The Global Market for Graphene, 2D Materials and Carbon Nanotubes

0

This report offers a comprehensive analysis of the current and future markets for graphene, non-graphene 2D materials and carbon nanotubes (multi-walled carbon nanotubes, single-walled carbon nanotubes, few-walled carbon nanotubes, double-walled carbon nanotubes etc.)

Graphene

There are now over 250 companies either producing graphene or developing applications, with scores of multi-nationals conducting R&D on these materials. Several start-ups developing graphene applications have recently received multi-million-dollar funding and graphite producers are announcing plans to start multi-ton production.

The current global production capability for graphene is inflated by production of graphene slurries and powders, mainly in the Taiwan and China markets. The market is in an “over supply” situation, but a lot of what is available is thin graphite, especially in these markets. According to research by the Centre for Advanced 2D Materials (CA2DM) at the National University of Singapore (NUS), many graphene producers supply thin graphite powder with 2-10% of graphene content.

Most major graphene producers are currently focused on smaller scale production of high-quality graphene for high value applications. The past 18 months has seen a marked increase in graphene collaborations, agreements, investments and product launches. Products are now coming to market across multiple sectors and regional markets. New products and developments incorporating graphene include body temperature regulating fabrics, jackets, coolants, sensors, automotive composites, wheelchairs, supercapacitors for public transport, cigarette filters, membrane technology, wearable technology for athletes and OLEDs.

Investment companies have invested multimillion dollars in small-scale producers and product developers in seat warming technology, solar panels and batteries. This shows no sign of abating with electronics giant Huawei launching the Mate 20 X phone smart phone incorporating a graphene cooling film (graphene was supplied by The Sixth Element Materials). Automotive company Ford has also announced that it will become the first automaker to use graphene parts in its vehicles, starting with the Mustang and F-150 , in collaboration with Eagle Industries and XG Sciences.

The high-value applications of graphene such as high-frequency transistors and touch screens are still some way off from full commercial realization, due to high production costs and the finite scalability of synthesis methods. Most volume based graphene producers target the conductive additives market for their materials, for application in batteries, composites, conductive inks and paints/coatings. In high-end markets, the value of graphene is evident and makes penetration more likely (comparable to quantum dots in displays). However, in large volume markets, they face significant challenges from incumbent materials.

Multi-walled carbon nanotubes

The global market of carbon nanotubes is generally segmented by multi-walled carbon nanotubes (MWCNT), single-walled carbon nanotubes (SWCNT),  and others (DWCNT, FWCNT). Currently, MWCNT comprise the biggest share in terms of sales volumes, and production capacities. Demand for MWCNT is mainly from composites, energy storage, and electronics industries. As electroconductive additives MWCNT are mainly used for anti-static plastics in automotive industry, electronics packaging, and lithium-ion batteries. There are several large companies with MWCNT production capacities of hundreds of tons per year. Prices of MWCNT have reduced significantly in recent years.

Single-walled carbon nanotubes

The most remarkable properties of nanotubes are found in SWCNTs, including:

  • Incredible strength (they are 100 times stronger than steel at one sixth the weight);
  • Electrical conductivity as high as copper, but five times lighter;
  • Thermal conductivity as high as diamond (up to 1000oC);
  • Huge surface area;
  • Highest length-to-diameter ratio;
  • Flexibility;
  • Thermal stability;
  • Lightweight;
  • Chemical inertness (GNTs are compatible with almost all materials).

SWCNTs are vastly superior to MWCNTs in terms of their specific properties. However, they have not been been used in industry until  the last few years due to the lack of efficient mass production technology and high cost. However, recent mass production technology is making SWCNTs more affordable for use in range of industries.

Report contents include:

  • Current market for graphene, non-graphene 2D materials and carbon nanotubes.
  • Competitive landscape in terms of key market players and substituting additives/materials.
  • Market segmentation by type of graphene and carbon nanotubes.
  • Market trends.
  • Global graphene market in 2018 (tons, USD, CAGR 2019-2030). Graphene growth forecast 2019-2030 (tonnes, USD, CAGR
    2019-2030).
  • Global carbon nanotubes market in 2018 (tons, USD, CAGR 2019-2030). Carbon nanotubes growth forecast 2019-2030 (tonnes, USD, CAGR
    2019-2030).
  • Market prospects and demand for non-graphene 2D materials, forecast to 2030.
  • Production capacities for graphene and carbon nanotubes.
  • Graphene and carbon nanotubes products prices per kg (in USD)
  • Company profiles (production capacities, products, general description, target markets, contact details)
  • Competitive landscape of graphene and carbon nanotubes against other carbon-based additives
  • Graphene, non-graphene 2D materials and carbon nanotubes current and potential applications
  • Graphene, non-graphene 2D materials and carbon nanotubes applications by industry and products
  • Volume of Graphene, non-graphene 2D materials and carbon nanotubes consumption, by market, current and potential.
  • Pricing analysis
  • Regional analysis.

Published April 2019 | 735 pages. 308 tables, 160 figures | Table of contents

The Global Market for Nanomaterials in Sustainable Biomaterials and Bioplastics
The Global Market for Nanomaterials in Sustainable Biomaterials and Bioplastics
Print edition (including tracked delivery).
The Global Market for Nanomaterials in Sustainable Biomaterials and Bioplastics
The Global Market for Nanomaterials in Sustainable Biomaterials and Bioplastics
PDF and print edition.

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com.

 

TABLE OF CONTENTS

1        RESEARCH METHODOLOGY……………………………………………………………………………………………………. 39

2        EXECUTIVE SUMMARY……………………………………………………………………………………………………………. 45

  • 2.1     CARBON NANOTUBES………………………………………………………………………………………………………… 45
    • 2.1.1       Market snapshot of carbon nanotubes market…………………………………………………………………….. 45
    • 2.1.2       Properties of carbon nanotubes………………………………………………………………………………………. 46
    • 2.1.3       Products and applications……………………………………………………………………………………………… 48
      • 2.1.3.1    MWCNTs………………………………………………………………………………………………………………. 48
      • 2.1.3.2    SWCNTs……………………………………………………………………………………………………………….. 50
    • 2.1.4       Competition from graphene……………………………………………………………………………………………. 56
    • 2.1.5       Production………………………………………………………………………………………………………………….. 56
      • 2.1.5.1    Multi-walled nanotube (MWCNT) production………………………………………………………………….. 56
      • 2.1.5.2    Single-walled nanotube (SWCNT) production………………………………………………………………… 57
    • 2.1.6       Global demand for carbon nanotubes……………………………………………………………………………….. 59
      • 2.1.6.1    MWCNTS………………………………………………………………………………………………………………. 60
      • 2.1.6.2    SWCNTs……………………………………………………………………………………………………………….. 62
      • 2.1.6.3    Current products……………………………………………………………………………………………………… 63
      • 2.1.6.4    Future products……………………………………………………………………………………………………….. 64
    • 2.1.7       Market drivers and trends………………………………………………………………………………………………. 64
    • 2.1.8       Market and production challenges……………………………………………………………………………………. 65
  • 2.2     2D MATERIALS…………………………………………………………………………………………………………………… 68
  • 2.3     GRAPHENE……………………………………………………………………………………………………………………….. 68
    • 2.3.1       Current market situation………………………………………………………………………………………………… 69
    • 2.3.2       Key players………………………………………………………………………………………………………………… 70
    • 2.3.3       Production………………………………………………………………………………………………………………….. 71
    • 2.3.4       Products……………………………………………………………………………………………………………………. 73
    • 2.3.5       Graphene investments 2016-2019…………………………………………………………………………………… 74
    • 2.3.6       Market outlook…………………………………………………………………………………………………………….. 75
    • 2.3.7       Production………………………………………………………………………………………………………………….. 80
    • 2.3.8       Market drivers and trends………………………………………………………………………………………………. 82
    • 2.3.9       Market and technical challenges……………………………………………………………………………………… 85

