The Global Market for Advanced Anti-Viral Coatings

0

Published November 3 2020, 250 pages, 46 tables, 56 figures

The increased demand for anti-viral coatings is driven by national efforts on COVID-19 response and the cost-benefit to the medical and healthcare industry improving considerably. Major investment by large companies and governments will create significant market opportunities. As well as a huge increase in industry demand, there has been an surge in academic application focused research. 

Advanced materials that that display anti-viral action and analysed in this report include:

  • Adaptive biomaterials.
  • Antibacterial peptides (AMPs).
  • Antibacterials liquid metals. 
  • Nanosilver (NanoAg).
  • NanoGold (NanoAu).
  • Nanoparticle titanium dioxide (Nano-TiO2).
  • Nano Copper(II) chloride (NanoCuCl2).
  • Nano Cerium Oxide (NanoCeO2)
  • NanoSilica (Nano-SiO2).
  • Graphene oxide.
  • Nano Zinc Oxide (NanoZnO).
  • Carbon nanotubes.
  • Fullerenes. 
  • Chitosan nanoparticles.
  • Hydrogels.
  • Nanocellulose (cellulose nanofibers and cellulose nanocrystals).

 

Markets impacted by Anti-Viral Coatings and analysed in this report include:

  • Household and indoor surfaces.
  • Surfaces for indoor poullutants and improving air quality (Photocatalytic oxidizers, filters and HVAC coatings). 
  • Medical and healthcare settings (medical surfaces, wound dressings, medical equipment and instruments, fabric supplies scrubs, linens, masks, implants).
  • Antibacterial clothing (medical textiles, sportswear, underwear, socks, bedding materials etc.).
  • Antibacterial and anti-viral coatings and surfaces in food processing equipment, conveyor belts and preparation surfaces.
  • Food packaging. 
  • Water and air filtration coatings and surfaces. 

 

Also included in this report:

  • Profiles of over 150 companies in anti-viral and anti-bacterial coatings.
  • Industry focused research in academia. 
  • Market revenues, by sector. 

1              EXECUTIVE SUMMARY   20

  • 1.1          Advanced and smart coatings     20
    • 1.1.1      Advantages        20
    • 1.1.2      Properties           21
    • 1.1.3      Applications       21
  • 1.2          Advanced anti-viral coatings and surfaces             21
    • 1.2.1      Mode of action  22
    • 1.2.2      Self-cleaning anti-bacterial and anti-viral coatings and surfaces   23
      • 1.2.2.1   Bionic self-cleaning coatings        23
      • 1.2.2.2   Photocatalytic self-cleaning coatings       25
      • 1.2.2.3   Anti-fouling and easy-to-clean nanocoatings       28
    • 1.2.3      Anti-viral coatings and surfaces 29
    • 1.2.4      Nanomaterials  31
    • 1.2.5      Cleanliness of indoor and public areas driving demand for antimicrobials 32
    • 1.2.6      Application in healthcare environments 33
      • 1.2.6.1   COVID-19 and hospital-acquired infections (HAIs)              33
      • 1.2.6.2   Reusable Personal Protective Equipment (PPE)   33
      • 1.2.6.3   Facemask coatings           33
      • 1.2.6.4   Wipe on coatings             34
      • 1.2.6.5   Long-term mitigation of surface contamination with nanocoatings             34
  • 1.3          Global market size and opportunity to 2030          35
    • 1.3.1      End user markets for Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces.           35
    • 1.3.2      Global forecast for Advanced Anti-bacterial and Anti-Viral Coatings to 2030            36
  • 1.4          Market and technical challenges               39
  • 1.5          Market drivers and trends            40
  • 1.6          Self-cleaning coatings     44
    • 1.6.1      Hydrophilic coatings       45
    • 1.6.2      Hydrophobic coatings     45
      • 1.6.2.1   Properties           45
      • 1.6.2.2   Application in facemasks              46
  • 1.7          Superhydrophobic coatings and surfaces               46
    • 1.7.1      Properties           47
      • 1.7.1.1   Antibacterial use              47
  • 1.8          Oleophobic and omniphobic coatings and surfaces           48
    • 1.8.1      SLIPS     49
    • 1.8.2      Covalent bonding             50
    • 1.8.3      Step-growth graft polymerization             50
  • 1.9          Self-healing anti-bacterial and anti-viral coatings                51
    • 1.9.1      Extrinsic self-healing       52
      • 1.9.1.1   Capsule-based  52
      • 1.9.1.2   Vascular self-healing      53
    • 1.9.2      Intrinsic self-healing       53
    • 1.9.3      Healing volume 54

