The Global Market for Anti-microbial, Anti-viral, and Anti-fungal Nanocoatings 2021-2031

0

Published April 22 2021,  350 pages, 81 tables, 90 figures

The global COVID-19 crisis has greatly increased industry demand for antimicrobial and antiviral coatings, especially for high touch surfaces in healthcare, retail, hotels, offices and the home. 

Nanocoatings can demonstrate up to 99.9998% effectiveness against bacteria, formaldehyde, mold and viruses, and are up to 1000 times more efficient than previous technologies available on the market. They can work on multiple levels at the same time: anti-microbial, anti-viral, and anti-fungal, self-cleaning and anti-corrosion. Nanocoatings companies have partnering with global manufacturers and cities to develop anti-viral facemasks, hazard suits and easily applied surface coatings.

Their use makes it possible to provide enhanced anti-microbial, anti-viral, mold-reducing and TVOC degrading processes, that are non-toxic and environmentally friendly, allowing for exceptional hygiene standards in all areas of work and life. As a result, it is possible create a healthier living and working environment and to offer holistic solutions to people with a diminished immune system. Nano-based surface coatings prevent the spread of bacteria, fungi and viruses via infected surfaces of so called high-traffic objects, such as door and window handles in public places, hospitals, public buildings, schools, elderly homes etc. 

Anti-microbial, Anti-viral, and Anti-fungal Nanocoatings are available in various material compositions, for healthcare and household surfaces, for indoor and outdoor applications, to protect against corrosion and mildew, as well as for water and air purification. Nanocoatings also reduce surface contamination, are self-cleaning, water-repellent and odor-inhibiting, reducing cleaning and maintenance

Anti-microbial, Anti-viral, and Anti-fungal Nanocoatings can be applied by spraying or dipping and adhere to various surfaces such as glass, metals and various alloys, copper and stainless steel, marble and stone slabs, ceramics and tiles, textiles and plastics.

Nanoparticles of different materials  such as metal nanoparticles, carbon nanotubes, metal oxide nanoparticles, and graphene-based materials have demonstrated enhanced anti-microbial and anti-viral activity. The use of inorganic nanomaterials when compared with organic anti-microbial agents is also desirable due to their stability, robustness, and long shelf life. At high temperatures/pressures organic antimicrobial materials are found to be less stable compared to inorganic antimicrobial agents. The various antimicrobial mechanisms of nanomaterials are mostly attributed to their high specific surface area-to-volume ratios, and their distinctive physico-chemical properties..

Anti-microbial, anti-viral and anti-fungal nanocoatings applications include, but are not limited to:

  • Medical facilities and laboratories
  • Medical equipment;
  • Fabrics and clothing like face masks;
  • Hospital furniture;
  • Hotels and other public spaces;
  • Window glass;
  • Pharmaceutical labs;
  • Packaging;
  • Food packaging areas and restaurants;
  • Food processing equipment;
  • Transportation, air ducts and air ventilation systems;
  • Appliances;
  • Sporting and exercise equipment;
  • Containers;
  • Aircraft interiors and buildings;
  • Cruise lines and other marine vessels;
  • Restroom accessories;
  • Shower enclosures;
  • Handrails;
  • Schools and childcare facilities;
  • Playgrounds.

 

Report contents include:

