Carbon Capture, Utilization, and Storage (CCUS) Global Market 2025-2045

0

cover

  • Published: July 2024
  • Pages: 630
  • Tables: 183
  • Figures: 158
  • Series: Bio-Economy

 

As the world intensifies its efforts to achieve net-zero emissions, CCUS technologies are emerging as critical solutions for reducing emissions across essential hard-to-abate sectors sectors. Carbon capture, utilization, and storage (CCUS) refers to technologies that capture CO2 emissions and use or store them, leading to permanent sequestration. CCUS technologies capture carbon dioxide emissions from large power sources, including power generation or industrial facilities that use either fossil fuels or biomass for fuel. CO2 can also be captured directly from the atmosphere. If not utilized onsite, captured CO2  is compressed and transported by pipeline, ship, rail or truck to be used in a range of applications, or injected into deep geological formations (including depleted oil and gas reservoirs or saline formations) which trap th CO2 for permanent storage.

Carbon Capture, Utilization, and Storage (CCUS) Global Market 2025-2045 offers an in-depth analysis offers valuable insights for stakeholders in the energy, industrial, and environmental sectors, as well as policymakers, investors, and researchers seeking to understand the transformative potential of CCUS in the global transition to a low-carbon economy. Report contents include:

  • Analysis of market trends for integrated CCUS solutions, the rise of direct air capture technologies, and the growing interest in CO2 utilization for value-added products.
  • In-depth examination of key CCUS technologies, their current state of development, and future innovations:
    • Carbon Capture:
      • Post-combustion capture
      • Pre-combustion capture
      • Oxy-fuel combustion
      • Direct air capture (DAC)
      • Emerging capture technologies (e.g., membrane-based, cryogenic)
    • Carbon Utilization:
      • CO2-derived fuels and chemicals
      • Building materials and concrete curing
      • Enhanced oil recovery (EOR)
      • Biological utilization (e.g., algae cultivation)
      • Mineralization processes
    • Carbon Storage:
      • Geological sequestration in saline aquifers
      • Depleted oil and gas reservoirs
      • Enhanced oil recovery (EOR) with storage
      • Mineral carbonation
      • Ocean storage (potential future applications)
  • Technology readiness levels (TRLs) of various CCUS approaches, highlighting areas of rapid advancement and identifying potential game-changers in the industry.
  • Global CCUS capacity additions by technology and region
  • CO2 capture volumes by source (power generation, industry, direct air capture)
  • Utilization volumes by application (fuels, chemicals, materials, EOR)
  • Storage volumes by type (geological, mineralization, other)
  • Market size and revenue projections for key CCUS segments
  • Investment trends and capital expenditure forecasts
  • Comprehensive overview of the CCUS industry value chain, from technology providers and equipment manufacturers to project developers and end-users. 
    • Detailed profiles of over 300 companies across the CCUS value chain. Companies profiled include Again, Airhive, Aker Carbon Capture, AspiraDAC, Capsol Technologies, Captura, Carbofex Oy, Carbon Blue, CarbonCapture, CarbonFree, Charm Industrial, Climeworks, Exxon Mobil, Graphyte, Holocene, ION Clean Energy, MCI Carbon, Mission Zero, Neustark, Noya, Octavia Carbon, Removr, Sirona Technologies, and Storegga. 
    • Analysis of key players' strategies, market positioning, and competitive advantages
    • Assessment of partnerships, mergers, and acquisitions shaping the industry
    • Evaluation of emerging start-ups and innovative technology providers
  • Regional Analysis including current and planned CCUS projects, regulatory frameworks, investment climates, and growth opportunities.
  • Policy and Regulatory Landscape
    • Analysis of global, regional, and national climate policies impacting CCUS
    • Overview of carbon pricing mechanisms and their effect on CCUS economics
    • Examination of incentives, tax credits, and support schemes for CCUS projects
    • Assessment of regulatory frameworks for CO2 transport and storage
    • Projections of future policy developments and their market implications
  • Detailed cost breakdowns for capture, transport, utilization, and storage
  • Analysis of cost reduction trends and projections
  • Comparison of CCUS costs across different applications and technologies
  • Assessment of revenue streams and business models for CCUS projects
  • Evaluation of the role of carbon markets in CCUS economics
  • Challenges and Opportunities including:
    • High capital and operational costs
    • Technological barriers and scale-up issues
    • Public perception and social acceptance
    • Regulatory uncertainty and policy risks
    • Infrastructure development needs
  • Emerging opportunities, such as:
    • Integration with hydrogen production for blue hydrogen
    • Negative emissions technologies (NETs) like BECCS and DACCS
    • Development of CCUS hubs and clusters
    • Novel CO2 utilization pathways in high-value products
    • Potential for CCUS in hard-to-abate sectors
  • Future Outlook and Scenarios including
    • Pace of technological innovation
    • Strength of climate policies and carbon pricing
    • Public acceptance and support for CCUS
    • Integration with other clean energy technologies
    • Global economic trends and energy market dynamics