 

2              ADVANCED MATERIALS USED IN ANTI-BACTERIAL AND ANTI-VIRAL COATINGS AND SURFACES      58

  • 2.1          Metallic-based coatings 58
  • 2.2          Polymer-based coatings 59
  • 2.3          ANTIMICROBIAL PEPTIDES (AMP) COATINGS       61
    • 2.3.1      Properties           61
    • 2.3.2      Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces          61
  • 2.4          ANTIBACTERIAL LIQUID METALS 64
    • 2.4.1      Properties           64
  • 2.5          GRAPHENE         66
    • 2.5.1      Properties           66
    • 2.5.2      Graphene oxide 68
      • 2.5.2.1   Anti-bacterial activity      68
      • 2.5.2.2   Anti-viral activity              68
    • 2.5.3      Reduced graphene oxide (rGO) 68
    • 2.5.4      Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces          70
  • 2.6          HYDROGELS        71
    • 2.6.1      Properties           71
    • 2.6.2      Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces          71
  • 2.7          SILICON DIOXIDE/NanoSilica (Nano-SiO2)              73
    • 2.7.1      Properties           73
    • 2.7.2      Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces          74
  • 2.8          SILVER AND NANOSILVER (NanoAg)         75
    • 2.8.1      Properties           75
    • 2.8.2      Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces          75
      • 2.8.2.1   Silver nanocoatings         75
      • 2.8.2.2   Antimicrobial silver paints            76
    • 2.8.3      Markets and applications              76
      • 2.8.3.1   Textiles 77
      • 2.8.3.2   Wound dressings             77
      • 2.8.3.3   Consumer products        77
      • 2.8.3.4   Air filtration        77
    • 2.8.4      Commercial activity         77
  • 2.9          PHOTOCATALYTIC COATINGS AND NANOPARTICLE TITANIUM DIOXIDE (Nano-TiO2)      79
    • 2.9.1      Development of photocatalytic coatings 80
      • 2.9.1.1   Market drivers and trends            81
    • 2.9.2      Benefits of photocatalytic self-cleaning coatings 82
    • 2.9.3      Applications in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces        83
      • 2.9.3.1   Self-Cleaning coatings-glass         84
      • 2.9.3.2   Self-cleaning coatings-building and construction surfaces               84
      • 2.9.3.3   Photocatalytic oxidation (PCO) indoor air filters  86
      • 2.9.3.4   Water treatment             87
      • 2.9.3.5   Medical facilities               87
      • 2.9.3.6   Antimicrobial coating indoor light activation         88
  • 2.10        NANO ZINC OXIDE (NANOZNO)  89
    • 2.10.1    Properties           89
    • 2.10.2    Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces          90
  • 2.11        NANOCELLULOSE (CELLULOSE NANOFIBERS AND CELLULOSE NANOCRYSTALS)     93
    • 2.11.1    Properties           93
    • 2.11.2    Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces          94
      • 2.11.2.1                Cellulose nanofibers       94
      • 2.11.2.2                Cellulose nanocrystals (CNC)       94
  • 2.12        CARBON NANOTUBES    95
    • 2.12.1    Properties           95
    • 2.12.2    Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces          95
  • 2.13        FULLERENES       96
    • 2.13.1    Properties           96
    • 2.13.2    Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces          96
  • 2.14        CHITOSAN NANOPARTICLES        98
    • 2.14.1    Properties           98
    • 2.14.2    Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces          99
      • 2.14.2.1                Wound dressings             99
      • 2.14.2.2                Packaging coatings and films       100
      • 2.14.2.3                Food storage      100
  • 2.15        NANO COPPER (II) CHLORIDE (NanoCuCl2)            101
    • 2.15.1    Properties           101
    • 2.15.2    Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces          101
  • 2.16        OTHER NANOPARTICLES               102
    • 2.16.1    NanoGold (NanoAu)       102
    • 2.16.2    Nano Cerium Oxide (NanoCeO2)               104
  • 2.17        ADAPTIVE BIOMATERIALS            104
    • 2.17.1    Properties           104
    • 2.17.2    Application in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces          104