  • Size in value for the Anti-microbial, Anti-viral, and Anti-fungal Nanocoatings market, and growth rate during the forecast period, 2017-2031. Historical figures are also provided, from 2010.
  • Anti-microbial, Anti-viral, and Anti-fungal Nanocoatings market segments analysis. End users markets include interiors (e.g. household, retails, hotels, workplace, business environments), sanitary, indoor hygiene, medical & healthcare, textiles, plastics packaging etc. 
  • Size in value for the End-user industries for nanocoatings and growth during the forecast period.
  • Market drivers, trends and challenges, by end user markets.
  • Market outlook for 2021. 
  • In-depth market assessment of opportunities for nanocoatings, by type and markets.
  • Anti-microbial, Anti-viral, and Anti-fungal Nanocoatings applications.
  • Analysis of nanomaterials utilized in Anti-microbial, Anti-viral, and Anti-fungal surface treatments, coatings and films including
    • nanosilver
    • graphene
    • nanosilica
    • titanium dioxide nanoparticles/powders
    • zinc oxide nanoparticles/powders
    • nanocellulose
    • carbon nanotubes
    • fullerenes
    • copper oxide nanoparticles
    • iron oxide nanoparticles
    • gold nanoparticles
    • nitric oxide nanoparticles
    • iron oxide nanoparticles
    • boron nitride nanoparticles
    • magnesium oxide nanoparticles
    • aluminium oxide nanoparticles
    • organic nanoparticles
    • chitosan nanoparticles
    • 2D Materials
      • Black Phosphorus.
      • Layered double hydroxides (LDHs)
      • Transition metal dichalcogenides (TMDs)
      • Graphitic carbon nitride (g-C3N4)
      • MXENE
    • Hydrophobic and hydrophilic coatings
    • Superhydrophobic coatings and surfaces. 
  • In-depth analysis of antibacterial and antiviral treatment for antibacterial mask, filter, gloves, clothes and devices. 
  • 160 company profiles including products, technology base, target markets and contact details. Companies features include Advanced Materials-JTJ s.r.o., Bio-Fence, Bio-Gate AG, Covalon Technologies Ltd., EnvisionSQ, GrapheneCA, Integricote, Nano Came Co. Ltd., NanoTouch Materials, LLC, NBD Nanotechnologies, NitroPep, OrganoClick, HeiQ Materials, Green Earth Nano Science, Reactive Surfaces, Kastus, Halomine, sdst, myNano, Voneco and many more.  

 

Table of contents (.pdf)

1              INTRODUCTION 25

  • 1.1          Aims and objectives of the study               25
  • 1.2          Market definition             25
  • 1.2.1      Properties of nanomaterials        26
  • 1.2.2      Categorization   27

 

2              RESEARCH METHODOLOGY         28

 

3              EXECUTIVE SUMMARY   29

  • 3.1          High performance coatings          29
  • 3.2          Nanocoatings    29
  • 3.3          Anti-viral nanoparticles and nanocoatings             33
    • 3.3.1.1   Reusable Personal Protective Equipment (PPE)   34
    • 3.3.1.2   Wipe on coatings             35
    • 3.3.1.3   Facemask coatings           35
    • 3.3.1.4   Long-term mitigation of surface contamination with nanocoatings             35
  • 3.4          Market drivers and trends            36
  • 3.5          Global market size and opportunity to 2031          38
    • 3.5.1      End user market for nanocoatings            38
    • 3.5.2      Global revenues for nanocoatings 2010-2031       41
    • 3.5.3      Global revenues for nanocoatings, by market      42
      • 3.5.3.1   The market in 2019          42
      • 3.5.3.2   The market in 2020          44
      • 3.5.3.3   The market in 2031          46
    • 3.5.4      Regional demand for nanocoatings          47
    • 3.5.5      Demand for antimicrobial and anti-viral nanocoatings post COVID-19 pandemic  49
  • 3.6          Market and technical challenges               52
  • 3.7          Toxicity and environmental considerations           53
  • 3.8          Impact of COVID-19 on the market           53

 

4              NANOCOATINGS TECHNICAL ANALYSIS  55

  • 4.1          Properties of nanocoatings          55
  • 4.2          Benefits of using nanocoatings   56
    • 4.2.1      Types of nanocoatings   57
  • 4.3          Production and synthesis methods          57
    • 4.3.1      Depositing functional nanocomposite films          57
    • 4.3.2      Film coatings techniques analysis              58
    • 4.3.3      Superhydrophobic coatings on substrates             60
    • 4.3.4      Electrospray and electrospinning              61
    • 4.3.5      Chemical and electrochemical deposition              62
      • 4.3.5.1   Chemical vapor deposition (CVD)              62
      • 4.3.5.2   Physical vapor deposition (PVD) 63
      • 4.3.5.3   Atomic layer deposition (ALD)    64
    • 4.3.6      Aerosol coating 65
    • 4.3.7      Layer-by-layer Self-assembly (LBL)            65
    • 4.3.8      Sol-gel process  67
    • 4.3.9      Etching 69

 

