Carbon Fibers, Polymer Nanofibers, Carbon Nanofibers, Advanced Natural Fibers and Cellulose Nanofibers
Published January 2022 | 782 pages, 273 figures, 198 tables | Table of contents
Advanced fiber materials are increasingly used in:
- composites (including automobile, aerospace industry, and sporting goods)
- environmental (pollution control and purification for water, air and earth)
- energy storage and generation (solar cells, lithium batteries, supercapacitor, etc.)
- biomedical applications (regenerative medicine, drug delivery, tumor therapy, etc)
Their use will increase greatly in these and other markets in the next 10-15 years. Carbon fibers, polymer nanofibers, cellulose nanofibers and carbon fibers will play a significant role in technology advancement across these markers. The use of natural fibers for advanced technology applications will also play a major role in the development of renewable solutions in polymer composites, construction and building materials, packaging, and replacement for plastics in consumer products. Natural fibers possess advantages over synthetic fibres including widespread availability, low cost, low density, acceptable modulus-weight ratio, high acoustic damping, low manufacturing energy consumption, low carbon footprint and biodegradability.
The Global Market for Advanced Fibers 2022-2032 includes:
- Global production capacities, by producers, current and planned.
- Production volumes by region.
- Commercialized products.
- Market and technical developments in advanced fibers 2020-2022.
- Advanced Fiber applications by industry.
- Figures for current carbon fiber and CFRP demand, production capacities and projected future demand to 2031, by metric tonnes, end user markets and regions.
- Assessment of developments in plant-based carbon fibers, low cost production, alternative precursors and processes, and 3D printing.
- Demand in tons per market, current and forecast to 2032.
- Market drivers, trends and challenges, by end user markets.
- Competitive landscape of advanced fibers by market, volumes, key trends and growth. Potential for advanced fibers to gain market share by market volume across all end user markets. Markets covered include Polymer composites, Automotive, Building & Construction, Packaging, Textiles, Biomedicine, Pharma, Healthcare, Sanitary and Hygiene Products, Paints & Coatings, Aerogels, Oil & Gas, Filtration, Cosmetics, Food Additives, Electronics, Batteries, Aerospace and 3D printing etc.
- In-depth profiles of 95 carbon fiber companies including CF manufacturers, CFRP manufacturers and CF recyclers. Companies profiled include DowAksa, Formosa Plastics Corporation, Hexcel Corporation, Hyosung Advanced Materials, Jiangsu Hengshen Co., Ltd., Kureha Corporation, Mitsubishi Chemical Corporation, SGL Carbon SE, Solvay SA, Teijin Limited, Toray Industries, Inc., UMATEX, bCircular, Carbon Conversions, Gen 2 Carbon, Mallinda, Carbitex, LeMond Carbon, Continuous Composites, Boston Materials and 9T Labs.
- In-depth profiles of 65 polymer nanofiber companies, include products commercial activities. Nanofiber companies profiled include Bioinicia SL, Donaldson, 4C Air Inc, Gelatex Technologies, Lime Co., Ltd., Matregenix, M-TEchX, Vivolta and many more.
- In-depth profiles of 10 carbon nanofiber companies, include products commercial activities. Nanofiber companies profiled include Bergen Carbon Solutions, Carbonova, Grupo Antolin etc.
- In-depth profiles of 93 cellulose nanofiber companies, including products, current capacities and plans for new capacities, production processes, prices per kg and commercial activities. Companies profiled in the report include Asahi Kasei, Chuetsu Pulp & Paper Daicel, Daiichi Kogyo, Daio Paper, GranBio Technologies, Nippon Paper, Oji Holdings, Sugino Machine, Seiko PMC and more.
- In-depth profiles of 143 natural fiber companies. Companies profiled include Ananas Anam, BASF, Bast Fiber Technologies Inc., Kelheim Fibres GmbH, BComp, Circular Systems, Evrnu, Natural Fiber Welding, Icytos and many more.
1 CARBON FIBER AND CARBON FIBER REINFORCED POLYMERS (CFRP) MARKET 39
- 1.1 Key players 40
- 1.2 Market drivers and trends 40
- 1.3 Market challenges 41
- 1.4 Future trends 42
- 1.5 Technology analysis 42
- 1.5.1 Properties of carbon fibers 42
- 1.5.2 Types by modulus 44
- 1.5.3 Types by the secondary processing 45
- 1.5.4 Precursor material types 46
- 1.5.4.1 PAN: Polyacrylonitrile 47
- 1.5.4.2 Pitch-based carbon fibers 49
- 1.5.4.3 Viscose (Rayon)-based carbon fibers 50
- 1.5.5 Carbon fiber reinforced polymer (CFRP) 51
- 1.5.5.1 Applications 51
- 1.5.6 Bio-based and alternative precursors 53
- 1.5.6.1 Lignin 53
- 1.5.6.2 Polyethylene 56
- 1.5.6.3 Vapor grown carbon fiber (VGCF) 57
- 1.5.6.4 Textile PAN 57
- 1.5.7 Recycled carbon fibers (r-CF) 58
- 1.5.7.1 Recycling processes 58
- 1.5.7.2 Companies 61
- 1.5.8 Carbon Fiber 3D Printing 62
- 1.5.9 Plasma oxidation 65
- 1.6 Carbon fiber production capacities 66
- 1.6.1 Annual capacity, by producer 66
- 1.6.2 Market share, by capacity 67
- 1.7 Markets for carbon fibers 68
- 1.7.1 Carbon fiber industry developments 2020-2022 68
- 1.7.2 Aerospace 72
- 1.7.2.1 Market drivers, applications, desirable properties, pricing and key players 73
- 1.7.2.2 Global demand 74
- 1.7.3 Wind energy 77
- 1.7.3.1 Market drivers, applications, desirable properties, pricing and key players 77
- 1.7.3.2 Offshore 78
- 1.7.3.3 Global demand 78
- 1.7.4 Sports & leisure 81
- 1.7.4.1 Market drivers, applications, desirable properties, pricing and key players 81
- 1.7.4.2 Global demand 82
- 1.7.5 Automotive 84
- 1.7.5.1 Market drivers, applications, desirable properties, pricing and key players 85
- 1.7.5.2 Global demand 86
- 1.7.6 Pressure vessels 88
- 1.7.6.1 Market drivers, applications, desirable properties, pricing and key players 90
- 1.7.6.2 Global demand 91
- 1.7.7 Oil and gas 94
- 1.7.7.1 Market drivers, applications, desirable properties, pricing and key players 94
