The Global Market for Graphene, 2-D Materials and Carbon Nanotubes

0

Forecasted to 2027. 

Market analysis of the current market, products and players in graphene, other 2D materials and carbon nanotubes (multi-walled, single-walled and other types). These materials occupy the same technological and commercial space; they can also offer complementary benefits as hybrid materials and devices.

Future Markets, Inc. produced the first ever market study on graphene, in 2009 and has researched the carbon nanotubes market for over 15 years. Carbon nanomaterials have captured the research community’s attention over the past several decades with materials such as buckyballs, carbon nanotubes, carbon nanofibers and graphene.

Carbon nanotubes

Once the most promising of all nanomaterials, CNTs face stiff competition in conductive applications from graphene and other 2D materials and in mechanically enhanced composites from nanocellulose. However, after considerable research efforts, numerous multi-walled carbon nanotubes (MWNTs)-enhanced products are commercially available as conductive materials in plastics, elastomers and lithium-ion batteries.

There have also been several recent product launches in X-ray imaging, water harvesting textiles, cables, composites, automotive sensors, membranes and shock-resistant prepreg.

Single-walled carbon nanotubes

Owing to impressive mechanical, structural and electronic properties, single wall carbon nanotubes (SWCNT) are widely researched, and among the variety of semiconducting nanomaterials that have been discovered over the past two decades, remain uniquely well suited for applications in high-performance electronics, sensors and other devices.

SWCNTs exhibit important electric properties that are not shared by multi-walled carbon nanotubes (MWNT). They are also more pliable than MWNTs, yet more difficult to produce cost-effectively, limiting their use to niche/high-priced applications. However, large-scale industrial production of SWCNTs has been initiated, promising new market opportunities in transparent conductive films, transistors, sensors and memory devices. SWCNTs possess many unique properties, which are advantageous for a wide variety of applications, including stretchable electronics. Applications that have been identified with potentially the greatest economic return are:

  • Printed electronics and sensors
  • Printed batteries
  • Printed supercapacitors
  • Micro supercapacitors
  • SWCNT anode additives
  • Biosensors
  • Thermally tolerant plastics
  • Wiring and cables
  • SCWNT wafers
  • SWCNT electrodes

Graphene

Graphene is a ground-breaking two-dimensional (2D) material that possesses extraordinary electrical and mechanical properties that promise a new generation of innovative devices. New methods of scalable synthesis of high-quality graphene, clean delamination transfer and device integration have resulted in the commercialization of state-of-the-art electronics such as graphene touchscreens in smartphones and flexible RF devices on plastics.

Batteries and supercapacitors are also main application markets for graphene and virtually all graphene producers target penetration in these sectors. Products are already commercially available and there have been frequent product launches in the Asian-market recently.

Asia is the largest market for graphene and this trend shows little sign of abating as the emphasis on commercialization by governments in the region appears to be paying dividends. New products, research breakthroughs and production enhancements are occurring on a monthly basis. South Korea committed significant funds to the further development of graphene and most major Asian countries place great emphasis on commercializing graphene to meet future technology challenges, especially in energy and electronics. Most products currently use graphene on a very basic level (mainly as a conductive or temperature regulating additive).

2D Materials

Graphene has a major problem for novel 2D semiconductor applications as it lacks an energy gap between its conduction and valence bands, which makes it difficult to achieve low power dissipation in the OFF state. It therefore requires extensive modification (strain or other gap-opening engineering) to create one.

Researchers have therefore looked beyond graphene in recent years to other layered 2D materials, such as molybdenum disulfide (MoS2), hexagonal boron nitride (h-BN) and phosphorene. These materials possess the intrinsic properties of graphene, such as high electrical conductivity, insulating and semi-conducting properties, high thermal conductivity, high mechanical strength, gas diffusion barriers, high chemical stability and radiation shielding, but crucially also possess a semiconductor band gap. Theoretical and experimental works on these materials have rapidly increased in the past couple of years.

2D materials with high electron mobility are being explored either to replace silicon or to work in conjunction. Tunneling field-effect transistors (TFETs) based on 2D materials provide a possible scheme to extend Moore’s law down to the sub-10-nm region owing to the electrostatic integrity and absence of dangling bonds in 2D materials.

This 1005 page report on the global market for carbon nanotubes, graphene and 2D materials and markets covers:

  • Production volumes for carbon nanotubes, graphene and 2D materials, historical estimated to 2027.
  • Pricing for carbon nanotubes, graphene and 2D materials, including evolution of pricing and current market prices by type sold.
  • Commercialization timelines and technology trends.
  • Carbon nanotubes and graphene products, current and planned.
  • Comparative analysis of carbon nanotubes and graphene.
  • Production capacities of carbon nanotubes and graphene producers. Production processes used also listed.
  • Assessment of regional market for carbon nanotubes and graphene.
  • Assessment of carbon nanotubes, graphene and 2D materials market including, competitive landscape, commercial prospects, applications, demand by market.
  • Assessment of end user markets for carbon nanomaterials including market drivers and trends, applications, market opportunity, market challenges and application and product developer profiles.
  • Unique assessment tools for the carbon nanomaterials market, end user applications, economic impact, addressable markets and market challenges to provide the complete picture of where the real opportunities in carbon nanomaterials are.
  • Company profiles of 430 carbon nanotubes, graphene, 2D materials and producers and product developers, including products, target markets and contact details.

Published May 2018 | 1005 pages | Table of contents

The Global Market for Metal and Metal Oxide Nanoparticles and Nanopowders 2020
The Global Market for Metal and Metal Oxide Nanoparticles and Nanopowders 2020
Print edition (including tracked delivery).

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com, or call Phone: +44 (0) 207 112 7500.

TABLE OF CONTENTS

1       RESEARCH METHODOLOGY………………………………………………………………………………………….. 52

2       EXECUTIVE SUMMARY……………………………………………………………………………………………………. 59

  • 2.1    CARBON NANOTUBES…………………………………………………………………………………………………. 59
    • 2.1.1     Exceptional properties……………………………………………………………………………………………. 61
    • 2.1.2     Products and applications………………………………………………………………………………………. 62
    • 2.1.3     Competition from graphene……………………………………………………………………………………. 68
    • 2.1.4     Production……………………………………………………………………………………………………………… 69
      • 2.1.4.1       Multi-walled nanotube (MWNT) production……………………………………………………. 69
      • 2.1.4.2       Single-walled nanotube (SWNT) production………………………………………………….. 70
    • 2.1.5     Global demand for carbon nanotubes……………………………………………………………………. 72
      • 2.1.5.1       Current products……………………………………………………………………………………………. 74
      • 2.1.5.2       Future products……………………………………………………………………………………………… 75
      • 2.1.5.3       The market in 2018………………………………………………………………………………………… 75
    • 2.1.6     Market drivers and trends………………………………………………………………………………………. 75
      • 2.1.6.1       Electronics……………………………………………………………………………………………………… 75
      • 2.1.6.2       Electric vehicles and lithium-ion batteries………………………………………………………. 76
    • 2.1.7     Market and production challenges…………………………………………………………………………. 77
  • 2.2    2D MATERIALS……………………………………………………………………………………………………………… 80
  • 2.3    GRAPHENE…………………………………………………………………………………………………………………… 80
    • 2.3.1     The market in 2017………………………………………………………………………………………………… 81
    • 2.3.2     The market in 2018………………………………………………………………………………………………… 82
    • 2.3.3     Production……………………………………………………………………………………………………………… 82
    • 2.3.4     Products…………………………………………………………………………………………………………………. 84
    • 2.3.5     Graphene investments 2016-2018…………………………………………………………………………. 86
    • 2.3.6     Market outlook for 2018…………………………………………………………………………………………. 87
    • 2.3.7     Global funding and initiatives…………………………………………………………………………………. 93
    • 2.3.8     Products and applications………………………………………………………………………………………. 94
    • 2.3.9     Production……………………………………………………………………………………………………………… 96
      • 2.3.9.1       Production capacities by producer…………………………………………………………………. 96
      • 2.3.9.2       Graphite producers………………………………………………………………………………………… 97
    • 2.3.10        Market drivers and trends………………………………………………………………………………….. 98
    • 2.3.11        Market and technical challenges……………………………………………………………………… 102
    • 2.3.12        Key players globally…………………………………………………………………………………………. 104
      • 2.3.12.1     Asia-Pacific………………………………………………………………………………………………….. 104
      • 2.3.12.2     North America……………………………………………………………………………………………… 107
      • 2.3.12.3     Europe…………………………………………………………………………………………………………. 107