 

This comprehensive market report is an essential resource for:

  • Energy and industrial companies exploring CCUS opportunities
  • Technology providers and equipment manufacturers in the CCUS space
  • Project developers and investors in clean energy and climate solutions
  • Policymakers and regulators shaping climate and energy policies
  • Research institutions and academics studying carbon management strategies
  • Environmental organizations and think tanks focused on climate change mitigation
  • Financial institutions and analysts assessing the CCUS market potential

 

1             ABBREVIATIONS          30

 

2             RESEARCH METHODOLOGY              31

  • 2.1        Definition of Carbon Capture, Utilisation and Storage (CCUS)     31
  • 2.2        Technology Readiness Level (TRL)   32

 

3             EXECUTIVE SUMMARY            34

  • 3.1        Main sources of carbon dioxide emissions 34
  • 3.2        CO2 as a commodity                35
  • 3.3        Meeting climate targets          38
  • 3.4        Market drivers and trends      38
  • 3.5        The current market and future outlook         39
  • 3.6        CCUS Industry developments 2020-2024 40
  • 3.7        CCUS investments     46
    • 3.7.1    Venture Capital Funding         46
      • 3.7.1.1 2010-2022      46
      • 3.7.1.2 CCUS VC deals 2022-2024  47
  • 3.8        Government CCUS initiatives             49
    • 3.8.1    North America              49
    • 3.8.2    Europe                50
    • 3.8.3    Asia      51
      • 3.8.3.1 Japan  51
      • 3.8.3.2 Singapore         51
      • 3.8.3.3 China  51
  • 3.9        Market map    53
  • 3.10     Commercial CCUS facilities and projects  56
    • 3.10.1 Facilities           56
      • 3.10.1.1            Operational     56
      • 3.10.1.2            Under development/construction    59
  • 3.11     CCUS Value Chain     64
  • 3.12     Key market barriers for CCUS             65
  • 3.13     Carbon pricing              65
    • 3.13.1 Compliance Carbon Pricing Mechanisms  66
    • 3.13.2 Alternative to Carbon Pricing: 45Q Tax Credits        68
    • 3.13.3 Business models         69
    • 3.13.4 The European Union Emission Trading Scheme (EU ETS)  70
    • 3.13.5 Carbon Pricing in the US        71
    • 3.13.6 Carbon Pricing in China          71
    • 3.13.7 Voluntary Carbon Markets    72
    • 3.13.8 Challenges with Carbon Pricing        73
  • 3.14     Global market forecasts         74
    • 3.14.1 CCUS capture capacity forecast by end point         74
    • 3.14.2 Capture capacity by region to 2045, Mtpa  75
    • 3.14.3 Revenues          76
    • 3.14.4 CCUS capacity forecast by capture type     76

 