3        CARBON NANOTUBES……………………………………………………………………………………………………………. 90

  • 3.1     MULTI-WALLED CARBON NANOTUBES (MWCNT)…………………………………………………………………… 91
    • 3.1.1       Properties………………………………………………………………………………………………………………….. 91
    • 3.1.2       Applications………………………………………………………………………………………………………………… 91
  • 3.2     SINGLE-WALLED CARBON NANOTUBES (SWCNT)………………………………………………………………….. 93
    • 3.2.1       Properties………………………………………………………………………………………………………………….. 93
    • 3.2.2       Applications………………………………………………………………………………………………………………… 94
    • 3.2.3       Comparison between MWCNTs and SWCNTs……………………………………………………………………. 96
  • 3.3     DOUBLE-WALLED CARBON NANOTUBES (DWNTs)…………………………………………………………………. 96
    • 3.3.1       Properties………………………………………………………………………………………………………………….. 96
    • 3.3.2       Applications………………………………………………………………………………………………………………… 97
  • 3.4     FEW-WALLED CARBON NANOTUBES (FWNTs)………………………………………………………………………. 97
    • 3.4.1       Properties………………………………………………………………………………………………………………….. 97
    • 3.4.2       Applications………………………………………………………………………………………………………………… 97
  • 3.5     CARBON NANOHORNS……………………………………………………………………………………………………….. 98
    • 3.5.1       Properties………………………………………………………………………………………………………………….. 98
    • 3.5.2       Applications………………………………………………………………………………………………………………… 99
  • 3.6     CARBON ONIONS……………………………………………………………………………………………………………….. 99
    • 3.6.1       Properties………………………………………………………………………………………………………………….. 99
    • 3.6.2       Applications………………………………………………………………………………………………………………. 100
  • 3.7     BORON NITRIDE NANOTUBES (BNNTs)……………………………………………………………………………….. 100
    • 3.7.1       Properties…………………………………………………………………………………………………………………. 100
    • 3.7.2       Applications………………………………………………………………………………………………………………. 101
  • 3.8     CARBON QUANTUM DOTS (CQds)………………………………………………………………………………………. 101
    • 3.8.1       Properties…………………………………………………………………………………………………………………. 101
    • 3.8.2       Applications………………………………………………………………………………………………………………. 101
  • 3.9     GRAPHENE……………………………………………………………………………………………………………………… 102
    • 3.9.1       History……………………………………………………………………………………………………………………… 102
    • 3.9.2       Forms of graphene……………………………………………………………………………………………………… 103
    • 3.9.3       Properties…………………………………………………………………………………………………………………. 104
    • 3.9.4       3D Graphene…………………………………………………………………………………………………………….. 105
    • 3.9.5       Graphene Quantum Dots……………………………………………………………………………………………… 105
      • 3.9.5.1    Synthesis……………………………………………………………………………………………………………… 107
      • 3.9.5.2    Applications………………………………………………………………………………………………………….. 107
    • 3.9.5.3    Producers…………………………………………………………………………………………………………….. 109
  • 3.10        OTHER 2-D MATERIALS…………………………………………………………………………………………………. 110
  • 3.10.1     PHOSPHORENE……………………………………………………………………………………………………….. 110
  • 3.10.2     GRAPHITIC CARBON NITRIDE (g-C3N4)……………………………………………………………………….. 115
  • 3.10.3     C2N…………………………………………………………………………………………………………………………. 116
  • 3.10.4   GERMANENE…………………………………………………………………………………………………………… 118
  • 3.10.5     GRAPHDIYNE…………………………………………………………………………………………………………… 120
  • 3.10.6     GRAPHANE……………………………………………………………………………………………………………… 122
  • 3.10.7     HEXAGONAL BORON-NITRIDE……………………………………………………………………………………. 124
  • 3.10.8        MOLYBDENUM DISULFIDE (MoS2)…………………………………………………………………………… 127
  • 3.10.9       RHENIUM DISULFIDE (ReS2) AND DISELENIDE (ReSe2)…………………………………………….. 130
  • 3.10.10        SILICENE…………………………………………………………………………………………………………….. 132
  • 3.10.11        STANENE/TINENE………………………………………………………………………………………………… 135
  • 3.10.12      TUNGSTEN DISELENIDE……………………………………………………………………………………….. 137
  • 3.10.13        ANTIMONENE………………………………………………………………………………………………………. 139
  • 3.10.14        DIAMENE…………………………………………………………………………………………………………….. 140
  • 3.10.15        INDIUM SELENIDE………………………………………………………………………………………………… 140
  • 3.10.16        COMPARATIVE ANALYSIS OF GRAPHENE AND OTHER 2D MATERIALS………………………. 141

4        COMPARATIVE ANALYSIS OF GRAPHENE AND CARBON NANOTUBES…………………………………………… 143

  • 4.1     Comparative properties……………………………………………………………………………………………………….. 143
  • 4.2     Cost and production……………………………………………………………………………………………………………. 144
  • 4.3     Carbon nanotube-graphene hybrids………………………………………………………………………………………… 145

5        COMPETITIVE LANDSCAPE FOR CARBON-BASED ADDITIVES…………………………………………………… 147

  • 5.1     Carbon fibers…………………………………………………………………………………………………………………….. 147
  • 5.2     Carbon black……………………………………………………………………………………………………………………… 148

6        CARBON NANOTUBES PATENTS……………………………………………………………………………………………. 153

7        GRAPHENE PATENTS……………………………………………………………………………………………………………. 154

8        CARBON NANOTUBES ROADMAP………………………………………………………………………………………….. 157

  • 8.1     MWCNTs………………………………………………………………………………………………………………………….. 157
  • 8.2     SWCNTs………………………………………………………………………………………………………………………….. 158

9        GRAPHENE TECHNOLOGY ROADMAP……………………………………………………………………………………. 160

10      CARBON NANOTUBES MARKET STRUCTURE………………………………………………………………………….. 162

11      GRAPHENE MARKET STRUCTURE…………………………………………………………………………………………. 164

12      CARBON NANOTUBES PRODUCTION ANALYSIS……………………………………………………………………… 167

  • 12.1        Production volumes in metric tons, 2010-2030………………………………………………………………………. 167
    • 12.1.1     MWCNTs…………………………………………………………………………………………………………………. 168
    • 12.1.2     SWCNTs………………………………………………………………………………………………………………….. 172
  • 12.2        Carbon nanotube producer production capacities………………………………………………………………….. 175
  • 12.3        Regional demand for carbon nanotubes………………………………………………………………………………. 177
    • 12.3.1     Japan………………………………………………………………………………………………………………………. 177
    • 12.3.2     China………………………………………………………………………………………………………………………. 178
  • 12.4        Price of carbon nanotubes-MWCNTs, SWCNTs and FWNTs…………………………………………………… 179
    • 12.4.1     MWCNTs…………………………………………………………………………………………………………………. 179
    • 12.4.2     SWCNTs………………………………………………………………………………………………………………….. 180

13      GRAPHENE PRODUCTION ANALYSIS……………………………………………………………………………………….. 181

  • 13.1        Graphene production volumes 2010-2030……………………………………………………………………………. 181
  • 13.2        Graphene pricing……………………………………………………………………………………………………………. 183
    • 13.2.1     Pristine Graphene Flakes pricing……………………………………………………………………………………. 184
    • 13.2.2     Few-Layer Graphene pricing…………………………………………………………………………………………. 185
    • 13.2.3     Graphene Nanoplatelets pricing…………………………………………………………………………………….. 185
    • 13.2.4     Reduced Graphene Oxide pricing………………………………………………………………………………….. 186
    • 13.2.5     Graphene Quantum Dots pricing……………………………………………………………………………………. 186
    • 13.2.6     Graphene Oxide Nanosheets pricing………………………………………………………………………………. 187
    • 13.2.7     Multilayer Graphene (MLG) pricing…………………………………………………………………………………. 188
    • 13.2.8     Mass production of lower grade graphene materials…………………………………………………………… 188
    • 13.2.9     High grade graphene difficult to mass produce………………………………………………………………….. 188
    • 13.2.10        Bulk supply…………………………………………………………………………………………………………… 189
    • 13.2.11        Commoditisation……………………………………………………………………………………………………. 189
  • 13.3        Graphene producers and production capacities…………………………………………………………………….. 189
    • 13.3.1     Graphene oxide production capacity in tons per year, 2010-2018………………………………………….. 191
    • 13.3.2     Graphene nanoplatelets (GNP) capacity in tons per year, 2010-2018…………………………………….. 192
    • 13.3.3     CVD graphene film capacity in tons per year…………………………………………………………………….. 193