3       MATERIALS OVERVIEW………………………………………………………………………………………………… 109

  • 3.1    Properties of nanomaterials………………………………………………………………………………………….. 109
  • 3.2    Categorization………………………………………………………………………………………………………………. 110
  • 3.3    CARBON NANOTUBES……………………………………………………………………………………………….. 111
    • 3.3.1     Properties…………………………………………………………………………………………………………….. 111
    • 3.3.2     Multi-walled nanotubes (MWNT)………………………………………………………………………….. 113
      • 3.3.2.1       Properties…………………………………………………………………………………………………….. 113
      • 3.3.2.2       Applications…………………………………………………………………………………………………. 113
    • 3.3.3     Single-wall carbon nanotubes (SWNT)………………………………………………………………… 114
      • 3.3.3.1       Properties…………………………………………………………………………………………………….. 115
      • 3.3.3.2       Applications…………………………………………………………………………………………………. 115
      • 3.3.3.3       Single-chirality……………………………………………………………………………………………… 118
    • 3.3.4     Comparison between MWNTs and SWNTs…………………………………………………………. 119
    • 3.3.5     Double-walled carbon nanotubes (DWNTs)…………………………………………………………. 119
      • 3.3.5.1       Properties…………………………………………………………………………………………………….. 119
      • 3.3.5.2       Applications…………………………………………………………………………………………………. 120
    • 3.3.6     Few-walled carbon nanotubes (FWNTs)………………………………………………………………. 120
      • 3.3.6.1       Properties…………………………………………………………………………………………………….. 120
      • 3.3.6.2       Applications…………………………………………………………………………………………………. 120
    • 3.3.7     Carbon Nanohorns (CNHs)………………………………………………………………………………….. 121
      • 3.3.7.1       Properties…………………………………………………………………………………………………….. 121
      • 3.3.7.2       Applications…………………………………………………………………………………………………. 121
    • 3.3.8     Carbon Onions…………………………………………………………………………………………………….. 122
      • 3.3.8.1       Properties…………………………………………………………………………………………………….. 122
      • 3.3.8.2       Applications…………………………………………………………………………………………………. 123
    • 3.3.9     Fullerenes…………………………………………………………………………………………………………….. 123
      • 3.3.9.1       Properties…………………………………………………………………………………………………….. 123
      • 3.3.9.2       Applications…………………………………………………………………………………………………. 124
    • 3.3.10        Boron Nitride nanotubes (BNNTs)……………………………………………………………………. 125
      • 3.3.10.1     Properties…………………………………………………………………………………………………….. 125
      • 3.3.10.2     Applications…………………………………………………………………………………………………. 126
  • 3.4    Applications of carbon nanotubes………………………………………………………………………………… 126
  • 3.5    GRAPHENE…………………………………………………………………………………………………………………. 127
    • 3.5.1     History………………………………………………………………………………………………………………….. 127
    • 3.5.2     Forms of graphene………………………………………………………………………………………………. 128
    • 3.5.3     Properties…………………………………………………………………………………………………………….. 129
    • 3.5.4     3D Graphene……………………………………………………………………………………………………….. 131
    • 3.5.5     Graphene Quantum Dots……………………………………………………………………………………… 131
      • 3.5.5.1       Synthesis……………………………………………………………………………………………………… 133
      • 3.5.5.2       Applications…………………………………………………………………………………………………. 133
      • 3.5.5.3       Producers…………………………………………………………………………………………………….. 135
  • 3.6    OTHER 2-D MATERIALS…………………………………………………………………………………………….. 136
    • 3.6.1     Beyond moore’s law…………………………………………………………………………………………….. 136
    • 3.6.2     Batteries……………………………………………………………………………………………………………….. 137
  • 3.6.3     PHOSPHORENE…………………………………………………………………………………………………. 137
    • 3.6.3.1       Properties…………………………………………………………………………………………………….. 137
    • 3.6.3.2       Fabrication methods…………………………………………………………………………………….. 139
    • 3.6.3.3       Challenges for the use of phosphorene in devices………………………………………. 139
    • 3.6.4.1     Applications………………………………………………………………………………………………………….. 140
    • 3.6.5     Market opportunity assessment……………………………………………………………………………. 142
  • 3.7    GRAPHITIC CARBON NITRIDE (g-C3N4)…………………………………………………………………… 143
    • 3.7.1     Properties…………………………………………………………………………………………………………….. 143
    • 3.7.2     Synthesis……………………………………………………………………………………………………………… 144
    • 3.7.3     C2N………………………………………………………………………………………………………………………. 144
    • 3.7.4     Applications………………………………………………………………………………………………………….. 145
      • 3.7.4.1       Electronics…………………………………………………………………………………………………… 145
      • 3.7.4.2       Filtration membranes…………………………………………………………………………………… 145
      • 3.7.4.3       Photocatalysts……………………………………………………………………………………………… 145
      • 3.7.4.4       Batteries (LIBs)……………………………………………………………………………………………. 145
      • 3.7.4.5       Sensors……………………………………………………………………………………………………….. 146
    • 3.7.5     Market opportunity assessment……………………………………………………………………………. 146
  • 3.8    GERMANENE………………………………………………………………………………………………………………. 146
    • 3.8.1     Properties…………………………………………………………………………………………………………….. 147
    • 3.8.2     Applications………………………………………………………………………………………………………….. 147
      • 3.8.2.1       Electronics…………………………………………………………………………………………………… 147
      • 3.8.2.2       Batteries………………………………………………………………………………………………………. 148
    • 3.8.3     Market opportunity assessment……………………………………………………………………………. 148
  • 3.9    GRAPHDIYNE……………………………………………………………………………………………………………… 148
    • 3.9.1     Properties…………………………………………………………………………………………………………….. 149
    • 3.9.2     Applications………………………………………………………………………………………………………….. 149
      • 3.9.2.1       Electronics…………………………………………………………………………………………………… 149
      • 3.9.2.2       Batteries………………………………………………………………………………………………………. 150
      • 3.9.2.3       Separation membranes……………………………………………………………………………….. 150
      • 3.9.2.4       Water filtration……………………………………………………………………………………………… 150
      • 3.9.2.5       Photocatalysts……………………………………………………………………………………………… 150
      • 3.9.2.6       Photovoltaics……………………………………………………………………………………………….. 150
    • 3.9.3     Market opportunity assessment……………………………………………………………………………. 151
  • 3.10      GRAPHANE…………………………………………………………………………………………………………….. 151
    • 3.10.1        Properties………………………………………………………………………………………………………… 152
    • 3.10.2        Applications……………………………………………………………………………………………………… 152
      • 3.10.2.1     Electronics…………………………………………………………………………………………………… 152
      • 3.10.2.2     Hydrogen storage………………………………………………………………………………………… 152
    • 3.10.3        Market opportunity assessment……………………………………………………………………….. 153
  • 3.11      HEXAGONAL BORON-NITRIDE……………………………………………………………………………… 153
    • 3.11.1        Properties………………………………………………………………………………………………………… 154
    • 3.11.2        Applications……………………………………………………………………………………………………… 155
      • 3.11.2.1     Electronics…………………………………………………………………………………………………… 155
      • 3.11.2.2     Fuel cells……………………………………………………………………………………………………… 155
      • 3.11.2.3     Adsorbents…………………………………………………………………………………………………… 155
      • 3.11.2.4     Photodetectors…………………………………………………………………………………………….. 155
      • 3.11.2.5     Biomedical…………………………………………………………………………………………………… 156
    • 3.11.3        Market opportunity assessment……………………………………………………………………….. 156
  • 3.12      MOLYBDENUM DISULFIDE (MoS2)………………………………………………………………………… 157
    • 3.12.1        Properties………………………………………………………………………………………………………… 157
    • 3.12.2        Applications……………………………………………………………………………………………………… 158
      • 3.12.2.1     Electronics…………………………………………………………………………………………………… 158
      • 3.12.2.2     Photovoltaics……………………………………………………………………………………………….. 159
      • 3.12.2.3     Piezoelectrics………………………………………………………………………………………………. 159
      • 3.12.2.4     Sensors……………………………………………………………………………………………………….. 160
      • 3.12.2.5     Filtration……………………………………………………………………………………………………….. 160
      • 3.12.2.6     Batteries………………………………………………………………………………………………………. 160
      • 3.12.2.7     Fiber lasers………………………………………………………………………………………………….. 160
    • 3.12.3        Market opportunity assessment……………………………………………………………………….. 160
  • 3.13      RHENIUM DISULFIDE (ReS2) AND DISELENIDE (ReSe2)……………………………………. 161
    • 3.13.1        Properties………………………………………………………………………………………………………… 162
    • 3.13.2        Applications……………………………………………………………………………………………………… 162
      • 3.13.2.1     Electronics…………………………………………………………………………………………………… 162
    • 3.13.3        Market opportunity assessment……………………………………………………………………….. 162
  • 3.14      SILICENE…………………………………………………………………………………………………………………. 163
    • 3.14.1        Properties………………………………………………………………………………………………………… 164
    • 3.14.2        Applications……………………………………………………………………………………………………… 164
      • 3.14.2.1     Electronics…………………………………………………………………………………………………… 164
      • 3.14.2.2     Photovoltaics……………………………………………………………………………………………….. 165
      • 3.14.2.3     Thermoelectrics…………………………………………………………………………………………… 165
      • 3.14.2.4     Batteries………………………………………………………………………………………………………. 165
      • 3.14.2.5     Sensors……………………………………………………………………………………………………….. 166
    • 3.14.3        Market opportunity assessment……………………………………………………………………….. 166
  • 3.15      STANENE/TINENE………………………………………………………………………………………………….. 166
    • 3.15.1        Properties………………………………………………………………………………………………………… 167
    • 3.15.2        Applications……………………………………………………………………………………………………… 168
    • 3.15.3        Market opportunity assessment……………………………………………………………………….. 168
  • 3.16      TUNGSTEN DISELENIDE……………………………………………………………………………………….. 169
    • 3.16.1        Properties………………………………………………………………………………………………………… 170
    • 3.16.2        Applications……………………………………………………………………………………………………… 170
      • 3.16.2.1     Electronics…………………………………………………………………………………………………… 170
    • 3.16.3        Market opportunity assessment……………………………………………………………………….. 170
  • 3.17      ANTIMONENE…………………………………………………………………………………………………………. 171
    • 3.17.1        Properties………………………………………………………………………………………………………… 171
    • 3.17.2        Applications……………………………………………………………………………………………………… 171
  • 3.18      DIAMENE…………………………………………………………………………………………………………………. 172
    • 3.18.1        Properties………………………………………………………………………………………………………… 172
    • 3.18.2        Applications……………………………………………………………………………………………………… 172
  • 3.19      INDIUM SELENIDE………………………………………………………………………………………………….. 172
    • 3.19.1        Properties………………………………………………………………………………………………………… 172
    • 3.19.2        Applications……………………………………………………………………………………………………… 173
  • 3.20      COMPARATIVE ANALYSIS OF GRAPHENE AND OTHER 2D MATERIALS…………. 174

4       COMPARATIVE ANALYSIS GRAPHENE AND CARBON NANOTUBES………………………. 176

  • 4.1    Comparative properties………………………………………………………………………………………………… 177
  • 4.2    Cost and production……………………………………………………………………………………………………… 178
  • 4.3    Carbon nanotube-graphene hybrids…………………………………………………………………………….. 179

5       CARBON NANOTUBE SYNTHESIS……………………………………………………………………………….. 180

  • 5.1    Arc discharge synthesis……………………………………………………………………………………………….. 181
  • 5.2    Chemical Vapor Deposition (CVD)……………………………………………………………………………….. 182
  • 5.3    Plasma enhanced chemical vapor deposition (PECVD)……………………………………………….. 183
  • 5.4    High-pressure carbon monoxide synthesis…………………………………………………………………… 184
  • 5.5    Flame synthesis……………………………………………………………………………………………………………. 185
  • 5.6    Laser ablation synthesis……………………………………………………………………………………………….. 186
  • 5.7    Silane solution method…………………………………………………………………………………………………. 187

6       GRAPHENE SYNTHESIS………………………………………………………………………………………………… 188

  • 6.1    Large area graphene films……………………………………………………………………………………………. 188
  • 6.2    Graphene oxide flakes and graphene nanoplatelets…………………………………………………….. 189
  • 6.3    Production methods……………………………………………………………………………………………………… 190
    • 6.3.1     Production directly from natural graphite ore……………………………………………………….. 192
    • 6.3.2     Alternative starting materials………………………………………………………………………………… 192
    • 6.3.3     Quality………………………………………………………………………………………………………………….. 192
  • 6.4    Synthesis and production by types of graphene…………………………………………………………… 193
    • 6.4.1     Graphene nanoplatelets (GNPs)………………………………………………………………………….. 194
    • 6.4.2     Graphene nanoribbons………………………………………………………………………………………… 194
    • 6.4.3     Large-area graphene films…………………………………………………………………………………… 195
    • 6.4.4     Graphene oxide (GO)…………………………………………………………………………………………… 197
  • 6.5    Pros and cons of graphene production methods………………………………………………………….. 198
    • 6.5.1     Chemical Vapor Deposition (CVD)……………………………………………………………………….. 199
    • 6.5.2     Exfoliation method……………………………………………………………………………………………….. 199
    • 6.5.3     Epitaxial growth method……………………………………………………………………………………….. 200
    • 6.5.4     Wet chemistry method (liquid phase exfoliation)………………………………………………….. 200
    • 6.5.5     Micromechanical cleavage method………………………………………………………………………. 201
    • 6.5.6     Green reduction of graphene oxide……………………………………………………………………… 202
    • 6.5.7     Plasma…………………………………………………………………………………………………………………. 202
  • 6.6    Recent synthesis methods……………………………………………………………………………………………. 203
  • 6.7    Synthesis methods by company…………………………………………………………………………………… 208

