- Published: September 2024
- Pages: 375
- Tables: 164
- Figures: 48
The ADAS sensors market is experiencing rapid growth driven by increasing demand for vehicle safety features, stringent regulations, and the push towards autonomous driving. Advanced Driver Assistance Systems (ADAS) use a combination of sensors, cameras, and other technologies to gather information about the vehicle's surroundings and provide assistance to the driver. ADAS features can range from basic functionalities like cruise control to more advanced capabilities such as lane keeping assist, automatic emergency braking, and adaptive cruise control. This comprehensive market report provides an in-depth analysis of the Advanced Driver Assistance Systems (ADAS) sensors market, projecting trends and growth from 2025 to 2035. As vehicles become increasingly autonomous and safety regulations tighten globally, ADAS sensors are playing a crucial role in shaping the future of automotive technology.
Report contents include:
- Detailed market size projections for ADAS sensors, broken down by sensor type, units, and regional markets from 2024 to 2035.
- In-depth examination of key ADAS sensor technologies including cameras, radar, LiDAR, ultrasonic sensors, and infrared sensors, as well as emerging technologies like event-based vision and quantum dot optical sensors.
- Competitive Landscape: Analysis of global Tier-1 suppliers, market share data for various sensor types, and profiles of over 95 key players in the ADAS ecosystem. Companies profiled include 7invensu, Acconeer AB, Actronika, Aeva, AEye, AMS Osram, Aptiv, Arbe, Aryballe, AutoX Technologies Inc., Baidu, Baraja, Beijing Surestar Technology, Benewake, Bosch, Cepton Inc., Continental AG, Cruise, DeepWay, Denso Corporation, Echodyne Inc., EM Infinity, Emberion Oy, Emotion3D, Epicnpoc, Eyeris, Greenerwave, Hesai Technology, Huawei, Hyundai Mobis, Inceptio Technology, Innoviz Technologies, Kognic, Koito Manufacturing, LeddarTech, Leishen Intelligent System Co. Ltd., Li Auto, Lidwave, Livox, Lumentum Operations LLC, Luminar Technologies, Lumotive, Lunewave, Magna International, Melexis, Metahelios, Metawave Corporation, Mitsubishi Electric, Mobileye, Nodar, NXP, Ommatidia LiDAR, OmniVision, Onsemi, OQmented, Ouster, Owl Autonomous Imaging, OPmobility, plus.ai, Pontosense, Pony.ai, PreAct, Prophesee, Qualcomm, Quanergy, Recogni, Renesas Electronics Corporation, RoboSense, Seeing Machines, Sensrad, Seyond, SenseTime, SiLC Technologies, Smart Radar System Inc., Spartan Radar, Steerlight, Tactile Mobility, Tanway, Terabee, Texas Instruments, Tobii, Uhnder, Ultraleap, Valeo, Vayyar, Velodyne Lidar, Veoneer, Visteon, Voyant Photonics, Vueron, Waymo, Wayve, XenomatiX, XPeng Motors, Zadar Labs, Zendar, ZF Friedrichshafen AG, Zvision.
- Overview of global ADAS-related regulations and their influence on market growth and technology adoption.
- Insights into potential disruptive technologies, the impact of autonomous vehicle development on the ADAS market, and long-term growth projections.
- Market segmentation analysis by sensor type, including:
- Cameras: Front-facing, surround-view, driver monitoring, and infrared cameras
- Radar: Short-range, long-range, and imaging radar systems
- LiDAR: Mechanical, solid-state, and MEMS-based LiDAR technologies
- Ultrasonic Sensors: For parking assistance and short-range object detection
- Infrared Sensors: For enhanced night vision and pedestrian detection
- Market restraints such as high costs of advanced ADAS systems, technical challenges in sensor reliability, and cybersecurity concerns.
- Technology Trends and Innovations including:
- Cameras: Developments in high-resolution sensors, wide dynamic range capabilities, and AI-enhanced image processing.
- Radar: Evolution of 4D imaging radar, high-resolution radar, and software-defined radar systems
- LiDAR: Innovations in solid-state LiDAR, MEMS-based LiDAR, and FMCW LiDAR, along with cost reduction strategies
- Sensor Fusion: Advancements in multi-sensor data fusion algorithms, edge computing, and AI-driven sensor fusion techniques
- ADAS Controllers: Trends in high-performance computing platforms, domain controllers, and zonal architecture
- Competitive Landscape analysis including:
- Global Tier-1 market share analysis
- Market share data for specific sensor types (e.g., front cameras, LiDAR, radar)
- Analysis of major Tier-1 suppliers and their strategies
- Global regulatory environment for ADAS technologies.
Key Questions Addressed:
- What is the projected market size for ADAS sensors by 2035?
- Which sensor technologies are expected to see the highest growth rates?
- How will regulatory requirements drive ADAS sensor adoption in different regions?
- What are the key challenges facing ADAS sensor manufacturers?
- How will the shift towards autonomous vehicles impact the ADAS sensors market?