14      END USER MARKETS……………………………………………………………………………………………………………. 194

  • 14.1        3D PRINTING………………………………………………………………………………………………………. 194
    • 14.1.1     MARKET DRIVERS AND TRENDS………………………………………………………………………………… 194
    • 14.1.2     APPLICATIONS…………………………………………………………………………………………………………. 194
    • 14.1.3     MARKET SIZE AND OPPORTUNITY……………………………………………………………………………… 196
    • 14.1.4     MARKET CHALLENGES……………………………………………………………………………………………… 198
    • 14.1.5     PRODUCT DEVELOPERS…………………………………………………………………………………………… 198
  • 14.2        ADHESIVES…………………………………………………………………………………………………………………. 200
    • 14.2.1     MARKET DRIVERS AND TRENDS………………………………………………………………………………… 200
    • 14.2.2     APPLICATIONS…………………………………………………………………………………………………………. 201
    • 14.2.3     MARKET SIZE AND OPPORTUNITY……………………………………………………………………………… 202
    • 14.2.4     MARKET CHALLENGES……………………………………………………………………………………………… 204
    • 14.2.5     PRODUCT DEVELOPERS…………………………………………………………………………………………… 204
  • 14.3        AEROSPACE AND AVIATION………………………………………………………………………………………….. 206
    • 14.3.1     MARKET DRIVERS AND TRENDS………………………………………………………………………………… 206
    • 14.3.2     APPLICATIONS…………………………………………………………………………………………………………. 207
      • 14.3.2.1       Composites………………………………………………………………………………………………………. 209
      • 14.3.2.2       Coatings………………………………………………………………………………………………………….. 211
    • 14.3.3     MARKET SIZE AND OPPORTUNITY……………………………………………………………………………… 215
    • 14.3.4     MARKET CHALLENGES……………………………………………………………………………………………… 217
    • 14.3.5     PRODUCT DEVELOPERS…………………………………………………………………………………………… 218
  • 14.4        AUTOMOTIVE………………………………………………………………………………………………………………. 221
    • 14.4.1     MARKET DRIVER AND TRENDS………………………………………………………………………………….. 221
    • 14.4.2     APPLICATIONS…………………………………………………………………………………………………………. 223
      • 14.4.2.1       Composites………………………………………………………………………………………………………. 224
      • 14.4.2.2       Thermally conductive additives……………………………………………………………………………… 224
      • 14.4.2.3       Tires……………………………………………………………………………………………………………….. 225
      • 14.4.2.4       Heat dissipation in electric vehicles………………………………………………………………………… 225
    • 14.4.3     MARKET SIZE AND OPPORTUNITY……………………………………………………………………………… 227
    • 14.4.4     MARKET CHALLENGES……………………………………………………………………………………………… 229
    • 14.4.5     PRODUCT DEVELOPERS…………………………………………………………………………………………… 230
  • 14.5        COATINGS…………………………………………………………………………………………………………………… 233
    • 14.5.1     MARKET DRIVERS AND TRENDS………………………………………………………………………………… 234
    • 14.5.2     APPLICATIONS…………………………………………………………………………………………………………. 236
      • 14.5.2.1       Anti-static coatings…………………………………………………………………………………………….. 238
      • 14.5.2.2       Anti-corrosion coatings……………………………………………………………………………………….. 238
      • 14.5.2.3       Oil and gas……………………………………………………………………………………………………….. 239
      • 14.5.2.4       Marine…………………………………………………………………………………………………………….. 239
      • 14.5.2.5       Anti-microbial……………………………………………………………………………………………………. 239
      • 14.5.2.6       Anti-icing………………………………………………………………………………………………………….. 240
      • 14.5.2.7       Barrier coatings…………………………………………………………………………………………………. 241
      • 14.5.2.8       Heat protection………………………………………………………………………………………………….. 241
      • 14.5.2.9       Anti-fouling……………………………………………………………………………………………………….. 242
      • 14.5.2.10     Wear and abrasion resistance………………………………………………………………………………. 243
      • 14.5.2.11     Smart windows………………………………………………………………………………………………….. 244
      • 14.5.2.12     Conductive coatings…………………………………………………………………………………………… 244
    • 14.5.3     MARKET SIZE AND OPPORTUNITY……………………………………………………………………………… 245
    • 14.5.4     MARKET CHALLENGES……………………………………………………………………………………………… 251
    • 14.5.5     PRODUCT DEVELOPERS…………………………………………………………………………………………… 251
  • 14.6        COMPOSITES………………………………………………………………………………………………………………. 254
    • 14.6.1     MARKET DRIVERS AND TRENDS………………………………………………………………………………… 255
    • 14.6.2     APPLICATIONS…………………………………………………………………………………………………………. 256
      • 14.6.2.1       Fiber and metal-matrix composites…………………………………………………………………………………………… 256
      • 14.6.2.2       Barrier packaging………………………………………………………………………………………………. 259
      • 14.6.2.3       Electrostatic discharge (ESD) and electromagnetic interference (EMI) shielding………………. 259
      • 14.6.2.4       Wind turbines……………………………………………………………………………………………………. 260
      • 14.6.2.5       Ballistic protection………………………………………………………………………………………………. 260
      • 14.6.2.6       Construction materials………………………………………………………………………………………… 260
      • 14.6.2.7       Anti-static plastics………………………………………………………………………………………………. 261
      • 14.6.2.8       Power cabling…………………………………………………………………………………………………… 261
    • 14.6.3     MARKET SIZE AND OPPORTUNITY……………………………………………………………………………… 262
    • 14.6.4     MARKET CHALLENGES……………………………………………………………………………………………… 265
    • 14.6.5     PRODUCT DEVELOPERS…………………………………………………………………………………………… 265
  • 14.7        ELECTRONICS……………………………………………………………………………………………………………… 269
    • 14.7.1     FLEXIBLE ELECTRONICS, CONDUCTIVE FILMS AND DISPLAYS……………………………………… 270
      • 14.7.1.1       MARKET DRIVERS AND TRENDS……………………………………………………………………….. 270
      • 14.7.1.2       APPLICATIONS………………………………………………………………………………………………… 271
      • 14.7.1.3       MARKET SIZE AND OPPORTUNITY…………………………………………………………………….. 288
      • 14.7.1.4       MARKET CHALLENGES…………………………………………………………………………………….. 292
      • 14.7.1.6       PRODUCT DEVELOPERS………………………………………………………………………………….. 296
    • 14.7.2     CONDUCTIVE INKS…………………………………………………………………………………………………… 299
      • 14.7.2.1       MARKET DRIVERS AND TRENDS……………………………………………………………………….. 299
      • 14.7.2.2       APPLICATIONS………………………………………………………………………………………………… 300
      • 14.7.2.3       MARKET SIZE AND OPPORTUNITY…………………………………………………………………….. 306
      • 14.7.2.4       MARKET CHALLENGES…………………………………………………………………………………….. 309
      • 14.7.2.5       PRODUCT DEVELOPERS………………………………………………………………………………….. 309
    • 14.7.3     TRANSISTORS, INTEGRATED CIRCUITS AND OTHER COMPONENTS……………………………… 311
      • 14.7.3.1       APPLICATIONS………………………………………………………………………………………………… 312
      • 14.7.3.2       MARKET SIZE AND OPPORTUNITY…………………………………………………………………….. 318
      • 14.7.3.3       MARKET CHALLENGES…………………………………………………………………………………….. 321
      • 14.7.3.4       PRODUCT DEVELOPERS………………………………………………………………………………….. 323
    • 14.7.4     MEMORY DEVICES…………………………………………………………………………………………………… 325
      • 14.7.4.1       MARKET DRIVERS AND TRENDS……………………………………………………………………….. 325
      • 14.7.4.2       APPLICATIONS………………………………………………………………………………………………… 326
      • 14.7.4.3       MARKET SIZE AND OPPORTUNITY…………………………………………………………………….. 329
      • 14.7.4.4       MARKET CHALLENGES…………………………………………………………………………………….. 330
      • 14.7.4.5       PRODUCT DEVELOPERS………………………………………………………………………………….. 330
    • 14.7.5     THERMAL INTERFACE MATERIALS…………………………………………………………………………….. 334
    • 14.7.6     PHOTONICS…………………………………………………………………………………………………………….. 335
    • 14.7.6.1       MARKET DRIVERS……………………………………………………………………………………………. 335
    • 14.7.6.2       APPLICATIONS………………………………………………………………………………………………… 335
    • 14.7.6.3       MARKET SIZE AND OPPORTUNITY…………………………………………………………………….. 339
    • 14.7.7     PRODUCT DEVELOPERS…………………………………………………………………………………………… 340
  • 14.8        ENERGY STORAGE AND CONVERSION…………………………………………………………………………… 341
    • 14.8.1     BATTERIES……………………………………………………………………………………………………………… 342
      • 14.8.1.1       MARKET DRIVERS AND TRENDS……………………………………………………………………….. 342
      • 14.8.1.2       APPLICATIONS………………………………………………………………………………………………… 344