7       REGULATIONS AND STANDARDS……………………………………………………………………………….. 210

  • 7.1    Standards…………………………………………………………………………………………………………………….. 210
  • 7.2    Europe………………………………………………………………………………………………………………………….. 211
  • 7.3    United States………………………………………………………………………………………………………………… 214
  • 7.4    Asia………………………………………………………………………………………………………………………………. 216
    • 7.4.1     Japan…………………………………………………………………………………………………………………… 216
    • 7.4.2     South Korea…………………………………………………………………………………………………………. 216
    • 7.4.3     Taiwan…………………………………………………………………………………………………………………. 216
    • 7.4.4     Australia……………………………………………………………………………………………………………….. 216
  • 7.5    Workplace exposure…………………………………………………………………………………………………….. 217

8       CARBON NANOTUBES PATENTS…………………………………………………………………………………. 218

9       GRAPHENE PATENTS……………………………………………………………………………………………………. 221

10     CARBON NANOTUBES TECHNOLOGY READINESS LEVEL………………………………………. 225

11     GRAPHENE TECHNOLOGY READINESS LEVEL…………………………………………………………. 227

12     CARBON NANOTUBES MARKET STRUCTURE…………………………………………………………… 229

13     GRAPHENE MARKET STRUCTURE………………………………………………………………………………. 231

14     CARBON NANOTUBES PRODUCTION ANALYSIS………………………………………………………. 235

  • 14.1      Production volumes in metric tons, 2010-2027………………………………………………………… 235
  • 14.2      Carbon nanotube producer production capacities……………………………………………………. 240
  • 14.3      Regional demand for carbon nanotubes………………………………………………………………….. 242
    • 14.3.1        Japan……………………………………………………………………………………………………………….. 243
    • 14.3.2        China……………………………………………………………………………………………………………….. 244
  • 14.4      Main carbon nanotubes producers…………………………………………………………………………… 245
    • 14.4.1        SWNT production…………………………………………………………………………………………….. 245
      • 14.4.1.1     OCSiAl…………………………………………………………………………………………………………. 245
      • 14.4.1.2     FGV Cambridge Nanosystems…………………………………………………………………….. 245
      • 14.4.1.3     Zeon Corporation…………………………………………………………………………………………. 246
  • 14.5      Price of carbon nanotubes-MWNTs, SWNTs and FWNTs……………………………………….. 246
    • 14.5.1        MWNTs……………………………………………………………………………………………………………. 247
    • 14.5.2        SWNTs…………………………………………………………………………………………………………….. 247
  • 14.6      APPLICATIONS……………………………………………………………………………………………………….. 248

15     GRAPHENE PRODUCTION AND PRICING ANALYSIS…………………………………………………………………………. 251

  • 15.1      Graphene production volumes 2010-2027……………………………………………………………….. 251
  • 15.2      Graphene pricing……………………………………………………………………………………………………… 253
    • 15.2.1        Pristine Graphene Flakes pricing…………………………………………………………………….. 254
    • 15.2.2        Few-Layer Graphene pricing……………………………………………………………………………. 255
    • 15.2.3        Graphene Nanoplatelets pricing………………………………………………………………………. 256
    • 15.2.4        Reduced Graphene Oxide pricing……………………………………………………………………. 257
    • 15.2.5        Graphene Quantum Dots pricing……………………………………………………………………… 257
    • 15.2.6        Graphene Oxide Nanosheets pricing……………………………………………………………….. 258
    • 15.2.7        Multilayer Graphene (MLG) pricing………………………………………………………………….. 259
    • 15.2.8        Mass production of lower grade graphene materials……………………………………….. 260
    • 15.2.9        High grade graphene difficult to mass produce………………………………………………… 260
    • 15.2.10      Bulk supply………………………………………………………………………………………………………. 260
    • 15.2.11      Commoditisation………………………………………………………………………………………………. 261
  • 15.3      Graphene producers and production capacities………………………………………………………. 261

16     CARBON NANOTUBES INDUSTRY NEWS 2013-2018-INVESTMENTS, PRODUCTS AND PRODUCTION………………………………………………………………………………………………………………………….. 263

17     GRAPHENE INDUSTRY DEVELOPMENTS 2013-2018-INVESTMENTS, PRODUCTS AND PRODUCTION………………………………………………………………………………………………………………………….. 280