5              NANOMATERIALS USED IN ANTI-MICROBIAL, ANTI-VIRAL AND ANTI-FUNGAL NANOCOATINGS      70

  • 5.1          Metallic-based coatings 70
  • 5.2          Polymer-based coatings 70
  • 5.3          Antimicrobial nanomaterials       71
  • 5.4          GRAPHENE         73
    • 5.4.1      Properties           73
    • 5.4.2      Graphene oxide 75
      • 5.4.2.1   Anti-bacterial activity      75
      • 5.4.2.2   Anti-viral activity              76
    • 5.4.3      Reduced graphene oxide (rGO) 76
    • 5.4.4      Application in anti-microbial and anti-viral nanocoatings 77
      • 5.4.4.1   Anti-microbial wound dressings 77
      • 5.4.4.2   Medical textiles 78
      • 5.4.4.3   Anti-microbial medical devices and implants        78
  • 5.5          SILICON DIOXIDE/SILICA NANOPARTICLES             79
    • 5.5.1      Properties           79
    • 5.5.2      Antimicrobial and antiviral activity            80
      • 5.5.2.1   Easy-clean and dirt repellent coatings     80
  • 5.6          SILVER NANOPARTICLES (AgNPs)              81
    • 5.6.1      Properties           81
    • 5.6.2      Application in anti-microbial and anti-viral nanocoatings 81
      • 5.6.2.1   Textiles 83
      • 5.6.2.2   Wound dressings             83
      • 5.6.2.3   Consumer products        83
      • 5.6.2.4   Air filtration        83
      • 5.6.2.5   Packaging            83
    • 5.6.3      Companies         85
  • 5.7          TITANIUM DIOXIDE NANOPARTICLES      86
    • 5.7.1      Properties           86
      • 5.7.1.1   Exterior and construction glass coatings 88
      • 5.7.1.2   Outdoor air pollution      90
      • 5.7.1.3   Interior coatings               90
      • 5.7.1.4   Improving indoor air quality        90
      • 5.7.1.5   Medical facilities               91
    • 5.7.2      Application in anti-microbial and anti-viral nanocoatings 91
      • 5.7.2.1   Air filtration coatings      91
      • 5.7.2.2   Antimicrobial coating indoor light activation         92
  • 5.8          ZINC OXIDE NANOPARTICLES (ZnO-NPs) 93
    • 5.8.1      Properties           93
    • 5.8.2      Application in anti-microbial and anti-viral nanocoatings 94
      • 5.8.2.1   Sterilization dressings    94
      • 5.8.2.2   Anti-bacterial surfaces in construction and building ceramics and glass     94
      • 5.8.2.3   Antimicrobial packaging 95
      • 5.8.2.4   Anti-bacterial textiles     95
  • 5.9          NANOCEULLOSE (CELLULOSE NANOFIBERS AND CELLULOSE NANOCRYSTALS)       97
    • 5.9.1      Properties           97
    • 5.9.2      Application in anti-microbial and anti-viral nanocoatings 98
      • 5.9.2.1   Cellulose nanofibers       98
      • 5.9.2.2   Cellulose nanocrystals (CNC)       98
  • 5.10        CARBON NANOTUBES    98
    • 5.10.1    Properties           98
    • 5.10.2    Application in anti-microbial and anti-viral nanocoatings 98
  • 5.11        FULLERENES       99
    • 5.11.1    Properties           99
    • 5.11.2    Application in anti-microbial and anti-viral nanocoatings 100
  • 5.12        COPPER OXIDE NANOPARTICLES 101
    • 5.12.1    Properties           101
    • 5.12.2    Application in anti-microbial and anti-viral nanocoatings 101
    • 5.12.3    Companies         101
  • 5.13        GOLD NANOPARTICLES (AuNPs) 102
    • 5.13.1    Properties           102
    • 5.13.2    Application in anti-microbial and anti-viral nanocoatings 102
  • 5.14        IRON OXIDE NANOPARTICLES     103
    • 5.14.1    Properties           103
    • 5.14.2    Application in anti-microbial and anti-viral nanocoatings 103
  • 5.15        MAGNESIUM OXIDE NANOPARTICLES     103
    • 5.15.1    Properties           103
    • 5.15.2    Application in anti-microbial and anti-viral nanocoatings 104
  • 5.16        NITRIC OXIDE NANOPARTICLES  104
    • 5.16.1    Properties           104
    • 5.16.2    Application in anti-microbial and anti-viral nanocoatings 104
  • 5.17        ALUMINIUM OXIDE NANOPARTICLES      104
    • 5.17.1    Properties           104
    • 5.17.2    Application in anti-microbial and anti-viral nanocoatings 105
  • 5.18        ORGANIC NANOPARTICLES          105
    • 5.18.1    Types and properties     105
  • 5.19        CHITOSAN NANOPARTICLES        107
    • 5.19.1    Properties           107
    • 5.19.2    Application in anti-microbial and anti-viral nanocoatings 108
      • 5.19.2.1                Wound dressings             108
      • 5.19.2.2                Packaging coatings and films       109
      • 5.19.2.3                Food storage      109
  • 5.20        TWO-DIMENSIONAL (2D) MATERIALS      110
    • 5.20.1    Black phosphorus (BP)   110
    • 5.20.2    Layered double hydroxides (LDHs)           110
    • 5.20.3    Transition metal dichalcogenides (TMDs)              111
    • 5.20.4    Graphitic carbon nitride (g-C3N4)             112
    • 5.20.5    MXENE 112
  • 5.21        HYDROPHOBIC AND HYDROPHILIC COATINGS AND SURFACES      113
    • 5.21.1    Hydrophilic coatings       114
    • 5.21.2    Hydrophobic coatings     114
      • 5.21.2.1                Properties           114
      • 5.21.2.2                Application in facemasks              115
  • 5.22        SUPERHYDROPHOBIC COATINGS AND SURFACES 116
    • 5.22.1    Properties           116
      • 5.22.1.1                Anti-microbial use           117
      • 5.22.1.2                Durability issues               117
      • 5.22.1.3                Nanocellulose   118
  • 5.23        OLEOPHOBIC AND OMNIPHOBIC COATINGS AND SURFACES         118
    • 5.23.1    SLIPS     119
    • 5.23.2    Covalent bonding             119
    • 5.23.3    Step-growth graft polymerization             119
    • 5.23.4    Applications       120