4             INTRODUCTION          78

  • 4.1        What is CCUS?             78
    • 4.1.1    Carbon Capture           83
      • 4.1.1.1 Source Characterization        83
      • 4.1.1.2 Purification      84
      • 4.1.1.3 CO2 capture technologies    84
    • 4.1.2    Carbon Utilization      87
      • 4.1.2.1 CO2 utilization pathways       88
    • 4.1.3    Carbon storage            89
      • 4.1.3.1 Passive storage            89
      • 4.1.3.2 Enhanced oil recovery              90
  • 4.2        Transporting CO2        91
    • 4.2.1    Methods of CO2 transport    91
      • 4.2.1.1 Pipeline              92
      • 4.2.1.2 Ship      92
      • 4.2.1.3 Road    93
      • 4.2.1.4 Rail       93
    • 4.2.2    Safety  93
  • 4.3        Costs  94
    • 4.3.1    Cost of CO2 transport              95
  • 4.4        Carbon credits              97

 

5             CARBON DIOXIDE CAPTURE               98

  • 5.1        CO₂ capture technologies     98
  • 5.2        >90% capture rate      100
  • 5.3        99% capture rate         100
  • 5.4        CO2 capture from point sources      103
    • 5.4.1    Energy Availability and Costs              105
    • 5.4.2    Power plants with CCUS        106
    • 5.4.3    Transportation              107
    • 5.4.4    Global point source CO2 capture capacities           107
    • 5.4.5    By source          109
    • 5.4.6    Blue hydrogen               110
      • 5.4.6.1 Steam-methane reforming (SMR)    111
      • 5.4.6.2 Autothermal reforming (ATR)               111
      • 5.4.6.3 Partial oxidation (POX)             112
      • 5.4.6.4 Sorption Enhanced Steam Methane Reforming (SE-SMR)               113
      • 5.4.6.5 Pre-Combustion vs. Post-Combustion carbon capture     114
      • 5.4.6.6 Blue hydrogen projects            115
      • 5.4.6.7   Costs  115
      • 5.4.6.8 Market players               117
    • 5.4.8    Carbon capture in cement    117
      • 5.4.8.1 CCUS Projects              118
      • 5.4.8.2 Carbon capture technologies             119
      • 5.4.8.3 Costs  120
      • 5.4.8.4 Challenges      121
    • 5.4.9    Maritime carbon capture       121
  • 5.5        Main carbon capture processes        122
    • 5.5.1    Materials           122
    • 5.5.2    Post-combustion        123
      • 5.5.2.1 Chemicals/Solvents  125
      • 5.5.2.2 Amine-based post-combustion CO₂ absorption    126
      • 5.5.2.3 Physical absorption solvents              127
    • 5.5.3    Oxy-fuel combustion                129
      • 5.5.3.1 Oxyfuel CCUS cement projects         131
      • 5.5.3.2 Chemical Looping-Based Capture  132
    • 5.5.4    Liquid or supercritical CO2: Allam-Fetvedt Cycle  133
    • 5.5.5    Pre-combustion           134
  • 5.6        Carbon separation technologies       135
    • 5.6.1    Absorption capture    136
    • 5.6.2    Adsorption capture    140
      • 5.6.2.1 Solid sorbent-based CO₂ separation             141
      • 5.6.2.2 Metal organic framework (MOF) adsorbents             143
      • 5.6.2.3 Zeolite-based adsorbents     143
      • 5.6.2.4 Solid amine-based adsorbents         143
      • 5.6.2.5 Carbon-based adsorbents   144
      • 5.6.2.6 Polymer-based adsorbents  145
      • 5.6.2.7 Solid sorbents in pre-combustion   145
      • 5.6.2.8 Sorption Enhanced Water Gas Shift (SEWGS)          146
      • 5.6.2.9 Solid sorbents in post-combustion 147
    • 5.6.3    Membranes    149
      • 5.6.3.1 Membrane-based CO₂ separation   150
      • 5.6.3.2 Post-combustion CO₂ capture           153
        • 5.6.3.2.1           Facilitated transport membranes    153
      • 5.6.3.3 Pre-combustion capture        154
    • 5.6.4    Liquid or supercritical CO2 (Cryogenic) capture    155
      • 5.6.4.1 Cryogenic CO₂ capture            156
    • 5.6.5    Calcium Looping         157
      • 5.6.5.1 Calix Advanced Calciner        158
    • 5.6.6    Other technologies    158
      • 5.6.6.1 LEILAC process            159
      • 5.6.6.2 CO₂ capture with Solid Oxide Fuel Cells (SOFCs) 159
      • 5.6.6.3 CO₂ capture with Molten Carbonate Fuel Cells (MCFCs) 160
      • 5.6.6.4 Microalgae Carbon Capture 161
    • 5.6.7    Comparison of key separation technologies             162
    • 5.6.8    Technology readiness level (TRL) of gas separation technologies               163
  • 5.7        Opportunities and barriers   164