      • 14.8.1.3       MARKET SIZE AND OPPORTUNITY…………………………………………………………………….. 348
      • 14.8.1.4       MARKET CHALLENGES…………………………………………………………………………………….. 352
    • 14.8.2     SUPERCAPACITORS…………………………………………………………………………………………………. 353
      • 14.8.2.1       MARKET DRIVERS AND TRENDS……………………………………………………………………….. 353
      • 14.8.2.2       APPLICATIONS………………………………………………………………………………………………… 354
      • 14.8.2.3       MARKET SIZE AND OPPORTUNITY…………………………………………………………………….. 359
      • 14.8.2.4       MARKET CHALLENGES…………………………………………………………………………………….. 361
    • 14.8.3     PHOTOVOLTAICS……………………………………………………………………………………………………… 362
      • 14.8.3.1       MARKET DRIVERS AND TRENDS……………………………………………………………………….. 362
      • 14.8.3.2       APPLICATIONS………………………………………………………………………………………………… 363
      • 14.8.3.3       MARKET SIZE AND OPPORTUNITY…………………………………………………………………….. 367
      • 14.8.3.4       MARKET CHALLENGES…………………………………………………………………………………….. 370
    • 14.8.4     FUEL CELLS…………………………………………………………………………………………………………….. 371
      • 14.8.4.1       MARKET DRIVERS……………………………………………………………………………………………. 371
      • 14.8.4.2       APPLICATIONS………………………………………………………………………………………………… 372
      • 14.8.4.3       MARKET SIZE AND OPPORTUNITY…………………………………………………………………….. 373
      • 14.8.4.4       MARKET CHALLENGES…………………………………………………………………………………….. 374
      • 14.8.4.5     PRODUCT DEVELOPERS…………………………………………………………………………………………… 374
  • 14.9        LED LIGHTING AND UVC……………………………………………………………………………………………….. 381
    • 14.9.1     MARKET DRIVERS AND TRENDS………………………………………………………………………………… 381
    • 14.9.2     PROPERTIES AND APPLICATIONS……………………………………………………………………………… 381
      • 14.9.2.1       Flexible OLED lighting………………………………………………………………………………………… 381
    • 14.9.3     GLOBAL MARKET SIZE AND OPPORTUNITY………………………………………………………………… 383
    • 14.9.4     MARKET CHALLENGES……………………………………………………………………………………………… 384
    • 14.9.5     PRODUCT DEVELOPERS…………………………………………………………………………………………… 384
  • 14.10      FILTRATION AND SEPARATION………………………………………………………………………………………. 385
    • 14.10.1        MARKET DRIVERS AND TRENDS……………………………………………………………………………. 385
    • 14.10.2        APPLICATIONS…………………………………………………………………………………………………….. 386
      • 14.10.3        Water filtration……………………………………………………………………………………………………….. 389
      • 14.10.4        Gas separation………………………………………………………………………………………………………. 390
      • 14.10.5        Photocatalytic absorbents………………………………………………………………………………………… 390
      • 14.10.6        Air filtration…………………………………………………………………………………………………………… 391
    • 14.10.7        MARKET SIZE AND OPPORTUNITY…………………………………………………………………………. 391
    • 14.10.8        MARKET CHALLENGES…………………………………………………………………………………………. 393
    • 14.10.9        PRODUCT DEVELOPERS………………………………………………………………………………………. 394
  • 14.11      LIFE SCIENCES AND BIOMEDICAL………………………………………………………………………………….. 397
    • 14.11.1        MARKET DRIVERS AND TRENDS……………………………………………………………………………. 397
    • 14.11.2        APPLICATIONS…………………………………………………………………………………………………….. 398
      • 14.11.2.1     Cancer therapy………………………………………………………………………………………………….. 402
      • 14.11.2.2     Medical implants and devices……………………………………………………………………………….. 403
      • 14.11.2.3     Wound dressings……………………………………………………………………………………………….. 403
      • 14.11.2.4     Biosensors……………………………………………………………………………………………………….. 403
      • 14.11.2.5     Medical imaging………………………………………………………………………………………………… 405
      • 14.11.2.6     Tissue engineering…………………………………………………………………………………………….. 405
      • 14.11.2.7     Dental……………………………………………………………………………………………………………… 405
      • 14.11.2.8     Electrophysiology………………………………………………………………………………………………. 405
      • 14.11.2.9     Wearable and mobile health monitoring………………………………………………………………….. 405
    • 14.11.3        MARKET SIZE AND OPPORTUNITY…………………………………………………………………………. 414
    • 14.11.4        MARKET CHALLENGES…………………………………………………………………………………………. 419
    • 14.11.5        PRODUCT DEVELOPERS………………………………………………………………………………………. 420
  • 14.12      LUBRICANTS……………………………………………………………………………………………………………….. 423
    • 14.12.1        MARKET DRIVERS AND TRENDS……………………………………………………………………………. 423
    • 14.12.2        APPLICATIONS…………………………………………………………………………………………………….. 423
    • 14.12.3        MARKET SIZE AND OPPORTUNITY…………………………………………………………………………. 425
    • 14.12.4        MARKET CHALLENGES…………………………………………………………………………………………. 426
    • 14.12.5        PRODUCT DEVELOPERS………………………………………………………………………………………. 427
  • 14.13      OIL AND GAS……………………………………………………………………………………………………………….. 428
    • 14.13.1        MARKET DRIVERS AND TRENDS……………………………………………………………………………. 428
    • 14.13.2        APPLICATIONS…………………………………………………………………………………………………….. 429
      • 14.13.2.1     Sensing and reservoir management……………………………………………………………………….. 429
      • 14.13.2.2     Coatings………………………………………………………………………………………………………….. 430
      • 14.13.2.3     Drilling fluids……………………………………………………………………………………………………… 431
      • 14.13.2.4     Sorbent materials………………………………………………………………………………………………. 431
      • 14.13.2.5     Catalysts………………………………………………………………………………………………………….. 432
      • 14.13.2.6     Separation……………………………………………………………………………………………………….. 432
    • 14.13.3        MARKET SIZE AND OPPORTUNITY…………………………………………………………………………. 433
    • 14.13.4        MARKET CHALLENGES…………………………………………………………………………………………. 435
    • 14.13.5        PRODUCT DEVELOPERS………………………………………………………………………………………. 435
  • 14.14      RUBBER AND TIRES……………………………………………………………………………………………………… 436
    • 14.14.1        APPLICATIONS…………………………………………………………………………………………………….. 437
    • 14.14.2        GLOBAL MARKET SIZE AND OPPORTUNITY…………………………………………………………….. 437
    • 14.14.3        MARKET CHALLENGES…………………………………………………………………………………………. 438
    • 14.14.4        PRODUCT DEVELOPERS………………………………………………………………………………………. 438
  • 14.15      SENSORS……………………………………………………………………………………………………………………. 440
    • 14.15.1        MARKET DRIVERS AND TRENDS……………………………………………………………………………. 440
    • 14.15.2        APPLICATIONS…………………………………………………………………………………………………….. 441
      • 14.15.2.1     Infrared (IR) sensors…………………………………………………………………………………………… 444
      • 14.15.2.2     Electrochemical and gas sensors………………………………………………………………………….. 444
      • 14.15.2.3     Pressure sensors………………………………………………………………………………………………. 445
      • 14.15.2.4     Biosensors……………………………………………………………………………………………………….. 445
      • 14.15.2.5     Optical sensors…………………………………………………………………………………………………. 447
      • 14.15.2.6     Humidity sensors……………………………………………………………………………………………….. 447
      • 14.15.2.7     Strain sensors…………………………………………………………………………………………………… 448
      • 14.15.2.8     Acoustic sensors……………………………………………………………………………………………….. 448
      • 14.15.2.9     Wireless sensors……………………………………………………………………………………………….. 448
      • 14.15.2.10        Surface enhanced Raman scattering………………………………………………………………….. 448
    • 14.15.3        MARKET SIZE AND OPPORTUNITY…………………………………………………………………………. 448
    • 14.15.4        MARKET CHALLENGES…………………………………………………………………………………………. 450
    • 14.15.5        PRODUCT DEVELOPERS………………………………………………………………………………………. 451
  • 14.16      SMART TEXTILES AND APPAREL……………………………………………………………………………………. 454
    • 14.16.1        MARKET DRIVERS AND TRENDS……………………………………………………………………………. 454
    • 14.16.2        APPLICATIONS…………………………………………………………………………………………………….. 457
      • 14.16.3        Conductive coatings……………………………………………………………………………………………….. 459
      • 14.16.4        Conductive yarns…………………………………………………………………………………………………… 460
    • 14.16.5        MARKET SIZE AND OPPORTUNITY…………………………………………………………………………. 461
    • 14.16.6        MARKET CHALLENGES…………………………………………………………………………………………. 465
    • 14.16.7        PRODUCT DEVELOPERS………………………………………………………………………………………. 466