 

6              ANTI-MICROBIAL AND ANTI-VIRAL NANOCOATINGS MARKET STRUCTURE               122

 

7              MARKET ANALYSIS FOR ANTIMICROBIAL, ANTIVIRAL AND ANTIFUNGAL NANOCOATINGS 124

  • 7.1          ANTI-MICROBIAL, ANTI-VIRAL AND ANTI-FUNGAL NANOCOATINGS           124
    • 7.1.1      Market drivers and trends            126
    • 7.1.2      Applications       131
    • 7.1.3      Global revenues 2010-2031          132
    • 7.1.4      Companies         136
  • 7.2          ANTI-FOULING AND EASY-TO-CLEAN NANOCOATINGS     138
    • 7.2.1      Market drivers and trends            139
    • 7.2.2      Benefits of anti-fouling and easy-to-clean nanocoatings 140
    • 7.2.3      Applications       140
    • 7.2.4      Global revenues 2010-2031          140
    • 7.2.5      Companies         144
  • 7.3          SELF-CLEANING NANOCOATINGS              147
    • 7.3.1      Market drivers and trends            148
    • 7.3.2      Benefits of self-cleaning nanocoatings    148
    • 7.3.3      Global revenues 2010-2031          149
    • 7.3.4      Companies         154
  • 7.4          PHOTOCATALYTIC COATINGS     155
    • 7.4.1      Market drivers and trends            156
    • 7.4.2      Benefits of photocatalytic self-cleaning nanocoatings      157
    • 7.4.3      Applications       157
      • 7.4.3.1   Self-Cleaning Coatings   157
      • 7.4.3.2   Indoor Air Pollution and Sick Building Syndrome 158
      • 7.4.3.3   Outdoor Air Pollution     158
      • 7.4.3.4   Water Treatment             158
    • 7.4.4      Global revenues 2010-2031          159
    • 7.4.5      Companies         163

 