- Which companies are leading in different sensor categories, and what are their market shares?
- What emerging technologies could disrupt the current ADAS sensor landscape?
Who should be interested in this report?
- Automotive OEMs and Tier-1 suppliers
- ADAS sensor manufacturers
- Semiconductor companies
- Autonomous vehicle technology developers
- Investment firms and financial analysts
- Regulatory bodies and policymakers
- Automotive industry consultants and researchers
1 EXECUTIVE SUMMARY 21
- 1.1 Autonomous driving technologies 21
- 1.1.1 Automation Levels 22
- 1.1.2 Functions of autonomous driving 23
- 1.1.3 Sensors in autonomous vehicles 23
- 1.1.4 Roadmap 24
- 1.2 Sensors for ADAS and Autonomous Technologies 25
- 1.2.1 Sensor Requirements 26
- 1.2.2 Sensor Suite Costs 26
- 1.2.3 Front radar sensors 28
- 1.2.4 Side Radars 29
- 1.2.5 Vehicle Cameras 30
- 1.2.6 LiDARs in Automotive 31
- 1.3 Successful ADAS Implementation in Mass-Market Vehicles 33
- 1.4 Challenges Faced by OEMs in ADAS Integration 35
- 1.5 Innovative ADAS Solutions in Premium Vehicles 36
- 1.6 ADAS Performance in Real-World Conditions 36
- 1.7 Market Drivers 37
- 1.7.1 Safety Regulations and NCAP Requirements 38
- 1.7.2 Consumer Demand for Advanced Safety Features 39
- 1.7.3 Progress Towards Vehicle Autonomy 39
- 1.7.4 Cost Reductions in Sensor Technologies 40
- 1.8 Market Restraints 41
- 1.8.1 High Costs of Advanced ADAS Systems 42
- 1.8.2 Technical Challenges in Sensor Reliability 43
- 1.8.3 Consumer Trust and Acceptance Issues 44
- 1.8.4 Cybersecurity Concerns 45
- 1.9 Market Opportunities 47
- 1.9.1 Integration of ADAS with V2X Technologies 48
- 1.9.2 Aftermarket ADAS Solutions 49
- 1.9.3 ADAS in Commercial Vehicles and Fleets 50
- 1.9.4 Emerging Markets for ADAS Technologies 50
- 1.10 Market Challenges 51
- 1.11 Competitive landscape 52
- 1.11.1 Competitive Positioning of Key Players 52
- 1.11.2 Investment Trends in ADAS Technologies 53
2 INTRODUCTION 55
- 2.1 Autonomous driving 55
- 2.1.1 Overview 55
- 2.1.2 Autonomous driving development in the industry 56
- 2.1.2.1 Evolutionary Approach 57
- 2.1.2.2 Revolutionary Approach 57
- 2.1.3 Position navigation technology 58
- 2.1.4 Electric Vehicles and Autonomy 59
- 2.1.5 Passive and Active Sensors 60
- 2.1.6 Sensor fusion 62
- 2.1.6.1 Evolution of Sensor Suite 64
- 2.1.6.2 Vison-only and Multi-sensor Fusion Approaches 66
- 2.1.6.3 Trends 67
- 2.1.6.4 Hybrid AI 67
- 2.1.6.5 Pure vision vs lidar sensor fusion 69
- 2.1.7 Optical 3D sensing 70
- 2.1.8 Multi-camera 71
- 2.1.8.1 Overview 72
- 2.1.8.2 Structured light 73
- 2.1.8.3 3D depth-aware imaging technologies 73
- 2.1.8.4 Resolution 75
- 2.1.9 Radar and lidar 76
- 2.1.10 Emerging Sensor Technologies 77
- 2.1.10.1 Event-based Cameras 77
- 2.1.10.2 Quantum Sensors 77
- 2.1.10.3 Metamaterial-based Sensors 78
- 2.1.10.4 Sensor-on-Chip Solutions 79
- 2.2 Importance of ADAS in Modern Vehicles 79
- 2.3 Key Players in the ADAS Supply Chain 80
3 MARKET OVERVIEW 83
- 3.1 Global ADAS Market Size and Growth 83
- 3.1.1 By type 83
- 3.1.2 By region 84
- 3.1.2.1 Regional ADAS Adoption Trends 85
- 3.2 Regulatory Landscape Driving ADAS Adoption 86
- 3.3 Impact of Autonomous Vehicle Development on ADAS Market 87
4 ADAS SENSOR TECHNOLOGIES 88
- 4.1 Overview of Key ADAS Sensor Types 88
- 4.1.1 Sensors in Autonomous Vehicles 88
- 4.1.1.1 Number of sensors 88
- 4.1.1.2 Cost 88
- 4.1.1.3 V2X, 5G, advanced digital mapping, and GPS in autonomous driving 89
- 4.1.1.3.1 V2X Communication 89
- 4.1.1.3.2 5G Networks 89
- 4.1.1.3.3 Advanced Digital Mapping 89
- 4.1.1.3.4 GPS in Autonomous Driving 89
- 4.1.2 Cameras 90
- 4.1.2.1 External Cameras 90
- 4.1.2.2 E-mirrors 91
- 4.1.2.3 Internal Cameras 92