- 1.7.8 Other markets 97
- 1.7.8.1 Construction & infrastructure 97
- 1.7.8.2 Medical 98
- 1.8 Global demand 99
- 1.8.1 Demand by market 2018-2032 100
- 1.8.1.1 Carbon fiber 100
- 1.8.1.2 Carbon fiber reinforced polymers (CFRP) 101
- 1.8.2 Demand by region 2018-2032 104
- 1.8.1 Demand by market 2018-2032 100
- 1.9 Company profiles 106
- 1.9.1 Carbon fiber producers 106
- 1.9.2 Carbon Fiber composite producers 124
- 1.9.3 Carbon fiber recyclers 168
2 NATURAL FIBERS 181
- 2.1 What are natural fibers? 181
- 2.2 Benefits of natural fibers over synthetic 184
- 2.3 Markets and applications for natural fibers 185
- 2.4 Market drivers for natural fibers 187
- 2.5 Challenges 188
- 2.6 Covid-19 impact 189
- 2.7 Natural fiber types 190
- 2.7.1 Manufacturing method, matrix materials and applications of natural fibers 191
- 2.7.2 Advantages of natural fibers 192
- 2.7.3 Plants (cellulose, lignocellulose) 193
- 2.7.3.1 Seed fibers 193
- 2.7.3.2 Bast fibers 197
- 2.7.3.3 Leaf fibers 206
- 2.7.3.4 Fruit fibers 209
- 2.7.3.5 Stalk fibers from agricultural residues 214
- 2.7.3.6 Cane, grasses and reed 215
- 2.7.3.7 Modified natural polymers 218
- 2.7.4 Animal (fibrous protein) 223
- 2.7.4.1 Wool 223
- 2.7.4.2 Silk fiber 225
- 2.7.4.3 Leather 226
- 2.7.4.4 Down 228
- 2.8 Markets for natural fibers 229
- 2.8.1 Composites 229
- 2.8.1.1 Applications 229
- 2.8.1.2 Natural fiber injection moulding compounds 231
- 2.8.1.3 Non-woven natural fiber mat composites 232
- 2.8.1.4 Aligned natural fiber-reinforced composites 233
- 2.8.1.5 Natural fiber biobased polymer compounds 234
- 2.8.1.6 Natural fiber biobased polymer non-woven mats 235
- 2.8.1.7 Natural fiber thermoset bioresin composites 235
- 2.8.2 Aerospace 236
- 2.8.2.1 Market overview 236
- 2.8.3 Automotive 237
- 2.8.3.1 Market overview 237
- 2.8.3.2 Applications of natural fibers 241
- 2.8.4 Building/construction 242
- 2.8.4.1 Market overview 242
- 2.8.4.2 Applications of natural fibers 243
- 2.8.5 Sports and leisure 244
- 2.8.5.1 Market overview 244
- 2.8.6 Textiles 244
- 2.8.6.1 Market overview 244
- 2.8.6.2 Consumer apparel 245
- 2.8.6.3 Geotextiles 246
- 2.8.7 Packaging 247
- 2.8.7.1 Market overview 247
- 2.8.1 Composites 229
- 2.9 Global natural fibers market 249
- 2.9.1 Overall global fibers market 249
- 2.9.2 Plant-based fiber production 251
- 2.9.3 Animal-based natural fiber production 253
- 2.10 Natural fiber producer and producer developer profiles 254
3 NANOFIBERS 351
- 3.1 Market landscape 351
- 3.2 Polymer, alumina and carbon nanofibers 352
- 3.3 Applications 352
- 3.4 Commercial electrospun nanofiber products 353
- 3.5 Market drivers 356
- 3.6 Market and technical challenges 358
- 3.7 Global nanofibers market revenues 359
- 3.7.1 Global revenues for nanofibers, by market 2018-2032 359
- 3.7.2 Global revenues for nanofibers, by regions 2018-2032 360
- 3.8 Technology analysis 361
- 3.8.1 Types of nanofibers 361
- 3.8.2 Classification of nanofibers 362
- 3.8.3 Synthetic polymer nanofibers 364
- 3.8.4 Natural polymers 366
- 3.8.4.1 Collagen 366
- 3.8.4.2 Cellulose 366
- 3.8.4.3 Silk fibroins 366
- 3.8.4.4 Keratin 366
- 3.8.4.5 Gelatin 367
- 3.8.4.6 Polysaccharides 367
- 3.8.5 Carbon nanofibers 367
- 3.8.6 Other types of nanofibers 367
- 3.8.6.1 Alumina nanofibers 367
- 3.8.6.2 Silicon nanofibers 368
- 3.9 Upscaling nanofibers 368
- 3.10 Synthesis of nanofibers 369
- 3.10.1 Electrospinning 370
- 3.10.1.1 Advantages 372
- 3.10.1.2 Drawbacks 372
- 3.10.1.3 Multi-nozzle/needle electrospinning 373
- 3.10.1.4 Needle/nozzle-less electrospinning 373
- 3.10.1.5 Co-electrospinning or co-axial electrospinning 374
- 3.10.1.6 Ultrasound-enhanced electrospinning 374
- 3.10.1.7 Electrospinning instrument manufacturers 375
- 3.10.2 Electro-hydrodynamic direct writing 378
- 3.10.3 Electrospray Deposition 379
- 3.10.4 Centrifugal jet spinning 380
- 3.10.5 Centrifugal multi-spinning 381
- 3.10.6 Plasma-induced synthesis 381
- 3.10.7 CO2 laser supersonic drawing 381
- 3.10.8 Solution blow spinning 382
- 3.10.1 Electrospinning 370
- 3.11 Nanofibers Technology Readiness Levels (TRL) 383
- 3.12 Markets for polymer nanofibers 386
- 3.12.1 Markets and application summary 386
- 3.12.2 Filter media 387
- 3.12.2.1 Market drivers 387
- 3.12.2.2 Applications 388
- 3.12.2.3 Global market revenues 393
- 3.12.2.4 Market challenges 395
- 3.12.3 Textiles 395
- 3.12.3.1 Market drivers 395
- 3.12.3.2 Applications 396
- 3.12.3.3 Global market revenues 399
- 3.12.3.4 Market challenges 400
- 3.12.4 Medical and healthcare 400
- 3.12.4.1 Market drivers 400
- 3.12.4.2 Applications 401
- 3.12.4.3 Products 402
- 3.12.4.4 Global market revenues 404
- 3.12.5 Other markets 405
- 3.13 Polymer nanofibers 408
4 CARBON NANOFIBERS 462
- 4.1 Properties 462
- 4.2 Synthesis 462
- 4.2.1 Chemical vapor deposition 462
- 4.2.2 Electrospinning 463
- 4.2.3 Template-based 463
- 4.2.4 From biomass 463
- 4.3 Markets 464
- 4.3.1 Batteries 464
- 4.3.2 Supercapacitors 464
- 4.3.3 Fuel cells 464
- 4.3.4 CO2 capture 465
- 4.4 Companies 465
5 CELLULLOSE NANOFIBERS 474
- 5.1 Cellulose 474
- 5.2 Nanocellulose 475
- 5.3 Properties of nanocellulose 476
- 5.4 Advantages of nanocellulose 477
- 5.5 Manufacture of nanocellulose 477
- 5.6 Production methods 478
- 5.7 Types of nanocellulose 479
- 5.7.1 Microfibrillated cellulose (MFC) 482
- 5.7.2 Cellulose nanofibers (CNF) 483
- 5.7.2.1 Applications 483
- 5.7.3 Cellulose nanocrystals (CNC) 484
- 5.7.3.1 Synthesis 485
- 5.7.3.2 Properties 487
- 5.7.3.3 Applications 489
- 5.7.4 Bacterial Nanocellulose (BNC) 490
- 5.7.4.1 Applications 490
- 5.7.5 Synthesis 491
- 5.8 Cellulose nanofibers pricing 494
- 5.9 Markets for cellulose nanofibers 497
- 5.9.1 Composites 497
- 5.9.1.1 Market overview 497
- 5.9.1.2 Applications 503
- 5.9.1.3 Global market in tons to 2032 506
- 5.9.1.4 Product developers 507
- 5.9.2 Automotive 510
- 5.9.2.1 Market overview 510
- 5.9.2.2 Applications 514
- 5.9.2.3 Global market in tons to 2032 521