8              MARKET SEGMENT ANALYSIS, BY END USER MARKET       166

  • 8.1          BUILDINGS AND CONSTRUCTION              166
    • 8.1.1      Market drivers and trends            166
    • 8.1.2      Applications       167
      • 8.1.2.1   Protective coatings for glass, concrete and other construction materials  168
      • 8.1.2.2   Photocatalytic nano-TiO2 coatings            168
    • 8.1.3      Global revenues 2010-2031          171
    • 8.1.4      Companies         173
  • 8.2          INTERIOR COATINGS, SANITARY AND INDOOR AIR QUALITY           177
    • 8.2.1      Market drivers and trends            177
    • 8.2.2      Applications       177
      • 8.2.2.1   Self-cleaning and easy-to-clean 177
      • 8.2.2.2   Food preparation and processing              177
      • 8.2.2.3   Indoor pollutants and air quality                178
    • 8.2.3      Global revenues 2010-2031          179
    • 8.2.4      Companies         182
  • 8.3          MEDICAL & HEALTHCARE              185
    • 8.3.1      Market drivers and trends            185
    • 8.3.2      Applications       186
      • 8.3.2.1   Anti-fouling, anti-microbial and anti-viral medical device and equipment coatings               187
      • 8.3.2.2   Medical textiles 187
      • 8.3.2.3   Wound dressings and plastic catheters   187
      • 8.3.2.4   Medical implant coatings              189
    • 8.3.3      Global revenues 2010-2031          190
    • 8.3.4      Companies         193
  • 8.4          TEXTILES AND APPAREL 197
    • 8.4.1      Market drivers and trends            197
    • 8.4.2      Applications       198
      • 8.4.2.1   PPE        198
    • 8.4.3      Global revenues 2010-2031          203
    • 8.4.4      Companies         207
  • 8.5          PACKAGING       210
    • 8.5.1      Market drivers and trends            210
    • 8.5.2      Applications       210
      • 8.5.2.1   Antimicrobial coatings and films in food packaging            211
    • 8.5.3      Companies         213

 

9              ANTIMICROBIAL, ANTIVIRAL AND ANTIFUNGAL NANOCOATINGS COMPANIES      215

 

10           RECENT RESEARCH IN ACADEMIA             325

 

11           REFERENCES       326

 