- 4.1.2.4 Front camera 93
- 4.1.2.5 RGB/Visible light camera 94
- 4.1.2.6 CMOS image sensors 95
- 4.1.2.6.1 Front vs backside illumination 96
- 4.1.2.6.2 Image capture 97
- 4.1.2.6.2.1 Rolling Shutter 97
- 4.1.2.6.2.2 Global Shutter 97
- 4.1.2.6.3 Companies 98
- 4.1.2.7 IR Cameras 100
- 4.1.2.8 Driver Monitoring Systems (DMS) and Occupant Monitoring Systems (OMS) 102
- 4.1.2.8.1 Overview 102
- 4.1.2.8.2 2D Cameras 106
- 4.1.2.8.3 3D Cameras 106
- 4.1.2.8.3.1 ToF Cameras 108
- 4.1.2.8.3.2 Occupant Monitoring System (OMS) cameras 112
- 4.1.2.8.3.3 Flash LiDAR 113
- 4.1.2.8.4 NIR/IR Imaging 114
- 4.1.2.8.4.1 IR cameras/sensors 115
- 4.1.2.8.4.2 Infrared (IR) in DMS 115
- 4.1.2.8.4.3 Thermal Cameras in Autonomous Vehicles 116
- 4.1.2.8.4.4 Short-Wave Infra-Red (SWIR) Imaging 118
- 4.1.2.8.4.5 VCSEL 119
- 4.1.2.8.4.6 Market for IR Cameras 122
- 4.1.2.8.4.7 Costs 122
- 4.1.2.8.5 Eye Movement Tracking 123
- 4.1.2.8.5.1 Overview 123
- 4.1.2.8.5.2 Event-Based Vision for Eye-Tracking 124
- 4.1.2.8.6 Brain Function Monitoring 126
- 4.1.2.8.6.1 Overview 126
- 4.1.2.8.6.2 Magnetoencephalography 127
- 4.1.2.8.7 Cardiovascular Metrics 129
- 4.1.2.9 E-mirrors 129
- 4.1.2.10 Companies 130
- 4.1.3 Radar 131
- 4.1.3.1 Radar in Autonomous Vehicles 133
- 4.1.3.1.1 Localization 133
- 4.1.3.1.2 Radar mapping 133
- 4.1.3.1.3 Waveforms 134
- 4.1.3.1.4 Frequencies 135
- 4.1.3.2 Front Radar 138
- 4.1.3.3 Side Radars 138
- 4.1.3.4 Components 139
- 4.1.3.5 Radar trends 140
- 4.1.3.5.1 Imaging 140
- 4.1.3.5.2 Resolution 140
- 4.1.3.5.3 Automotive radar boards 142
- 4.1.3.5.4 Volume and Footprint 142
- 4.1.3.5.5 Packaging and Performance 142
- 4.1.3.5.6 Increasing Range 143
- 4.1.3.5.7 Field of View 144
- 4.1.3.5.8 Virtual Channel Count 144
- 4.1.3.5.8.1 Digital Beamforming (DBF) 145
- 4.1.3.5.8.2 Sparse Array Designs 145
- 4.1.3.6 In-Cabin Radars 146
- 4.1.3.7 4D Radars and Imaging Radars 147
- 4.1.3.7.1 Overview 147
- 4.1.3.7.2 Commerical examples 147
- 4.1.3.7.3 Drivers for 4D and imaging radars 149
- 4.1.3.7.4 Approaches to Achieve 4D Imaging Radar Capabilities 150
- 4.1.3.8 Transceivers 152
- 4.1.3.8.1 Commercial examples 152
- 4.1.3.8.2 Transceiver technology evolution 154
- 4.1.3.8.2.1 CMOS 155
- 4.1.3.8.2.2 SiGe BiCMOS 155
- 4.1.3.8.2.3 FD-SOI 156
- 4.1.3.9 Radomes 157
- 4.1.3.9.1 Overview 157
- 4.1.3.9.2 Materials 158
- 4.1.3.9.2.1 Dielectric Constant 159
- 4.1.3.9.2.2 Loss Tangent 159
- 4.1.3.9.3 Commercial examples 161
- 4.1.3.10 Antennas 162
- 4.1.3.10.1 Designs 163
- 4.1.3.10.2 Phased Array Antennas 164
- 4.1.3.10.3 Metamaterials 164
- 4.1.3.10.4 3D Printed Antennas 165
- 4.1.3.11 Semiconductors 167
- 4.1.3.12 Companies 168
- 4.1.3.13 Markets for Radar 170
- 4.1.3.14 Radar versus LiDAR 172
- 4.1.3.1 Radar in Autonomous Vehicles 133
- 4.1.4 LiDAR 173
- 4.1.4.1 Automotive LiDAR 173
- 4.1.4.1.1 Operating process 174
- 4.1.4.1.2 Requirements 174
- 4.1.4.2 LiDAR systems 175
- 4.1.4.2.1 Commercialization 175
- 4.1.4.2.2 Automotive LiDAR Supply Chain 176
- 4.1.4.2.3 Pricing and costs 177
- 4.1.4.3 Lidar integration in ADAS/AV 179
- 4.1.4.3.1 Lamps 179
- 4.1.4.3.2 Grille 179
- 4.1.4.3.3 On/In the Roof 180
- 4.1.4.3.4 Other Positions 180
- 4.1.4.4 LiDAR Certification 181
- 4.1.4.5 2D vs 3D lidar 183
- 4.1.4.6 Ranging and photodetection 184
- 4.1.4.6.1 Direct TOF 186
- 4.1.4.6.2 Indirect TOF 187
- 4.1.4.7 Frequency Modulated Continuous Wave (FMCW) and Pseudo-Random Noise Modulated Continuous Wave (PMCW) 187
- 4.1.4.8 Beam steering 189
- 4.1.4.8.1 Mechanical Lidar 190
- 4.1.4.8.2 MEMS Lidar 190
- 4.1.4.8.2.1 Commercial MEMS-based LiDAR systems 192
- 4.1.4.8.3 Flash lidar 192
- 4.1.4.8.4 Optical phased array (OPA) Lidar 193
- 4.1.4.8.4.1 Overview 193
- 4.1.4.8.4.2 Approaches 194