- 5.9.2.4 Product developers 522
- 5.9.3 Buildings and construction 525
- 5.9.3.1 Market overview 525
- 5.9.3.2 Applications 529
- 5.9.3.3 Global market in tons to 2032 532
- 5.9.3.4 Product developers 533
- 5.9.4 Paper and board packaging 535
- 5.9.4.1 Market overview 535
- 5.9.4.2 Applications 541
- 5.9.4.3 Global market in tons to 2032 543
- 5.9.4.4 Product developers 544
- 5.9.5 Textiles and apparel 545
- 5.9.5.1 Market overview 546
- 5.9.5.2 Applications 550
- 5.9.5.3 Global market in tons to 2032 552
- 5.9.5.4 Product developer profiles 553
- 5.9.6 Biomedicine and healthcare 554
- 5.9.6.1 Market overview 554
- 5.9.6.2 Applications 561
- 5.9.6.3 Global market in tons to 2032 563
- 5.9.6.4 Product developers 564
- 5.9.7 Hygiene and sanitary products 567
- 5.9.7.1 Market overview 567
- 5.9.7.2 Applications 567
- 5.9.7.3 Global market in tons to 2032 567
- 5.9.7.4 Product developers 569
- 5.9.8 Paints and coatings 570
- 5.9.8.1 Market overview 570
- 5.9.8.2 Applications 574
- 5.9.8.3 Global market in tons to 2032 575
- 5.9.8.4 Product developers 576
- 5.9.9 Aerogels 579
- 5.9.9.1 Market overview 579
- 5.9.9.2 Global market in tons to 2032 582
- 5.9.9.3 Product developers 583
- 5.9.10 Oil and gas 584
- 5.9.10.1 Market overview 584
- 5.9.10.2 Applications 587
- 5.9.10.3 Global market in tons to 2032 588
- 5.9.10.4 Product developers 589
- 5.9.11 Filtration 591
- 5.9.11.1 Market overview 591
- 5.9.11.2 Applications 596
- 5.9.11.3 Global market in tons to 2032 598
- 5.9.11.4 Product developers 599
- 5.9.12 Rheology modifiers 601
- 5.9.12.1 Market overview 601
- 5.9.12.2 Applications 604
- 5.9.12.3 Global market in tons to 2032 606
- 5.9.12.4 Product developers 607
- 5.9.13 Other markets 610
- 5.9.13.1 Printed, stretchable and flexible electronics 610
- 5.9.13.2 3D printing 614
- 5.9.13.3 Aerospace 617
- 5.9.13.4 Batteries 619
- 5.9.1 Composites 497
- 5.10 Cellulose nanofiber company profiles 621
6 REFERENCES 759
List of Tables
- Table 1. Market drivers and trends in carbon fibers. 40
- Table 2. Market challenges in the CF and CFRP market. 41
- Table 3. Classification and types of the carbon fibers. 42
- Table 4. Summary of carbon fiber properties. 43
- Table 5. Modulus classifications of carbon fiber. 44
- Table 6. Comparison of main precursor fibers. 46
- Table 7. Summary of markets and applications for CFRPs. 51
- Table 8. Properties of lignins and their applications. 55
- Table 9. Fiber properties of polyolefin-based CFs. 57
- Table 10. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages. 59
- Table 11. Retention rate of tensile properties of recovered carbon fibres by different recycling processes. 61
- Table 12. Recycled carbon fiber producers, technology and capacity. 61
- Table 13. Methods for direct fiber integration. 62
- Table 14. Continuous fiber 3D printing producers. 63
- Table 15. Production capacities of carbon fiber producers, in metric tonnes. 66
- Table 16. Carbon fiber industry developments 2020-2022. 68
- Table 17. Comparison of CFRP to competing materials. 72
- Table 18. The market for carbon fibers in aerospace-market drivers, applications, desirable properties, pricing and key players. 73
- Table 19. Global demand for carbon fibers 2016-2032, in aerospace (metric tonnes). 74
- Table 20. Global revenues for CFRP 2016-2032, in aerospace (billions USD). 75
- Table 21. The market for carbon fibers in wind energy-market drivers, applications, desirable properties, pricing and key players. 77
- Table 22. Global demand for carbon fibers 2016-2032, in wind energy (metric tonnes). 78
- Table 23. Global revenues for CFRP 2016-2032, in wind energy (billions USD). 79
- Table 24. The market for carbon fibers in sports & leisure-market drivers, applications, desirable properties, pricing and key players. 81
- Table 25. Global demand for carbon fibers 2016-2032, in sports & leisure (metric tonnes). 82
- Table 26. Global revenues for CFRP 2016-2032, in sports & leisure (billions USD). 83
- Table 27. The market for carbon fibers in automotive-market drivers, applications, desirable properties, pricing and key players. 85
- Table 28. Global demand for carbon fibers 2016-2032, in automotive (metric tonnes). 86
- Table 29. Global revenues for CFRP 2016-2032, in automotive (billions USD). 87
- Table 30. The market for carbon fibers in pressure vessels-market drivers, desirable properties of CF, applications, pricing, key players. 90
- Table 31. Global demand for carbon fibers 2016-2032, in pressure vessels (metric tonnes). 91
- Table 32. Global revenues for CFRP 2016-2032, in pressure vessels (billions USD). 92
- Table 33. The market for carbon fibers in oil and gas-market drivers, desirable properties, applications, pricing and key players. 94
- Table 34. Global demand for carbon fibers 2016-2032, in oil and gas (metric tonnes). 95
- Table 35. Global revenues for CFRP 2016-2032, in oil and gas (billions USD). 96
- Table 36. The market for carbon fibers in construction & infrastructure. 97
- Table 37. The market for carbon fibers in medical. 98
- Table 38. Global demand for carbon fibers 2016-2032, by market (metric tonnes). 100
- Table 39. Global market revenues for Carbon fiber reinforced polymers (CFRP) 2016-2032, by market (billion USD). 102
- Table 40. Global demand for carbon fibers 2018-2032, by region (thousand metric tonnes). 104
- Table 41. Main Toray production sites and capacities. 121
- Table 42. Types of natural fibers. 181
- Table 43. Markets and applications for natural fibers. 185
- Table 44. Market drivers for natural fibers. 187
- Table 45. Application, manufacturing method, and matrix materials of natural fibers. 191
- Table 46. Typical properties of natural fibers. 192
- Table 47. Overview of cotton fibers-description, properties, drawbacks and applications. 193
- Table 48. Overview of kapok fibers-description, properties, drawbacks and applications. 195
- Table 49. Overview of luffa fibers-description, properties, drawbacks and applications. 196