TABLES

  • Table 1: Categorization of nanomaterials.              27
  • Table 2: Properties of nanocoatings.        30
  • Table 3. Market drivers and trends in antiviral and antimicrobial nanocoatings.    36
  • Table 4: End user markets for nanocoatings.        38
  • Table 5: Global revenues for nanocoatings, 2010-2031, millions USD, conservative estimate.         41
  • Table 6: Global revenues for nanocoatings, 2019, millions USD, by market.            42
  • Table 7: Estimated revenues for nanocoatings, 2020, millions USD, by market.     44
  • Table 8: Estimated revenues for nanocoatings, 2031, millions USD, by market.     46
  • Table 9. Revenues for antimicrobial and antiviral nanocoatings, 2019-2031, US$, adjusted for COVID-19 related demand, conservative and high estimates.           49
  • Table 10. Revenues for Anti-fouling & easy clean nanocoatings, 2019-2031, US$, adjusted for COVID-19 related demand, conservative and high estimates.           50
  • Table 11. Revenues for self-cleaning (bionic) nanocoatings, 2019-2031, US$, adjusted for COVID-19 related demand, conservative and high estimates.              50
  • Table 12. Revenues for self-cleaning (photocatalytic) nanocoatings, 2019-2031, US$, adjusted for COVID-19 related demand, conservative and high estimates.           51
  • Table 13. Market and technical challenges for antimicrobial, anti-viral and anti-fungal nanocoatings.         52
  • Table 14. Toxicity and environmental considerations for anti-viral coatings.           53
  • Table 15: Technology for synthesizing nanocoatings agents.         57
  • Table 16: Film coatings techniques.         58
  • Table 17: Nanomaterials used in nanocoatings and applications. 71
  • Table 18: Graphene properties relevant to application in coatings.             74
  • Table 19. Bactericidal characters of graphene-based materials.   76
  • Table 20. Markets and applications for antimicrobial and antiviral nanocoatings graphene nanocoatings. 77
  • Table 21. Commercial activity in antimicrobial and antiviral graphene nanocoatings.         78
  • Table 22. Markets and applications for antimicrobial nanosilver nanocoatings.     82
  • Table 23. Antimicrobial effect of silver nanoparticles (AgNP) incorporated into food packaging.     84
  • Table 24. Companies developing antimicrobial silver nanocoatings.           85
  • Table 25. Antibacterial effects of ZnO NPs in different bacterial species.  95
  • Table 26. Types of carbon-based nanoparticles as antimicrobial agent, their mechanisms of action and characteristics.                100
  • Table 27. Companies developing antimicrobial copper nanocoatings.        101
  • Table 28. Types of organic nanoparticles and application in antimicrobials.             105
  • Table 29. Mechanism of chitosan antimicrobial action.    108
  • Table 30: Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces. 115
  • Table 31: Disadvantages of commonly utilized superhydrophobic coating methods.           117
  • Table 32: Applications of oleophobic & omniphobic coatings.       120
  • Table 33: Antimicrobial and antiviral Nanocoatings market structure.       122
  • Table 34: Anti-microbial, anti-viral and anti-fungal nanocoatings-Nanomaterials used, principles, properties and applications        125
  • Table 35. Nanomaterials utilized in antimicrobial and antiviral nanocoatings coatings-benefits and applications.   130
  • Table 36: Antimicrobial and antiviral nanocoatings markets and applications.        132
  • Table 37: Market assessment of  antimicrobial and antiviral nanocoatings.             133
  • Table 38: Opportunity for antimicrobial and antiviral nanocoatings.           133
  • Table 39: Revenues for antimicrobial and antiviral nanocoatings, 2010-2031, US$.              134
  • Table 40: Antimicrobial and antiviral nanocoatings product and application developers.  136
  • Table 41: Anti-fouling and easy-to-clean nanocoatings-Nanomaterials used, principles, properties and applications.                138
  • Table 42: Market drivers and trends in Anti-fouling and easy-to-clean nanocoatings.         139
  • Table 43: Anti-fouling and easy-to-clean nanocoatings markets, applications and potential addressable market.   141
  • Table 44: Market assessment for anti-fouling and easy-to-clean nanocoatings.     141
  • Table 45: Revenues for anti-fouling and easy-to-clean nanocoatings, 2010-2031, US$.       142
  • Table 46: Anti-fouling and easy-to-clean nanocoatings product and application developers.           144
  • Table 47: Self-cleaning (bionic) nanocoatings-Nanomaterials used, principles, properties and applications.              147
  • Table 48: Market drivers and trends in Self-cleaning (bionic) nanocoatings.            148
  • Table 49: Self-cleaning (bionic) nanocoatings-Markets and applications.  150
  • Table 50: Market assessment for self-cleaning (bionic) nanocoatings.       150
  • Table 51: Revenues for self-cleaning nanocoatings, 2010-2031, US$.         152
  • Table 52: Self-cleaning (bionic) nanocoatings product and application developers.             154
  • Table 53: Photocatalytic coatings-Nanomaterials used, principles, properties and applications.     155
  • Table 54: Market drivers and trends in photocatalytic nanocoatings.         156
  • Table 55: Photocatalytic nanocoatings-Markets, applications and potential addressable market size by 2027.          160
  • Table 56: Market assessment for self-cleaning (photocatalytic) nanocoatings.      160
  • Table 57: Revenues for self-cleaning (photocatalytic) nanocoatings, 2010-2031, US$.         161
  • Table 58: Self-cleaning (photocatalytic) nanocoatings product and application developers.             163
  • Table 59: Market drivers and trends for antimicrobial, antiviral and antifungal nanocoatings in the buildings and construction market.      166
  • Table 60: Nanocoatings applied in the building and construction industry-type of coating, nanomaterials utilized and benefits.              167
  • Table 61: Photocatalytic nanocoatings-Markets and applications.               169
  • Table 62: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2031, US$.          171
  • Table 63: Construction, architecture and exterior protection nanocoatings product developers.   173
  • Table 64: Market drivers and trends for antimicrobial, antiviral and antifungal nanocoatings in Interior coatings, sanitary, and indoor air quality.  177
  • Table 65: Revenues for nanocoatings in Interior coatings, sanitary, and indoor air quality, 2010-2031, US$.             180
  • Table 66: Interior coatings, sanitary, and indoor air quality nanocoatings product developers.       182
  • Table 67: Market drivers and trends for antimicrobial, antiviral and antifungal nanocoatings in medicine and healthcare.         185
  • Table 68: Nanocoatings applied in the medical industry-type of coating, nanomaterials utilized, benefits and applications.       187
  • Table 69. Antibacterial nanomaterials used in wound healing .     188
  • Table 70: Types of advanced coatings applied in medical devices and implants.    189
  • Table 71: Nanomaterials utilized in medical implants.      189
  • Table 72: Revenues for nanocoatings in medical and healthcare, 2010-2031, US$.               192
  • Table 73: Medical and healthcare nanocoatings product developers.        194
  • Table 74: Market drivers and trends for antimicrobial, antiviral and antifungal nanocoatings s in the textiles and apparel industry.              197
  • Table 75: Applications in textiles, by advanced materials type and benefits thereof.           199
  • Table 76: Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications.       200
  • Table 77: Revenues for nanocoatings in textiles and apparel, 2010-2031, US$.      205
  • Table 78: Textiles nanocoatings product developers.       207
  • Table 79: Market drivers and trends for nanocoatings in the packaging market.   210
  • Table 80: Revenues for nanocoatings in packaging, 2010-2031, US$.          212
  • Table 81: Food packaging nanocoatings product developers.        213
  • Table 82. Photocatalytic coating schematic.          243
  • Table 83. Antimicrobial, antiviral and antifungal nanocoatings development in academia.                325