 

3              MARKETS FOR ADVANCED ANTI-BACTERIAL AND ANTI-VIRAL COATINGS AND SURFACES  105

  • 3.1          HOUSEHOLD AND INDOOR SURFACES     105
    • 3.1.1      Market drivers and trends            105
    • 3.1.2      Applications       106
      • 3.1.2.1   Self-cleaning and easy-to-clean 106
      • 3.1.2.2   Indoor pollutants and air quality                106
    • 3.1.3      Global market size           108
  • 3.2          MEDICAL & HEALTHCARE SETTINGS         110
    • 3.2.1      Market drivers and trends            110
    • 3.2.2      Applications       111
      • 3.2.2.1   Medical surfaces              112
      • 3.2.2.2   Wound dressings             113
      • 3.2.2.3   Medical equipment and instruments       113
      • 3.2.2.4   Fabric supplies scrubs, linens, masks (medical textiles)    114
      • 3.2.2.5   Medical implants              114
    • 3.2.3      Global market size           116
  • 3.3          CLOTHING AND TEXTILES              119
    • 3.3.1      Market drivers and trends            119
    • 3.3.2      Applications       120
      • 3.3.2.1   Antimicrobial clothing    120
    • 3.3.3      Global market size           125
  • 3.4          FOOD & BEVERAGE PRODUCTION AND PACKAGING         128
    • 3.4.1      Market drivers and trends            128
    • 3.4.2      Applications       128
      • 3.4.2.1   Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces in food processing equipment, conveyor belts and preparation surfaces              129
      • 3.4.2.2   Antimicrobial coatings and films in food packaging            130
    • 3.4.3      Global market size           131
  • 3.5          OTHER MARKETS              133
    • 3.5.1      Automotive and transportation interiors                133
    • 3.5.2      Water and air filtration  135

 

4              ADVANCED ANTI-BACTERIAL AND ANTI-VIRAL COATINGS AND SURFACES COMPANY PROFILES      138 (153 COMPANY PROFILES)

 

5              RECENT RESEARCH IN ACADEMIA             246

 

6              AIMS AND OBJECTIVES OF THE STUDY     252

 

7              RESEARCH METHODOLOGY         253

 

8              REFERENCES       254

 