- Table 50. Overview of jute fibers-description, properties, drawbacks and applications. 197
- Table 51. Overview of hemp fibers-description, properties, drawbacks and applications. 199
- Table 52. Overview of flax fibers-description, properties, drawbacks and applications. 201
- Table 53. Overview of ramie fibers- description, properties, drawbacks and applications. 203
- Table 54. Overview of kenaf fibers-description, properties, drawbacks and applications. 204
- Table 55. Overview of sisal fibers-description, properties, drawbacks and applications. 206
- Table 56. Overview of abaca fibers-description, properties, drawbacks and applications. 207
- Table 57. Overview of coir fibers-description, properties, drawbacks and applications. 209
- Table 58. Overview of banana fibers-description, properties, drawbacks and applications. 211
- Table 59. Overview of pineapple fibers-description, properties, drawbacks and applications. 212
- Table 60. Overview of rice fibers-description, properties, drawbacks and applications. 214
- Table 61. Overview of corn fibers-description, properties, drawbacks and applications. 214
- Table 62. Overview of switch grass fibers-description, properties and applications. 215
- Table 63. Overview of sugarcane fibers-description, properties, drawbacks and application and market size. 216
- Table 64. Overview of bamboo fibers-description, properties, drawbacks and applications. 217
- Table 65. Overview of mycelium fibers-description, properties, drawbacks and applications. 220
- Table 66. Overview of chitosan fibers-description, properties, drawbacks and applications. 221
- Table 67. Overview of alginate-description, properties, application and market size. 222
- Table 68. Overview of wool fibers-description, properties, drawbacks and applications. 223
- Table 69. Alternative wool materials producers. 224
- Table 70. Overview of silk fibers-description, properties, application and market size. 225
- Table 71. Alternative silk materials producers. 226
- Table 72. Alternative leather materials producers. 227
- Table 73. Alternative down materials producers. 228
- Table 74. Applications of natural fiber composites. 229
- Table 75. Typical properties of short natural fiber-thermoplastic composites. 231
- Table 76. Properties of non-woven natural fiber mat composites. 233
- Table 77. Properties of aligned natural fiber composites. 233
- Table 78. Properties of natural fiber-bio-based polymer compounds. 234
- Table 79. Properties of natural fiber-bio-based polymer non-woven mats. 235
- Table 80. Natural fibers in the aerospace sector-market drivers, applications and challenges for NF use. 236
- Table 81. Natural fiber-reinforced polymer composite in the automotive market. 238
- Table 82. Natural fibers in the aerospace sector- market drivers, applications and challenges for NF use. 240
- Table 83. Applications of natural fibers in the automotive industry. 241
- Table 84. Natural fibers in the building/construction sector- market drivers, applications and challenges for NF use. 242
- Table 85. Applications of natural fibers in the building/construction sector. 243
- Table 86. Natural fibers in the sports and leisure sector-market drivers, applications and challenges for NF use. 244
- Table 87. Natural fibers in the textiles sector-market drivers, applications and challenges for NF use. 244
- Table 88. Natural fibers in the packaging sector-market drivers, applications and challenges for NF use. 247
- Table 89: Market summary for nanofibers. 351
- Table 90: Applications of nanofibers. 352
- Table 91. Commercial electrospun nanofiber products 353
- Table 92: Market drivers for nanofibers. 356
- Table 93: Market and technical challenges for nanofibers. 358
- Table 94: Global revenues for nanofibers, by market 2018-2032, millions USD. 359
- Table 95: Global revenues for nanofibers by region 2018-2032 (million USD). 360
- Table 96: Nanofibers types, properties and applications. 363
- Table 97. Synthesis of nanofibers from various materials, their fabrication techniques, advantages and applications. 369
- Table 98. Natural and synthetic polymers and blends that can be electrospun. 370
- Table 99. Electrospinning instrument manufacturers. 375
- Table 100. Technology Readiness Level (TRL) Examples. 383
- Table 101. Markets and applications for polymer nanofibers. 386
- Table 102. Market drivers for nanofibers in filter media. 387
- Table 103: Types of filtration. 389
- Table 104: Global revenues for nanofibers in the filter media market, 2018-2032 (million USD). 394
- Table 105. Market drivers for use of nanofibers in textiles. 395
- Table 106: Global revenues for nanofibers in the textiles market, 2018-2032 (millions USD). 400
- Table 107: Market drivers for nanofibers in medical and healthcare. 401
- Table 108: Nanofiber applications timeline in the medical and healthcare markets. 402
- Table 109. Electrospun nanofiber medical products. 402
- Table 110: Global revenues for nanofibers in the medical and healthcare market, 2018-2032 (million USD). 404
- Table 111. Other markets for nanofibers. 405
- Table 112. Gelatex nanofiber sheet. 426
- Table 113. Comparison of synthesis methods for carbon nanofibers. 463
- Table 114. Properties and applications of nanocellulose. 476
- Table 115. Properties of nanocellulose, by type. 476
- Table 116. Properties of cellulose nanofibrils relative to metallic and polymeric materials. 478
- Table 117. Types of nanocellulose. 479
- Table 118. Types of nanocellulose. 481
- Table 119. Applications of cellulose nanofibers (CNF). 483
- Table 120. Synthesis methods for cellulose nanocrystals (CNC). 486
- Table 121. CNC sources, size and yield. 487
- Table 122. CNC properties. 488
- Table 123. Mechanical properties of CNC and other reinforcement materials. 488
- Table 124. Applications of nanocrystalline cellulose (NCC). 489
- Table 125. Applications of bacterial nanocellulose (BNC). 490
