The Global Market for Self-Cleaning Coatings

0

Published August 10 2020, 261 pages, 76 tables, 76 figures

Most self-cleaning coatings on glass can be divided into two categories, hydrophobic and hydrophilic.

Hydrophobic surface finishes are inspired by the self-cleaning mechanism of lotus plants and other organisms (e.g., many large-winged insects). They have been applied to paints, glass, textiles, and more, reducing the need for chemical detergents and costly labour. The coatings unique nano-textured surface and overcoat reduces surface energy and contact surface area, giving the coatings anti-contamination and self-cleaning properties that minimize dust, liquid, and ice accumulation on its surface, similar to a leaf on the Lotus plant.

Hydrophilic self-cleaning coatings utilizes photocatalytic decomposition to self-clean glass.  The working principle of the hydrophilic layer is based on having a film of titanium dioxide coating, which has two working stages: the photo-catalytic stage and the hydrophilic sheathing stage. During the “hydrophilic" stage, rain washes away the dirt and leaves almost no streaks on the glass as the hydrophilic glass spreads the water evenly over the surface coating. Self-cleaning surfaces based on photocatalytic processes are applied in areas such as buildings, road paving, vehicle side-view mirrors, lamps, and even in textiles. Among the nanoscale semiconductor materials based on oxides, titanium dioxide (TiO2) is widely used.

Report contents include:

  • Evolution of self-cleaning coatings to now and future prospects.
  • Development of self-cleaning coatings-production methods, recent developments, new products. 
  • Analysis of hydrophobic and hydrophilic surfaces and the emergence of super-hydrophobic and super-hydrophilic coatings technologies.
  • New developments in self-cleaning coatings including mutli-functional and smart self-cleaning coatings.
  • Applications and market analysis for self -cleaning coating in Construction, Automotive, Solar, Textiles and Apparel, Consumer Electronics, Medical Coatings, Marine and Household Care sectors.
  • Revenue forecasts to 2030 across all sectors. 
  • 132 company profiles including products and target markets. Companies profiled include Adaptive Surface Technologies, Advanced Materials-JTJ s.r.o., TOTO, Pureti Group LLC, Swift Coat Inc and many more. 

 

1              EXECUTIVE SUMMARY  21

  • 1.1          Why nanocoatings?        21
  • 1.2          Advantages over traditional coatings       21
  • 1.3          Self-cleaning      23
    • 1.3.1      Hydrophobic coating       23
    • 1.3.2      Hydrophilic coating         24
  • 1.4          Markets for self-cleaning coatings             24
  • 1.5          Developments in solar cells          25
  • 1.6          Improvements and disruption in coatings markets            26
  • 1.7          Anti-viral nanoparticles and nanocoatings             28
  • 1.8          End user market for self-cleaning coatings            30
  • 1.9          The self-cleaning coatings market in 2020              33
    • 1.9.1      Global revenues by nanocoatings, by type            33
    • 1.9.2      Regional demand for self-cleaning coatings          35
  • 1.10        Market challenges           36

 

2              DEVELOPMENT OF SELF-CLEANING COATINGS   37

  • 2.1          Properties           37
  • 2.2          Benefits of using nanocoatings   38
    • 2.2.1      Types of nanocoatings   39
  • 2.3          Production and synthesis methods          40
  • 2.4          Hydrophobic coatings and surfaces          51
    • 2.4.1      Hydrophobic coatings     51
      • 2.4.1.1   Properties           52
    • 2.4.2      Hydrophilic/photocatalytic coatings         52
    • 2.4.3      Super Hydrophilic Surfaces          54
      • 2.4.3.1   Application in facemasks              54
  • 2.5          Superhydrophobic coatings and surfaces               55
    • 2.5.1      Properties           55
      • 2.5.1.1   Antibacterial use              56
    • 2.5.2      Durability issues               56
  • 2.6          Oleophobic and omniphobic coatings and surfaces           57
    • 2.6.1      SLIPS     58
    • 2.6.2      Covalent bonding             58
    • 2.6.3      Step-growth graft polymerization             58
    • 2.6.4      Applications       58

 