- 4.1.4.8.5 Other technologies 195
- 4.1.4.8.5.1 Spectral deflection 195
- 4.1.4.8.5.2 Micro-motion technology 195
- 4.1.4.8.5.3 Liquid crystal lidar 196
- 4.1.4.8.5.4 Metamaterials 197
- 4.1.4.8.5.5 GLV-based beam steering 200
- 4.1.4.8.5.6 Liquid lens 201
- 4.1.4.8.5.7 Electro-Optical Deflectors 201
- 4.1.4.8.5.8 Acousto-optical deflectors 202
- 4.1.4.9 Lasers 203
- 4.1.4.9.1 IR emitters 205
- 4.1.4.9.2 Edge-emitting lasers (EEL) 206
- 4.1.4.9.3 Vertical-cavity surface-emitting lasers (VCSEL) 206
- 4.1.4.9.4 External cavity & quantum cascade lasers (QCL) 207
- 4.1.4.9.5 Fiber lasers 209
- 4.1.4.9.5.1 Laser Source Wavelengths 210
- 4.1.4.9.5.2 Fiber Amplifiers 211
- 4.1.4.9.6 Diode-pumped solid-state lasers (DPSSL) 212
- 4.1.4.10 Receivers 212
- 4.1.4.11 Signal and data analysis/processing 215
- 4.1.4.11.1 Point cloud 215
- 4.1.4.11.1.1 3D Point Cloud Modeling 216
- 4.1.4.11.1.2 Reflection Complication 216
- 4.1.4.11.1.3 Background Noise & Interference 217
- 4.1.4.11.1.4 TOF LiDAR's Spatial Data Analysis 217
- 4.1.4.11.1.5 FMCW LiDAR data processing 218
- 4.1.4.11.1 Point cloud 215
- 4.1.4.12 Lidar cleaning 220
- 4.1.4.12.1 Overview 220
- 4.1.4.12.2 Types 220
- 4.1.4.13 LiDAR challenges 221
- 4.1.4.14 Companies 222
- 4.1.4.1 Automotive LiDAR 173
- 4.1.1 Sensors in Autonomous Vehicles 88
- 4.2 ADAS Controllers and ECUs 222
- 4.2.1 Role of ADAS Controllers and ECUs in Autonomous Driving 222
- 4.2.2 ADAS Controllers: Functions and Technologies 223
- 4.2.2.1 Core Functions of ADAS Controllers 223
- 4.2.2.2 Key Technologies in ADAS Controllers 224
- 4.3 Key Technologies in ADAS Controllers 224
- 4.3.1.1 ADAS Controller Architectures 224
- 4.3.1.2 Types of ECUs in Autonomous Vehicles 225
- 4.3.1.2.1 ECU Integration and Communication 225
- 4.3.2 Thermal Management 226
- 4.3.2.1 Thermal Management Strategies 226
- 4.3.2.2 Emerging Technologies in Thermal Management 227
- 4.3.2.3 Thermal Interface Materials in ECUs 227
- 4.3.2.4 Commercial solutions 228
- 4.3.3 Challenges in ADAS Controllers and ECUs for Autonomous Driving 234
- 4.3.4 Future Trends and Developments 234
- 4.3.4.1 Advanced AI and Machine Learning 234
- 4.3.4.2 Edge Computing and Distributed Intelligence 235
- 4.3.4.3 Software-Defined Vehicles 235
- 4.3.4.4 Integration of V2X Communication 236
- 4.3.4.5 Future Trends 236
- 4.4 Emerging Sensor Technologies 236
- 4.4.1 Event-based Vision 237
- 4.4.1.1 Data 237
- 4.4.1.2 Event-based Sensing 238
- 4.4.2 Quantum Dot Optical Sensors 239
- 4.4.2.1 Properties 239
- 4.4.2.2 Infrared (IR) and near-infrared (NIR) sensing 240
- 4.4.2.3 Commercial examples 240
- 4.4.3 Hyperspectral Imaging 243
- 4.4.1 Event-based Vision 237
5 KEY MARKET PLAYERS AND MARKET SHARE 244
- 5.1 Global Tier-1 Market Share Analysis 244
- 5.2 Overall ADAS Sensor Market Share 244
- 5.3 Regional Market Share Variations 246
- 5.4 Front Camera Market Share 246
- 5.4.1 Leading Suppliers and Their Market Positions 246
- 5.4.2 Technology Differentiators Among Top Players 247
- 5.4.3 OEM Partnerships and Supply Agreements 247
- 5.5 Driver Monitoring Systems (DMS) / Occupant Monitoring Systems (OMS) Market Share 248
- 5.5.1 Key Players in the DMS/OMS Space 248
- 5.6 Technological Advancements Driving Market Growth 249
- 5.7 Regulatory Impacts on DMS/OMS Adoption 249
- 5.8 LiDAR Market Share 249
- 5.8.1 Current Market Leaders in Automotive LiDAR 249
- 5.8.2 Emerging Players and Disruptive Technologies 250
- 5.8.3 LiDAR Adoption Trends Among OEMs 250
- 5.9 Radar Market Share 251
- 5.9.1 Market Players in Automotive Radar 252
- 5.9.1.1 All Radar 252
- 5.9.1.2 Front Radar 253
- 5.9.1.3 Side Radar 254
- 5.9.1.4 Regional trends 255
- 5.9.1.5 Commercial radar models 257
- 5.9.1.6 Future Trends 258