15      MULTI-WALLED CARBON NANOTUBES PRODUCERS AND PRODUCT DEVELOPERS…………………… 468-567 (200 COMPANY PROFILES)

16      SINGLE-WALLED CARBON NANOTUBES PRODUCERS…………………………………………………………….. 568 (7 COMPANY PROFILES)

17      GRAPHENE PRODUCERS AND PRODUCT DEVELOPERS………………………………………………………………………………………………………. 573-707 (250 COMPANY PROFILES)

18      REFERENCES………………………………………………………………………………………………………………………. 708

 

TABLES

  • Table 1: Market summary for carbon nanotubes-Selling grade particle diameter, usage, advantages, average price/ton, high volume applications, low volume applications and novel applications……………………………………………….. 46
  • Table 2: Typical properties of SWCNTs and MWCNTs……………………………………………………………………………… 48
  • Table 3: Properties of CNTs and comparable materials…………………………………………………………………………….. 48
  • Table 4. Key players in MWCNTs…………………………………………………………………………………………………………. 49
  • Table 5: Applications of carbon nanotubes……………………………………………………………………………………………… 50
  • Table 6: Market opportunity assessment for CNTs in order of opportunity from high to low………………………………… 52
  • Table 7: Annual production capacity of MWCNT producers 2018………………………………………………………………… 57
  • Table 8: SWCNT producers production capacities 2018……………………………………………………………………………. 59
  • Table 9: Demand for MWCNTs (tons), 2010-2018, forecasted to 2030 (tons)…………………………………………………. 60
  • Table 10: Demand for SWCNTs (tons), 2010-2018, forecasted to 2030 (tons)………………………………………………… 62
  • Table 11: Annual production capacity of the key SWCNT producers in 2018………………………………………………….. 63
  • Table 12: Competitive analysis of Carbon nanotubes and graphene by application area and potential impact by 2030. 67
  • Table 13. Key players in graphene……………………………………………………………………………………………………….. 70
  • Table 14: Demand for graphene, 2010-2018, forecasted to 2030 (tons)………………………………………………………… 72
  • Table 15: Consumer products incorporating graphene………………………………………………………………………………. 74
  • Table 16: Graphene investments and financial agreements 2018………………………………………………………………… 74
  • Table 17: Market opportunity assessment matrix for graphene applications…………………………………………………… 77
  • Table 18: Main graphene producers by country and annual production capacities…………………………………………… 81
  • Table 19: Properties of carbon nanotubes………………………………………………………………………………………………. 90
  • Table 20: Applications of multi-walled carbon nanotubes…………………………………………………………………………… 92
  • Table 21: Markets, benefits and applications of Single-Walled Carbon Nanotubes…………………………………………… 94
  • Table 22: Comparison between single-walled carbon nanotubes and multi-walled carbon nanotubes………………….. 96
  • Table 23: Markets, benefits and applications of fullerenes………………………………………………………………………… 101
  • Table 24: Applications of carbon quantum dots……………………………………………………………………………………… 102
  • Table 25: Properties of graphene……………………………………………………………………………………………………….. 105
  • Table 26: Comparison of graphene QDs and semiconductor QDs……………………………………………………………… 107
  • Table 27: Graphene quantum dot producers…………………………………………………………………………………………. 110
  • Table 28: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2……………………… 112
  • Table 29: Market opportunity assessment for phosphorene applications……………………………………………………… 115
  • Table 30: Market opportunity assessment for graphitic carbon nitride applications…………………………………………. 118
  • Table 31: Market opportunity assessment for germanene applications………………………………………………………… 120
  • Table 32: Market opportunity assessment for graphdiyne applications………………………………………………………… 122
  • Table 33: Market opportunity assessment for graphane applications…………………………………………………………… 124
  • Table 34: Market opportunity assessment for hexagonal boron nitride applications………………………………………… 127
  • Table 35: Market opportunity assessment for molybdenum disulfide applications…………………………………………… 131
  • Table 36: Market opportunity assessment for Rhenium disulfide (ReS2) and diselenide (ReSe2) applications……… 133
  • Table 37: Market opportunity assessment for silicene applications……………………………………………………………… 135
  • Table 38: Market opportunity assessment for stanine/tinene applications…………………………………………………….. 138
  • Table 39: Market opportunity assessment for tungsten diselenide applications……………………………………………… 139
  • Table 40: Comparative analysis of graphene and other 2-D nanomaterials…………………………………………………… 142
  • Table 41: Comparative properties of carbon materials…………………………………………………………………………….. 145
  • Table 42: Comparative properties of graphene with nanoclays and carbon nanotubes……………………………………. 146
  • Table 43. Key players in carbon fibers…………………………………………………………………………………………………. 148
  • Table 44. Main applications for carbon fibers, volumes, potential for GNT to gain market share………………………… 149
  • Table 45. Carbon black capacity by company………………………………………………………………………………………… 150
  • Table 46 Specialty carbon black market volume, 2015-2025…………………………………………………………………….. 151
  • Table 47: Published patent publications for graphene, 2004-2018……………………………………………………………… 156
  • Table 48: Leading graphene patentees………………………………………………………………………………………………… 157
  • Table 49: Carbon nanotubes market structure……………………………………………………………………………………….. 163
  • Table 50: Graphene market structure…………………………………………………………………………………………………… 165
  • Table 51: Demand for MWCNT (tons), 2010-2030………………………………………………………………………………….. 169
  • Table 52: Demand for SWCNT (tons), 2010-2030…………………………………………………………………………………… 173
  • Table 53: Annual production capacity of MWCNT producers 2018……………………………………………………………… 177
  • Table 54: SWCNT producer’s production capacities 2018………………………………………………………………………… 177
  • Table 55: MWCNT nanotubes prices…………………………………………………………………………………………………… 180
  • Table 56: SWCNT nanotubes prices……………………………………………………………………………………………………. 181
  • Table 57: Global production of graphene, 2010-2030 in tons/year………………………………………………………………. 182
  • Table 58: Types of graphene and prices………………………………………………………………………………………………. 184
  • Table 59: Pristine graphene flakes pricing by producer……………………………………………………………………………. 185
  • Table 60: Few-layer graphene pricing by producer…………………………………………………………………………………. 186
  • Table 61: Graphene nanoplatelets pricing by producer…………………………………………………………………………….. 186
  • Table 62: Reduced graphene oxide pricing, by producer………………………………………………………………………….. 187
  • Table 63: Graphene quantum dots pricing by producer……………………………………………………………………………. 188
  • Table 64: Graphene oxide nanosheets pricing by producer………………………………………………………………………. 188
  • Table 65: Multi-layer graphene pricing by producer…………………………………………………………………………………. 189
  • Table 66: Production capacities of graphene producers, current and planned, metric tons……………………………….. 190
  • Table 67: Graphene oxide production capacity in tons per year, 2010-2018…………………………………………………. 192
  • Table 68: Graphene nanoplatelets (GNP) capacity in tons per year, 2010-2018…………………………………………….. 193
  • Table 69: CVD graphene film capacity in tons per year, 2010-2018 (000s m2)……………………………………………… 193
  • Table 70: Market drivers for use of graphene, non-graphene 2D materials and carbon nanotubes in 3D printing…… 195
  • Table 71: Graphene properties relevant to application in 3D printing…………………………………………………………… 196
  • Table 72: Applications and benefits of carbon nanotubes in 3D printing………………………………………………………. 196
  • Table 73: Market size for graphene, non-graphene 2D materials and carbon nanotubes in 3D printing……………….. 197
  • Table 74: Market opportunity assessment for carbon nanotubes in 3D printing……………………………………………… 197
  • Table 75: Market opportunity assessment for graphene in conductive inks…………………………………………………… 197
  • Table 76: Market challenges for graphene, non-graphene 2D materials and carbon nanotubes in 3D printing………. 198
  • Table 78: Carbon nanotubes product and application developers in 3D printing…………………………………………….. 199
  • Table 79: Graphene product and application developers in 3D printing……………………………………………………….. 199
  • Table 80: Other carbon nanomaterials product and application developers in the 3D printing industry………………… 200
  • Table 81: Market drivers for use of graphene, non-graphene 2D materials and carbon nanotubes in adhesives……. 201
  • Table 82: Graphene properties relevant to application in adhesives……………………………………………………………. 202
  • Table 83: Applications and benefits of graphene, non-graphene 2D materials and carbon nanotubes in adhesives.. 202
  • Table 84: Market size for graphene, non-graphene 2D materials and carbon nanotubes in adhesives………………… 203
  • Table 85: Market opportunity assessment for CNTs in adhesives………………………………………………………………. 203
  • Table 86: Market opportunity assessment for graphene in adhesives………………………………………………………….. 204
  • Table 88: Carbon nanotubes product and application developers in the adhesives industry……………………………… 205
  • Table 89:  Graphene product and application developers in the adhesives industry……………………………………….. 206
  • Table 90:  Other carbon nanomaterials product and application developers in the adhesives industry………………… 206
  • Table 91: Market drivers for use of graphene, non-graphene 2D materials and carbon nanotubes in aerospace…… 207
  • Table 92: Applications and benefits of graphene, non-graphene 2D materials and carbon nanotubes in aerospace. 208
  • Table 93: Applications of graphene, non-graphene 2D materials and carbon nanotubes in aerospace composites… 211
  • Table 94: Types of nanocoatings utilized in aerospace and application……………………………………………………….. 213
  • Table 95: Market size for graphene, non-graphene 2D materials and carbon nanotubes in aerospace……………….. 216
  • Table 96: Market opportunity assessment for CNTs in aerospace………………………………………………………………. 217
  • Table 97: Market opportunity assessment for graphene in aerospace…………………………………………………………. 217
  • Table 99: Carbon nanotubes product and application developers in the aerospace industry…………………………….. 219
  • Table 100: Graphene product and application developers in the aerospace industry………………………………………. 220
  • Table 101: Other carbon nanomaterials product and application developers in the aerospace industry………………. 221
  • Table 102: Market drivers for use of graphene, non-graphene 2D materials and carbon nanotubes in the automotive sector…………………………………………………………………………………………………………………………………….. 222
  • Table 103: Applications and benefits of graphene, non-graphene 2D materials and carbon nanotubes in automotive. 227
  • Table 104: Market size for graphene, non-graphene 2D materials and carbon nanotubes in automotive……………… 228
  • Table 105: Market opportunity assessment for CNTs in automotive……………………………………………………………. 228