  • 5.8        Costs of CO2 capture               165
  • 5.9        CO2 capture capacity              166
  • 5.10     Bioenergy with carbon capture and storage (BECCS)         168
    • 5.10.1 Overview of technology           168
    • 5.10.2 Biomass conversion 170
    • 5.10.3 BECCS facilities           170
    • 5.10.4 Challenges      171
  • 5.11     Direct air capture (DAC)         172
    • 5.11.1 Technology description           172
      • 5.11.1.1            Sorbent-based CO2 Capture               172
      • 5.11.1.2            Solvent-based CO2 Capture                172
      • 5.11.1.3            DAC Solid Sorbent Swing Adsorption Processes    173
      • 5.11.1.4            Electro-Swing Adsorption (ESA) of CO2 for DAC     173
      • 5.11.1.5            Solid and liquid DAC 174
    • 5.11.2 Advantages of DAC    176
    • 5.11.3 Deployment    176
    • 5.11.4 Point source carbon capture versus Direct Air Capture     177
    • 5.11.5 Technologies  178
      • 5.11.5.1            Solid sorbents               179
      • 5.11.5.2            Liquid sorbents            181
      • 5.11.5.3            Liquid solvents             182
      • 5.11.5.4            Airflow equipment integration            182
      • 5.11.5.5            Passive Direct Air Capture (PDAC)   183
      • 5.11.5.6            Direct conversion        183
      • 5.11.5.7            Co-product generation            183
      • 5.11.5.8            Low Temperature DAC             184
      • 5.11.5.9            Regeneration methods            184
    • 5.11.6 Electricity and Heat Sources               184
    • 5.11.7 Commercialization and plants           185
    • 5.11.8 Metal-organic frameworks (MOFs) in DAC  186
    • 5.11.9 DAC plants and projects-current and planned        186
    • 5.11.10              Capacity forecasts     193
    • 5.11.11              Costs  194
    • 5.11.12              Market challenges for DAC   200
    • 5.11.13              Market prospects for direct air capture        201
    • 5.11.14              Players and production           203
    • 5.11.15              Co2 utilization pathways        204
    • 5.11.16              Markets for Direct Air Capture and Storage (DACCS)          206
      • 5.11.16.1         Fuels    206
        • 5.11.16.1.1     Overview           206
        • 5.11.16.1.2     Production routes       208
        • 5.11.16.1.3     Methanol          208
        • 5.11.16.1.4     Algae based biofuels 209
        • 5.11.16.1.5     CO₂-fuels from solar 210
        • 5.11.16.1.6     Companies     212
        • 5.11.16.1.7     Challenges      214
      • 5.11.16.2         Chemicals, plastics and polymers  214
        • 5.11.16.2.1     Overview           214
        • 5.11.16.2.2     Scalability        215
        • 5.11.16.2.3     Plastics and polymers              216
          • 5.11.16.2.3.1 CO2 utilization products        217
        • 5.11.16.2.4     Urea production           218
        • 5.11.16.2.5     Inert gas in semiconductor manufacturing 218
        • 5.11.16.2.6     Carbon nanotubes     218
        • 5.11.16.2.7     Companies     218
      • 5.11.16.3         Construction materials           220
        • 5.11.16.3.1     Overview           220
        • 5.11.16.3.2     CCUS technologies   221
        • 5.11.16.3.3     Carbonated aggregates          223
        • 5.11.16.3.4     Additives during mixing           225
        • 5.11.16.3.5     Concrete curing           225
        • 5.11.16.3.6     Costs  225
        • 5.11.16.3.7     Companies     225
        • 5.11.16.3.8     Challenges      227
      • 5.11.16.4         CO2 Utilization in Biological Yield-Boosting              228
        • 5.11.16.4.1     Overview           228
        • 5.11.16.4.2     Applications   228
          • 5.11.16.4.2.1 Greenhouses 228
          • 5.11.16.4.2.2 Algae cultivation          228
          • 5.11.16.4.2.3 Microbial conversion 229
        • 5.11.16.4.3     Companies     231
      • 5.11.16.5         Food and feed production     231
        • 5.11.16.6         CO₂ Utilization in Enhanced Oil Recovery   232
          • 5.11.16.6.1     Overview           232
            • 5.11.16.6.1.1 Process              233
            • 5.11.16.6.1.2 CO₂ sources   233
          • 5.11.16.6.2     CO₂-EOR facilities and projects         234