3              SELF-CLEANING NANOCOATINGS MARKET ANALYSIS      60

  • 3.1          SELF-CLEANING HYDROPHOBIC COATINGS           60
    • 3.1.1      Market overview             60
    • 3.1.2      Market assessment        61
    • 3.1.3      Market drivers  62
    • 3.1.4      Applications       62
    • 3.1.5      Global market size           63
      • 3.1.5.1   Adjusted for COVID-19 market growth scenarios 66
  • 3.2          SELF-CLEANING HYDROPHILIC (PHOTOCATALYTIC) COATINGS     67
    • 3.2.1      Market overview             67
    • 3.2.2      Market assessment        68
    • 3.2.3      Market drivers  68
    • 3.2.4      Applications       69
      • 3.2.4.1   Self-Cleaning Coatings   69
      • 3.2.4.2   Indoor Air Pollution and Sick Building Syndrome 70
      • 3.2.4.3   Outdoor Air Pollution     70
      • 3.2.4.4   Water Treatment             70
    • 3.2.5      Global market size           71
      • 3.2.5.1   Adjusted for COVID-19 market growth scenarios 74

 

4              END USER MARKET ANALYSIS FOR SELF-CLEANING COATINGS   75

  • 4.1          AUTOMOTIVE   75
    • 4.1.1      Market drivers and trends            75
    • 4.1.2      Applications       76
    • 4.1.3      Global market size           79
    • 4.1.4      Companies         82
  • 4.2          CONSTRUCTION               86
    • 4.2.1      Market drivers and trends            86
    • 4.2.2      Applications       86
      • 4.2.2.1   Protective coatings for glass, concrete and other construction materials  87
      • 4.2.2.2   Photocatalytic nano-TiO2 coatings            88
      • 4.2.2.3   Anti-graffiti         89
      • 4.2.2.4   UV-protection   90
      • 4.2.2.5   Titanium dioxide nanoparticles  90
      • 4.2.2.6   Zinc oxide nanoparticles               90
    • 4.2.3      Global market size           91
    • 4.2.4      Companies         94
  • 4.3          HOUSEHOLD CARE, SANITARY AND INDOOR AIR QUALITY               98
    • 4.3.1      Market drivers and trends            98
    • 4.3.2      Applications       98
      • 4.3.2.1   Self-cleaning and easy-to-clean 98
      • 4.3.2.2   Food preparation and processing              99
      • 4.3.2.3   Indoor pollutants and air quality                99
    • 4.3.3      Global market size           100
    • 4.3.4      Companies         103
  • 4.4          MARINE               105
    • 4.4.1      Market drivers and trends            105
    • 4.4.2      Applications       106
    • 4.4.3      Global market size           107
    • 4.4.4      Companies         109
  • 4.5          CONSUMER ELECTRONICS            111
    • 4.5.1      Market drivers  112
    • 4.5.2      Applications       113
    • 4.5.3      Global market size           117
    • 4.5.4      Companies         119
  • 4.6          MEDICAL & HEALTHCARE              122
    • 4.6.1      Market drivers and trends            123
    • 4.6.2      Applications       123
      • 4.6.2.1   Anti-fouling        124
      • 4.6.2.2   Anti-microbial and infection control         124
      • 4.6.2.3   Nanosilver          125
    • 4.6.2.4   Medical device coatings 125
    • 4.6.3      Global market size           127
    • 4.6.4      Companies         130
  • 4.7          TEXTILES AND APPAREL 133
    • 4.7.1      Market drivers and trends            133
    • 4.7.2      Applications       134
    • 4.7.3      Global market size           141
    • 4.7.4      Companies         144
  • 4.8          ENERGY                147
    • 4.8.1      Market drivers and trends            147
    • 4.8.2      Applications       147
    • 4.8.3      Global market size           150
    • 4.8.4      Companies         153
  • 4.9          AVIATION AND AEROSPACE         155
    • 4.9.1      Market drivers and trends            155
    • 4.9.2      Applications       157
    • 4.9.3      Global market size           160
    • 4.9.4      Companies         162

 

5              SELF-CLEANING COATINGS COMPANIES 166 (132 company profiles)

 

6              RESEARCH METHODOLOGY        253

  • 6.1          Aims and objectives of the study               253

 

7              REFERENCES       254

 

