DEVELOPERS……………………………… 282-293 (22 company profiles)
8 REFERENCES……………………………………………………………………………… 294
TABLES
Table 1: Semiconductor Components of IoT Devices……………………………………. 32
Table 2: Nanoelectronics in next generation information processing……………….. 34
Table 3: Nanoelectronics industrial collaborations and target markets…………….. 36
Table 4: Categorization of nanomaterials……………………………………………………. 39
Table 5: Nanomaterials in electronics…………………………………………………………. 41
Table 6: Properties of CNTs and comparable materials………………………………… 44
Table 7: Markets, benefits and applications of Carbon Nanotubes………………….. 45
Table 8: Properties of graphene………………………………………………………………… 52
Table 9: Markets, benefits and applications of graphene……………………………….. 54
Table 10: Consumer products incorporating graphene………………………………….. 58
Table 11: Nanocellulose properties…………………………………………………………….. 64
Table 12: Properties and applications of nanocellulose…………………………………. 64
Table 13: Markets and applications of nanocellulose…………………………………….. 66
Table 14: Markets, benefits and applications of nanosilver…………………………….. 75
Table 15: Markets, benefits and applications of nanowires…………………………….. 79
Table 16: Electronics markets and applications nanowires…………………………….. 80
Table 17: Markets, benefits and applications of quantum dots……………………….. 85
Table 18: Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1–4…………. 92
Table 19: Properties of graphene quantum dots…………………………………………… 93
Table 20: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2. 97
Table 21: Comparison of ITO replacements………………………………………………. 117
Table 22: Properties of SWNTs and graphene relevant to flexible electronics…. 124
Table 23: Comparative cost of TCF materials…………………………………………….. 125
Table 24: Wearable electronics devices and stage of development………………. 137
Table 25: Applications in electronic textiles, by nanomaterials type and benefits thereof. 140
Table 26: Graphene properties relevant to application in sensors…………………. 148
Table 27: Wearable medical device products and stage of development……….. 151
Table 28: Applications in flexible and stretchable health monitors, by nanomaterials type and benefits thereof………………………………………………………………………………………………………… 155
Table 29: Applications in patch-type skin sensors, by nanomaterials type and benefits thereof. 159
Table 30: Wearable energy and energy harvesting devices and stage of development. 160
Table 31: Applications in flexible and stretchable batteries, by nanomaterials type and benefits thereof. 162
Table 32: Applications in flexible and stretchable supercapacitors, by nanomaterials type and benefits thereof………………………………………………………………………………………………………… 165
Table 33: Applications in energy harvesting textiles, by nanomaterials type and benefits thereof. 167
Table 34: Advantages and disadvantages of LCDs, OLEDs and QDs……………. 170
Table 35: Approaches for integrating QDs into displays………………………………. 174
Table 36: Commercially available quantum dot display products…………………… 178
Table 37: Application markets, competing materials, nanomaterials advantages and current market size in flexible substrates……………………………………………………………………………… 186
Table 38: Commercially available quantum dot display products…………………… 187
Table 39: Nanotechnology and nanomaterials in the flexible electronics, conductive films and displays market-applications, stage of commercialization and estimated economic impact….. 189
Table 40: Global market for wearables, 2014-2021, units and US$……………….. 192
Table 41: Potential addressable market for smart textiles and wearables in medical and healthcare. 194
Table 42: Potential addressable market for thin film, flexible and printed batteries. 196
Table 43: Market assessment for the nanotechnology in the wearable energy storage (printed and flexible battery) market………………………………………………………………………………….. 199
Table 44: Market assessment for the nanotechnology in the wearable energy harvesting market. 200
Table 45: Market challenges rating for nanotechnology and nanomaterials in the flexible electronics, conductive films and displays market……………………………………………………………………. 206
Table 46: Comparative properties of conductive inks………………………………….. 240
Table 47: Applications in conductive inks by nanomaterials type and benefits thereof. 242
Table 48: Opportunities for nanomaterials in printed electronics…………………… 246
