The Global Market for Antimicrobial Nanocoatings

0

The global antimicrobial nanocoatings market continues to grow in areas such as medical devices, urinary catheters and stainless steel coatings.

New legislation and growing microbial resistance against metal ions, antibiotics and the development of resistant strains has resulted in coating manufacturers seeking alternatives to traditional antimicrobial coatings. The development of antimicrobial agents with low toxicity and ability to inhibit microbial contamination is a key issue in the development of new coatings for healthcare, food packaging and food and pharmaceutical production. The ability of nanomaterials to meet these has led to their increased use in these and numerous other markets such as consumer electronics, textiles, water filtration and household care. The addition of nanomaterials to coatings massively improves coating’s properties, including appearance, self-cleaning power, biocidal activity, corrosion resistance, moisture absorbance, conductivity and optical properties

A wide variety of organic or inorganic biocides are available commercially and these demonstrate a wide variety of biocidal and biostatic mechanisms. Nanoparticles of different materials have demonstrated enhanced antimicrobial activity. This report looks at improvements over existing antimicrobial agents offered by nanosilver, titanium dioxide nanoparticles, zinc oxide nanoparticles, iron oxide nanoparticles, nanocellulose, copper nanoparticles, carbon nanomaterials and nano chitosan.

Report contents include:

  • Market drivers and trends in anti-microbial nanocoatings
  • Benefits of using anti-microbial nanocoatings over traditional coatings
  • Types of nanomaterials utilized in anti-microbial nanocoatings
  • Markets and applications of anti-microbial nanocoatings
  • Global anti-microbial coatings market size and nanocoatings opportunity
  • In depth market assessment of anti-microbial nanocoatings including revenues, addressable market opportunities, penetration potential for anti-microbial nanocoatings.
  • Markets covered include food packaging,
  • Demand by market for anti-microbial nanocoatings.
  • Profiles of 75 anti-microbial nanocoatings companies including products and target markets. Companies profiled include Agienic Antimicrobials, Bactiguard AB, BioCote, Bioni CS GmbH, DSP Co., Ltd., Eoncoat, LLC, F Group Nano, Flora Coatings, GBneuhaus GmbH, Imbed Biosciences, Inc., Kastus Technologies Ltd., Melodea Ltd., Nano-Care Deutschland AG, Nano CAME Co., Ltd., Nanomedic Technologies Ltd., NanoPhyll, Inc. and many more.

Revised November 2019 | 141 pages, 28 tables, 54 figures | Table of contents

If you have any questions about this report, please do not hesitate to contact our report team at info@futuremarketsinc.com or call +44 (0) 207 112 7500.

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com

The Global Market for Antimicrobial Nanocoatings
The Global Market for Antimicrobial Nanocoatings
PDF download.
The Global Market for Antimicrobial Nanocoatings
The Global Market for Antimicrobial Nanocoatings
Print edition (including tracked delivery).
The Global Market for Antimicrobial Nanocoatings
The Global Market for Antimicrobial Nanocoatings
PDF and print editions.

TABLE OF CONTENTS

1    INTRODUCTION……………………………………………………………………. 14

  • 1.1     Aims and objectives of the study……………………………………………………………………………………………… 14
  • 1.2     Market definition………………………………………………………………………………………………………………….. 14
    • 1.2.1       Properties of nanomaterials……………………………………………………………………………………………. 15
  • 1.2.2       Categorization…………………………………………………………………………………………………………….. 15

2    RESEARCH METHODOLOGY………………………………………………… 17

3    EXECUTIVE SUMMARY…………………………………………………………. 18

  • 3.1     High performance coatings…………………………………………………………………………………………………….. 18
  • 3.2     Nanocoatings………………………………………………………………………………………………………………………. 19
  • 3.3     Market drivers and trends………………………………………………………………………………………………………. 21
  • 3.4     Global market size and opportunity to 2030……………………………………………………………………………….. 23
    • 3.4.1       End user market for nanocoatings……………………………………………………………………………………. 23
    • 3.4.2       Global revenues for nanocoatings 2010-2030…………………………………………………………………….. 26
    • 3.4.3       Global revenues for nanocoatings, by market…………………………………………………………………….. 27
      • 3.4.3.1    The market in 2017………………………………………………………………………………………………….. 27
      • 3.4.3.2    The market in 2018………………………………………………………………………………………………….. 29
      • 3.4.3.3    The market in 2030………………………………………………………………………………………………….. 30
    • 3.4.4       Regional demand for nanocoatings………………………………………………………………………………….. 31
  • 3.5     Market and technical challenges……………………………………………………………………………………………… 33