- Table 126. Product/price/application matrix of cellulose nanofiber producers. 495
- Table 127. Market overview for nanocellulose in composites. 497
- Table 128. Comparative properties of polymer composites reinforcing materials. 498
- Table 129. Scorecard for cellulose nanofibers in composites. 498
- Table 130. Market assessment for cellulose nanofibers in composites-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global composites OEMs. 499
- Table 131. Global market demand for cellulose nanofibers in composites, 2018-2032 (metric tonnes). 506
- Table 132. Companies developing cellulose nanofibers composites. 507
- Table 133. Market overview for cellulose nanofibers in automotive. 510
- Table 134. Scorecard for cellulose nanofibers in automotive. 511
- Table 135. Market assessment for cellulose nanofibers in automotive-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global automotive OEMs. 511
- Table 136. Components featured in the NCV. 515
- Table 137. Global market demand for cellulose nanofibers in the automotive sector 2018-2032 (tons). 521
- Table 138. Companies developing cellulose nanofibers products in the automotive industry. 522
- Table 139. Market overview for cellulose nanofibers in construction. 525
- Table 140. Scorecard for cellulose nanofibers in construction 526
- Table 141. Market assessment for cellulose nanofibers in construction-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global construction OEMs 527
- Table 142: Market demand for cellulose nanofibers in construction, 2018-2032 (tons). 532
- Table 143. Companies developing cellulose nanofibers in construction. 533
- Table 144. Oxygen permeability of nanocellulose films compared to those made form commercially available petroleum-based materials and other polymers. 535
- Table 145. Scorecard for cellulose nanofibers in paper and board packaging. 535
- Table 146. Market assessment for cellulose nanofibers in paper and board packaging-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global paper and board packaging OEMs. 536
- Table 147. Global demand for cellulose nanofibers in paper & board packaging, 2018-2032 (tons). 543
- Table 148. Companies developing cellulose nanofibers products in paper and board. 545
- Table 149. Market overview for cellulose nanofibers in textiles and apparel. 546
- Table 150. Scorecard for cellulose nanofibers in textiles and apparel. 546
- Table 151. Market assessment for cellulose nanofibers in textiles and apparel-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global textiles and apparel OEMs. 547
- Table 152. Demand for cellulose nanofibers in textiles, 2018-2032 (tons). 552
- Table 153. Companies developing nanocellulose products in textiles and apparel. 553
- Table 154. Market overview for cellulose nanofibers in medicine and healthcare. 555
- Table 155. Scorecard for cellulose nanofibers in medicine and healthcare. 555
- Table 156. Market assessment for cellulose nanofibers in medicine and healthcare-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global medicine and healthcare OEMs. 557
- Table 157. Global demand for cellulose nanofibers in medical and healthcare, 2018-2032 (tons). 563
- Table 158. Cellulose nanofibers product developers in medicine and healthcare. 564
- Table 159. Market overview for cellulose nanofibers in the hygiene and sanitary products market. 567
- Table 160. Global demand for cellulose nanofibers in hygiene, 2018-2032 (tons). 567
- Table 161. Cellulose nanofibers product developers in hygiene and sanitary products. 569
- Table 162. Market overview for cellulose nanofibers in paints and coatings. 570
- Table 163. Scorecard for cellulose nanofibers in paints and coatings. 570
- Table 164. Market assessment for cellulose nanofibers in paints and coatings-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global paints and coatings OEMs. 571
- Table 165. Global demand for cellulose nanofibers in paint and coatings, 2018-2032 (tons). 575
- Table 166. Companies developing cellulose nanofibers products in paints and coatings, applications targeted and stage of commercialization. 577
- Table 167. Market overview for cellulose nanofibers in aerogels. 579
- Table 168. Scorecard for cellulose nanofibers in aerogels. 579
- Table 169. Market assessment for cellulose nanofibers in aerogels-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global aerogels OEMs. 580
- Table 170. Global demand for cellulose nanofibers in aerogels, 2018-2032 (tons). 582
- Table 171. Cellulose nanofibers product developers in aerogels. 583
- Table 172. Market overview for cellulose nanofibers in oil and gas. 584
- Table 173. Scorecard for cellulose nanofibers in oil and gas. 584
- Table 174. Market assessment for cellulose nanofibers in oil and gas-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global oil and gas OEMs. 585
- Table 175. Global demand for cellulose nanofibers in the oil and gas market, 2018-2032 (tons). 588
- Table 176. Cellulose nanofibers product developers in oil and gas exploration. 589
- Table 177. CNF membranes. 592
- Table 178. Market overview for cellulose nanofibers in filtration. 592
- Table 179. Scorecard for cellulose nanofibers in filtration. 593
- Table 180. Market assessment for cellulose nanofibers in filtration-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global filtration OEMs. 593
- Table 181: Global demand for cellulose nanofibers in the filtration market, 2018-2032 (tons). 598
- Table 182. Companies developing cellulose nanofibers products in filtration. 599
- Table 183. Market overview for cellulose nanofibers in rheology modifiers. 601
- Table 184. Scorecard for cellulose nanofibers in rheology modifiers. 602
- Table 185. Market assessment for cellulose nanofibers in rheology modifiers-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global rheology modifier OEMs. 602
- Table 186. Global demand for cellulose nanofibers in the rheology modifiers market, 2018-2032 (tons). 606