Table 49: Nanotechnology and nanomaterials in the conductive inks market-applications, stage of commercialization and estimated economic impact………………………………… 247
Table 50: Market challenges rating for nanotechnology and nanomaterials in the conductive inks market. 248
Table 51: Properties of nanocoatings……………………………………………………….. 263
Table 52: Nanocoatings applied in the consumer electronics industry……………. 270
Table 53: Anti-reflective nanocoatings-Markets and applications………………….. 276
Table 54: Market opportunity for anti-reflection nanocoatings………………………. 278
Table 55: Nanotechnology and nanomaterials in the electronics coatings market-applications, stage of commercialization and estimated economic impact………………………………… 280
Table 56: Market challenges rating for nanotechnology and nanomaterials in the electronics coatings market………………………………………………………………………………………………………… 281
FIGURES
Figure 1: Demand for carbon nanotubes, by market…………………………………….. 49
Figure 2: Technology Readiness Level (TRL) for Carbon Nanotubes……………… 51
Figure 3: Graphene layer structure schematic……………………………………………… 53
Figure 4: Demand for graphene, by market…………………………………………………. 60
Figure 5: Technology Readiness Level (TRL) for graphene…………………………… 61
Figure 6: Hierarchical Structure of Wood Biomass………………………………………… 62
Figure 7: Types of nanocellulose……………………………………………………………….. 64
Figure 8: Electronics markets and applications of nanocellulose…………………….. 69
Figure 9: Nanocellulose photoluminescent paper…………………………………………. 70
Figure 10: LEDs shining on circuitry imprinted on a 5x5cm sheet of CNF………… 71
Figure 11: Demand for nanocellulose, by market…………………………………………. 72
Figure 12: Technology Readiness Level (TRL) for nanocellulose……………………. 73
Figure 13: Supply chain for nanosilver products…………………………………………… 74
Figure 14: Demand for nanosilver, by market………………………………………………. 77
Figure 15: Demand for nanowires, by market………………………………………………. 82
Figure 16: Technology Readiness Level (TRL) for nanowires………………………… 83
Figure 17: Quantum dot……………………………………………………………………………. 84
Figure 18: The light-blue curve represents a typical spectrum from a conventional white-LED LCD TV. With quantum dots, the spectrum is tunable to any colours of red, green, and blue, and each Color is limited to a narrow band……………………………………………………………………………………….. 85
Figure 19: Demand for quantum dots, by market…………………………………………. 90
Figure 20: Technology Readiness Level (TRL) for quantum dots……………………. 91
Figure 21: Black phosphorus structure……………………………………………………….. 96
Figure 22: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal………………………………………………………………………………………………………….. 99
Figure 23: Schematic of germanene…………………………………………………………. 100
Figure 24: Graphdiyne structure………………………………………………………………. 102
Figure 25: Schematic of Graphane crystal…………………………………………………. 103
Figure 26: Structure of hexagonal boron nitride………………………………………….. 104
Figure 27: Structure of 2D molybdenum disulfide……………………………………….. 105
Figure 28: Atomic force microscopy image of a representative MoS2 thin-film transistor. 107
Figure 29: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge……………………………………………………………………… 108
Figure 30: Schematic of a monolayer of rhenium disulphide………………………… 109
Figure 31: Silicene structure……………………………………………………………………. 110
Figure 32: Monolayer silicene on a silver (111) substrate…………………………….. 111
Figure 33: Silicene transistor……………………………………………………………………. 112
Figure 34: Crystal structure for stanene…………………………………………………….. 112
Figure 35: Atomic structure model for the 2D stanene on Bi2Te3(111)………….. 113
Figure 36: Schematic of tungsten diselenide……………………………………………… 114
Figure 37: A large transparent conductive graphene film (about 20 × 20 cm2) manufactured by 2D Carbon Tech. Figure 24a (right): Prototype of a mobile phone produced by 2D Carbon Tech using a graphene touch panel……………………………………………………………………………………………….. 118
Figure 38: The Tesla S’s touchscreen interface………………………………………….. 120
Figure 39: Graphene-enabled bendable smartphone………………………………….. 123
Figure 40: 3D printed carbon nanotube sensor………………………………………….. 124
Figure 41: Graphene electrochromic devices. Top left: Exploded-view illustration of the graphene electrochromic device. The device is formed by attaching two graphene-coated PVC substrates face-to-face and filling the gap with a liquid ionic electrolyte………………………………………………………….. 128
Figure 42: Flexible transistor sheet…………………………………………………………… 129