TABLES

  • Table 1. Growth Modes of Bacteria and characteristics.   23
  • Table 2. Summary for bionic self-cleaning nanocoatings. 23
  • Table 3. Market summary for photocatalytic self-cleaning coatings.           25
  • Table 4: Summary of anti-fouling and easy-to-clean coatings.       28
  • Table 5. Types of nanomaterials used in Advanced Bactericidal & Viricidal Coatings and Surfaces, benefits and applications.       31
  • Table 6: End user markets for Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces.          35
  • Table 7: Total global revenues for Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces, 2019-2030, USD, by market. 36
  • Table 8: Total global revenues for Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces, 2019-2030, millions USD, conservative estimate, by coatings type.     38
  • Table 9: Market and technical challenges for Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces.            39
  • Table 10. Market drivers and trends in Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces.        40
  • Table 11: Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces. 45
  • Table 12. Applications of oleophobic & omniphobic coatings.       50
  • Table 13. Types of self-healing coatings and materials.     55
  • Table 14. Types of self-healing antimicrobial coatings.     56
  • Table 15: Polymer-based coatings for Bactericidal & Viricidal Surfaces.     59
  • Table 16. Types of antibacterial AMP coatings.    62
  • Table 17. AMP contact-killing surfaces.   62
  • Table 18: Graphene properties relevant to application in coatings.             66
  • Table 19. Bactericidal characters of graphene-based materials.   69
  • Table 20. Markets and applications for antimicrobial and antiviral nanocoatings graphene nanocoatings. 70
  • Table 21. Types of antibacterial hydrogels.           71
  • Table 22. Markets and applications for nanosilver-based Advanced Bactericidal & Viricidal Coatings and Surfaces. 76
  • Table 23. Commercial activity in Bactericidal & Viricidal nanosilver coatings.          78
  • Table 24. Self-cleaning (photocatalytic) nanocoatings-Nanomaterials used, principles, properties and applications.                79
  • Table 25. Development of photocatalytic coatings, by generation.             80
  • Table 26. Antibacterial effects of ZnO NPs in different bacterial species.  91
  • Table 27. Types of carbon-based nanoparticles as antimicrobial agent, their mechanisms of action and characteristics.                97
  • Table 28. Mechanism of chitosan antimicrobial action.    99
  • Table 29. Types of adaptive biomaterials for Bactericidal & Viricidal Coatings and Surfaces.            105
  • Table 30: Market drivers and trends for Advanced Bactericidal & Viricidal Coatings nanocoatings in household and indoor surface market.  105
  • Table 31: Market for Advanced Anti-bacterial and Anti-Viral Coatings and Surfacesin household and indoor surfaces to 2030, by revenues and types.     108
  • Table 32: Market drivers and trends for Advanced Anti-bacterial and Anti-Viral Coatings and Surfacesin medicine and healthcare.         110
  • Table 33: Nanocoatings applied in the medical industry-type of coating, nanomaterials utilized, benefits and applications.       112
  • Table 34. Types of advanced antimicrobial medical device coatings.           114
  • Table 35: Types of advanced coatings applied in medical implants.             115
  • Table 36: Nanomaterials utilized in medical implants.      115
  • Table 37: Market for Advanced Anti-bacterial and Anti-Viral Coatings and Surfacesin medical and healthcare settings to 2030, by revenues and types. 117
  • Table 38: Market drivers and trends for Advanced Anti-bacterial and Anti-Viral Coatings and Surfacesin the textiles and apparel industry.              119
  • Table 39: Applications in textiles, by advanced materials type and benefits thereof.           121
  • Table 40: Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications.       122
  • Table 41: Market for Advanced Anti-bacterial and Anti-Viral Coatings and Surfacesin clothing and textiles to 2030, by revenues and types.       126
  • Table 42: Market drivers and trends for Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces in the packaging market. 128
  • Table 43: Market for Advanced Bactericidal & Viricidal Coatings and Surfaces in food and beverage production & packaging to 2030, by revenues and types.          131
  • Table 44: Advanced coatings applied in the automotive industry.               133
  • Table 45: Applications in air and water filters, by advanced materials type and benefits thereof.  136
  • Table 46. Advanced Bactericidal & Viricidal Coatings and Surfaces development in academia.        246

 