18     END USER MARKET ANALYSIS FOR CARBON NANOMATERIALS…………………………… 335

  • 18.1      3D PRINTING…………………………………………………………………………………………………………… 335
    • 18.1.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 335
    • 18.1.2        APPLICATIONS………………………………………………………………………………………………. 336
    • 18.1.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 338
    • 18.1.4        MARKET CHALLENGES…………………………………………………………………………………. 339
    • 18.1.5        PRODUCT DEVELOPERS………………………………………………………………………………. 340
  • 18.2      ADHESIVES…………………………………………………………………………………………………………….. 342
    • 18.2.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 342
    • 18.2.2        APPLICATIONS………………………………………………………………………………………………. 343
    • 18.2.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 344
    • 18.2.4        MARKET CHALLENGES…………………………………………………………………………………. 347
    • 18.2.5        PRODUCT DEVELOPERS………………………………………………………………………………. 348
  • 18.3      AEROSPACE AND AVIATION…………………………………………………………………………………. 349
    • 18.3.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 349
    • 18.3.2        APPLICATIONS………………………………………………………………………………………………. 351
      • 18.3.2.1     Composites………………………………………………………………………………………………….. 353
      • 18.3.2.2     Coatings………………………………………………………………………………………………………. 356
    • 18.3.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 360
    • 18.3.4        MARKET CHALLENGES…………………………………………………………………………………. 364
    • 18.3.5        PRODUCT DEVELOPERS………………………………………………………………………………. 365
  • 18.4      AUTOMOTIVE…………………………………………………………………………………………………………. 368
    • 18.4.1        MARKET DRIVER AND TRENDS……………………………………………………………………. 369
    • 18.4.2        APPLICATIONS………………………………………………………………………………………………. 370
      • 18.4.2.1     Composites………………………………………………………………………………………………….. 371
      • 18.4.2.2     Thermally conductive additives……………………………………………………………………. 372
      • 18.4.2.3     Tires…………………………………………………………………………………………………………….. 373
    • 18.4.2.4     Heat dissipation in electric vehicles……………………………………………………………… 373
    • 18.4.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 375
    • 18.4.4        MARKET CHALLENGES…………………………………………………………………………………. 378
    • 18.4.5        PRODUCT DEVELOPERS………………………………………………………………………………. 379
  • 18.5      COATINGS………………………………………………………………………………………………………………. 382
    • 18.5.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 383
    • 18.5.2        APPLICATIONS………………………………………………………………………………………………. 387
    • 18.5.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 398
    • 18.5.4        MARKET CHALLENGES…………………………………………………………………………………. 404
    • 18.5.5        PRODUCT DEVELOPERS………………………………………………………………………………. 405
  • 18.6      COMPOSITES…………………………………………………………………………………………………………. 408
    • 18.6.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 409
    • 18.6.2        APPLICATIONS………………………………………………………………………………………………. 411
      • 18.6.2.1     Polymer composites…………………………………………………………………………………….. 411
      • 18.6.2.2     Barrier packaging………………………………………………………………………………………… 415
      • 18.6.2.3     Electrostatic discharge (ESD) and electromagnetic interference (EMI) shielding                   415
      • 18.6.2.4     Wind turbines………………………………………………………………………………………………. 415
      • 18.6.2.5     Ballistic protection………………………………………………………………………………………… 416
    • 18.6.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 417
    • 18.6.4        MARKET CHALLENGES…………………………………………………………………………………. 420
    • 18.6.5        PRODUCT DEVELOPERS………………………………………………………………………………. 421
  • 18.7      ELECTRONICS……………………………………………………………………………………………………….. 426
    • 18.7.1        FLEXIBLE ELECTRONICS, CONDUCTIVE FILMS AND DISPLAYS………………. 427
      • 18.7.1.1     MARKET DRIVERS AND TRENDS…………………………………………………………….. 427
      • 18.7.1.2     APPLICATIONS…………………………………………………………………………………………… 429
      • 18.7.1.3     MARKET SIZE AND OPPORTUNITY………………………………………………………….. 450
      • 18.7.1.4     MARKET CHALLENGES…………………………………………………………………………….. 456
      • 18.7.1.6     PRODUCT DEVELOPERS………………………………………………………………………….. 461
    • 18.7.2        CONDUCTIVE INKS………………………………………………………………………………………… 465
      • 18.7.2.1     MARKET DRIVERS AND TRENDS…………………………………………………………….. 465
      • 18.7.2.2     APPLICATIONS…………………………………………………………………………………………… 467
      • 18.7.2.3     MARKET SIZE AND OPPORTUNITY………………………………………………………….. 475
      • 18.7.2.4     MARKET CHALLENGES…………………………………………………………………………….. 478
      • 18.7.2.5     PRODUCT DEVELOPERS………………………………………………………………………….. 479
    • 18.7.3        TRANSISTORS, INTEGRATED CIRCUITS AND OTHER COMPONENTS…….. 481
      • 18.7.3.1     APPLICATIONS…………………………………………………………………………………………… 482
      • 18.7.3.2     MARKET SIZE AND OPPORTUNITY………………………………………………………….. 490
      • 18.7.3.3     MARKET CHALLENGES…………………………………………………………………………….. 494
      • 18.7.3.4     PRODUCT DEVELOPERS………………………………………………………………………….. 497
    • 18.7.4        MEMORY DEVICES………………………………………………………………………………………… 499
      • 18.7.4.1     MARKET DRIVERS AND TRENDS…………………………………………………………….. 499
      • 18.7.4.2     APPLICATIONS…………………………………………………………………………………………… 501
      • 18.7.4.3     MARKET SIZE AND OPPORTUNITY………………………………………………………….. 504
      • 18.7.4.4     MARKET CHALLENGES…………………………………………………………………………….. 505
      • 18.7.4.5     PRODUCT DEVELOPERS………………………………………………………………………….. 506
    • 18.7.5        PHOTONICS……………………………………………………………………………………………………. 510
      • 18.7.5.1     MARKET DRIVERS…………………………………………………………………………………….. 510
      • 18.7.5.2     APPLICATIONS…………………………………………………………………………………………… 511
      • 18.7.5.3     MARKET SIZE AND OPPORTUNITY………………………………………………………….. 516
      • 18.7.5.4     MARKET CHALLENGES…………………………………………………………………………….. 517
      • 18.7.6        PRODUCT DEVELOPERS………………………………………………………………………………. 517
  • 18.8      ENERGY STORAGE AND CONVERSION………………………………………………………………. 518
    • 18.8.1        BATTERIES…………………………………………………………………………………………………….. 519
      • 18.8.1.1     MARKET DRIVERS AND TRENDS…………………………………………………………….. 519
      • 18.8.1.2     APPLICATIONS…………………………………………………………………………………………… 523
      • 18.8.1.3     MARKET SIZE AND OPPORTUNITY………………………………………………………….. 528
      • 18.8.1.4     MARKET CHALLENGES…………………………………………………………………………….. 532
    • 18.8.2        SUPERCAPACITORS……………………………………………………………………………………… 534
      • 18.8.2.1     MARKET DRIVERS AND TRENDS…………………………………………………………….. 534
      • 18.8.2.2     APPLICATIONS…………………………………………………………………………………………… 535
      • 18.8.2.3     MARKET SIZE AND OPPORTUNITY………………………………………………………….. 541
      • 18.8.2.4     MARKET CHALLENGES…………………………………………………………………………….. 544
    • 18.8.3        PHOTOVOLTAICS…………………………………………………………………………………………… 546
      • 18.8.3.1     MARKET DRIVERS AND TRENDS…………………………………………………………….. 546
      • 18.8.3.2     APPLICATIONS…………………………………………………………………………………………… 547
      • 18.8.3.3     MARKET SIZE AND OPPORTUNITY………………………………………………………….. 553
      • 18.8.3.4     MARKET CHALLENGES…………………………………………………………………………….. 555
    • 18.8.4        FUEL CELLS AND HYDROGEN STORAGE…………………………………………………… 557
      • 18.8.4.1     MARKET DRIVERS…………………………………………………………………………………….. 557
      • 18.8.4.2     APPLICATIONS…………………………………………………………………………………………… 559
      • 18.8.4.3     MARKET SIZE AND OPPORTUNITY………………………………………………………….. 560
      • 18.8.4.4     MARKET CHALLENGES…………………………………………………………………………….. 562
      • 18.8.4.5     PRODUCT DEVELOPERS………………………………………………………………………….. 562
  • 18.9      LED LIGHTING AND UVC……………………………………………………………………………………….. 570
    • 18.9.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 570
    • 18.9.2        PROPERTIES AND APPLICATIONS………………………………………………………………. 571
      • 18.9.2.1     Flexible OLED lighting…………………………………………………………………………………. 571
    • 18.9.3        GLOBAL MARKET SIZE AND OPPORTUNITY………………………………………………. 573
    • 18.9.4        MARKET CHALLENGES…………………………………………………………………………………. 574
    • 18.9.5        PRODUCT DEVELOPERS………………………………………………………………………………. 575
  • 18.10    FILTRATION AND SEPARATION……………………………………………………………………………. 575
    • 18.10.1      MARKET DRIVERS AND TRENDS…………………………………………………………………. 575
    • 18.10.2      APPLICATIONS………………………………………………………………………………………………. 577
      • 18.10.3      Water filtration………………………………………………………………………………………………….. 581
      • 18.10.4      Gas separation………………………………………………………………………………………………… 582
      • 18.10.5      Photocatalytic absorbents………………………………………………………………………………… 582
      • 18.10.6      Air filtration……………………………………………………………………………………………………….. 583
    • 18.10.7      MARKET SIZE AND OPPORTUNITY……………………………………………………………… 584
    • 18.10.8      MARKET CHALLENGES…………………………………………………………………………………. 586
    • 18.10.9      PRODUCT DEVELOPERS………………………………………………………………………………. 588
  • 18.11    LIFE SCIENCES AND MEDICAL…………………………………………………………………………….. 590
    • 18.11.1      MARKET DRIVERS AND TRENDS…………………………………………………………………. 591
    • 18.11.2      APPLICATIONS………………………………………………………………………………………………. 592
      • 18.11.2.1       Cancer therapy………………………………………………………………………………………… 596
      • 18.11.2.2       Medical implants and devices………………………………………………………………….. 598
      • 18.11.2.3       Wound dressings…………………………………………………………………………………….. 598
      • 18.11.2.4       Biosensors……………………………………………………………………………………………….. 599
      • 18.11.2.5       Medical imaging………………………………………………………………………………………. 600
      • 18.11.2.6       Tissue engineering………………………………………………………………………………….. 600
      • 18.11.2.7       Dental………………………………………………………………………………………………………. 601
      • 18.11.2.8       Electrophysiology…………………………………………………………………………………….. 601
      • 18.11.2.9       Wearable and mobile health monitoring…………………………………………………… 601
    • 18.11.3      MARKET SIZE AND OPPORTUNITY……………………………………………………………… 612
      • 18.11.3.1       Wearable healthcare……………………………………………………………………………….. 614
    • 18.11.4      MARKET CHALLENGES…………………………………………………………………………………. 618
    • 18.11.5      PRODUCT DEVELOPERS………………………………………………………………………………. 620
  • 18.12    LUBRICANTS…………………………………………………………………………………………………………… 624
    • 18.12.1      MARKET DRIVERS AND TRENDS…………………………………………………………………. 624
    • 18.12.2      APPLICATIONS………………………………………………………………………………………………. 625
    • 18.12.3      MARKET SIZE AND OPPORTUNITY……………………………………………………………… 627
    • 18.12.4      MARKET CHALLENGES…………………………………………………………………………………. 629
    • 18.12.5      PRODUCT DEVELOPERS………………………………………………………………………………. 629
  • 18.13    OIL AND GAS………………………………………………………………………………………………………….. 630
    • 18.13.1      MARKET DRIVERS AND TRENDS…………………………………………………………………. 631
    • 18.13.2      APPLICATIONS………………………………………………………………………………………………. 632
      • 18.13.2.1       Sensing and reservoir management………………………………………………………… 632
      • 18.13.2.2       Coatings…………………………………………………………………………………………………… 633
      • 18.13.2.3       Drilling fluids…………………………………………………………………………………………….. 634
      • 18.13.2.4       Sorbent materials…………………………………………………………………………………….. 635
      • 18.13.2.5       Catalysts………………………………………………………………………………………………….. 635
      • 18.13.2.6       Separation……………………………………………………………………………………………….. 635
    • 18.13.3      MARKET SIZE AND OPPORTUNITY……………………………………………………………… 636
    • 18.13.4      MARKET CHALLENGES…………………………………………………………………………………. 639
    • 18.13.5      PRODUCT DEVELOPERS………………………………………………………………………………. 640
  • 18.14    RUBBER AND TIRES………………………………………………………………………………………………. 641
    • 18.14.1      APPLICATIONS………………………………………………………………………………………………. 641
    • 18.14.2      GLOBAL MARKET SIZE AND OPPORTUNITY………………………………………………. 641
    • 18.14.3      MARKET CHALLENGES…………………………………………………………………………………. 643
    • 18.14.4      PRODUCT DEVELOPERS………………………………………………………………………………. 643
  • 18.15    SENSORS……………………………………………………………………………………………………………….. 644
    • 18.15.1      MARKET DRIVERS AND TRENDS…………………………………………………………………. 644
    • 18.15.2      APPLICATIONS………………………………………………………………………………………………. 645
      • 18.15.2.1       Infrared (IR) sensors………………………………………………………………………………… 650
      • 18.15.2.2       Electrochemical and gas sensors…………………………………………………………….. 650
      • 18.15.2.3       Pressure sensors…………………………………………………………………………………….. 651
      • 18.15.2.4       Biosensors……………………………………………………………………………………………….. 651
      • 18.15.2.5       Optical sensors………………………………………………………………………………………… 653
      • 18.15.2.6       Humidity sensors……………………………………………………………………………………… 654
      • 18.15.2.7       Strain sensors………………………………………………………………………………………….. 654
      • 18.15.2.8       Acoustic sensors……………………………………………………………………………………… 654
      • 18.15.2.9       Wireless sensors……………………………………………………………………………………… 654
      • 18.15.2.10     Surface enhanced Raman scattering………………………………………………………. 654
    • 18.15.3      MARKET SIZE AND OPPORTUNITY……………………………………………………………… 655
    • 18.15.4      MARKET CHALLENGES…………………………………………………………………………………. 657
    • 18.15.5      PRODUCT DEVELOPERS………………………………………………………………………………. 659
  • 18.16    SMART TEXTILES AND APPAREL…………………………………………………………………………. 662
    • 18.16.1      MARKET DRIVERS AND TRENDS…………………………………………………………………. 662
    • 18.16.2      APPLICATIONS………………………………………………………………………………………………. 666
      • 18.16.3      Conductive coatings…………………………………………………………………………………………. 669
      • 18.16.4      Conductive yarns……………………………………………………………………………………………… 670
    • 18.16.5      MARKET SIZE AND OPPORTUNITY……………………………………………………………… 671
    • 18.16.6      MARKET CHALLENGES…………………………………………………………………………………. 676
    • 18.16.7      PRODUCT DEVELOPERS………………………………………………………………………………. 678

19     CARBON NANOTUBES PRODUCERS AND PRODUCT DEVELOPERS………………………. 680

  • 220 Company profiles

20     GRAPHENE PRODUCERS……………………………………………………………………………………………… 807

  • 20.1      TYPES OF GRAPHENE PRODUCED, BY PRODUCER…………………………………………. 807
  • 119 Company profiles (pages 811-991)

21     GRAPHENE PRODUCT AND APPLICATION DEVELOPERS……………………………………….. 892

  • 21.1      Industrial collaborations and licence agreements…………………………………………………….. 892
  • 21.2      Markets targeted, by product developers and end users………………………………………….. 896
  • 110 Company profiles (pages 897-962)