 

FIGURES

  • Figure 1. Schematic of anti-viral coating using nano-actives for inactivation of any adhered virus on the surfaces. 34
  • Figure 2. Face masks coated with antibacterial & antiviral nanocoating.   35
  • Figure 3: Global revenues for nanocoatings, 2010-2031, millions USD, conservative estimate.       42
  • Figure 4: Global market revenues for nanocoatings 2019, millions USD, by market.             43
  • Figure 5: Markets for nanocoatings 2019, %.        44
  • Figure 6: Estimated market revenues for nanocoatings 2020, millions USD, by market.      45
  • Figure 7: Estimated market revenues for nanocoatings 2031, millions USD, by market.      47
  • Figure 8: Markets for nanocoatings 2031, %.        47
  • Figure 9: Regional demand for nanocoatings, 2019-2031.                48
  • Figure 10: Hydrophobic fluoropolymer nanocoatings on electronic circuit boards.               56
  • Figure 11: Nanocoatings synthesis techniques.   58
  • Figure 12: Techniques for constructing superhydrophobic coatings on substrates.              60
  • Figure 13: Electrospray deposition.          61
  • Figure 14: CVD technique.            63
  • Figure 15: Schematic of ALD.       65
  • Figure 16. A substrate undergoing layer-by-layer (LbL) nanocoating.         66
  • Figure 17: SEM images of different layers of TiO2 nanoparticles in steel surface.  66
  • Figure 18: The coating system is applied to the surface. The solvent evaporates. 68
  • Figure 19: A first organization takes place where the silicon-containing bonding component (blue dots in figure 2) bonds covalently with the surface and cross-links with neighbouring molecules to form a strong three-dimensional.                68
  • Figure 20: During the curing, the compounds organise themselves in a nanoscale monolayer. The fluorine-containing repellent component (red dots in figure) on top makes the glass hydro- phobic and oleophobic.  68
  • Figure 21: Graphair membrane coating. 74
  • Figure 22: Antimicrobial activity of Graphene oxide (GO).              76
  • Figure 23: Hydrophobic easy-to-clean coating.    80
  • Figure 24 Anti-bacterial mechanism of silver nanoparticle coating.             81
  • Figure 25: Mechanism of photocatalysis on a surface treated with TiO2 nanoparticles.      87
  • Figure 26:  Schematic showing the self-cleaning phenomena on superhydrophilic surface.              88
  • Figure 27: Titanium dioxide-coated glass (left) and ordinary glass (right). 89
  • Figure 28:  Self-Cleaning mechanism utilizing photooxidation.      89
  • Figure 29: Schematic of photocatalytic air purifying pavement.   90
  • Figure 30: Schematic of photocatalytic indoor air purification filter.           91
  • Figure 31: Schematic of photocatalytic water purification.              92
  • Figure 32. Schematic of antibacterial activity of ZnO NPs.               95
  • Figure 33: Types of nanocellulose.            97
  • Figure 34. Mechanism of antimicrobial activity of carbon nanotubes.       99
  • Figure 35: Fullerene schematic. 100
  • Figure 36. TEM images of Burkholderia seminalis treated with (a, c) buffer (control) and (b, d) 2.0 mg/mL chitosan; (A: additional layer; B: membrane damage).               108
  • Figure 37: Structure of 2D molybdenum disulfide.             111
  • Figure 38: Graphitic carbon nitride.          112
  • Figure 39: (a) Water drops on a lotus leaf.             114
  • Figure 40: A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°.              115
  • Figure 41: Contact angle on superhydrophobic coated surface.   116
  • Figure 42: Self-cleaning nanocellulose dishware. 118
  • Figure 43: SLIPS repellent coatings.          119
  • Figure 44: Omniphobic coatings.                121
  • Figure 45: Schematic of typical commercialization route for nanocoatings producer.          122
  • Figure 46: Market drivers and trends in antimicrobial and antiviral nanocoatings. 126
  • Figure 47. Nano-coated self-cleaning touchscreen.           133
  • Figure 48: Revenues for antimicrobial and antiviral nanocoatings, 2010-2031, US$.             135
  • Figure 49. Revenues for antimicrobial and antiviral nanocoatings, 2019-2031, US$, adjusted for COVID-19 related demand, conservative and high estimates.           135
  • Figure 50: Anti-fouling treatment for heat-exchangers.   140
  • Figure 51: Markets for anti-fouling and easy clean nanocoatings, by %.    140