- Table 187. Commercial activity in cellulose nanofibers rheology modifiers. 607
- Table 188. Properties of flexible electronics‐cellulose nanofiber film (nanopaper). 610
- Table 189. Market assessment for cellulose nanofibers in printed, stretchable and flexible electronics-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global printed, flexible and stretchable electronics OEMs. 611
- Table 190. Companies developing cellulose nanofiber products in printed, stretchable and flexible electronics. 613
- Table 191. Market assessment for cellulose nanofibers in 3D priniting-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global 3D printing OEMs. 615
- Table 192. Companies developing cellulose nanofibers 3D printing products. 617
- Table 193. Market assessment for cellulose nanofibers in aerospace-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading. 618
- Table 194: Companies developing cellulose nanofibers products in aircraft and aerospace. 619
- Table 195. Market assessment for cellulose nanofibers in Batteries-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks. 619
- Table 196: Granbio Nanocellulose Processes. 666
- Table 197. Nippon Paper commercial CNF products. 701
- Table 198: Oji Holdings CNF products. 710
List of Figures
- Figure 1. Manufacturing process of PAN type carbon fibers. 47
- Figure 2. Production processes for pitch-based carbon fibers. 50
- Figure 3. Lignin/celluose precursor. 54
- Figure 4. Process of preparing CF from lignin. 55
- Figure 5. Carbon fiber manufacturing capacity in 2021, by company (metric tonnes) 67
- Figure 6. ASIO drone by Flybotix. 73
- Figure 7. Global demand for carbon fibers 2016-2032, in aerospace (metric tonnes). 75
- Figure 8. Global revenues for CFRP 2016-2032, in aerospace (billions USD). 76
- Figure 9. Global demand for carbon fibers 2016-2032, in wind energy (metric tonnes). 79
- Figure 10. Global revenues for CFRP 2016-2032, in wind energy (billions USD). 80
- Figure 11. Global demand for carbon fibers 2016-2032, in sports & leisure (metric tonnes). 83
- Figure 12. Global revenues for CFRP 2016-2032, in sports & leisure (billions USD). 84
- Figure 13. Global demand for carbon fibers 2016-2032, in automotive (metric tonnes). 87
- Figure 14. Global revenues for CFRP 2016-2032, in automotive (billions USD). 88
- Figure 15. Schematic of a 700-bar Type-IV COPV for on-board FCV hydrogen storage. 89
- Figure 16. CF pressure vessel for Hyundai Truck. 89
- Figure 17. Global demand for carbon fibers 2016-2032, in pressure vessels (metric tonnes). 92
- Figure 18. Global revenues for CFRP 2016-2032, in pressure vessels (billions USD). 93
- Figure 19. Global demand for carbon fibers 2016-2032, in oil and gas (metric tonnes). 96
- Figure 20. Global revenues for CFRP 2016-2032, in oil and gas (billions USD). 97
- Figure 21. Global demand for carbon fibers 2016-2032, by market (metric tonnes). 101
- Figure 22. Global market revenues for Carbon fiber reinforced polymers (CFRP) 2016-2032, by market (billion USD). 103
- Figure 23. Global demand for carbon fibers 2018-2032, by region (thousand metric tonnes). 105
- Figure 24. 9T Labs' Red Series. 124
- Figure 25. 3D printed component. 125
- Figure 26. Continuous carbon fiber part. 131
- Figure 27. Speedland SL:PDX trail shoe incorporating carbon fiber plate. 135
- Figure 28. Carbon 1 MK II. 136
- Figure 29. CR-9 carbon fibre wheel. 137
- Figure 30. The Continuous Kinetic Mixing system. 142
- Figure 31. CBAM-2 3D printer. 148
- Figure 32. Thermoplastic CFRP single aisle pressure bulkhead demonstrator. 158
- Figure 33. Rein4ced carbon mountain bike hardtails. 159
- Figure 34. Recycled carbon fibers obtained through the R3FIBER process. 169
- Figure 35. Compression molded automotive floorboard. 171
- Figure 36. Types of natural fibers. 190
- Figure 37. Cotton production volume 2018-2032 (Million MT). 194
- Figure 38. Kapok production volume 2018-2032 (MT). 195
- Figure 39. Luffa cylindrica fiber. 197
- Figure 40. Jute production volume 2018-2032 (Million MT). 199
- Figure 41. Hemp fiber production volume 2018-2032 (Million MT). 201
- Figure 42. Flax fiber production volume 2018-2032 (MT). 202
- Figure 43. Ramie fiber production volume 2018-2032 (MT). 204
- Figure 44. Kenaf fiber production volume 2018-2032 (MT). 206
- Figure 45. Sisal fiber production volume 2018-2032 (MT). 207
- Figure 46. Abaca fiber production volume 2018-2032 (MT). 209
- Figure 47. Coir fiber production volume 2018-2032 (MILLION MT). 211
- Figure 48. Banana fiber production volume 2018-2032 (MT). 212
- Figure 49. Pineapple fiber. 213
- Figure 50. Bamboo fiber production volume 2018-2032 (MILLION MT). 218
- Figure 51. Typical structure of mycelium-based foam. 219
- Figure 52. Commercial mycelium composite construction materials. 220
- Figure 53. BLOOM masterbatch from Algix. 223
- Figure 54. Hemp fibers combined with PP in car door panel. 235
- Figure 55. Car door produced from Hemp fiber. 237
- Figure 56. Mercedes-Benz components containing natural fibers. 238
- Figure 57. AlgiKicks sneaker, made with the Algiknit biopolymer gel. 246
- Figure 58. Coir mats for erosion control. 247
- Figure 59. Global fiber production in 2020, by fiber type, million MT and %. 249
- Figure 60. Global fiber production (million MT) to 2020-2032. 251
- Figure 61. Plant-based fiber production 2018-2032, by fiber type, MT. 252
- Figure 62. Animal based fiber production 2018-2032, by fiber type, million MT. 253
- Figure 63. Pluumo. 256
- Figure 64. Algiknit yarn. 259
- Figure 65. Amadou leather shoes. 260
- Figure 66. Anpoly cellulose nanofiber hydrogel. 263
- Figure 67. MEDICELLU™. 263
- Figure 68. Roof frame made of natural fiber. 266
- Figure 69. Beyond Leather Materials product. 269
- Figure 70. Natural fibres racing seat. 274
- Figure 71. Cellugy materials. 279
- Figure 72. CuanSave film. 284
- Figure 73. Mushroom leather. 288
- Figure 74. Filler Bank CNC products. 292