22     REFERENCES…………………………………………………………………………………………………………………. 963

TABLES

  • Table 1: Market summary for carbon nanotubes-Selling grade particle diameter, usage, advantages, average price/ton, high volume applications, low volume applications and novel applications…………………………………………………………………………………………………………………………… 59
  • Table 2: Properties of CNTs and comparable materials……………………………………………………………… 61
  • Table 3: Market opportunity assessment for CNTs in order of opportunity from high to low……….. 63
  • Table 4: Annual production capacity of MWNT producers 2017…………………………………………………. 69
  • Table 5: SWNT producers production capacities 2017……………………………………………………………….. 71
  • Table 6: Production volumes of MWNTs (tons), 2010-2027……………………………………………………….. 73
  • Table 7: Competitive analysis of Carbon nanotubes and graphene by application area and potential impact by 2027……………………………………………………………………………………………………………………… 79
  • Table 8: Demand for graphene (tons), 2010-2027……………………………………………………………………… 83
  • Table 9: Consumer products incorporating graphene…………………………………………………………………. 85
  • Table 10: Graphene investments and financial agreements 2017………………………………………………. 86
  • Table 11: Market opportunity assessment matrix for graphene applications………………………………. 89
  • Table 12: Graphene target markets-Applications and potential addressable market size…………… 95
  • Table 13: Main graphene producers by country and annual production capacities…………………….. 96
  • Table 14: Categorization of nanomaterials……………………………………………………………………………….. 110
  • Table 15: Properties of carbon nanotubes………………………………………………………………………………… 111
  • Table 16: Applications of multi-walled carbon nanotubes…………………………………………………………. 114
  • Table 17: Markets, benefits and applications of Single-Walled Carbon Nanotubes………………….. 116
  • Table 18: Comparison between single-walled carbon nanotubes and multi-walled carbon nanotubes…………………………………………………………………………………………………………………………… 119
  • Table 19: Markets, benefits and applications of fullerenes……………………………………………………….. 124
  • Table 20: Applications of carbon nanotubes…………………………………………………………………………….. 126
  • Table 21: Properties of graphene……………………………………………………………………………………………… 130
  • Table 22: Comparison of graphene QDs and semiconductor QDs…………………………………………… 132
  • Table 23: Graphene quantum dot producers……………………………………………………………………………. 135
  • Table 24: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2…………………………………………………………………………………………………………………………………………….. 139
  • Table 25: Market opportunity assessment for phosphorene applications…………………………………. 143
  • Table 26: Market opportunity assessment for graphitic carbon nitride applications………………….. 146
  • Table 27: Market opportunity assessment for germanene applications……………………………………. 148
  • Table 28: Market opportunity assessment for graphdiyne applications…………………………………….. 151
  • Table 29: Market opportunity assessment for graphane applications……………………………………….. 153
  • Table 30: Market opportunity assessment for hexagonal boron nitride applications…………………. 156
  • Table 31: Market opportunity assessment for molybdenum disulfide applications……………………. 160
  • Table 32: Market opportunity assessment for Rhenium disulfide (ReS2) and diselenide (ReSe2) applications…………………………………………………………………………………………………………………………. 162
  • Table 33: Market opportunity assessment for silicene applications………………………………………….. 166
  • Table 34: Market opportunity assessment for stanine/tinene applications………………………………… 168
  • Table 35: Market opportunity assessment for tungsten diselenide applications……………………….. 170
  • Table 36: Comparative analysis of graphene and other 2-D nanomaterials……………………………… 174
  • Table 37: Comparative properties of carbon materials……………………………………………………………… 177
  • Table 38: Comparative properties of graphene with nanoclays and carbon nanotubes……………. 179
  • Table 39: SWNT synthesis methods…………………………………………………………………………………………. 181
  • Table 40: Large area graphene films-Markets, applications and current global market……………. 188
  • Table 41: Graphene oxide flakes/graphene nanoplatelets-Markets, applications and current global market…………………………………………………………………………………………………………………………………. 189
  • Table 42: Main production methods for graphene…………………………………………………………………….. 190
  • Table 43: Large area graphene films-Markets, applications and current global market……………. 196
  • Table 44: Graphene synthesis methods, by company………………………………………………………………. 208
  • Table 45: National nanomaterials registries in Europe……………………………………………………………… 212
  • Table 46: Nanomaterials regulatory bodies in Australia……………………………………………………………. 217
  • Table 47: Top ten countries based on number of nanotechnology patents in USPTO 2014-2015. 219
  • Table 48: Published patent publications for graphene, 2004-2016…………………………………………… 222
  • Table 49: Leading graphene patentees…………………………………………………………………………………….. 223
  • Table 50: Industrial graphene patents………………………………………………………………………………………. 223
  • Table 51: Carbon nanotubes market structure………………………………………………………………………….. 229
  • Table 52: Graphene market structure……………………………………………………………………………………….. 231
  • Table 53: Production volumes of carbon nanotubes (tons), 2010-2027……………………………………. 236
  • Table 54: Annual production capacity of MWNT producers………………………………………………………. 241
  • Table 55: SWNT producer’s production capacities 2016………………………………………………………….. 242
  • Table 56: Example carbon nanotubes prices……………………………………………………………………………. 247
  • Table 57: Markets, benefits and applications of Carbon Nanotubes…………………………………………. 248
  • Table 58: Global production of graphene, 2010-2027 in tons/year. Base year for projections is 2015…………………………………………………………………………………………………………………………………………….. 251
  • Table 59: Types of graphene and prices…………………………………………………………………………………… 253
  • Table 60: Pristine graphene flakes pricing by producer……………………………………………………………. 255
  • Table 61: Few-layer graphene pricing by producer…………………………………………………………………… 255
  • Table 62: Graphene nanoplatelets pricing by producer…………………………………………………………….. 256
  • Table 63: Reduced graphene oxide pricing, by producer…………………………………………………………. 257
  • Table 64: Graphene quantum dots pricing by producer……………………………………………………………. 258
  • Table 65: Graphene oxide nanosheets pricing by producer……………………………………………………… 258
  • Table 66: Multi-layer graphene pricing by producer………………………………………………………………….. 259
  • Table 67: Production capacities of graphene producers, current and planned, metric tons……… 261
  • Table 68: Market drivers for use of carbon nanomaterials in 3D printing………………………………….. 335
  • Table 69: Graphene properties relevant to application in 3D printing……………………………………….. 336
  • Table 70: Applications and benefits of carbon nanomaterials in 3D printing…………………………….. 337
  • Table 71: Market size for carbon nanomaterials in 3D printing…………………………………………………. 338
  • Table 72: Market opportunity assessment for CNTs in 3D printing…………………………………………… 338
  • Table 73: Market opportunity assessment for graphene in 3D printing…………………………………….. 338
  • Table 74: Market challenges for carbon nanomaterials in 3D printing………………………………………. 339
  • Table 75: Market challenges rating for carbon nanomaterials in the 3D printing market…………… 340
  • Table 76: Carbon nanotubes product and application developers in the 3D printing industry…… 340
  • Table 77: Graphene product and application developers in the 3D printing industry………………… 341
  • Table 78: Market drivers for use of carbon nanomaterials in adhesives…………………………………… 342
  • Table 79: Graphene properties relevant to application in adhesives………………………………………… 343
  • Table 80: Applications and benefits of carbon nanomaterials in adhesives………………………………. 344
  • Table 81: Market size for carbon nanomaterials in adhesives………………………………………………….. 345
  • Table 82: Market opportunity assessment for CNTs in adhesives……………………………………………. 345
  • Table 83: Market opportunity assessment for graphene in adhesives………………………………………. 346
  • Table 84: Market challenges rating for carbon nanomaterials in the adhesives market……………. 347
  • Table 85: Carbon nanotubes product and application developers in the adhesives industry……. 348
  • Table 86:  Graphene product and application developers in the adhesives industry………………… 348
  • Table 87: Market drivers for use of carbon nanomaterials in aerospace…………………………………… 349
  • Table 88: Applications and benefits of CNTs in aerospace………………………………………………………. 351
  • Table 89: Applications in aerospace composites, by nanomaterials type and benefits thereof…. 355
  • Table 90: Types of nanocoatings utilized in aerospace and application……………………………………. 357
  • Table 91: Market size for carbon nanomaterials in aerospace………………………………………………….. 361
  • Table 92: Market opportunity assessment for CNTs in aerospace……………………………………………. 362
  • Table 93: Market opportunity assessment for graphene in aerospace……………………………………… 362
  • Table 94: Market challenges rating for carbon nanomaterials in the aerospace market…………… 364
  • Table 95: Carbon nanotubes product and application developers in the aerospace industry…… 365
  • Table 96: Graphene product and application developers in the aerospace industry…………………. 367
  • Table 97: Market drivers for use of carbon nanomaterials in automotive………………………………….. 369
  • Table 98: Applications and benefits of carbon nanomaterials in automotive…………………………….. 374
  • Table 99: Market size for carbon nanomaterials in automotive…………………………………………………. 375
  • Table 100: Market opportunity assessment for CNTs in automotive…………………………………………. 376
  • Table 101: Market opportunity assessment for graphene in the automotive industry……………….. 377
  • Table 102: Applications and commercialization challenges for carbon nanomaterials in the automotive market………………………………………………………………………………………………………………. 378
  • Table 103: Market challenges rating for CNTs in the automotive market………………………………….. 379
  • Table 104: Carbon nanotubes product and application developers in the automotive market….. 379
  • Table 105: Graphene product and application developers in the automotive market……………….. 381
  • Table 106: Properties of nanocoatings……………………………………………………………………………………… 382
  • Table 107: Graphene properties relevant to application in coatings…………………………………………. 388
  • Table 108: Markets for nanocoatings……………………………………………………………………………………….. 399
  • Table 109: Market opportunity assessment for carbon nanomaterials in the coatings market….. 404
  • Table 110: Market challenges rating for carbon nanomaterials in the coatings market…………….. 405
  • Table 111: Carbon nanotubes product and application developers in the coatings industry…….. 405
  • Table 112: Graphene product and application developers in the coatings industry………………….. 406
  • Table 113: Market drivers for use of carbon nanomaterials in composites……………………………….. 409
  • Table 114: Comparative properties of polymer composites reinforcing materials…………………….. 411
  • Table 115: Applications and benefits of carbon nanomaterials in composites………………………….. 412
  • Table 116: Market size for carbon nanomaterials in composites………………………………………………. 417
  • Table 117: Market opportunity assessment for CNTs in composites………………………………………… 418
  • Table 118: Market opportunity assessment for graphene in composites………………………………….. 419
  • Table 119: Applications and commercialization challenges for carbon nanomaterials in composites…………………………………………………………………………………………………………………………………………….. 420
  • Table 120: Market challenges rating for carbon nanomaterials in the composites market………… 421
  • Table 121: Carbon nanotubes product and application developers in the composites market…. 421
  • Table 122: Graphene product and application developers in the composites market……………….. 424
  • Table 123: Market drivers for use of carbon nanomaterials in flexible electronics and conductive films…………………………………………………………………………………………………………………………………….. 427
  • Table 124: Applications and benefits of carbon nanomaterials in flexible electronics and conductive films…………………………………………………………………………………………………………………………………….. 432
  • Table 125: Comparison of ITO replacements…………………………………………………………………………… 435
  • Table 126: Wearable electronics devices and stage of development……………………………………….. 440
  • Table 127: Graphene properties relevant to application in sensors………………………………………….. 446
  • Table 128: Market size for carbon nanomaterials in flexible electronics and conductive films….. 450
  • Table 129: Market opportunity assessment for CNTs in flexible electronics, wearables, conductive films and displays……………………………………………………………………………………………………………….. 452
  • Table 130: Market opportunity assessment for graphene in flexible electronics, wearables, conductive films and displays……………………………………………………………………………………………… 453
  • Table 131: Global market for wearable electronics, 2015-2027, by application, billions $………… 454
  • Table 132: Applications and commercialization challenges for CNTs in flexible electronics and conductive films………………………………………………………………………………………………………………….. 459
  • Table 133: Market challenges rating for carbon nanomaterials in the flexible electronics and conductive films market………………………………………………………………………………………………………. 461
  • Table 134: Carbon nanotubes product and application developers in transparent conductive films and displays……………………………………………………………………………………………………………………….. 461
  • Table 135: Graphene product and application developers in transparent conductive films………. 464
  • Table 136: Market drivers for use of carbon nanomaterials in conductive inks…………………………. 465
  • Table 137: Comparative properties of conductive inks……………………………………………………………… 468
  • Table 138: Opportunities for advanced materials in printed electronics……………………………………. 471
  • Table 139: Applications in flexible and stretchable batteries, by nanomaterials type and benefits thereof………………………………………………………………………………………………………………………………… 473
  • Table 140: Market opportunity assessment for graphene in conductive inks……………………………. 475
  • Table 141: Market opportunity assessment for CNTs in conductive inks………………………………….. 476
  • Table 142: Conductive inks in the flexible and stretchable electronics market 2017-2027 revenue forecast (million $), by ink types………………………………………………………………………………………….. 478
  • Table 143: Market challenges for carbon nanomaterials in conductive inks……………………………… 478
  • Table 144: Market challenges rating for carbon nanomaterials in the conductive inks market…. 479
  • Table 145: Carbon nanotubes product and application developers in conductive inks…………….. 479
  • Table 146: Graphene product and application developers in conductive inks………………………….. 479
  • Table 147: Market drivers for carbon nanomaterials in transistors, integrated circuits and other components………………………………………………………………………………………………………………………… 481
  • Table 148: Applications and benefits of CNTs in transistors, integrated circuits and other components………………………………………………………………………………………………………………………… 485
  • Table 149: Comparative properties of silicon and graphene transistors……………………………………. 487