- 5.9.1.7 Challenges 259
- 5.9.2 Imaging Radar vs. Traditional Radar Market Dynamics 265
- 5.9.2.1 Trends 266
- 5.9.2.2 Packaging and Integration Trends 268
- 5.9.3 Frequency Trends (24GHz, 77GHz, 79GHz) 268
- 5.9.1 Market Players in Automotive Radar 252
- 5.10 Other ADAS Sensors 269
- 5.10.1 Ultrasonic Sensors 269
- 5.10.2 Infrared Sensors 269
- 5.10.3 GNSS and IMU Suppliers 270
- 5.11 ADAS Controllers and ECUs Market Share 270
- 5.11.1 Leading Suppliers of ADAS Computing Platforms 271
- 5.11.2 Trends in Centralized vs. Distributed ADAS Architectures 271
- 5.12 Analysis of Major Tier-1 Suppliers 271
6 TECHNOLOGY TRENDS AND INNOVATIONS 273
- 6.1 Advancements in Camera Technology 273
- 6.1.1 High-Resolution Sensors 273
- 6.1.2 Wide Dynamic Range (WDR) Capabilities 273
- 6.1.3 Low-Light Performance Improvements 274
- 6.1.4 AI-Enhanced Image Processing 274
- 6.2 Radar Technology Evolution 274
- 6.2.1 4D Imaging Radar 275
- 6.2.2 High-Resolution Radar 275
- 6.2.3 Software-Defined Radar 276
- 6.3 LiDAR Innovations 276
- 6.3.1 Solid-State LiDAR 276
- 6.3.2 MEMS-based LiDAR 277
- 6.3.3 FMCW LiDAR 278
- 6.3.4 Cost Reduction Strategies 279
- 6.4 Sensor Fusion Advancements 279
- 6.4.1 Multi-Sensor Data Fusion Algorithms 280
- 6.4.2 Edge Computing for Sensor Fusion 280
- 6.4.3 AI and Machine Learning in Sensor Fusion 281
- 6.5 ADAS Controller Innovations 281
- 6.5.1 High-Performance Computing Platforms 281
- 6.5.2 Domain Controllers 282
- 6.5.3 Zonal Architecture Trends 282
7 FUTURE OUTLOOK AND MARKET FORECASTS 284
- 7.1 Market Forecast (2024-2035) 284
- 7.1.1 Market Size Projections 285
-
- 7.1.1.1 By Sensor Type 285
- 7.1.1.2 Robotaxis 286
- 7.1.1.3 By Units 287
- 7.1.1.3.1 Cameras 287
- 7.1.1.3.2 Radar 288
- 7.1.1.3.3 LiDAR 290
- 7.1.2 Regional Growth Forecasts 291
- 7.1.3 Expected Technology Adoption Rates 292
-
- 7.2 Impact of Autonomous Vehicle Development on ADAS Market 293
- 7.3 Potential Disruptive Technologies and Their Impact 293
8 REGULATORY LANDSCAPE 295
- 8.1 Global ADAS-Related Regulations 295
- 8.1.1 Legislation for autonomous vehicles 296
- 8.1.1.1 Europe 296
- 8.1.1.2 US 296
- 8.1.1.3 China 297
- 8.1.1.4 Japan 297
- 8.1.2 Driver Monitoring Systems (DMS) 298
- 8.1.1 Legislation for autonomous vehicles 296
- 8.2 Future Regulatory Trends and Their Impact on the Market 300
9 COMPANY PROFILES 302 (98 company profiles)
10 APPENDICES 371
- 10.1 Research Methodology 371
- 10.2 List of Abbreviations 371
11 REFERENCES 373
List of Tables
- Table 1. Automation Levels. 22
- Table 2. Functions of Autonomous Driving at Different Levels. 23
- Table 3. "Big Three" sensors used in Advanced Driver Assistance Systems (ADAS). 25
- Table 4. Sensor Requirements for Different Levels of Autonomy. 26
- Table 5. Sensor Suite for Autonomous Cars-Costs. 26
- Table 6. Estimated Sensor Suite Costs for Different Levels of Autonomy. 27
- Table 7. Front Radar Applications in ADAS. 28
- Table 8. Vehicle Camera Applications in ADAS. 30
- Table 9. LiDAR Types and Characteristics. 31
- Table 10. LiDAR Applications in Automotive Systems. 32
- Table 11. Examples of advanced safety features in mainstream models. 34
- Table 12. Challenges Faced by OEMs in ADAS Integration. 35
- Table 13. Innovative ADAS Solutions in Premium Vehicles. 36
- Table 14. ADAS Performance in Real-World Conditions. 36
- Table 15. Market drivers for ADAS sensors. 37
- Table 16. Safety Regulations and NCAP Requirements. 38
- Table 17. Cost reductions in key sensor technologies. 41
- Table 18. Market Restraints for ADAS sensors. 41
- Table 19. Costs of Advanced ADAS Systems. 43
- Table 20. Technical Challenges in Sensor Reliability. 43
- Table 21. Market opportunities in ADAS sensors. 47
- Table 22. ADAS in Commercial Vehicles and Fleets. 50