  • Table 106: Market opportunity assessment for graphene in the automotive industry………………………………………. 229
  • Table 107: Applications and commercialization challenges for graphene, non-graphene 2D materials and carbon nanotubes in the automotive market……………………………………………………………………………………………… 230
  • Table 109: Carbon nanotubes product and application developers in the automotive market……………………………. 231
  • Table 110: Graphene product and application developers in the automotive market……………………………………….. 232
  • Table 112: Properties of nanocoatings…………………………………………………………………………………………………. 234
  • Table 113: Graphene properties relevant to application in coatings…………………………………………………………….. 238
  • Table 114: Markets for graphene, non-graphene 2D materials and carbon nanotubes coatings………………………… 247
  • Table 115: Market opportunity assessment for graphene, non-graphene 2D materials and carbon nanotubes in the coatings market………………………………………………………………………………………………………………………… 251
  • Table 117: Carbon nanotubes product and application developers in the coatings industry………………………………. 252
  • Table 118: Graphene product and application developers in the coatings industry…………………………………………. 253
  • Table 119: Other carbon nanomaterials product and application developers in the coatings industry………………….. 254
  • Table 120: Market drivers for use of graphene, non-graphene 2D materials and carbon nanotubes in composites… 256
  • Table 121: Comparative properties of polymer composites reinforcing materials……………………………………………. 257
  • Table 122: Applications and benefits of graphene, non-graphene 2D materials and carbon nanotubes in composites. 258
  • Table 123: Market size for graphene, non-graphene 2D materials and carbon nanotubes in composites…………….. 263
  • Table 124: Market opportunity assessment for CNTs in composites……………………………………………………………. 264
  • Table 125: Market opportunity assessment for graphene in composites………………………………………………………. 265
  • Table 126: Applications and commercialization challenges for carbon nanomaterials in composites…………………… 267
  • Table 128: Carbon nanotubes product and application developers in the composites market……………………………. 267
  • Table 129: Graphene product and application developers in the composites market………………………………………. 269
  • Table 130: Other carbon nanomaterials product and application developers in the composites market……………….. 270
  • Table 131: Market drivers for use of graphene, non-graphene 2D materials and carbon nanotubes in flexible electronics and conductive films………………………………………………………………………………………………………………….. 271
  • Table 132: Applications and benefits of graphene, non-graphene 2D materials and carbon nanotubes in flexible electronics and conductive films…………………………………………………………………………………………………… 275
  • Table 133: Comparison of ITO replacements………………………………………………………………………………………… 278
  • Table 134: Wearable electronics devices and stage of development…………………………………………………………… 282
  • Table 135: Graphene properties relevant to application in sensors……………………………………………………………… 287
  • Table 136: Market size for graphene, non-graphene 2D materials and carbon nanotubes in flexible electronics and conductive films………………………………………………………………………………………………………………………… 289
  • Table 137: Market opportunity assessment for CNTs in flexible electronics, wearables, conductive films and displays……………………………………………………………………………………………………………………………………………… 290
  • Table 138: Market opportunity assessment for graphene in flexible electronics, wearables, conductive films and displays………………………………………………………………………………………………………………………………….. 291
  • Table 140: Applications and commercialization challenges for graphene, non-graphene 2D materials and carbon nanotubes in flexible electronics and conductive films……………………………………………………………………….. 295
  • Table 142: Carbon nanotubes product and application developers in transparent conductive films and displays…… 296
  • Table 143: Graphene product and application developers in transparent conductive films……………………………….. 298
  • Table 144: Market drivers for use of graphene, non-graphene 2D materials and carbon nanotubes in conductive inks……………………………………………………………………………………………………………………………………………… 300
  • Table 145: Comparative properties of conductive inks…………………………………………………………………………….. 302
  • Table 146: Opportunities for advanced materials in printed electronics………………………………………………………… 304
  • Table 147: Applications in flexible and stretchable batteries for graphene, non-graphene 2D materials and carbon nanotubes……………………………………………………………………………………………………………………………….. 306
  • Table 149: Market opportunity assessment for graphene, non-graphene 2D materials and carbon nanotubes in conductive inks…………………………………………………………………………………………………………………………. 308
  • Table 150: Conductive inks in the flexible and stretchable electronics market 2017-2030 revenue forecast (million $), by ink types…………………………………………………………………………………………………………………………………. 310
  • Table 151: Market challenges for graphene, non-graphene 2D materials and carbon nanotubes in conductive inks. 310
  • Table 153: Carbon nanotubes product and application developers in conductive inks…………………………………….. 310
  • Table 154: Graphene product and application developers in conductive inks………………………………………………… 311
  • Table 155: Market drivers for graphene, non-graphene 2D materials and carbon nanotubes in transistors, integrated circuits and other components……………………………………………………………………………………………………… 312
  • Table 156: Applications and benefits of graphene, non-graphene 2D materials and carbon nanotubes in transistors, integrated circuits and other components……………………………………………………………………………………….. 315
  • Table 157: Comparative properties of silicon and graphene transistors……………………………………………………….. 317
  • Table 158: Applications and benefits of graphene in transistors, integrated circuits and other components………….. 318
  • Table 159: Market size for graphene, non-graphene 2D materials and carbon nanotubes in transistors, integrated circuits and other components……………………………………………………………………………………………………… 319
  • Table 160: Market opportunity assessment for CNTs in transistors, integrated circuits and other components……… 320
  • Table 161: Market opportunity assessment for graphene in transistors, integrated circuits and other components… 321
  • Table 165: Carbon nanotubes product and application developers in transistors, integrated circuits and other components…………………………………………………………………………………………………………………………….. 324
  • Table 166: Graphene product and application developers in transistors and integrated circuits…………………………. 325
  • Table 167: Market drivers for use of graphene, non-graphene 2D materials and carbon nanotubes in memory devices……………………………………………………………………………………………………………………………………………… 326
  • Table 168: Applications and benefits of CNTs in memory devices………………………………………………………………. 328
  • Table 169: Market size for graphene, non-graphene 2D materials and carbon nanotubes in memory devices………. 330
  • Table 170: Market opportunity assessment for graphene, non-graphene 2D materials and carbon nanotubes in memory devices…………………………………………………………………………………………………………………………………… 330
  • Table 172: Carbon nanotubes product and application developers in memory devices……………………………………. 333
  • Table 173: Graphene product and application developers in memory devices………………………………………………. 334
  • Table 174: Market drivers for use of graphene, non-graphene 2D materials and carbon nanotubes in photonics…… 336
  • Table 175: Applications and benefits of CNTs in photonics……………………………………………………………………….. 336
  • Table 176: Graphene properties relevant to application in optical modulators……………………………………………….. 337
  • Table 177: Applications and benefits of graphene in photonics………………………………………………………………….. 340
  • Table 178: Market size for graphene, non-graphene 2D materials and carbon nanotubes in photonics……………….. 340
  • Table 180: Graphene product and application developers in photonics……………………………………………………….. 341
  • Table 181: Market drivers for use of graphene, non-graphene 2D materials and carbon nanotubes in batteries……. 343
  • Table 182: Applications and benefits of CNTs in batteries………………………………………………………………………… 346
  • Table 183: Applications of graphene, non-graphene 2D materials and carbon nanotubes in flexible and stretchable batteries………………………………………………………………………………………………………………………………….. 349
  • Table 184: Market size for graphene, non-graphene 2D materials and carbon nanotubes in batteries………………… 350
  • Table 185: Potential addressable market for thin film, flexible and printed batteries………………………………………… 351
  • Table 186: Market opportunity assessment for graphene in batteries………………………………………………………….. 352
  • Table 187: Market challenges in CNT batteries……………………………………………………………………………………… 353
  • Table 190: Market drivers for use of graphene, non-graphene 2D materials and carbon nanotubes in supercapacitors……………………………………………………………………………………………………………………………………………… 354
  • Table 191: Applications and benefits of CNTs in supercapacitors………………………………………………………………. 355
  • Table 192: Comparative properties of graphene supercapacitors and lithium-ion batteries………………………………. 356
  • Table 193: Applications and benefits of graphene in supercapacitors………………………………………………………….. 357
  • Table 194: Properties of carbon materials in high-performance supercapacitors……………………………………………. 358
  • Table 195: Applications of graphene, non-graphene 2D materials and carbon nanotubes in flexible and stretchable supercapacitors………………………………………………………………………………………………………………………… 359
  • Table 196: Market size for graphene, non-graphene 2D materials and carbon nanotubes in supercapacitors………. 360
  • Table 197: Market opportunity assessment for CNTs in supercapacitors……………………………………………………… 361
  • Table 198: Market opportunity assessment for graphene in supercapacitors………………………………………………… 361
  • Table 199: Market challenges in supercapacitors……………………………………………………………………………………. 362
  • Table 202: Market drivers for use of graphene, non-graphene 2D materials and carbon nanotubes in photovoltaics. 363
  • Table 203: Applications and benefits of graphene, non-graphene 2D materials and carbon nanotubes in photovoltaics……………………………………………………………………………………………………………………………………………… 365
  • Table 204: Market size for graphene, non-graphene 2D materials and carbon nanotubes in photovoltaics………….. 368
  • Table 205: Market size for CNTs in photovoltaics…………………………………………………………………………………… 369
  • Table 206: Market size for graphene in photovoltaics………………………………………………………………………………. 370
  • Table 207: Potential addressable market for graphene, non-graphene 2D materials and carbon nanotubes in photovoltaics……………………………………………………………………………………………………………………………. 370