  • Table 150: Applications and benefits of graphene in transistors, integrated circuits and other components………………………………………………………………………………………………………………………… 489
  • Table 151: Market size for carbon nanomaterials in transistors, integrated circuits and other components………………………………………………………………………………………………………………………… 491
  • Table 152: Market opportunity assessment for CNTs in transistors, integrated circuits and other components………………………………………………………………………………………………………………………… 492
  • Table 153: Market opportunity assessment for graphene in transistors, integrated circuits and other components………………………………………………………………………………………………………………………… 493
  • Table 154: Market challenges rating for graphene in the transistors and integrated circuits market…………………………………………………………………………………………………………………………………………….. 495
  • Table 155: Applications and commercialization challenges for CNTs in the transistors, integrated circuits and other components market………………………………………………………………………………… 495
  • Table 156: Market challenges rating for CNTs in the transistors, integrated circuits and other components market…………………………………………………………………………………………………………….. 496
  • Table 157: Carbon nanotubes product and application developers in transistors, integrated circuits and other components………………………………………………………………………………………………………… 497
  • Table 158: Graphene product and application developers in transistors and integrated circuits. 498
  • Table 159: Market drivers for use of carbon nanomaterials in memory devices……………………….. 500
  • Table 160: Applications and benefits of CNTs in memory devices……………………………………………. 502
  • Table 161: Market size for carbon nanomaterials in memory devices………………………………………. 504
  • Table 162: Market opportunity assessment for CNTs in memory devices………………………………… 505
  • Table 163: Market challenges rating for carbon nanomaterials in the memory devices market… 505
  • Table 164: Carbon nanotubes product and application developers in memory devices……………. 509
  • Table 165: Graphene product and application developers in memory devices…………………………. 509
  • Table 166: Market drivers for use of carbon nanomaterials in photonics………………………………….. 510
  • Table 167: Applications and benefits of CNTs in photonics………………………………………………………. 511
  • Table 168: Graphene properties relevant to application in optical modulators………………………….. 512
  • Table 169: Applications and benefits of graphene in photonics………………………………………………… 515
  • Table 170: Market size for carbon nanomaterials in photonics…………………………………………………. 516
  • Table 171: Market challenges rating for carbon nanomaterials in the photonics market…………… 517
  • Table 172: Graphene product and application developers in photonics……………………………………. 517
  • Table 173: Market drivers for use of carbon nanomaterials in batteries……………………………………. 520
  • Table 174: Applications and benefits of CNTs in batteries……………………………………………………….. 523
  • Table 175: Applications in flexible and stretchable batteries, by materials type and benefits thereof…………………………………………………………………………………………………………………………………………….. 527
  • Table 176: Market size for carbon nanomaterials in batteries…………………………………………………… 529
  • Table 177: Potential addressable market for thin film, flexible and printed batteries………………… 530
  • Table 178: Market opportunity assessment for graphene in batteries………………………………………. 532
  • Table 179: Market challenges in CNT batteries………………………………………………………………………… 532
  • Table 180: Market challenges rating for CNTs in the batteries market……………………………………… 533
  • Table 181: Market challenges rating for graphene in the batteries market……………………………….. 534
  • Table 182: Market drivers for use of carbon nanomaterials in supercapacitors………………………… 534
  • Table 183: Applications and benefits of CNTs in supercapacitors……………………………………………. 536
  • Table 184: Comparative properties of graphene supercapacitors and lithium-ion batteries……… 537
  • Table 185: Applications and benefits of graphene in supercapacitors………………………………………. 538
  • Table 186: Properties of carbon materials in high-performance supercapacitors……………………… 539
  • Table 187: Applications in flexible and stretchable supercapacitors, by nanomaterials type and benefits thereof…………………………………………………………………………………………………………………… 541
  • Table 188: Market size for carbon nanomaterials in supercapacitors……………………………………….. 542
  • Table 189: Market opportunity assessment for CNTs in supercapacitors…………………………………. 543
  • Table 190: Market opportunity assessment for graphene in supercapacitors…………………………… 543
  • Table 191: Market challenges in supercapacitors…………………………………………………………………….. 544
  • Table 192: Market challenges rating for CNTs in the supercapacitors market………………………….. 545
  • Table 193: Market challenges rating for graphene in the supercapacitors market……………………. 546
  • Table 194: Market drivers for use of carbon nanomaterials in photovoltaics…………………………….. 546
  • Table 195: Applications and benefits of CNTs in photovoltaics………………………………………………… 548
  • Table 196: Market size for carbon nanomaterials in photovoltaics……………………………………………. 553
  • Table 197: Market size for CNTs in photovoltaics…………………………………………………………………….. 554
  • Table 198: Market size for graphene in photovoltaics………………………………………………………………. 554
  • Table 199: Potential addressable market for CNTs in photovoltaics…………………………………………. 555
  • Table 200: Market challenges for CNTs in solar……………………………………………………………………….. 556
  • Table 201: Market challenges rating for CNTs in the solar market……………………………………………. 556
  • Table 202: Market challenges rating for graphene in the solar market……………………………………… 557
  • Table 203: Market drivers for use of carbon nanomaterials in fuel cells and hydrogen storage.. 557
  • Table 204: Electrical conductivity of different catalyst supports compared to carbon nanotubes. 560
  • Table 205: Market size for carbon nanomaterials in fuel cells and hydrogen storage………………. 561
  • Table 206: Market opportunity assessment for carbon nanomaterials in fuel cells and hydrogen storage……………………………………………………………………………………………………………………………….. 561
  • Table 207: Market challenges rating for carbon nanomaterials in the fuel cells and hydrogen storage market……………………………………………………………………………………………………………………. 562
  • Table 208: Carbon nanotubes product and application developers in the energy storage, conversion and exploration industries…………………………………………………………………………………………………… 562
  • Table 209: Graphene product and application developers in the energy storage and conversion industry……………………………………………………………………………………………………………………………….. 566
  • Table 210: Market drivers for use of carbon nanomaterials in LED lighting and UVC………………. 570
  • Table 211: Applications of carbon nanomaterials in lighting……………………………………………………… 571
  • Table 212: Market size for carbon nanomaterials in LED lighting and UVC……………………………… 573
  • Table 213: Investment opportunity assessment for carbon nanomaterials in the lighting market. 574
  • Table 214: Market impediments for carbon nanomaterials in lighting……………………………………….. 574
  • Table 215: Carbon nanomaterials product and application developers in the LED and UVC lighting market…………………………………………………………………………………………………………………………………. 575
  • Table 216: Market drivers for use of carbon nanomaterials in filtration…………………………………….. 575
  • Table 217: Comparison of CNT membranes with other membrane technologies…………………….. 579
  • Table 218: Applications and benefits of CNTs in filtration and separation………………………………… 580
  • Table 219: Applications and benefits of graphene in filtration and separation………………………….. 581
  • Table 220: Market size for carbon nanomaterials in filtration……………………………………………………. 584
  • Table 221: Market opportunity assessment for CNTs in filtration……………………………………………… 585
  • Table 222: Market opportunity assessment for graphene in the filtration and separation market. 586
  • Table 223: Market challenges for carbon nanomaterials in filtration…………………………………………. 587
  • Table 224: Market challenges rating for carbon nanomaterials in the filtration market……………… 587
  • Table 225: Carbon nanotubes product and application developers in the filtration industry……… 588
  • Table 226: Graphene product and application developers in the filtration industry…………………… 589
  • Table 227: Market drivers for use of carbon nanomaterials in the life sciences and medical market…………………………………………………………………………………………………………………………………………….. 591
  • Table 228: CNTs in life sciences and biomedicine……………………………………………………………………. 593
  • Table 229: Graphene properties relevant to application in biomedicine and healthcare…………… 593
  • Table 230: Applications and benefits of carbon nanomaterials in life sciences and medical…….. 594
  • Table 231: Applications in flexible and stretchable health monitors, by advanced materials type and benefits thereof…………………………………………………………………………………………………………………… 604
  • Table 232: Market size for carbon nanomaterials in life sciences and medical…………………………. 612
  • Table 233: Potential addressable market for smart textiles and wearables in medical and healthcare…………………………………………………………………………………………………………………………… 613
  • Table 234: Market opportunity assessment for graphene in biomedical & healthcare markets… 616
  • Table 235: Market opportunity assessment for CNTs in life sciences and medical…………………… 618
  • Table 236: Applications and commercialization challenges for carbon nanomaterials in life sciences and medical………………………………………………………………………………………………………………………… 618
  • Table 237: Market challenges rating for carbon nanomaterials in the life sciences and medical. 620
  • Table 238: Carbon nanotubes product and application developers in the medical and healthcare industry……………………………………………………………………………………………………………………………….. 620
  • Table 239: Graphene product and application developers in the biomedical and healthcare industry…………………………………………………………………………………………………………………………………………….. 622
  • Table 240: Market drivers for use of carbon nanomaterials in lubricants………………………………….. 624
  • Table 241: Applications of graphene in the lubricants market…………………………………………………… 625
  • Table 242: Applications of carbon nanotubes in lubricants……………………………………………………….. 626
  • Table 243: Applications in lubricants, by nanomaterials type and benefits thereof…………………… 626
  • Table 244: Market size for carbon nanomaterials in lubricants…………………………………………………. 627
  • Table 245: Market opportunity assessment for CNTs in lubricants…………………………………………… 627
  • Table 246: Market opportunity assessment for graphene in lubricants…………………………………….. 628
  • Table 247: Market challenges rating for carbon nanomaterials in the lubricants market…………… 629
  • Table 248: Carbon nanotubes product and application developers in the lubricants industry…… 629
  • Table 249:  Graphene product and application developers in the lubricants industry……………….. 630
  • Table 250: Market drivers for carbon nanomaterials in oil and gas…………………………………………… 631
  • Table 251: Applications of graphene in the oil and gas market………………………………………………… 632
  • Table 252: Market summary and revenues for carbon nanomaterials in the oil and gas market. 637
  • Table 253: Investment opportunity assessment for CNTs in the oil and gas market………………… 638
  • Table 254: Investment opportunity assessment for graphene in the oil and gas market…………… 638
  • Table 255: Market challenges rating for carbon nanomaterials in the oil and gas exploration market…………………………………………………………………………………………………………………………………………….. 640
  • Table 256: Carbon nanomaterial product and application developers in the oil and gas market. 640
  • Table 257: Applications of carbon nanomaterials in rubber and tires……………………………………….. 641
  • Table 258: Market summary and revenues for carbon nanomaterials in the rubber and tires market…………………………………………………………………………………………………………………………………………….. 641
  • Table 259: Investment opportunity assessment for carbon nanomaterials in the rubber and tires market…………………………………………………………………………………………………………………………………. 642
  • Table 260: Market challenges for carbon nanomaterials in rubber and tires…………………………….. 643
  • Table 261: Companies developing graphene-based products in rubber and tires……………………. 643
  • Table 262: Market drivers for use of carbon nanomaterials in sensors…………………………………….. 644
  • Table 263: Applications and benefits of CNTs in sensors…………………………………………………………. 646
  • Table 264: Applications and benefits of graphene in sensors…………………………………………………… 647
  • Table 265: Graphene properties relevant to application in sensors………………………………………….. 649
  • Table 266: Comparison of ELISA (enzyme-linked immunosorbent assay) and graphene biosensor…………………………………………………………………………………………………………………………………………….. 653
  • Table 267: Market size for carbon nanomaterials in sensors……………………………………………………. 655
  • Table 268: Market opportunity assessment for CNTs in sensors……………………………………………… 656
  • Table 269: Market opportunity assessment for graphene in the sensors market……………………… 657
  • Table 270: Market challenges rating for graphene in the sensors market………………………………… 658
  • Table 271: Market challenges for CNTs in sensors………………………………………………………………….. 658
  • Table 272: Market challenges rating for CNTs in the sensors market………………………………………. 659
  • Table 273: Carbon nanotubes product and application developers in the sensors industry……… 659
  • Table 274: Graphene product and application developers in the sensors industry…………………… 660
  • Table 275: Types of smart textiles……………………………………………………………………………………………. 663
  • Table 276: Smart textile products……………………………………………………………………………………………… 663
  • Table 277: Market drivers for use of carbon nanomaterials in smart textiles and apparel………… 664
  • Table 278: Desirable functional properties for the textiles industry afforded by the use of nanomaterials……………………………………………………………………………………………………………………… 666
  • Table 279: Applications and benefits of CNTs in textiles and apparel………………………………………. 668
  • Table 280: Applications and benefits of graphene in textiles and apparel………………………………… 670
  • Table 281: Global smart clothing, interactive fabrics and apparel market…………………………………. 672
  • Table 282: Market opportunity assessment for CNTs in smart textiles and apparel…………………. 675
  • Table 283: Market opportunity assessment for graphene in smart textiles and apparel……………. 676
  • Table 284: Applications and commercialization challenges for carbon nanomaterials in smart textiles and apparel…………………………………………………………………………………………………………….. 676
  • Table 285: Market challenges rating for CNTs in the smart textiles and apparel market………….. 677
  • Table 286: Carbon nanotubes product and application developers in the textiles industry………. 678
  • Table 287:  Graphene product and application developers in the textiles industry…………………… 678
  • Table 288: CNT producers and companies they supply/licence to…………………………………………… 680
  • Table 289: Graphene producers and types produced………………………………………………………………. 807
  • Table 290: Graphene producers target market matrix………………………………………………………………. 812
  • Table 291: Graphene industrial collaborations, licence agreements and target markets………….. 892
  • Table 292: Graphene product developers and end users target market matrix………………………… 896