TABLES

  • Table 1: Properties of nanocoatings.        22
  • Table 2. Market drivers and trends in nanocoatings.         26
  • Table 3: End user markets for nanocoatings.        30
  • Table 4: Global revenues for nanocoatings, 2010-2030, millions USD, by type.      33
  • Table 5: Market and technical challenges for nanocoatings.           36
  • Table 6: Technology for synthesizing nanocoatings agents.            40
  • Table 7: Film coatings techniques.            41
  • Table 8: Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces.   52
  • Table 9. Generations of TiO2 photocatalytic coatings.      53
  • Table 10: Disadvantages of commonly utilized superhydrophobic coating methods.           56
  • Table 11: Applications of oleophobic & omniphobic coatings.       58
  • Table 12. Market overview for self-cleaning bionic coatings.          60
  • Table 13. Market assessment for self-cleaning (bionic) coatings. 61
  • Table 14. Market drivers for self-cleaning (bionic) coatings.           62
  • Table 15. Self-cleaning (bionic) coatings-Markets and applications.            63
  • Table 16: Revenues for self-cleaning (bionic) coatings, 2010-2030, US$.   64
  • Table 18. Market overview for self-cleaning photocatalytic coatings.         67
  • Table 19. Market assessment for self-cleaning photocatalytic coatings.    68
  • Table 20. Market drivers and trends in self-cleaning photocatalytic coatings.         69
  • Table 21. Self-cleaning photocatalytic coatings.-Markets, applications and potential addressable market size by 2027.                71
  • Table 22: Revenues for self-cleaning (photocatalytic) coatings, 2010-2030, US$.   72
  • Table 24: Market drivers and trends for nanocoatings in the automotive market. 75
  • Table 25: Anti-scratch automotive nanocoatings.               76
  • Table 26: Conductive automotive nanocoatings. 76
  • Table 27: Hydro- and oleophobic automotive nanocoatings.         77
  • Table 28: Anti-corrosion automotive nanocoatings.          77
  • Table 29: UV-resistance automotive nanocoatings.           77
  • Table 30: Thermal barrier automotive nanocoatings.        78
  • Table 31: Flame retardant automotive nanocoatings.       78
  • Table 32: Anti-fingerprint automotive nanocoatings.        78
  • Table 33: Anti-bacterial automotive nanocoatings.            78
  • Table 34: Self-healing automotive nanocoatings. 79
  • Table 35: Revenues for nanocoatings in the automotive industry, 2010-2030, US$, conservative and optimistic estimate.             80
  • Table 36: Automotive nanocoatings product developers. 82
  • Table 37: Market drivers and trends for nanocoatings in the construction market.              86
  • Table 38: Nanocoatings applied in the construction industry-type of coating, nanomaterials utilized and benefits. 87
  • Table 39: Photocatalytic nanocoatings-Markets and applications.               89
  • Table 40: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2030, US$.          93
  • Table 41: Construction, architecture and exterior protection nanocoatings product developers.   94
  • Table 42: Market drivers and trends for nanocoatings in household care and sanitary.      98
  • Table 43: Revenues for nanocoatings in household care, sanitary and indoor air quality, 2010-2030, US$. 101
  • Table 44: Household care, sanitary and indoor air quality nanocoatings product developers.         103
  • Table 45: Market drivers and trends for nanocoatings in the marine industry.       105
  • Table 46: Nanocoatings applied in the marine industry-type of coating, nanomaterials utilized and benefits.          107
  • Table 47: Revenues for nanocoatings in the marine sector, 2010-2030, US$.          108
  • Table 48: Marine nanocoatings product developers.        109
  • Table 49: Market drivers for nanocoatings in electronics.               112
  • Table 50: Main companies in waterproof nanocoatings for electronics, products and synthesis methods. 115
  • Table 51: Conductive electronics nanocoatings.  116
  • Table 52: Anti-fingerprint electronics nanocoatings.         116
  • Table 53: Anti-abrasion electronics nanocoatings.              116
  • Table 54: Conductive electronics nanocoatings.  117
  • Table 55: Revenues for nanocoatings in electronics, 2010-2030, US$.        118
  • Table 56: Nanocoatings applications developers in electronics.    119
  • Table 57: Market drivers and trends for nanocoatings in medicine and healthcare.             123
  • Table 58: Nanocoatings applied in the medical industry-type of coating, nanomaterials utilized, benefits and applications.       124
  • Table 59: Types of advanced coatings applied in medical devices and implants.    126
  • Table 60: Nanomaterials utilized in medical implants.      126
  • Table 61: Revenues for nanocoatings in medical and healthcare, 2010-2030, US$.               128
  • Table 62: Medical and healthcare nanocoatings product developers.        130
  • Table 63: Market drivers and trends for nanocoatings in the textiles and apparel industry.              133
  • Table 64: Applications in textiles, by advanced materials type and benefits thereof.           135
  • Table 65: Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications.       136
  • Table 66: Applications and benefits of graphene in textiles and apparel.  139
  • Table 67: Revenues for nanocoatings in textiles and apparel, 2010-2030, US$.      143
  • Table 68: Textiles nanocoatings product developers.       144
  • Table 69: Market drivers and trends for nanocoatings in the energy industry.       147
  • Table 70: Revenues for nanocoatings in energy, 2010-2030, US$.                152
  • Table 71: Renewable energy nanocoatings product developers.  153
  • Table 72. Market drivers and trends for nanocoatings in aviation and aerospace. 155
  • Table 73: Types of nanocoatings utilized in aerospace and application.     157
  • Table 74: Revenues for nanocoatings in the aerospace industry, 2010-2030.           161
  • Table 75: Aerospace nanocoatings product developers.  163
  • Table 76. Photocatalytic coating schematic.          186