- Table 23. Emerging Markets for ADAS Technologies. 51
- Table 24. Market challenges in ADAS sensors. 51
- Table 25. Emerging Players and Startups in the ADAS Ecosystem. 53
- Table 26. Key autonomous driving technologies. 55
- Table 27. Position navigation technologies. 58
- Table 28. Autonomous driving sensor comparison. 62
- Table 29. Recommended Sensor Suites For SAE Level 2 to Level 4 & Robotaxi. 65
- Table 30. Sensor Fusion Technology Trends for Applications. 67
- Table 31. Pure vision vs lidar sensor fusion. 69
- Table 32. Pure vision solution challenges. 70
- Table 33. Optical 3D sensing methods. 71
- Table 34. Automotive camera hardware. 72
- Table 35. 3D depth-aware imaging technologies. 73
- Table 36. General resolution requirements for different sensors and applications. 75
- Table 37. ADAS/AV sensor operating wavelength. 76
- Table 38. Radar hardware. 76
- Table 39. ADAS/AV hardware challenges. 80
- Table 40. Key Players in the ADAS Supply Chain. 82
- Table 41. Global market for ADAS sensors 2022-2035 (by type), billions USD. 83
- Table 42. Global market for ADAS sensors 2022-2035 (by type), billions USD. 84
- Table 43. Regional ADAS Adoption Trends 85
- Table 44. Regulatory Landscape Driving ADAS Adoption. 86
- Table 45. No. of Sensors Required for Autonomous Cars - Level 0 to Level 4 and Robotaxis/ 88
- Table 46. Estimated Cost Range of Sensors for Autonomous Vehicles (in USD). 88
- Table 47.Vehicle camera applications in a table: 90
- Table 48. ADAS Camera Sensors vs Radar Sensors vs Lidar Sensors. 93
- Table 49. CMOS image sensors vs CCD cameras. 95
- Table 50. Advantages and disadvantages of IR Cameras. 102
- Table 51. Applications of DMS. 103
- Table 52. Sensing Technologies by Features. 103
- Table 53. Technology Comparison of Radar, ToF and IR Cameras. 104
- Table 54. Comparison of In-Cabin Sensing Technologies. 105
- Table 55. 3D Imaging Systems. 106
- Table 56. 3D imaging systems. 114
- Table 57. IR VS. VCSEL Light Sources. 116
- Table 58. Comparative analysis of LEDS and VCSEL. 119
- Table 59. Applications of IR Imaging. 120
- Table 60.Companies in VCSEL. 121
- Table 61. Average IR Camera Per Passenger Car: 2020-2035. 121
- Table 62. Global Market for IR Cameras for Passenger Cars 2020-2035 (Million Units). 122
- Table 63. Global Market for IR Cameras, 2020-2035 (US$ Millions). 122
- Table 64. Cost per IR Camera for DMS, 2020-2035 (US$). 122
- Table 65. Eye-Tracking Sensor Categories. 123
- Table 66. Eye-tracking companies. 124
- Table 67. Event-Based Vision: Pros and Cons. 124
- Table 68. Market players in cameras and thermal cameras. 130
- Table 69. Main Methods of Localization. 133
- Table 70. Front Radar ADAS Applications. 138
- Table 71. Side Radar ADAS Applications. 138
- Table 72. Key Radar Components. 139
- Table 73. Comparison of In-Cabin Radars. 147
- Table 74. Comparing 4D imaging radar systems. 148
- Table 75. Vehicles Using 4D Imaging Radars. 149
- Table 76. Transceiver suppliers. 152
- Table 77. Typical supply chain for automotive radar transceivers. 153
- Table 78. Additional participants in the supply chain. 154
- Table 79. Key Radome Material Suppliers. 162
- Table 80. Phased array antenna. 164
- Table 81. Market players in automotive radar. 168
- Table 82. Global Volume Sales of Radar: 2020-2035 (in millions). 170
- Table 83. Radar Per Vehicle 2020-2035. 170
- Table 84. Cost per In-Cabin Radar (in USD) 2020-2035. 171
- Table 85. Market Size for In-Cabin Radar: 2020-2035 (in billion USD) 171
- Table 86. Number of Radars Shipped per Vehicle, 2020-2035. 171
- Table 87. Number of Radars Used in SAE Levels 0, 1 & 2. 171
- Table 88. Global Radar Unit Sales for Different SAE Levels 2020-2035 (Million Units). 171