 

6             CARBON DIOXIDE REMOVAL              236

  • 6.1        Conventional CDR on land   236
    • 6.1.1    Wetland and peatland restoration   236
    • 6.1.2    Cropland, grassland, and agroforestry         236
  • 6.2        Technological CDR Solutions              237
  • 6.3        Technology Readiness Level (TRL): Carbon Dioxide Removal Methods   237
  • 6.4        Carbon Credits             238
  • 6.5        Value chain     240
  • 6.6        Monitoring, reporting, and verification          241
  • 6.7        Government policies 241
  • 6.8        BECCS               242
    • 6.8.1    Technology overview 243
      • 6.8.1.1 Point Source Capture Technologies for BECCS       245
      • 6.8.1.2 Energy efficiency         245
      • 6.8.1.3 Heat generation           245
      • 6.8.1.4 Waste-to-Energy          246
      • 6.8.1.5 Blue Hydrogen Production    246
    • 6.8.2    Biomass conversion 246
    • 6.8.3    CO₂ capture technologies     247
    • 6.8.4    Bioenergy with Carbon Removal and Storage (BiCRS)       249
      • 6.8.4.1 Advantages     249
      • 6.8.4.2 Challenges      251
      • 6.8.4.3 Costs  251
      • 6.8.4.4 Feedstocks      253
    • 6.8.5    BECCS facilities           254
    • 6.8.6    Cost analysis 255
    • 6.8.7    BECCS carbon credits             256
    • 6.8.8    Sustainability 256
    • 6.8.9    Challenges      257
  • 6.9        Enhanced Weathering              258
    • 6.9.1    Overview           259
      • 6.9.1.1 Role of enhanced weathering in carbon dioxide removal 259
      • 6.9.1.2 CO₂ mineralization     260
    • 6.9.2    Enhanced Weathering Processes and Materials    260
    • 6.9.3    Enhanced Weathering Applications               261
    • 6.9.4    Trends and Opportunities      262
    • 6.9.5    Challenges and Risks               262
    • 6.9.6    Cost analysis 262
    • 6.9.7    SWOT analysis              263
  • 6.10     Afforestation/Reforestation  264
    • 6.10.1 Overview           264
    • 6.10.2 Carbon dioxide removal methods    264
    • 6.10.3 Remote sensing in A/R             266
    • 6.10.4 Robotics           267
    • 6.10.5 Trends and Opportunities      268
    • 6.10.6 Challenges and Risks               269
    • 6.10.7 SWOT analysis              270
  • 6.11     Soil carbon sequestration (SCS)       271
    • 6.11.1 Overview           271
    • 6.11.2 Practices           271
    • 6.11.3 Measuring and Verifying         273
    • 6.11.4 Trends and Opportunities      274
    • 6.11.5 Carbon credits              275
    • 6.11.6 Challenges and Risks               276
    • 6.11.7 SWOT analysis              276
  • 6.12     Biochar              278
    • 6.12.1 What is biochar?         279
    • 6.12.2 Carbon sequestration              280
    • 6.12.3 Properties of biochar 281
    • 6.12.4 Feedstocks      283
    • 6.12.5 Production processes              284
      • 6.12.5.1            Sustainable production          284
      • 6.12.5.2            Pyrolysis            285
        • 6.12.5.2.1        Slow pyrolysis               285