  • Table 208: Market challenges for CNTs in solar……………………………………………………………………………………… 371
  • Table 211: Market drivers for use of graphene, non-graphene 2D materials and carbon nanotubes in fuel cells……. 372
  • Table 212: Electrical conductivity of different catalyst supports compared to carbon nanotubes………………………… 373
  • Table 213: Market size for graphene, non-graphene 2D materials and carbon nanotubes in fuel cells and hydrogen storage…………………………………………………………………………………………………………………………………… 374
  • Table 214: Market opportunity assessment for graphene, non-graphene 2D materials and carbon nanotubes in fuel cells and hydrogen storage………………………………………………………………………………………………………………… 375
  • Table 216: Carbon nanotubes product and application developers in the energy storage, conversion and exploration industries………………………………………………………………………………………………………………………………… 375
  • Table 217: Graphene product and application developers in the energy storage and conversion industry……………. 378
  • Table 218: Other carbon nanomaterials product and application developers in the energy storage, conversion and exploration industries…………………………………………………………………………………………………………………. 381
  • Table 219: Market drivers for use of graphene, non-graphene 2D materials and carbon nanotubes in LED lighting and UVC………………………………………………………………………………………………………………………………………. 382
  • Table 220: Applications of graphene, non-graphene 2D materials and carbon nanotubes in lighting…………………… 382
  • Table 221: Market size for graphene, non-graphene 2D materials and carbon nanotubes in LED lighting and UVC.. 384
  • Table 222: Investment opportunity assessment for graphene, non-graphene 2D materials and carbon nanotubes in the lighting market………………………………………………………………………………………………………………………….. 384
  • Table 224: Graphene, non-graphene 2D materials and carbon nanotubes product and application developers in the LED and UVC lighting market…………………………………………………………………………………………………………….. 385
  • Table 225: Market drivers for use of graphene, non-graphene 2D materials and carbon nanotubes in filtration…….. 386
  • Table 226: Comparison of CNT membranes with other membrane technologies……………………………………………. 388
  • Table 227: Applications and benefits of CNTs in filtration and separation…………………………………………………….. 389
  • Table 228: Applications and benefits of graphene in filtration and separation………………………………………………… 390
  • Table 229: Market size for graphene, non-graphene 2D materials and carbon nanotubes in filtration…………………. 392
  • Table 230: Market opportunity assessment for CNTs in filtration………………………………………………………………… 393
  • Table 231: Market opportunity assessment for graphene in the filtration and separation market………………………… 394
  • Table 232: Market challenges for carbon nanomaterials in filtration…………………………………………………………….. 395
  • Table 233: Market challenges rating for carbon nanomaterials in the filtration market……………………………………… 395
  • Table 234: Carbon nanotubes product and application developers in the filtration industry………………………………. 395
  • Table 235: Graphene product and application developers in the filtration industry………………………………………….. 396
  • Table 236: Other carbon nanomaterials product and application developers in the filtration industry………………….. 397
  • Table 237: Market drivers for use of graphene, non-graphene 2D materials and carbon nanotubes in the life sciences and medical market…………………………………………………………………………………………………………………… 398
  • Table 238: CNTs in life sciences and biomedicine………………………………………………………………………………….. 400
  • Table 239: Graphene properties relevant to application in biomedicine and healthcare…………………………………… 400
  • Table 240: Applications and benefits of graphene, non-graphene 2D materials and carbon nanotubes in life sciences and medical…………………………………………………………………………………………………………………………….. 401
  • Table 241: Applications of graphene, non-graphene 2D materials and carbon nanotubes in flexible and stretchable health monitors…………………………………………………………………………………………………………………………. 408
  • Table 242: Market size for graphene, non-graphene 2D materials and carbon nanotubes in life sciences and medical……………………………………………………………………………………………………………………………………………… 415
  • Table 243: Potential addressable market for smart textiles and wearables in medical and healthcare………………… 416
  • Table 244: Market opportunity assessment for graphene in biomedical & healthcare markets…………………………… 418
  • Table 245: Market opportunity assessment for CNTs in life sciences and medical…………………………………………. 419
  • Table 246: Applications and commercialization challenges for graphene, non-graphene 2D materials and carbon nanotubes in life sciences and medical………………………………………………………………………………………….. 420
  • Table 248: Carbon nanotubes product and application developers in the medical and healthcare industry………….. 421
  • Table 249: Graphene product and application developers in the biomedical and healthcare industry………………….. 422
  • Table 250: Other carbon nanomaterials product and application developers in the medical and healthcare industry. 423
  • Table 251: Market drivers for use of graphene, non-graphene 2D materials and carbon nanotubes in lubricants…… 424
  • Table 252: Applications of graphene in the lubricants market……………………………………………………………………. 425
  • Table 253: Applications of carbon nanotubes in lubricants………………………………………………………………………… 425
  • Table 254: Applications in lubricants, by nanomaterials type and benefits thereof………………………………………….. 425
  • Table 255: Market size for c graphene, non-graphene 2D materials and carbon nanotubes in lubricants…………….. 426
  • Table 256: Market opportunity assessment for CNTs in lubricants……………………………………………………………… 426
  • Table 257: Market opportunity assessment for graphene in lubricants…………………………………………………………. 427
  • Table 259: Carbon nanotubes product and application developers in the lubricants industry…………………………….. 428
  • Table 260:  Graphene product and application developers in the lubricants industry………………………………………. 428
  • Table 262: Market drivers for graphene, non-graphene 2D materials and carbon nanotubes in oil and gas………….. 429
  • Table 263: Applications of graphene in the oil and gas market…………………………………………………………………… 430
  • Table 264: Market summary and revenues for graphene, non-graphene 2D materials and carbon nanotubes in the oil and gas market………………………………………………………………………………………………………………………… 435
  • Table 265: Investment opportunity assessment for CNTs in the oil and gas market………………………………………… 435
  • Table 266: Investment opportunity assessment for graphene in the oil and gas market…………………………………… 436
  • Table 268: Carbon nanomaterial product and application developers in the oil and gas market…………………………. 436
  • Table 269: Applications of graphene, non-graphene 2D materials and carbon nanotubes in rubber and tires……….. 438
  • Table 270: Market summary and revenues for graphene, non-graphene 2D materials and carbon nanotubes in the rubber and tires market………………………………………………………………………………………………………………. 438
  • Table 271: Investment opportunity assessment for graphene, non-graphene 2D materials and carbon nanotubes in the rubber and tires market………………………………………………………………………………………………………………. 439
  • Table 273: Graphene, non-graphene 2D materials and carbon nanotubes product and application developers in the rubber and tires industry…………………………………………………………………………………………………………….. 439
  • Table 274: Market drivers for use of graphene, non-graphene 2D materials and carbon nanotubes in sensors…….. 441
  • Table 275: Applications and benefits of CNTs in sensors…………………………………………………………………………. 442
  • Table 276: Applications and benefits of graphene in sensors…………………………………………………………………….. 443
  • Table 277: Graphene properties relevant to application in sensors……………………………………………………………… 444
  • Table 278: Comparison of ELISA (enzyme-linked immunosorbent assay) and graphene biosensor…………………… 448
  • Table 279: Market size for graphene, non-graphene 2D materials and carbon nanotubes in sensors…………………. 449
  • Table 280: Market opportunity assessment for CNTs in sensors………………………………………………………………… 450
  • Table 281: Market opportunity assessment for graphene in the sensors market…………………………………………….. 451
  • Table 283: Market challenges for CNTs in sensors…………………………………………………………………………………. 452
  • Table 285: Carbon nanotubes product and application developers in the sensors industry………………………………. 452
  • Table 286: Graphene product and application developers in the sensors industry………………………………………….. 453
  • Table 288: Types of smart textiles………………………………………………………………………………………………………. 455
  • Table 289: Smart textile products……………………………………………………………………………………………………….. 456
  • Table 290: Market drivers for use of graphene, non-graphene 2D materials and carbon nanotubes in smart textiles and apparel…………………………………………………………………………………………………………………………………… 456
  • Table 291: Desirable functional properties for the textiles industry afforded by the use of nanomaterials…………….. 458
  • Table 292: Applications and benefits of CNTs in textiles and apparel………………………………………………………….. 459
  • Table 293: Applications and benefits of graphene in textiles and apparel…………………………………………………….. 461
  • Table 294: Global smart clothing, interactive fabrics and apparel market……………………………………………………… 463
  • Table 295: Market opportunity assessment for CNTs in smart textiles and apparel………………………………………… 464
  • Table 296: Market opportunity assessment for graphene in smart textiles and apparel……………………………………. 465
  • Table 297: Applications and commercialization challenges for carbon nanomaterials in smart textiles and apparel.. 466
  • Table 299: Carbon nanotubes product and application developers in the textiles industry………………………………… 467
  • Table 300:  Graphene product and application developers in the textiles industry………………………………………….. 467
  • Table 301: Competitive analysis of MWCNT producers……………………………………………………………………………. 469
  • Table 302: MWCNT producers and companies they supply/licence to…………………………………………………………. 470
  • Table 303: Competitive analysis of SWCNT producers……………………………………………………………………………. 569
  • Table 304: Competitive analysis of graphene producers…………………………………………………………………………… 574
  • Table 305: Graphene producers and types produced………………………………………………………………………………. 575
  • Table 306: Graphene producers target market matrix……………………………………………………………………………… 579
  • Table 307: Graphene industrial collaborations, licence agreements and target markets………………………………….. 582
  • Table 308: Graphene product developers and end users target market matrix………………………………………………. 585