Figure 43: Bending durability of Ag nanowires……………………………………………. 131
Figure 44: NFC computer chip…………………………………………………………………. 133
Figure 45: NFC translucent diffuser schematic…………………………………………… 134
Figure 46: Covestro wearables………………………………………………………………… 138
Figure 47: Panasonic CTN stretchable Resin Film………………………………………. 139
Figure 48: Softceptor sensor……………………………………………………………………. 143
Figure 49: BeBop Media Arm Controller……………………………………………………. 144
Figure 50: LG Innotek flexible textile pressure sensor…………………………………. 144
Figure 51: <hitoe> nanofiber conductive shirt original design(top) and current design (bottom). 146
Figure 52: Garment-based printable electrodes…………………………………………. 147
Figure 53: Wearable gas sensor………………………………………………………………. 149
Figure 54: Flexible, lightweight temperature sensor……………………………………. 150
Figure 55: Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs. 157
Figure 56: Graphene medical patch………………………………………………………….. 158
Figure 57: StretchSense Energy Harvesting Kit………………………………………….. 160
Figure 58: LG Chem Heaxagonal battery………………………………………………….. 160
Figure 59: Energy densities and specific energy of rechargeable batteries…….. 164
Figure 60: Stretchable graphene supercapacitor………………………………………… 165
Figure 61: Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper……………………………. 166
Figure 62: Bosch automotive touchscreen with haptic feedback……………………. 168
Figure 63: Canatu’s CNB™ touch sensor………………………………………………….. 169
Figure 64: Samsung QD-LCD TVs……………………………………………………………. 170
Figure 65: The light-blue curve represents a typical spectrum from a conventional white-LED LCD TV. With quantum dots, the spectrum is tunable to any colours of red, green, and blue, and each Color is limited to a narrow band……………………………………………………………………………………… 173
Figure 66: Methods for integrating QDs into LCD System. (a) On-chip (b) On-edge. (c) On-surface. 176
Figure 67: On-edge configuration…………………………………………………………….. 177
Figure 68: QD-film integration into a standard LCD display………………………….. 178
Figure 69: Quantum phosphor schematic in LED TV backlight……………………… 180
Figure 70: Global touch panel market ($ million), 2011-2018……………………….. 181
Figure 71: Capacitive touch panel market forecast by layer structure (Ksqm)… 182
Figure 72: Global transparent conductive film market forecast (million $)………. 183
Figure 73: Global transparent conductive film market forecast by materials type, 2015, % 184
Figure 74: Global transparent conductive film market forecast by materials type, 2020, % 185
Figure 75: QD-LCD supply chain……………………………………………………………… 189
Figure 76: Total QD display component revenues 2013-2025 ($M), conservative and optimistic estimates. 191
Figure 77: Global market revenues for smart wearable devices 2014-2021, in US$. 192
Figure 78: Global market revenues for nanotech-enabled smart wearable devices 2014-2021 in US$, conservative estimate………………………………………………………………………… 193
Figure 79: Global market revenues for nanotech-enabled smart wearable devices 2014-2021 in US$, optimistic estimate…………………………………………………………………………………………… 194
Figure 80: Potential addressable market for nanotech-enabled medical smart textiles and wearables. 195
Figure 81: Demand for thin film, flexible and printed batteries 2015, by market. 197
Figure 82: Demand for thin film, flexible and printed batteries 2025, by market. 198
Figure 83: Potential addressable market for nanotech-enabled thin film, flexible or printed batteries. 199
Figure 84: Schematic of the wet roll-to-roll graphene transfer from copper foils to polymeric substrates. 203
Figure 85: The transmittance of glass/ITO, glass/ITO/four organic layers, and glass/ITO/four organic layers/4-layer graphene………………………………………………………………………………….. 205
Figure 86: Global market for conductive inks and pastes in printed electronics.. 245
Figure 87: Phone coated in WaterBlock submerged in water tank…………………. 265
Figure 88: Demo solar panels coated with nanocoatings……………………………… 269
Figure 89: Schematic of barrier nanoparticles deposited on flexible substrates. 272
Figure 90: Schematic of anti-fingerprint nanocoatings…………………………………. 274
Figure 91: Toray anti-fingerprint film (left) and an existing lipophilic film (right).. 275
Figure 92: Schematic of AR coating utilizing nanoporous coating………………….. 276
Figure 93: Schematic of KhepriCoat®. Image credit: DSM…………………………… 278
Figure 94: Nanocoating submerged in water……………………………………………… 279