 

FIGURES

  • Figure 1. Water droplet on Lotus WC2 coating with 150 degree contact angle (left); and Microscopic nano-texture of Lotus WC2 (right).            24
  • Figure 2. Water drops picking up and removing dust and dirt particles from a highly superhydrophobic surface.   25
  • Figure 3. Schematic of anti-viral coating using nano-actives for inactivation of any adhered virus on the surfaces. 29
  • Figure 4: Global revenues for nanocoatings, 2010-2030, millions USD, by type.     35
  • Figure 5: Regional demand for nanocoatings, 2010-2020, millions USD.    35
  • Figure 6: Hydrophobic fluoropolymer nanocoatings on electronic circuit boards. 38
  • Figure 7: Nanocoatings synthesis techniques.      41
  • Figure 8: Techniques for constructing superhydrophobic coatings on substrates. 43
  • Figure 9: Electrospray deposition.             44
  • Figure 10: CVD technique.            45
  • Figure 11: Schematic of ALD.       47
  • Figure 12: SEM images of different layers of TiO2 nanoparticles in steel surface.  48
  • Figure 13: The coating system is applied to the surface.The solvent evaporates.  49
  • Figure 14: A first organization takes place where the silicon-containing bonding component (blue dots in figure 2) bonds covalently with the surface and cross-links with neighbouring molecules to form a strong three-dimensional.                49
  • Figure 15: During the curing, the compounds or- ganise themselves in a nanoscale monolayer. The fluorine-containing repellent component (red dots in figure 3) on top makes the glass hydro- phobic and oleophobic.               50
  • Figure 16: (a) Water drops on a lotus leaf.             51
  • Figure 17: A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°.              52
  • Figure 18: Contact angle on superhydrophobic coated surface.   55
  • Figure 19: Self-cleaning nanocellulose dishware. 57
  • Figure 20: SLIPS repellent coatings.          58
  • Figure 21: Omniphobic coatings.                59
  • Figure 22: Self-cleaning superhydrophobic coating schematic.      62
  • Figure 23: Potential addressable market for self-cleaning (bionic) coatings by 2030.            64
  • Figure 24: Revenues for self-cleaning (bionic) nanocoatings, 2010-2030, US$.       65
  • Figure 25. Revenues for self-cleaning (bionic) nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates               66
  • Figure 26: Principle of superhydrophilicity.           70
  • Figure 27: Schematic of photocatalytic air purifying pavement.   70
  • Figure 28: Tokyo Station GranRoof. The titanium dioxide coating ensures long-lasting whiteness. 71
  • Figure 29: Potential addressable market for self-cleaning (photocatalytic) nanocoatings by 2030.  72
  • Figure 30: Revenues for self-cleaning (photocatalytic) coatings, 2010-2030, US$. 73
  • Figure 31. Revenues for self-cleaning (photocatalytic) coatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates             74
  • Figure 32: Nanocoatings in the automotive industry, by coatings type % 2018.      79
  • Figure 33: Potential addressable market for nanocoatings in the automotive sector by 2030.          80
  • Figure 34: Revenues for nanocoatings in the automotive industry, 2010-2030, US$.            82
  • Figure 35: Mechanism of photocatalytic NOx oxidation on active concrete road.  89
  • Figure 36: Jubilee Church in Rome, the outside coated with nano photocatalytic TiO2 coatings.    89
  • Figure 37: FN® photocatalytic coating, applied in the Project of Ecological Sound Barrier, in Prague.           90
  • Figure 38 Smart window film coatings based on indium tin oxide nanocrystals.     91