- Table 89.Global Revenues From Radar by SAE Level 2020-2035 (Billion USD). 172
- Table 90. Radar versus LiDAR. 172
- Table 91. LiDAR classifications. 173
- Table 92.Comparison of lidar product parameters. 175
- Table 93. Automotive lidar players by technology. 176
- Table 94. Cost Reduction Approaches for LiDAR systems. 177
- Table 95. BOM cost for LiDAR. 177
- Table 96. Typical price composition for LiDAR system. 178
- Table 97. Forecast for LiDAR Unit Price by Technology to 2030. 178
- Table 98. 2D versus 3D LiDAR. 183
- Table 99. Time of Flight (TOF) vs. Frequency Modulated Continuous Wave (FMCW). 185
- Table 100. Direct ToF and Indirect ToF. 185
- Table 101. Comparison of TOF and FMCW LiDAR technologies. 188
- Table 102. LiDAR beam steering technologies. 189
- Table 103. Classifications of MEMS Scanner. 190
- Table 104. Comparative analysis of different MEMS actuation methods: 191
- Table 105. Optical phased array (OPA) Lidar. 194
- Table 106. Technology options for laser illumination. 203
- Table 107. Comparing laser choices based on key parameters. 204
- Table 108. IR emitter technologies. 205
- Table 109. EEL vs VCSEL Comparison. 208
- Table 110. Wavelength Comparison: 905 nm vs 1550 nm. 210
- Table 111. Comparison of Common Laser Type & Wavelength Options. 211
- Table 112. Photodetector Choice for LiDAR. 213
- Table 113. LiDAR Detector Comparison. 213
- Table 114. Comparison of Common Photodetectors. 214
- Table 115. LiDAR Detector Companies. 214
- Table 116. LiDAR Signal Applications. 215
- Table 117. TOF LiDAR's Spatial Data Analysis 217
- Table 118. LiDAR challenges. 221
- Table 119. Automotive LiDAR players. 222
- Table 120. Core Functions of ADAS Controllers. 224
- Table 121. ADAS Controller Architectures. 224
- Table 122. Types of ECUs in Autonomous Vehicles. 225
- Table 123. Thermal Conductivity of TIMs in ECUs/Computers. 232
- Table 124. Typical operating temperature ranges for different types of TIMs used in ECUs. 233
- Table 125. Typical density and thermal conductivity ranges for various TIMs used in ECUs. 233
- Table 126. TIM market for ECUs/ADAS computers 2020-2035 (Millions USD). 234
- Table 127. Challenges in ADAS Controllers and ECUs for Autonomous Driving. 234
- Table 128. Event-based sensing: Pros and cons. 238
- Table 129. Top 10 Tier-1 Suppliers by Revenue 2023. 245
- Table 130. Leading Suppliers and Their Market Positions 247
- Table 131. Technology Differentiators Among Top Players. 247
- Table 132. OEM Partnerships and Supply Agreements. 248
- Table 133. Key Players in the DMS/OMS Space. 248
- Table 134. Technological Advancements Driving Market Growth. 249
- Table 135. Current Market Leaders in Automotive LiDAR. 250
- Table 136. Emerging Players and Disruptive Technologies. 250
- Table 137. LiDAR Adoption Trends Among OEMs. 250
- Table 138.Tier One Market Share by Volume (All Radar). 252
- Table 139. Tier One Market Share by Revenue (All Radar). 253
- Table 140. Tier One Market Share by Revenue (Front Radar) 253
- Table 141.Top OEM Front Radar Choices 253
- Table 142. Tier One Market Share by Revenue - Side Radar 254
- Table 143. Top OEM Side Radar Choices. 255
- Table 144. Emerging Radar Players. 261
- Table 145. Imaging Radar vs. Traditional Radar Market Dynamics. 265
- Table 146. Main Players in Ultrasonic Sensors. 269
- Table 147. Main Players in Infrared Sensors. 269
- Table 148. Main Players in GNSS Receivers and IMUs. 270
- Table 149. Leading Suppliers of ADAS Computing Platforms. 271
- Table 150. Trends in Centralized vs. Distributed ADAS Architectures. 271
- Table 151. Key LiDAR cost reduction strategies. 279
- Table 152. Global market size for autonomous vehicles by SAE level from 2022-2035 (Millions). 284