  • Figure 52: Potential addressable market for anti-fouling and easy-to-clean nanocoatings by 2031.                142
  • Figure 53: Revenues for anti-fouling and easy-to-clean nanocoatings 2010-2031, millions USD.     143
  • Figure 54. Revenues for anti-fouling and easy-to-clean nanocoatings, 2019-2031, US$, adjusted for COVID-19 related demand, conservative and high estimates             144
  • Figure 55: Self-cleaning superhydrophobic coating schematic.      149
  • Figure 56: Markets for self-cleaning nanocoatings, %, 2018.           150
  • Figure 57: Potential addressable market for self-cleaning (bionic) nanocoatings by 2031.  151
  • Figure 58: Revenues for self-cleaning nanocoatings, 2010-2031, US$.        153
  • Figure 59. Revenues for self-cleaning (bionic) nanocoatings, 2019-2031, US$, adjusted for COVID-19 related demand, conservative and high estimates               154
  • Figure 60: Principle of superhydrophilicity.           158
  • Figure 61: Schematic of photocatalytic air purifying pavement.   158
  • Figure 62: Tokyo Station GranRoof. The titanium dioxide coating ensures long-lasting whiteness. 159
  • Figure 63: Markets for self-cleaning (photocatalytic) nanocoatings 2019, %.           160
  • Figure 64: Potential addressable market for self-cleaning (photocatalytic) nanocoatings by 2031.  161
  • Figure 65: Revenues for self-cleaning (photocatalytic) nanocoatings, 2010-2031, US$.       162
  • Figure 66. Revenues for self-cleaning (photocatalytic) nanocoatings, 2019-2031, US$, adjusted for COVID-19 related demand, conservative and high estimates             163
  • Figure 67: Nanocoatings in construction, architecture and exterior protection, by coatings type %, 2020.  170
  • Figure 68: Potential addressable market for nanocoatings in the construction, architecture and exterior coatings sector by 2031.  171
  • Figure 69: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2031, US$.         172
  • Figure 70: Nanocoatings in Interior coatings, sanitary, and indoor air quality, by coatings type %, 2020.      180
  • Figure 71: Potential addressable market for nanocoatings in Interior coatings, sanitary, and indoor air quality by 2031.                180
  • Figure 72: Revenues for nanocoatings in Interior coatings, sanitary, and indoor air quality, 2010-2031, US$.            181
  • Figure 73: Anti-bacterial sol-gel nanoparticle silver coating.           190
  • Figure 74: Nanocoatings in medical and healthcare, by coatings type %, 2020.       191
  • Figure 75: Potential addressable market for nanocoatings in medical & healthcare by 2031.            192
  • Figure 76: Revenues for nanocoatings in medical and healthcare, 2010-2031, US$.             193
  • Figure 77: Omniphobic-coated fabric.     198
  • Figure 78: Nanocoatings in textiles and apparel, by coatings type %, 2020.              204
  • Figure 79: Potential addressable market for nanocoatings in textiles and apparel by 2031.               205
  • Figure 80: Revenues for nanocoatings in textiles and apparel, 2010-2031, US$.     206
  • Figure 81: Oso fresh food packaging incorporating antimicrobial silver.    212
  • Figure 82: Revenues for nanocoatings in packaging, 2010-2031, US$.        213
  • Figure 83. Lab tests on DSP coatings.       242
  • Figure 84. GrapheneCA anti-bacterial and anti-viral coating.          250
  • Figure 85. Microlyte® Matrix bandage for surgical wounds.           257
  • Figure 86. Self-cleaning nanocoating applied to face masks.          260
  • Figure 87. NanoSeptic surfaces. 286
  • Figure 88. Nasc NanoTechnology personnel shown applying MEDICOAT to airport luggage carts.  292
  • Figure 89. V-CAT® photocatalyst mechanism.      320
  • Figure 90. Applications of Titanystar.       323

 

 

The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2021-2031
The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2021-2031
PDF download.

The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2021-2031
The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2021-2031
Print edition (including tracked delivery).

The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2021-2131
The Global Market for Antimicrobial, Antiviral and Antifungal Nanocoatings 2021-2131
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Alipay, Paypal. 

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com