  • Figure 39: Nanocoatings in construction, architecture and exterior protection, by coatings type %, 2018.  92
  • Figure 40: Potential addressable market for nanocoatings in the construction, architecture and exterior coatings sector by 2030.  92
  • Figure 41: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2030, US$.         94
  • Figure 42: Nanocoatings in household care, sanitary and indoor air quality, by coatings type %, 2018.         101
  • Figure 43: Potential addressable market for nanocoatings in household care, sanitary and indoor air filtration by 2030.                101
  • Figure 44: Revenues for nanocoatings in household care, sanitary and indoor air quality, 2010-2030, US$.               103
  • Figure 45: Potential addressable market for nanocoatings in the marine sector by 2030.   108
  • Figure 46: Revenues for nanocoatings in the marine sector, 2010-2030, US$.         109
  • Figure 47: Reflection of light on anti-glare coating for display.      113
  • Figure 48: Nanocoating submerged in water.       114
  • Figure 49: Phone coated in WaterBlock submerged in water tank.              115
  • Figure 53: Potential addressable market for nanocoatings in electronics by 2030. 118
  • Figure 54: Revenues for nanocoatings in electronics, 2010-2030, US$, conservative and optimistic estimates.        119
  • Figure 55: Anti-bacertial sol-gel nanoparticle silver coating.           125
  • Figure 56: Nanocoatings in medical and healthcare, by coatings type %, 2018.       128
  • Figure 57: Potential addressable market for nanocoatings in medical & healthcare by 2030.            128
  • Figure 58: Revenues for nanocoatings in medical and healthcare, 2010-2030, US$.             130
  • Figure 59: Omniphobic-coated fabric.     134
  • Figure 60: Work out shirt incorporating ECG sensors, flexible lights and heating elements.              141
  • Figure 61: Nanocoatings in textiles and apparel, by coatings type %, 2018.              142
  • Figure 62: Potential addressable market for nanocoatings in textiles and apparel by 2030.               143
  • Figure 63: Revenues for nanocoatings in textiles and apparel, 2010-2030, US$.     144
  • Figure 64: Self-Cleaning Hydrophobic Coatings on solar panels.   149
  • Figure 65: Znshine Graphene Series solar coatings.            149
  • Figure 66: Nanocoating for solar panels. 149
  • Figure 67: Nanocoatings in renewable energy, by coatings type %.             151
  • Figure 68: Potential addressable market for nanocoatings in renewable energy by 2030.  152
  • Figure 69: Revenues for nanocoatings in energy, 2010-2030, US$.              153
  • Figure 70: Nanocoatings in the aerospace industry, by nanocoatings type %, 2018.              160
  • Figure 71: Potential addressable market for nanocoatings in aerospace by 2030.  161
  • Figure 72: Revenues for nanocoatings in the aerospace industry, 2010-2030, US$.              162
  • Figure 73. GrapheneCA anti-bacterial and anti-viral coating.          193
  • Figure 74. Self-cleaning nanocoating applied to face masks.          201
  • Figure 75. NanoSeptic surfaces. 219
  • Figure 76. NascNanoTechnology personnel shown applying MEDICOAT to airport luggage carts.   224

 

The Global Market for Self-Cleaning Coatings
The Global Market for Self-Cleaning Coatings
PDF download.

The Global Market for Self-Cleaning Coatings
The Global Market for Self-Cleaning Coatings
Printed edition (including tracked postage).

The Global Market for Self-Cleaning Coatings
The Global Market for Self-Cleaning Coatings
PDF download and print edition.

Payment methods: Visa, Mastercard, American Express, Alipay, Paypal. 

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com