- Table 153. Global Market Size Projections by Sensor Type, Millions USD, 2024-2035. 285
- Table 154. Global Market Size Projections by Sensor Type, Million Units, 2024-2035, 286
- Table 155.Robotaxi Service Revenue 2024-2035 (in million USD) 286
- Table 156. Market Size Projections: Cameras, Million Units, 2024-2035. 287
- Table 157. Market Size Projections: Radar, Million Units, 2024-2035. 288
- Table 158. Radar Unit Sales by SAE Levels 2022-2035 (in millions). 289
- Table 159. Global Market Size Projections: LiDAR, Million Units, 2024-2035. 290
- Table 160. Global Market Size Projections by Region, Millions USD, 2024-2035. 291
- Table 161. Expected Technology Adoption Rates for ADAS. 292
- Table 162. Global ADAS-Related Regulations. 295
- Table 163. Regional Variations in ADAS Requirements 299
- Table 164. Common abbreviations used in the ADAS (Advanced Driver Assistance Systems) sensors market. 371
List of Figures
- Figure 1. Autonomous vehicles. 22
- Figure 2. Roadmap of Autonomous Driving Functions in Private Cars. 25
- Figure 3. Evolution of Sensor Suites. 27
- Figure 4. Automotive 3D sensing. 32
- Figure 5. Evolution of ADAS availability. 33
- Figure 6.. Autonomous Driving Integration with V2X. 48
- Figure 7.Types of ADAS sensors. 61
- Figure 8. Perception and sensing for autonomous vehicles under adverse weather conditions. 64
- Figure 9. Global market for ADAS sensors 2022-2035 (by type), billions USD. 84
- Figure 10. Global market for ADAS sensors 2022-2035 (by type), billions USD. 85
- Figure 11. Toyota external camera. 91
- Figure 12. Side E-Mirror. 92
- Figure 13. Internal ADAS camera. 92
- Figure 14. RGB Cameras for Autonomous Vehicles 95
- Figure 15. Front vs backside illumination. 96
- Figure 16. OmniVision Global Shutter Sensor chip. 100
- Figure 17. ADAS thermal camera images. 101
- Figure 18. Driver Monitoring System. 103
- Figure 19. Driver Monitoring Systems (DMS) with S32V234 Vision Processor. 105
- Figure 20. Infineon DMS - REAL3™ ToF Imager IRS2877A(S). 109
- Figure 21. Exploded view of Magna's driver monitoring system built into a rearview mirror. 110
- Figure 22. LG Innotek ToF Camera for DMS. 111
- Figure 23. PreAct Mojave Flash LiDAR for OMS. 113
- Figure 24. ADAS/AV Thermal Camera. 117
- Figure 25. TriEye. 119
- Figure 26. LANXESS Concept Radar. 140
- Figure 27. OPMobility Functionalized Bumper. 151
- Figure 28. Echodyne metamaterial radar mounted on automobile. 165
- Figure 29. Lunewave 3D printed radar. 166
- Figure 30. LiDAR working principle. 175
- Figure 31. Automotive lidar supply chain. 176
- Figure 32. Metamaterials in automotive applications. 199
- Figure 33. Lumotive advanced beam steering concept. 199
- Figure 34. Illustration of EchoDrive operation. 200
- Figure 35. Emberion Sensor. 241
- Figure 36. Global market size for autonomous vehicles by SAE level from 2022-2035 (Millions). 285
- Figure 37. Market Size Projections: Cameras, Million Units, 2024-2035. 288
- Figure 38. Market Size Projections: Radar, Million Units, 2024-2035. 289
- Figure 39. Radar Unit Sales by SAE Levels 2022-2035 (in millions). 290
- Figure 40. Global Market Size Projections: LiDAR, Million Units, 2024-2035. 291
- Figure 41. Market Size Projections by Region, Millions USD, 2024-2035. 292
- Figure 42. Continental ARS540. 312
- Figure 43. Schematic of MESA System. 315
- Figure 44. EchoGuard Radar System. 316
- Figure 45. (Hesai AT512 LiDAR). 321
- Figure 46. Koito Manufacturing LiDAR. 326
- Figure 47. LIDAR system for autonomous vehicles. 331
- Figure 48. Light-control metasurface beam-steering chips. 332
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer.
To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.