4    NANOCOATINGS SYNTHESIS AND PRODUCTION………………….. 35

  • 4.1     Properties of nanocoatings…………………………………………………………………………………………………….. 35
  • 4.2     Benefits of using nanocoatings………………………………………………………………………………………………… 36
    • 4.2.1       Types of nanocoatings………………………………………………………………………………………………….. 37
  • 4.3     Production and synthesis methods…………………………………………………………………………………………… 37

5    NANOMATERIALS USED IN ANTIMICROBIAL NANOCOATINGS 54

  • 5.1     CARBON NANOMATERIALS…………………………………………………………………………………………………. 55
    • 5.1.1       Graphene…………………………………………………………………………………………………………………… 56
      • 5.1.1.1    Graphene oxide nanosheets………………………………………………………………………………………. 56
      • 5.1.1.2    Reduced graphene oxide (rGO) nanosheets………………………………………………………………….. 57
      • 5.1.1.3    Markets and applications…………………………………………………………………………………………… 58
      • 5.1.1.4    Commercial activity………………………………………………………………………………………………….. 58
    • 5.1.2       Carbon nanotubes……………………………………………………………………………………………………….. 59
    • 5.1.3       Fullerenes………………………………………………………………………………………………………………….. 59
  • 5.2     SILICON DIOXIDE/SILICA NANOPARTICLES…………………………………………………………………………… 60
    • 5.2.1       Properties and antimicrobial coatings applications……………………………………………………………….. 60
  • 5.3     NANOSILVER…………………………………………………………………………………………………………………….. 61
    • 5.3.1       Properties and antimicrobial coatings applications……………………………………………………………….. 61
    • 5.3.2       Markets and applications……………………………………………………………………………………………….. 61
    • 5.3.3       Commercial activity………………………………………………………………………………………………………. 62
      • 5.3.3.1    Wound dressings…………………………………………………………………………………………………….. 62
      • 5.3.3.2    Household products…………………………………………………………………………………………………. 62
  • 5.4     TITANIUM DIOXIDE NANOPARTICLES…………………………………………………………………………………… 63
    • 5.4.1       Properties and antimicrobial coatings applications……………………………………………………………….. 63
      • 5.4.1.1    Exterior and construction glass coatings……………………………………………………………………….. 64
      • 5.4.1.2    Outdoor air pollution…………………………………………………………………………………………………. 66
      • 5.4.1.3    Interior coatings………………………………………………………………………………………………………. 66
      • 5.4.1.4    Improving indoor air quality………………………………………………………………………………………… 66
      • 5.4.1.5    Medical facilities………………………………………………………………………………………………………. 67
      • 5.4.1.6    Wastewater Treatment……………………………………………………………………………………………… 67
  • 5.5     ZINC OXIDE NANOPARTICLES……………………………………………………………………………………………… 68
    • 5.5.1       Properties and antimicrobial coatings applications……………………………………………………………….. 68
  • 5.6     NANOCELLULOSE………………………………………………………………………………………………………………. 69
    • 5.6.1       Properties and antimicrobial coatings applications……………………………………………………………….. 69
    • 5.6.2       Cellulose nanofibers (CNF)……………………………………………………………………………………………. 70
    • 5.6.3       Cellulose Nanocrystals (CNC)…………………………………………………………………………………….. 73
  • 5.7     CHITOSAN NANOPARTICLES……………………………………………………………………………………………….. 75
    • 5.7.1       Properties and antimicrobial coatings applications……………………………………………………………….. 75
    • 5.7.2       Applications………………………………………………………………………………………………………………… 76
      • 5.7.2.1    Wound dressings…………………………………………………………………………………………………….. 76
      • 5.7.2.2    Packaging coatings and films……………………………………………………………………………………… 76
      • 5.7.2.3    Food storage………………………………………………………………………………………………………….. 76
  • 5.8     COPPER NANOPARTICLES………………………………………………………………………………………………….. 76
    • 5.8.1       Properties and antimicrobial coatings applications……………………………………………………………….. 76

6    ANTIMICROBIAL NANOCOATINGS MARKET………………………….. 78

  • 6.1     Market drivers and trends………………………………………………………………………………………………………. 80
  • 6.2     Benefits of anti-bacterial nanocoatings……………………………………………………………………………………… 82
  • 6.3     Applications………………………………………………………………………………………………………………………… 84
  • 6.4     Global market size for antimicrobial nanocoatings……………………………………………………………………….. 85
    • 6.4.1       Antimicrobial nanocoatings opportunity…………………………………………………………………………….. 86
      • 6.4.1.1    By end user market………………………………………………………………………………………………….. 86
      • 6.4.1.2    By nanocoatings type……………………………………………………………………………………………….. 87
  • 6.4.2       Global revenues 2010-2030……………………………………………………………………………………………. 89