FIGURES

  • Figure 1: Molecular structures of SWNT and MWNT………………………………………………………………….. 61
  • Figure 2: The SGCNT synthesis method……………………………………………………………………………………. 71
  • Figure 3: Production capacities for SWNTs in kilograms, 2005-2017…………………………………………. 72
  • Figure 4: Global demand for MWNTs (tons), 2010-2027……………………………………………………………. 74
  • Figure 5: Graphene production capacity, current and planned…………………………………………………… 83
  • Figure 6: Demand for graphene, 2010-2027………………………………………………………………………………. 84
  • Figure 7: Vittoria bike tires incorporating graphene…………………………………………………………………….. 85
  • Figure 8: Demand for graphene, by market, 2027………………………………………………………………………. 88
  • Figure 9: Global government funding for graphene in millions USD to 2017………………………………. 94
  • Figure 10: Global consumption of graphene 2016, by region……………………………………………………. 101
  • Figure 11: 15-inch single-layer graphene sheet being prepared in the Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences……………………………………………….. 105
  • Figure 12: Schematic of single-walled carbon nanotube…………………………………………………………… 115
  • Figure 13: TIM sheet developed by Zeon Corporation……………………………………………………………… 116
  • Figure 14: Double-walled carbon nanotube bundle cross-section micrograph and model………… 120
  • Figure 15: Schematic representation of carbon nanohorns………………………………………………………. 121
  • Figure 16: TEM image of carbon onion…………………………………………………………………………………….. 122
  • Figure 17: Fullerene schematic………………………………………………………………………………………………… 124
  • Figure 18: Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red……………………………………………………………………………………………………………………….. 125
  • Figure 19: Graphene layer structure schematic………………………………………………………………………… 127
  • Figure 20: Graphite and graphene……………………………………………………………………………………………. 128
  • Figure 21: Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene. ……………………………………………………………………………………………………………………………………………. 129
  • Figure 22: Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1–4)………………… 132
  • Figure 23: Green-fluorescing graphene quantum dots……………………………………………………………… 134
  • Figure 24: Graphene quantum dots………………………………………………………………………………………….. 135
  • Figure 25: Black phosphorus structure……………………………………………………………………………………… 137
  • Figure 26: Black Phosphorus crystal………………………………………………………………………………………… 138
  • Figure 27: Bottom gated flexible few-layer phosphorene transistors with the hydrophobic dielectric encapsulation……………………………………………………………………………………………………………………… 141
  • Figure 28: Graphitic carbon nitride……………………………………………………………………………………………. 144
  • Figure 29: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal. Credit: Ulsan National Institute of Science and Technology……………………………. 145
  • Figure 30: Schematic of germanene…………………………………………………………………………………………. 147
  • Figure 31: Graphdiyne structure……………………………………………………………………………………………….. 149
  • Figure 32: Schematic of Graphane crystal………………………………………………………………………………… 152
  • Figure 33: Structure of hexagonal boron nitride………………………………………………………………………… 154
  • Figure 34: BN nanosheet textiles application……………………………………………………………………………. 156
  • Figure 35: Structure of 2D molybdenum disulfide…………………………………………………………………….. 157
  • Figure 36: SEM image of MoS2………………………………………………………………………………………………… 158
  • Figure 37: Atomic force microscopy image of a representative MoS2 thin-film transistor…………. 159
  • Figure 38: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge……………………………………………………………………………… 160
  • Figure 39: Schematic of a monolayer of rhenium disulfide……………………………………………………….. 161
  • Figure 40: Silicene structure……………………………………………………………………………………………………… 163
  • Figure 41: Monolayer silicene on a silver (111) substrate…………………………………………………………. 164
  • Figure 42: Silicene transistor…………………………………………………………………………………………………….. 165
  • Figure 43: Crystal structure for stanene……………………………………………………………………………………. 167
  • Figure 44: Atomic structure model for the 2D stanene on Bi2Te3(111)……………………………………. 167
  • Figure 45: Schematic of tungsten diselenide……………………………………………………………………………. 170
  • Figure 46: Schematic of Indium Selenide (InSe)………………………………………………………………………. 173
  • Figure 47: Graphene can be rolled up into a carbon nanotube, wrapped into a fullerene, and stacked into graphite…………………………………………………………………………………………………………… 176
  • Figure 48: Schematic representation of methods used for carbon nanotube synthesis (a) Arc discharge (b) Chemical vapor deposition (c) Laser ablation (d) hydrocarbon flames………….. 180
  • Figure 49: Arc discharge process for CNTs………………………………………………………………………………. 182
  • Figure 50: Schematic of thermal-CVD method…………………………………………………………………………. 183
  • Figure 51: Schematic of plasma-CVD method………………………………………………………………………….. 184
  • Figure 52: CoMoCAT® process………………………………………………………………………………………………… 185
  • Figure 53: Schematic for flame synthesis of carbon nanotubes (a) premixed flame (b) counter-flow diffusion flame (c) co-flow diffusion flame (d) inverse diffusion flame…………………………………. 186
  • Figure 54: Schematic of laser ablation synthesis……………………………………………………………………… 187
  • Figure 55: Graphene synthesis methods………………………………………………………………………………….. 191
  • Figure 56: TEM micrographs of: A) HR-CNFs; B) GANF® HR-CNF, it can be observed its high graphitic structure; C) Unraveled ribbon from the HR-CNF; D) Detail of the ribbon; E) Scheme of the structure of the HR-CNFs; F) Large single graphene oxide sheets derived from GANF.. 192
  • Figure 57: Graphene nanoribbons grown on germanium…………………………………………………………. 195
  • Figure 58: Methods of synthesizing high-quality graphene……………………………………………………….. 198
  • Figure 59: Roll-to-roll graphene production process…………………………………………………………………. 203
  • Figure 60: Schematic of roll-to-roll manufacturing process……………………………………………………….. 204
  • Figure 61: Microwave irradiation of graphite to produce single-layer graphene………………………… 206
  • Figure 62: Nanotechnology patent applications, 1991-2015…………………………………………………….. 219
  • Figure 63: Share of nanotechnology related patent applications since 1972, by country………….. 219
  • Figure 64: CNT patents filed 2000-2016…………………………………………………………………………………… 220
  • Figure 65: Published patent publications for graphene, 2004-2016………………………………………….. 223
  • Figure 66: Technology Readiness Level (TRL) for Carbon Nanotubes…………………………………….. 226
  • Figure 67: Technology Readiness Level (TRL) for graphene……………………………………………………. 228
  • Figure 68: Schematic of typical commercialization route for graphene producer……………………… 231
  • Figure 69: Global demand for carbon nanotubes (tons), 2010-2027………………………………………… 237
  • Figure 70: Demand for carbon nanotubes, by market in 2017, total…………………………………………. 238
  • Figure 71: Demand for single-walled carbon nanotubes, by market, 2017……………………………….. 239
  • Figure 72: Demand for single-walled carbon nanotubes, by market, 2027……………………………….. 240
  • Figure 73: Production volumes of Carbon Nanotubes 2017, by region…………………………………….. 243
  • Figure 74: Global market for graphene 2010-2027 in tons/year……………………………………………….. 252
  • Figure 79: 3D Printed tweezers incorporating Carbon Nanotube Filament……………………………….. 337
  • Figure 80: Graphene Adhesives……………………………………………………………………………………………….. 343
  • Figure 81: Carbon nanotube Composite Overwrap Pressure Vessel (COPV) developed by NASA…………………………………………………………………………………………………………………………………………….. 353
  • Figure 82: Veelo carbon fiber nanotube sheet………………………………………………………………………….. 354
  • Figure 83: HeatCoat CNT anti-icing coatings……………………………………………………………………………. 359
  • Figure 84: Potential addressable market for carbon nanomaterials in aerospace…………………….. 363
  • Figure 85: Graphene-based automotive components……………………………………………………………….. 372
  • Figure 86: Antistatic graphene tire……………………………………………………………………………………………. 373
  • Figure 87: Schematic of CNTs as heat-dissipation sheets……………………………………………………….. 374
  • Figure 88: Heat transfer coating developed at MIT…………………………………………………………………… 388
  • Figure 89: Water permeation through a brick without (left) and with (right) “graphene paint” coating…………………………………………………………………………………………………………………………………………….. 394
  • Figure 90: Four layers of graphene oxide coatings on polycarbonate………………………………………. 397
  • Figure 91: Global Paints and Coatings Market, share by end user market……………………………….. 398
  • Figure 92: Potential addressable market for carbon nanomaterials in the coatings market………. 403
  • Figure 93: CNT anti-icing coating for wind turbines………………………………………………………………….. 416
  • Figure 94: Potential addressable market for carbon nanomaterials in composites…………………… 419
  • Figure 95: Carbon nanotube thin-film transistors and integrated circuits on a flexible and transparent substrate………………………………………………………………………………………………………….. 430