 

FIGURES

  • Figure 1: Molecular structures of SWCNT and MWCNT…………………………………………………………………………….. 47
  • Figure 2: The SGCNT synthesis method………………………………………………………………………………………………… 58
  • Figure 3: Production capacities for SWCNTs in kilograms, 2005-2017………………………………………………………….. 59
  • Figure 4: Demand for MWCNTs (tons), 2010-2018, forecasted to 2030 (tons…………………………………………………. 61
  • Figure 5: Demand for MWCNT by application in 2018……………………………………………………………………………….. 61
  • Figure 6: Demand for SWCNTs (tons), 2010-2018, forecasted to 2030 (tons………………………………………………….. 63
  • Figure 7: Graphene production capacity, current and planned…………………………………………………………………….. 72
  • Figure 8: Demand for graphene, 2010-2030……………………………………………………………………………………………. 73
  • Figure 9: Demand for graphene, by market, 2030…………………………………………………………………………………….. 76
  • Figure 10: Global consumption of graphene 2016, by region………………………………………………………………………. 84
  • Figure 11: 15-inch single-layer graphene sheet being prepared in the Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences……………………………………………………………………………………… 87
  • Figure 12: Schematic of single-walled carbon nanotube…………………………………………………………………………….. 93
  • Figure 13: TIM sheet developed by Zeon Corporation……………………………………………………………………………….. 94
  • Figure 14: Double-walled carbon nanotube bundle cross-section micrograph and model………………………………….. 97
  • Figure 15: Schematic representation of carbon nanohorns…………………………………………………………………………. 98
  • Figure 16: TEM image of carbon onion………………………………………………………………………………………………….. 99
  • Figure 17: Fullerene schematic………………………………………………………………………………………………………….. 100
  • Figure 18: Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red.. 102
  • Figure 19: Graphene layer structure schematic……………………………………………………………………………………… 104
  • Figure 20: Graphite and graphene………………………………………………………………………………………………………. 104
  • Figure 21: Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene. ………………………………………………….. 105
  • Figure 22: Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1–4)………………………………………………………………………. 108
  • Figure 23: Green-fluorescing graphene quantum dots……………………………………………………………………………… 109
  • Figure 24: Graphene quantum dots…………………………………………………………………………………………………….. 110
  • Figure 25: Black phosphorus structure…………………………………………………………………………………………………. 111
  • Figure 26: Black Phosphorus crystal……………………………………………………………………………………………………. 112
  • Figure 27: Bottom gated flexible few-layer phosphorene transistors with the hydrophobic dielectric encapsulation… 114
  • Figure 28: Graphitic carbon nitride………………………………………………………………………………………………………. 117
  • Figure 29: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal. Credit: Ulsan National Institute of Science and Technology………………………………………………………………………….. 117
  • Figure 30: Schematic of germanene……………………………………………………………………………………………………. 119
  • Figure 31: Graphdiyne structure…………………………………………………………………………………………………………. 121
  • Figure 32: Schematic of Graphane crystal…………………………………………………………………………………………….. 123
  • Figure 33: Structure of hexagonal boron nitride……………………………………………………………………………………… 125
  • Figure 34: BN nanosheet textiles application…………………………………………………………………………………………. 127
  • Figure 35: Structure of 2D molybdenum disulfide……………………………………………………………………………………. 128
  • Figure 36: SEM image of MoS2………………………………………………………………………………………………………….. 129
  • Figure 37: Atomic force microscopy image of a representative MoS2 thin-film transistor………………………………….. 130
  • Figure 38: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge………………………………………………………………………………………………………………………. 130
  • Figure 39: Schematic of a monolayer of rhenium disulfide………………………………………………………………………… 132
  • Figure 40: Silicene structure………………………………………………………………………………………………………………. 133
  • Figure 41: Monolayer silicene on a silver (111) substrate…………………………………………………………………………. 134
  • Figure 42: Silicene transistor……………………………………………………………………………………………………………… 135
  • Figure 43: Crystal structure for stanene……………………………………………………………………………………………….. 136
  • Figure 44: Atomic structure model for the 2D stanene on Bi2Te3(111)………………………………………………………… 137
  • Figure 45: Schematic of tungsten diselenide…………………………………………………………………………………………. 139
  • Figure 46: Schematic of Indium Selenide (InSe)…………………………………………………………………………………….. 141
  • Figure 47: Graphene can be rolled up into a carbon nanotube, wrapped into a fullerene, and stacked into graphite. 144
  • Figure 48 Global market for carbon black in 2016, by end user market………………………………………………………… 151
  • Figure 49 Demand for carbon black, by market, 2014-2025, million metric tons…………………………………………….. 152
  • Figure 50 Specialty carbon black market volume, 2015-2025……………………………………………………………………. 153
  • Figure 51: MWCNT patents filed 2000-2018………………………………………………………………………………………….. 154
  • Figure 52: SWCNT patents filed 2000-2018………………………………………………………………………………………….. 155
  • Figure 53: Published patent publications for graphene, 2004-2018…………………………………………………………….. 156
  • Figure 54: Country/region distribution in graphene R&D…………………………………………………………………………… 157
  • Figure 55: MWCNT Roadmap……………………………………………………………………………………………………………. 159
  • Figure 55: SWCNT Roadmap…………………………………………………………………………………………………………….. 161
  • Figure 56: Graphene roadmap…………………………………………………………………………………………………………… 162
  • Figure 57: Schematic of typical commercialization route for graphene producer…………………………………………….. 165
  • Figure 58: Demand for MWCNT (tons), 2010-2030…………………………………………………………………………………. 170
  • Figure 59: Demand for MWCNTs, by market in 2018………………………………………………………………………………. 171
  • Figure 60: Demand for MWCNTs, by market, 2017…………………………………………………………………………………. 172
  • Figure 61: Demand for MWCNTs, by market, 2030…………………………………………………………………………………. 173
  • Figure 58: Demand for SWCNT (tons), 2010-2030…………………………………………………………………………………. 174
  • Figure 59: Demand for SWCNTs, by market in 2018……………………………………………………………………………….. 175
  • Figure 61: Demand for SWCNTs, by market, 2030…………………………………………………………………………………. 176
  • Figure 62: Production volumes of Carbon Nanotubes 2017, by region…………………………………………………………. 178
  • Figure 63: Global market for graphene 2010-2030 in tons/year………………………………………………………………….. 183
  • Figure 64: 3D Printed tweezers incorporating Carbon Nanotube Filament……………………………………………………. 197
  • Figure 65: Graphene Adhesives…………………………………………………………………………………………………………. 202
  • Figure 66: Carbon nanotube Composite Overwrap Pressure Vessel (COPV) developed by NASA…………………….. 210
  • Figure 67: Veelo carbon fiber nanotube sheet……………………………………………………………………………………….. 211
  • Figure 68: HeatCoat CNT anti-icing coatings…………………………………………………………………………………………. 215
  • Figure 69: Potential addressable market for graphene, non-graphene 2D materials and carbon nanotubes in aerospace……………………………………………………………………………………………………………………………………………… 218
  • Figure 70: Graphene-based automotive components………………………………………………………………………………. 225
  • Figure 71: Antistatic graphene tire………………………………………………………………………………………………………. 226
  • Figure 72: Schematic of CNTs as heat-dissipation sheets………………………………………………………………………… 227
  • Figure 73: Heat transfer coating developed at MIT………………………………………………………………………………….. 238
  • Figure 74: Water permeation through a brick without (left) and with (right) “graphene paint” coating…………………… 242
  • Figure 75: Four layers of graphene oxide coatings on polycarbonate………………………………………………………….. 245
  • Figure 76: Global Paints and Coatings Market, share by end user market……………………………………………………. 247
  • Figure 77: Potential addressable market for graphene, non-graphene 2D materials and carbon nanotubes in the coatings market………………………………………………………………………………………………………………………… 250
  • Figure 78: CNT anti-icing coating for wind turbines…………………………………………………………………………………. 261
  • Figure 79: Potential addressable market for graphene, non-graphene 2D materials and carbon nanotubes in composites………………………………………………………………………………………………………………………………. 266
  • Figure 80: Carbon nanotube thin-film transistors and integrated circuits on a flexible and transparent substrate…… 273
  • Figure 81: Moxi flexible film developed for smartphone application…………………………………………………………….. 274
  • Figure 82: Flexible graphene touch screen……………………………………………………………………………………………. 275
  • Figure 83: Galapad Settler smartphone………………………………………………………………………………………………… 275
  • Figure 84: 3D printed carbon nanotube sensor………………………………………………………………………………………. 277
  • Figure 85: Flexible organic light emitting diode (OLED) using graphene electrode………………………………………….. 278
  • Figure 86: Graphene electrochromic devices. Top left: Exploded-view illustration of the graphene electrochromic device. The device is formed by attaching two graphene-coated PVC substrates face-to-face and filling the gap with a liquid ionic electrolyte………………………………………………………………………………………………………………………… 279
  • Figure 87: Flexible mobile phones with graphene transparent conductive film……………………………………………….. 280
  • Figure 88: Carbon nanotube-based color active matrix electrophoretic display (EPD) e-paper………………………….. 280
  • Figure 89: Foldable graphene E-paper…………………………………………………………………………………………………. 281
  • Figure 90: Covestro wearables…………………………………………………………………………………………………………… 282
  • Figure 91: Softceptor sensor……………………………………………………………………………………………………………… 285
  • Figure 92: BeBop Media Arm Controller……………………………………………………………………………………………….. 285
  • Figure 93: LG Innotek flexible textile pressure sensor……………………………………………………………………………… 286
  • Figure 94: C2Sense flexible sensor…………………………………………………………………………………………………….. 286
  • Figure 95: Wearable gas sensor…………………………………………………………………………………………………………. 288
  • Figure 98: Torso and Extremities Protection (TEP) system……………………………………………………………………….. 289
  • Figure 99: Potential addressable market for graphene, non-graphene 2D materials and carbon nanotubes in flexible electronics, conductive films and displays……………………………………………………………………………………….. 292
  • Figure 100: Global market for wearable electronics, 2015-2030, by application, billions $………………………………… 292
  • Figure 101: Global transparent conductive electrodes market forecast by materials type, 2012-2030, millions $…… 293
  • Figure 102: Schematic of the wet roll-to-roll graphene transfer from copper foils to polymeric substrates…………….. 294
  • Figure 103: The transmittance of glass/ITO, glass/ITO/four organic layers, and glass/ITO/four organic layers/4-layer graphene………………………………………………………………………………………………………………………………… 295
  • Figure 104: Nanotube inks………………………………………………………………………………………………………………… 301
  • Figure 105: BGT Materials graphene ink product……………………………………………………………………………………. 303
  • Figure 106: Flexible RFID tag…………………………………………………………………………………………………………….. 304
  • Figure 107: Enfucell Printed Battery…………………………………………………………………………………………………….. 307
  • Figure 108: Graphene printed antenna…………………………………………………………………………………………………. 307
  • Figure 109: Conductive inks in the flexible and stretchable electronics market 2017-2030 revenue forecast (million $), by ink types…………………………………………………………………………………………………………………………………. 309
  • Figure 110: Graphene IC in wafer tester………………………………………………………………………………………………. 313
  • Figure 111: A monolayer WS2-based flexible transistor array……………………………………………………………………. 314
  • Figure 112: Emerging logic devices…………………………………………………………………………………………………….. 315
  • Figure 113: Thin film transistor incorporating CNTs…………………………………………………………………………………. 315
  • Figure 114: Schematic cross-section of a graphene based transistor (GBT, left) and a graphene field-effect transistor (GFET, right)……………………………………………………………………………………………………………………………. 318
  • Figure 115: Potential addressable market for graphene, non-graphene 2D materials and carbon nanotubes in transistors and integrated circuits………………………………………………………………………………………………………………… 322
  • Figure 116: Carbon nanotubes NRAM chip…………………………………………………………………………………………… 328
  • Figure 117: Stretchable SWCNT memory and logic devices for wearable electronics……………………………………… 328
  • Figure 118: Carbon nanotubes NRAM chip…………………………………………………………………………………………… 329
  • Figure 119: Schematic of NRAM cell…………………………………………………………………………………………………… 333
  • Figure 120: Hybrid graphene phototransistors……………………………………………………………………………………….. 338
  • Figure 121: Wearable health monitor incorporating graphene photodetectors……………………………………………….. 339
  • Figure 122: Flexible PEN coated with graphene and a QD thin film (20nm) is highly visibly transparent and photosensitive………………………………………………………………………………………………………………………….. 339
  • Figure 123: The SkelStart Engine Start Module 2.0 based on the graphene-based SkelCap ultracapacitors………… 343
  • Figure 124: Energy densities and specific energy of rechargeable batteries…………………………………………………. 345
  • Figure 125: Nano Lithium X Battery…………………………………………………………………………………………………….. 347
  • Figure 126: H600 concept car……………………………………………………………………………………………………………. 350
  • Figure 127: Anion concept car……………………………………………………………………………………………………………. 350
  • Figure 128: Skeleton Technologies ultracapacitor…………………………………………………………………………………… 356
  • Figure 129: Zapgo supercapacitor phone charger…………………………………………………………………………………… 358
  • Figure 130: Stretchable graphene supercapacitor…………………………………………………………………………………… 359
  • Figure 131: Suntech/TCNT nanotube frame module……………………………………………………………………………….. 365
  • Figure 132: Solar cell with nanowires and graphene electrode…………………………………………………………………… 367
  • Figure 133: Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper……………………………………………………………………………….. 368
  • Figure 134: LG OLED flexible lighting panel………………………………………………………………………………………….. 383
  • Figure 135: Flexible OLED incorporated into automotive headlight……………………………………………………………… 383
  • Figure 136: Degradation of organic dye molecules by graphene hybrid composite photocatalysts……………………… 391
  • Figure 137: Graphene anti-smog mask………………………………………………………………………………………………… 392
  • Figure 138: Graphene Frontiers’ Six™ chemical sensors consists of a field effect transistor (FET) with a graphene channel. Receptor molecules, such as DNA, are attached directly to the graphene channel………………………. 405
  • Figure 139: Graphene-Oxide based chip prototypes for biopsy-free early cancer diagnosis……………………………… 406
  • Figure 140: Connected human body……………………………………………………………………………………………………. 407
  • Figure 141: Flexible, lightweight temperature sensor……………………………………………………………………………….. 407
  • Figure 142: Graphene-based E-skin patch……………………………………………………………………………………………. 408
  • Figure 143: Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs…………. 410
  • Figure 144: Graphene medical patch…………………………………………………………………………………………………… 411
  • Figure 145: TempTraQ wearable wireless thermometer…………………………………………………………………………… 412
  • Figure 146: Mimo baby monitor………………………………………………………………………………………………………….. 412
  • Figure 147: Nanowire skin hydration patch……………………………………………………………………………………………. 413
  • Figure 148: Wearable sweat sensor…………………………………………………………………………………………………….. 413
  • Figure 149: GraphWear wearable sweat sensor…………………………………………………………………………………….. 414
  • Figure 150: Global medical and healthcare smart textiles and wearables market, 2015-2030, billions $………………. 417
  • Figure 151: Global medical and healthcare smart textiles and wearables market, 2015-2030, billions $………………. 418
  • Figure 152: Schematic of boron doped graphene for application in gas sensors……………………………………………. 431
  • Figure 153: Directa Plus Grafysorber…………………………………………………………………………………………………… 433
  • Figure 154: Nanometer-scale pores in single-layer freestanding graphene membrane can effectively filter NaCl salt from water……………………………………………………………………………………………………………………………………… 434
  • Figure 155: GFET sensors………………………………………………………………………………………………………………… 446
  • Figure 156: First generation point of care diagnostics……………………………………………………………………………… 447
  • Figure 157: Graphene Field Effect Transistor Schematic………………………………………………………………………….. 448
  • Figure 158: Conductive yarns…………………………………………………………………………………………………………….. 462
  • Figure 159: Global smart clothing, interactive fabrics and apparel market 2013-2030 revenue forecast (million $)…. 463
  • Figure 160 Global smart clothing, interactive fabrics and apparel sales by market segment, 2016…………………….. 464