7    ANTIMICROBIAL NANOCOATINGS COMPANIES……………………. 91

8    REFERENCES…………………………………………………………………….. 134

 

TABLES

  • Table 1: Categorization of nanomaterials……………………………………………………………………………………………….. 15
  • Table 2: Anti-microbial nanocoatings-Nanomaterials used, principles, properties and applications………………………. 18
  • Table 3: Properties of nanocoatings……………………………………………………………………………………………………… 20
  • Table 4. Market drivers and trends in nanocoatings………………………………………………………………………………….. 21
  • Table 5: End user markets for nanocoatings…………………………………………………………………………………………… 23
  • Table 6: Global revenues for nanocoatings, 2010-2030, millions USD, conservative estimate……………………………. 26
  • Table 7: Global revenues for nanocoatings, 2017, millions USD, by market…………………………………………………… 27
  • Table 8: Estimated revenues for nanocoatings, 2018, millions USD, by market………………………………………………. 29
  • Table 9: Estimated revenues for nanocoatings, 2030, millions USD, by market………………………………………………. 30
  • Table 10: Market and technical challenges for nanocoatings………………………………………………………………………. 33
  • Table 11: Technology for synthesizing nanocoatings agents………………………………………………………………………. 37
  • Table 12: Film coatings techniques………………………………………………………………………………………………………. 38
  • Table 13: Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces……………… 48
  • Table 14: Disadvantages of commonly utilized superhydrophobic coating methods…………………………………………. 50
  • Table 15: Applications of oleophobic & omniphobic coatings………………………………………………………………………. 52
  • Table 16: Nanomaterials used in nanocoatings and applications…………………………………………………………………. 54
  • Table 17. Types of carbon-based nanoparticles as antimicrobial agent, their mechanisms of action and characteristics……………………………………………………………………………………………………………………………………………….. 55
  • Table 18. Bactericidal characters of graphene-based materials…………………………………………………………………… 57
  • Table 19. Markets and applications for antimicrobial graphene nanocoatings…………………………………………………. 58
  • Table 20. Commercial activity in antimicrobial graphene nanocoatings…………………………………………………………. 58
  • Table 21. Markets and applications for antimicrobial nanosilver nanocoatings………………………………………………… 62
  • Table 22. Commercial activity in antimicrobial nanosilver nanocoatings………………………………………………………… 62
  • Table 23: Applications of cellulose nanofibers(CNF)…………………………………………………………………………………. 71
  • Table 24: Examples of antimicrobial immobilization into cellulose nanofibers………………………………………………….. 72
  • Table 25. Mechanism of chitosan antimicrobial action……………………………………………………………………………….. 75
  • Table 26: Nanocoatings market structure……………………………………………………………………………………………….. 78
  • Table 27: Nanomaterials utilized in Anti-microbial coatings-benefits and applications……………………………………….. 82
  • Table 28: Anti-bacterial nanocoatings markets and applications………………………………………………………………….. 84
  • Table 29: Market assessment of Antimicrobial nanocoatings………………………………………………………………………. 88
  • Table 30: Potential market opportunity for Antimicrobial nanocoatings………………………………………………………….. 89
  • Table 31: Revenues for Antimicrobial nanocoatings, 2014-2030, US$, conservative and high estimates………………. 89