- Figure 75. Fibers on kapok tree and after processing. 293
- Figure 76. CNF gel. 297
- Figure 77. Block nanocellulose material. 297
- Figure 78. CNF products developed by Hokuetsu. 298
- Figure 79. Marine leather products. 299
- Figure 80. BioFlex process. 307
- Figure 81. MOGU-Wave panels. 312
- Figure 82. Reishi. 314
- Figure 83. Leather made from leaves. 320
- Figure 84. Nike shoe with beLEAF™. 320
- Figure 85. Lyocell process. 331
- Figure 86. North Face Spiber Moon Parka. 333
- Figure 87. Spider silk production. 335
- Figure 88. Sulapac cosmetics containers. 338
- Figure 89. Vegea production process. 345
- Figure 90. Worn Again products. 349
- Figure 91: Global revenues for nanofibers, by market 2018-2032, million USD. 360
- Figure 92: Global revenues for nanofibers by region 2018-2032 (million USD). 361
- Figure 93. Electrospun polyacrylonitrile (PAN) nanofibers with different orientation: a) aligned and b) random. 362
- Figure 94. Electrospinning technique. 365
- Figure 95. Scanning electron microscope images of electrospun nanofibers collected on different geometries and styles. 366
- Figure 96. Typical electrospinning component schematic. 371
- Figure 97. A multi-nozzle electrospinning device. 373
- Figure 98. Schematic of a needle-free electrospinning system. 374
- Figure 99 Electrohydrodynamic writing of nanofibers. 379
- Figure 100. Electrospray Deposition Method. 380
- Figure 101 Centrifugal jet spinning of nanofibers. 381
- Figure 102. Schematic illustration of the centrifugal multispinning polymer nanofiber production process. 381
- Figure 103 Solution blow spinning of nanofibers. 382
- Figure 104. Conventional Filter Media. 389
- Figure 105. Nanofiber coated filter media. 389
- Figure 106. Ultra-web ® filter media by the Donaldson company. 390
- Figure 107. Schematic of nanofiber membrane for seawater distillation. 392
- Figure 108. Virus deactivating nanofiber membrane schematic. 393
- Figure 109: Global revenues for nanofibers in the filter media market, 2018-2032 (million USD). 394
- Figure 110:
nanofiber conductive shirt. 398 - Figure 111: Global revenues for nanofibers in the textiles market, 2018-2032 (millions USD). 399
- Figure 112: Global revenues for nanofibers in the medical and healthcare market, 2018-2032 (million USD). 404
- Figure 113. Comparison with conventional water treatment. 408
- Figure 114. Nanoceram pleated filter cartridges. 410
- Figure 115. Ultra-web ® filter media by the Donaldson company. 419
- Figure 116. Nanospider™. 421
- Figure 117. Nanofiber Nonwoven Fabrics from Hirose. 428
- Figure 118. activLayr Bioactive Skincare Collagen product. 442
- Figure 119. Spincare system. 444
- Figure 120. ReSpimask® mask. 451
- Figure 121. Schematic of nanofiber filter. 451
- Figure 122. Sample sock made with Nanofront® recycled-polyester nanofiber. 456
- Figure 123. Hitoe™ conductive nanofiber garment. 458
- Figure 124. Schematic diagram of partial molecular structure of cellulose chain with numbering for carbon atoms and n= number of cellobiose repeating unit. 474
- Figure 125. Scale of cellulose materials. 475
- Figure 126. Types of nanocellulose. 480
- Figure 127. Relationship between different kinds of nanocelluloses. 481
- Figure 128. CNF gel. 483
- Figure 129. TEM image of cellulose nanocrystals. 485
- Figure 130. CNC preparation. 485
- Figure 131. Extracting CNC from trees. 487
- Figure 132. CNC slurry. 489
- Figure 133. Nanocellulose preparation methods and resulting materials. 492
- Figure 134. Various preparation methods for nanocellulose. 494
- Figure 135. Applications of cellulose nanofibers in composites. 504
- Figure 136. Global market demand for cellulose nanofibers in composites, 2018-2032 (metric tonnes). 507
- Figure 137. CNF mixed PLA (Poly Lactic Acid). 508
- Figure 138. CNF resin products. 509
- Figure 139. Interior of NCV concept car. 510
- Figure 140. Applications of cellulose nanofibers in automotive. 514
- Figure 141. Interior of the NCV prototype. 515
- Figure 142. Global demand for cellulose nanofibers in the automotive sector, 2018-2032 (tons). 522
- Figure 143: Daio Paper's cellulose nanofiber material in doors and hood of race car. 523
- Figure 144: CNF composite. 523
- Figure 145: Engine cover utilizing Kao CNF composite resins. 524
- Figure 146. CNF car engine cover developed in Japan Ministry of the Environment’s (MOE) Nano Cellulose Vehicle (NCV) Project. 525
- Figure 147. Comparison of nanofillers with supplementary cementitious materials and aggregates in concrete. 527
- Figure 148. Applications of cellulose nanofibers in construction. 530
- Figure 149. Demand for cellulose nanofibers in construction, 2018-2032 (tons). 533
- Figure 150. Applications of cellulose nanofibers in paper and board packaging. 542
- Figure 151. Global demand for cellulose nanofibers in the paper & board/packaging, 2018-2032 (tons). 544
- Figure 152. Applications of cellulose nanofibers in textiles and apparel. 551
- Figure 153. Asics GEL-KAYANO™ 25 running shoe. 552
- Figure 154. Demand for cellulose nanofibers in the textiles, 2018-2032 (tons). 553
- Figure 155. CNF deodorant products. 554
- Figure 156. Applications of cellulose nanofibers in medicine and healthcare. 562
- Figure 157. Global demand for cellulose nanofibers in medical and healthcare, 2018-2032 (tons). 564
- Figure 158. Fibnano. 566
- Figure 159. Global demand for cellulose nanofibers in hygiene, 2018-2032 (tons). 568
- Figure 160. Applications of cellulose nanofibers in paints and coatings. 575
- Figure 161. Global demand for cellulose nanofibers in paint and coatings, 2018-2032 (tons). 576
- Figure 162. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test. 578
- Figure 163: Global demand for cellulose nanofibers in aerogels, 2018-2032 (tons). 583
- Figure 164. Global demand for cellulose nanofibers in the oil and gas market, 2018-2032 (tons). 589
- Figure 165. Nanocellulose sponge developed by EMPA for potential applications in oil recovery. 590