FIGURES

  • Figure 1: Self-cleaning superhydrophobic coating schematic.        25
  • Figure 2: Principle of superhydrophilicity.              27
  • Figure 3: Schematic of photocatalytic air purifying pavement.      27
  • Figure 4. Schematic of anti-viral coating using nano-actives for inactivation of any adhered virus on the surfaces. 30
  • Figure 5. Face masks coated with antibacterial & antiviral nanocoating.   34
  • Figure 6: Total global revenues for Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces, 2019-2030, USD, by market. 37
  • Figure 7: Total global revenues for Advanced Anti-bacterial and Anti-Viral Coatings and Surfaces, 2019-2030, millions USD, conservative estimate, by coatings type.     39
  • Figure 8: (a) Water drops on a lotus leaf.               44
  • Figure 9: A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°.              46
  • Figure 10: Contact angle on superhydrophobic coated surface.   47
  • Figure 11: Self-cleaning nanocellulose dishware. 48
  • Figure 12: SLIPS repellent coatings.          50
  • Figure 13: Omniphobic coatings.                51
  • Figure 14. Schematic of self-healing polymers. Capsule based (a), vascular (b), and intrinsic (c) schemes for self-healing materials.  Red and blue colours indicate chemical species which react (purple) to heal damage.  52
  • Figure 15: Stages of self-healing mechanism.       52
  • Figure 16. Self-healing mechanism in vascular self-healing systems.          53
  • Figure 17: Comparison of self-healing systems.   54
  • Figure 18. Antibacterial mechanisms of metal and metallic oxide nanoparticles.   59
  • Figure 19. Antimicrobial peptides.            61
  • Figure 20: Graphair membrane coating. 66
  • Figure 21: Antimicrobial activity of Graphene oxide (GO).              68
  • Figure 22.  Applications of antibacterial hydrogels             71
  • Figure 23: Hydrophobic easy-to-clean coating.    74
  • Figure 24 Anti-bacterial mechanism of silver nanoparticle coating.             75
  • Figure 25. Titanium dioxide-coated glass (left) and ordinary glass (right). 81
  • Figure 26. Schematic of photocatalytic indoor air purification filter.           82
  • Figure 27. Mechanism of photocatalysis on a surface treated with TiO2 nanoparticles.      83
  • Figure 28.  Schematic showing the self-cleaning phenomena on superhydrophilic surface.              84
  • Figure 29: Schematic of photocatalytic air purifying pavement.   85
  • Figure 30:  Self-Cleaning mechanism utilizing photooxidation.      86
  • Figure 31: Photocatalytic oxidation (PCO) air filter.            87
  • Figure 32: Schematic of photocatalytic water purification.              87
  • Figure 33. Schematic of antibacterial activity of ZnO NPs.               91
  • Figure 34: Types of nanocellulose.            93
  • Figure 35. Mechanism of antimicrobial activity of carbon nanotubes.       95
  • Figure 36: Fullerene schematic. 96
  • Figure 37. TEM images of Burkholderia seminalis treated with (a, c) buffer (control) and (b, d) 2.0 mg/mL chitosan; (A: additional layer; B: membrane damage).               98
  • Figure 38. Market for Advanced Anti-bacterial and Anti-Viral Coatings and Surfacesin household and indoor surfaces to 2030, by revenues and types.     109
  • Figure 39. Nano-coated self-cleaning touchscreen.           112
  • Figure 40: Anti-bacertial sol-gel nanoparticle silver coating.           113
  • Figure 41. Market for Advanced Anti-bacterial and Anti-Viral Coatings and Surfacesin medical and healthcare settings to 2030, by revenues and types. 118
  • Figure 42: Omniphobic-coated fabric.     120
  • Figure 43. Market for Advanced Anti-bacterial and Anti-Viral Coatings and Surfacesin clothing and textiles to 2030, by revenues and types.       127
  • Figure 44. Steps during food processing and where contamination might occur from various sources.        130
  • Figure 45: Oso fresh food packaging incorporating antimicrobial silver.    130
  • Figure 46. Market for Advanced Bactericidal & Viricidal Coatings and Surfaces in food and beverage production & packaging to 2030, by revenues and types.          132
  • Figure 47. Lab tests on DSP coatings.       162
  • Figure 48. GermStopSQ mechanism of action.     163
  • Figure 49. GrapheneCA anti-bacterial and anti-viral coating.          170
  • Figure 50. NOx reduction with TioCem®. 176
  • Figure 51. Microlyte® Matrix bandage for surgical wounds.           178
  • Figure 52. Self-cleaning nanocoating applied to face masks.          181
  • Figure 53. NanoSeptic surfaces. 206
  • Figure 54. NascNanoTechnology personnel shown applying MEDICOAT to airport luggage carts.   211
  • Figure 55. V-CAT® photocatalyst mechanism.      240
  • Figure 56. Applications of Titanystar.       242

 

 

 

The Global Market for Advanced Anti-Viral Coatings
The Global Market for Advanced Anti-Viral Coatings
PDF download.

The Global Market for Advanced Anti-Viral Coatings
The Global Market for Advanced Anti-Viral Coatings
Print edition (including tracked delivery).

The Global Market for Advanced Anti-Viral Coatings
The Global Market for Advanced Anti-Viral Coatings
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Alipay, Paypal. 

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com or select this option after adding to cart.