FIGURES

  • Figure 1: Global revenues for nanocoatings, 2010-2030, millions USD, conservative estimate…………………………… 27
  • Figure 2: Global market revenues for nanocoatings 2017, millions USD, by market…………………………………………. 28
  • Figure 3: Markets for nanocoatings 2017, %…………………………………………………………………………………………… 29
  • Figure 4: Estimated market revenues for nanocoatings 2018, millions USD, by market…………………………………….. 30
  • Figure 5: Estimated market revenues for nanocoatings 2030, millions USD, by market…………………………………….. 31
  • Figure 6: Regional demand for nanocoatings, 2017………………………………………………………………………………….. 32
  • Figure 7: Regional demand for nanocoatings, 2018………………………………………………………………………………….. 32
  • Figure 8: Regional demand for nanocoatings, 2030………………………………………………………………………………….. 33
  • Figure 9: Hydrophobic fluoropolymer nanocoatings on electronic circuit boards………………………………………………. 35
  • Figure 10: Nanocoatings synthesis techniques………………………………………………………………………………………… 38
  • Figure 11: Techniques for constructing superhydrophobic coatings on substrates…………………………………………… 40
  • Figure 12: Electrospray deposition……………………………………………………………………………………………………….. 41
  • Figure 13: CVD technique…………………………………………………………………………………………………………………… 42
  • Figure 14: Schematic of ALD………………………………………………………………………………………………………………. 44
  • Figure 15: SEM images of different layers of TiO2 nanoparticles in steel surface…………………………………………….. 45
  • Figure 16: The coating system is applied to the surface.The solvent evaporates…………………………………………….. 46
  • Figure 17: A first organization takes place where the silicon-containing bonding component (blue dots in figure 2) bonds covalently with the surface and cross-links with neighbouring molecules to form a strong three-dimensional…… 46
  • Figure 18: During the curing, the compounds or- ganise themselves in a nanoscale monolayer. The fluorine-containing repellent component (red dots in figure 3) on top makes the glass hydro- phobic and oleophobic…………………. 46
  • Figure 19: (a) Water drops on a lotus leaf………………………………………………………………………………………………. 48
  • Figure 20: A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°……………………………………………….. 49
  • Figure 21: Contact angle on superhydrophobic coated surface……………………………………………………………………. 49
  • Figure 22: Self-cleaning nanocellulose dishware……………………………………………………………………………………… 51
  • Figure 23: SLIPS repellent coatings………………………………………………………………………………………………………. 52
  • Figure 24: Omniphobic coatings…………………………………………………………………………………………………………… 53
  • Figure 25: Antimicrobial activity of Graphene oxide (GO)…………………………………………………………………………… 57
  • Figure 26. Mechanism of antimicrobial activity of carbon nanotubes…………………………………………………………….. 59
  • Figure 27 Anti-bacterials mechanism of silver nanoparticle coating………………………………………………………………. 61
  • Figure 28: Mechanism of photocatalysis on a surface treated with TiO2 nanoparticles……………………………………… 63
  • Figure 29:  Schematic showing the self-cleaning phenomena on superhydrophilic surface………………………………… 64
  • Figure 30: Titanium dioxide-coated glass (left) and ordinary glass (right)……………………………………………………….. 65
  • Figure 31:  Self-Cleaning mechanism utilizing photooxidation……………………………………………………………………… 65
  • Figure 32: Schematic of photocatalytic air purifying pavement…………………………………………………………………….. 66
  • Figure 33: Schematic of photocatalytic indoor air purification filter……………………………………………………………….. 67
  • Figure 34: Schematic of photocatalytic water purification…………………………………………………………………………… 68
  • Figure 35: Types of nanocellulose………………………………………………………………………………………………………… 70
  • Figure 36: CNF gel……………………………………………………………………………………………………………………………. 71
  • Figure 37: TEM image of cellulose nanocrystals………………………………………………………………………………………. 73
  • Figure 38: Extracting CNC from trees……………………………………………………………………………………………………. 74
  • Figure 39: CNC slurry………………………………………………………………………………………………………………………… 74
  • Figure 40: Schematic of typical commercialization route for nanocoatings producer…………………………………………. 78
  • Figure 41: Market drivers and trends in anti-bacterial nanocoatings……………………………………………………………… 80
  • Figure 42. Nano-coated self-cleaning touchscreen…………………………………………………………………………………… 85
  • Figure 43: Current end user markets for Anti-microbial nanocoatings, based on nanocoatings company sales 2018 (Millions USD)……………………………………………………………………………………………………………………………. 86
  • Figure 44. End user markets for Anti-microbial nanocoatings 2018, %, based on nanocoatings company sales……… 87
  • Figure 45. Market for antimicrobial nanocoatings 2018, by type (millions USD)………………………………………………. 87
  • Figure 46. Market for antimicrobial nanocoatings 2018, type, %………………………………………………………………….. 88
  • Figure 47: Revenues for Antimicrobial nanocoatings, 2010-2030, US$…………………………………………………………. 90
  • Figure 48. Lab tests on DSP coatings………………………………………………………………………………………………….. 100
  • Figure 49. Microlyte® Matrix bandage for surgical wounds……………………………………………………………………….. 109
  • Figure 50. NanoSeptic surfaces………………………………………………………………………………………………………….. 121
  • Figure 51: Nippon Paper Industries’ adult diapers…………………………………………………………………………………… 123
  • Figure 52: 2 wt.% CNF suspension…………………………………………………………………………………………………….. 128
  • Figure 53. BiNFi-s Dry Powder…………………………………………………………………………………………………………… 129
  • Figure 54. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet……………………………………………………………. 129
  • Figure 55: Silk nanofiber (right) and cocoon of raw material……………………………………………………………………… 130