- Figure 166. Applications of cellulose nanofibers in filtration. 597
- Figure 167. Global demand for cellulose nanofibers in the filtration market, 2018-2032 (tons). 599
- Figure 168. Multi-layered cross section of CNF-nw. 600
- Figure 169. Applications of cellulose nanofibers in rheology modifiers. 604
- Figure 170. Global demand for cellulose nanofibers in the rheology modifiers market, 2018-2032 (tons). 607
- Figure 171. "SURISURI" products. 608
- Figure 172. Foldable nanopaper antenna. 611
- Figure 173: Flexible electronic substrate made from CNF. 613
- Figure 174. Oji CNF transparent sheets. 614
- Figure 175. Electronic components using NFC as insulating materials. 614
- Figure 176: Anpoly cellulose nanofiber hydrogel. 622
- Figure 177. MEDICELLU™. 622
- Figure 178: Ashai Kasei CNF production process. 624
- Figure 179: Asahi Kasei CNF fabric sheet. 624
- Figure 180: Properties of Asahi Kasei cellulose nanofiber nonwoven fabric. 625
- Figure 181. CNF nonwoven fabric. 626
- Figure 182. Borregaard Chemcell CNF production process. 631
- Figure 183. nanoforest products. 640
- Figure 184. Chuetsu Pulp & Paper CNF production process. 640
- Figure 185. nanoforest-S. 641
- Figure 186. nanoforest-PDP. 642
- Figure 187. nanoforest-MB. 642
- Figure 188. Daicel Corporation CNF production process. 644
- Figure 189. Celish. 644
- Figure 190: Trunk lid incorporating CNF. 645
- Figure 191. Daio Paper CNF production process. 647
- Figure 192. ELLEX products. 648
- Figure 193. CNF-reinforced PP compounds. 649
- Figure 194. Kirekira! toilet wipes. 649
- Figure 195. Color CNF. 650
- Figure 196. DIC Products CNF production process. 652
- Figure 197. DKS Co. Ltd. CNF production process. 654
- Figure 198: Rheocrysta spray. 655
- Figure 199. DKS CNF products. 655
- Figure 200: CNF based on citrus peel. 657
- Figure 201. Citrus cellulose nanofiber. 657
- Figure 202. Imerys CNF production process. 659
- Figure 203. Filler Bank CNC products. 661
- Figure 204: Cellulose Nanofiber (CNF) composite with polyethylene (PE). 662
- Figure 205: CNF products from Furukawa Electric. 664
- Figure 206. Granbio CNF production process. 667
- Figure 207: Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials. 669
- Figure 208. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer). 670
- Figure 209: CNF gel. 672
- Figure 210: Block nanocellulose material. 672
- Figure 211: CNF products developed by Hokuetsu. 673
- Figure 212. Innventia CNF production process. 675
- Figure 213: Innventia AB movable nanocellulose demo plant. 676
- Figure 214. Kami Shoji CNF products. 678
- Figure 215. Dual Graft System. 680
- Figure 216: Engine cover utilizing Kao CNF composite resins. 681
- Figure 217. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended). 681
- Figure 218: 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side). 682
- Figure 219. Kruger Biomaterials, Inc. CNF production process. 684
- Figure 220. CNF deodorant. 686
- Figure 221. Chitin nanofiber product. 687
- Figure 222. Marusumi Paper cellulose nanofiber products. 688
- Figure 223. FibriMa cellulose nanofiber powder. 690
- Figure 224. Cellulomix production process. 691
- Figure 225. Nanobase versus conventional products. 692
- Figure 226. Uni-ball Signo UMN-307. 693
- Figure 227: CNF slurries. 694
- Figure 228. Range of CNF products. 694
- Figure 229: Nanocell serum product. 695
- Figure 230: Hydrophobization facilities for raw pulp. 697
- Figure 231: Mixing facilities for CNF-reinforced plastic. 697
- Figure 232. Nippon Paper CNF production process. 699
- Figure 233: Nippon Paper Industries’ adult diapers. 701
- Figure 234. All-resin forceps incorporating CNF. 703
- Figure 235. CNF paint product. 704
- Figure 236: CNF wet powder. 706
- Figure 237: CNF transparent film. 706
- Figure 238: Transparent CNF sheets. 707
- Figure 239. Oji Paper CNF production process. 708
- Figure 240: CNF clear sheets. 710
- Figure 241. Oji Holdings CNF polycarbonate product. 712
- Figure 242: Fluorene cellulose ® powder. 713
- Figure 243. A vacuum cleaner part made of cellulose fiber (left) and the assembled vacuum cleaner. 714
- Figure 244. Performance Biofilaments CNF production process. 715
- Figure 245: XCNF. 716
- Figure 246: CNF insulation flat plates. 718
- Figure 247. Seiko PMC CNF production process. 721
- Figure 248. Manufacturing process for STARCEL. 722
- Figure 249: Rubber soles incorporating CNF. 724
- Figure 250. CNF dispersion and powder from Starlite. 725
- Figure 251. Stora Enso CNF production process. 726
- Figure 252. Sugino Machine CNF production process. 728
- Figure 253: High Pressure Water Jet Process. 728
- Figure 254: 2 wt.% CNF suspension. 729
- Figure 255. BiNFi-s Dry Powder. 729
- Figure 256. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet. 730
- Figure 257: Silk nanofiber (right) and cocoon of raw material. 730
- Figure 258: SVILOSA AD CNC products. 732
- Figure 259: Silver / CNF composite dispersions. 737
- Figure 260: CNF/nanosilver powder. 738
- Figure 261: Comparison of weight reduction effect using CNF. 739
- Figure 262: CNF resin products. 741
- Figure 263. University of Maine CNF production process. 742
- Figure 264. UPM-Kymmene CNF production process. 744
- Figure 265. FibDex® wound dressing. 745
- Figure 266. US Forest Service Products Laboratory CNF production process. 747
- Figure 267: Flexible electronic substrate made from CNF. 748
- Figure 268. VTT 100% bio-based stand-up pouches. 750
- Figure 269. VTT CNF production process. 752
- Figure 270: HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test. 753
- Figure 271: Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film. 753
- Figure 272. S-CNF in powder form. 754
- Figure 273. Zelfo Technology GmbH CNF production process. 757
Payment methods: Visa, Mastercard, American Express, Alipay, Paypal.
To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com or use our Order Form.
[mpdl-file-link file_id=9416]