  • Figure 96: Moxi flexible film developed for smartphone application………………………………………….. 430
  • Figure 97: Flexible graphene touch screen………………………………………………………………………………. 431
  • Figure 98: Galapad Settler smartphone……………………………………………………………………………………. 432
  • Figure 99: 3D printed carbon nanotube sensor………………………………………………………………………… 434
  • Figure 100: Flexible organic light emitting diode (OLED) using graphene electrode………………… 435
  • Figure 101: Graphene electrochromic devices. Top left: Exploded-view illustration of the graphene electrochromic device. The device is formed by attaching two graphene-coated PVC substrates face-to-face and filling the gap with a liquid ionic electrolyte………………………………………………. 437
  • Figure 102: Flexible mobile phones with graphene transparent conductive film……………………….. 438
  • Figure 103: Carbon nanotube-based color active matrix electrophoretic display (EPD) e-paper. 438
  • Figure 104: Foldable graphene E-paper…………………………………………………………………………………… 439
  • Figure 105: Covestro wearables……………………………………………………………………………………………….. 441
  • Figure 106: Softceptor sensor…………………………………………………………………………………………………… 444
  • Figure 107: BeBop Media Arm Controller…………………………………………………………………………………. 444
  • Figure 108: LG Innotek flexible textile pressure sensor……………………………………………………………. 445
  • Figure 109: C2Sense flexible sensor………………………………………………………………………………………… 446
  • Figure 110: Wearable gas sensor…………………………………………………………………………………………….. 448
  • Figure 111: BeBop Sensors Marcel Modular Data Gloves……………………………………………………….. 448
  • Figure 112: BeBop Sensors Smart Helmet Sensor System……………………………………………………… 449
  • Figure 113: Torso and Extremities Protection (TEP) system…………………………………………………….. 450
  • Figure 114: Potential addressable market for CNTs in flexible electronics, conductive films and displays………………………………………………………………………………………………………………………………. 454
  • Figure 115: Global market for wearable electronics, 2015-2027, by application, billions $……….. 454
  • Figure 116: Global transparent conductive electrodes market forecast by materials type, 2012-2027, millions $…………………………………………………………………………………………………………………… 456
  • Figure 117: Schematic of the wet roll-to-roll graphene transfer from copper foils to polymeric substrates…………………………………………………………………………………………………………………………… 458
  • Figure 118: The transmittance of glass/ITO, glass/ITO/four organic layers, and glass/ITO/four organic layers/4-layer graphene…………………………………………………………………………………………. 459
  • Figure 119: Nanotube inks………………………………………………………………………………………………………… 467
  • Figure 120: BGT Materials graphene ink product……………………………………………………………………… 469
  • Figure 121: Flexible RFID tag…………………………………………………………………………………………………… 470
  • Figure 122: Enfucell Printed Battery…………………………………………………………………………………………. 474
  • Figure 123: Graphene printed antenna…………………………………………………………………………………….. 474
  • Figure 124: Conductive inks in the flexible and stretchable electronics market 2017-2027 revenue forecast (million $), by ink types………………………………………………………………………………………….. 477
  • Figure 125: Graphene IC in wafer tester…………………………………………………………………………………… 483
  • Figure 126: A monolayer WS2-based flexible transistor array………………………………………………….. 483
  • Figure 127: Emerging logic devices………………………………………………………………………………………….. 484
  • Figure 128: Thin film transistor incorporating CNTs………………………………………………………………….. 485
  • Figure 129: Schematic cross-section of a graphene based transistor (GBT, left) and a graphene field-effect transistor (GFET, right)……………………………………………………………………………………… 488
  • Figure 130: Potential addressable market for carbon nanomaterials in transistors and integrated circuits………………………………………………………………………………………………………………………………… 493
  • Figure 131: Carbon nanotubes NRAM chip………………………………………………………………………………. 501
  • Figure 132: Stretchable SWCNT memory and logic devices for wearable electronics……………… 502
  • Figure 133: Carbon nanotubes NRAM chip………………………………………………………………………………. 503
  • Figure 134: Schematic of NRAM cell………………………………………………………………………………………… 508
  • Figure 135: Hybrid graphene phototransistors………………………………………………………………………….. 513
  • Figure 136: Wearable health monitor incorporating graphene photodetectors…………………………. 514
  • Figure 137: Flexible PEN coated with graphene and a QD thin film (20nm) is highly visibly transparent and photosensitive…………………………………………………………………………………………… 514
  • Figure 138: The SkelStart Engine Start Module 2.0 based on the graphene-based SkelCap ultracapacitors…………………………………………………………………………………………………………………….. 519
  • Figure 139: Energy densities and specific energy of rechargeable batteries……………………………. 522
  • Figure 140: Nano Lithium X Battery………………………………………………………………………………………….. 525
  • Figure 141: H600 concept car…………………………………………………………………………………………………… 528
  • Figure 142: Anion concept car………………………………………………………………………………………………….. 529
  • Figure 143: Skeleton Technologies ultracapacitor……………………………………………………………………. 537
  • Figure 144: Zapgo supercapacitor phone charger……………………………………………………………………. 539
  • Figure 145: Stretchable graphene supercapacitor……………………………………………………………………. 540
  • Figure 146: Suntech/TCNT nanotube frame module………………………………………………………………… 548
  • Figure 147: Solar cell with nanowires and graphene electrode………………………………………………… 551
  • Figure 148: Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper………………………………… 552
  • Figure 149: LG OLED flexible lighting panel…………………………………………………………………………….. 572
  • Figure 150: Flexible OLED incorporated into automotive headlight………………………………………….. 572
  • Figure 151: Degradation of organic dye molecules by graphene hybrid composite photocatalysts…………………………………………………………………………………………………………………………………………….. 583
  • Figure 152: Graphene anti-smog mask…………………………………………………………………………………….. 583
  • Figure 153: Graphene Frontiers’ Six™ chemical sensors consists of a field effect transistor (FET) with a graphene channel. Receptor molecules, such as DNA, are attached directly to the graphene channel……………………………………………………………………………………………………………….. 599
  • Figure 154: Graphene-Oxide based chip prototypes for biopsy-free early cancer diagnosis……. 600
  • Figure 155: Connected human body………………………………………………………………………………………… 602
  • Figure 156: Flexible, lightweight temperature sensor……………………………………………………………….. 602
  • Figure 157: Graphene-based E-skin patch……………………………………………………………………………….. 604
  • Figure 158: Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs………………………………………………………………………………………………………………………………… 606
  • Figure 159: Graphene medical patch……………………………………………………………………………………….. 607
  • Figure 160: TempTraQ wearable wireless thermometer…………………………………………………………… 608
  • Figure 161: Mimo baby monitor………………………………………………………………………………………………… 608
  • Figure 162: Nanowire skin hydration patch………………………………………………………………………………. 609
  • Figure 163: Wearable sweat sensor…………………………………………………………………………………………. 610
  • Figure 164: GraphWear wearable sweat sensor………………………………………………………………………. 611
  • Figure 165: Global medical and healthcare smart textiles and wearables market, 2015-2027, billions $………………………………………………………………………………………………………………………………………….. 615
  • Figure 166: Global medical and healthcare smart textiles and wearables market, 2015-2027, billions $………………………………………………………………………………………………………………………………………….. 616
  • Figure 167: Schematic of boron doped graphene for application in gas sensors……………………… 633
  • Figure 168: Directa Plus Grafysorber……………………………………………………………………………………….. 635
  • Figure 169: Nanometer-scale pores in single-layer freestanding graphene membrane can effectively filter NaCl salt from water……………………………………………………………………………………………………. 636
  • Figure 170: GFET sensors……………………………………………………………………………………………………….. 651
  • Figure 171: First generation point of care diagnostics………………………………………………………………. 652
  • Figure 172: Graphene Field Effect Transistor Schematic…………………………………………………………. 653
  • Figure 173: Conductive yarns…………………………………………………………………………………………………… 671
  • Figure 174: Global smart clothing, interactive fabrics and apparel market 2013-2027 revenue forecast (million $)………………………………………………………………………………………………………………. 672
  • Figure 175 Global smart clothing, interactive fabrics and apparel sales by market segment, 2016…………………………………………………………………………………………………………………………………………….. 673
  • Figure 176: Global market revenues for nanotech-enabled smart clothing and apparel 2014-2021, in US$, conservative estimate…………………………………………………………………………………………….. 674
  • Figure 177: Global market revenues for nanotech-enabled smart clothing and apparel 2014-2021, in US$, optimistic estimate………………………………………………………………………………………………….. 674