        • 6.12.5.2.2        Fast pyrolysis 286
      • 6.12.5.3            Gasification    287
      • 6.12.5.4            Hydrothermal carbonization (HTC)  287
      • 6.12.5.5            Torrefaction     288
      • 6.12.5.6            Equipment manufacturers   288
    • 6.12.6 Biochar pricing             289
    • 6.12.7 Biochar carbon credits            290
      • 6.12.7.1            Overview           290
      • 6.12.7.2            Removal and reduction credits          290
      • 6.12.7.3            The advantage of biochar      290
      • 6.12.7.4            Prices  291
      • 6.12.7.5            Buyers of biochar credits       291
      • 6.12.7.6            Competitive materials and technologies    292
    • 6.12.8 Bio-oil based CDR      292
    • 6.12.9 Biomass burial for CO₂ removal        293
    • 6.12.10              Bio-based construction materials for CDR 294
    • 6.12.11              SWOT analysis              296
  • 6.13     Ocean-based CDR     297
    • 6.13.1 Overview           297
    • 6.13.2 Ocean pumps               298
    • 6.13.3 CO₂ capture from seawater  299
    • 6.13.4 Ocean fertilisation      299
    • 6.13.5 Coastal blue carbon 301
    • 6.13.6 Algal cultivation            302
    • 6.13.7 Artificial upwelling      302
    • 6.13.8 MRV for marine CDR 303
    • 6.13.9 Ocean alkalinisation 304
    • 6.13.10              Ocean alkalinity enhancement (OAE)            305
    • 6.13.11              Electrochemical ocean alkalinity enhancement    305
    • 6.13.12              Direct ocean capture technology     306
    • 6.13.13              Artificial downwelling               307
    • 6.13.14              Trends and Opportunities      307
    • 6.13.15              Ocean-based carbon credits               307
    • 6.13.16              Cost analysis 308
    • 6.13.17              Challenges and Risks               309
    • 6.13.18              SWOT analysis              309

 

7             CARBON DIOXIDE UTILIZATION        310

  • 7.1        Overview           311
    • 7.1.1    Current market status              311
  • 7.2        Carbon utilization business models               316
    • 7.2.1    Benefits of carbon utilization              317
    • 7.2.2    Market challenges      319
  • 7.3        Co2 utilization pathways        320
  • 7.4        Conversion processes             322
    • 7.4.1    Thermochemical         322
      • 7.4.1.1 Process overview        323
      • 7.4.1.2 Plasma-assisted CO2 conversion    325
    • 7.4.2    Electrochemical conversion of CO2               326
      • 7.4.2.1 Process overview        327
    • 7.4.3    Photocatalytic and photothermal catalytic conversion of CO2    328
    • 7.4.4    Catalytic conversion of CO2                329
    • 7.4.5    Biological conversion of CO2              329
    • 7.4.6    Copolymerization of CO2      332
    • 7.4.7    Mineral carbonation  334
  • 7.5        CO2-derived products             337
    • 7.5.1    Fuels    337
      • 7.5.1.1 Overview           338
      • 7.5.1.2 Production routes       340
      • 7.5.1.3 CO₂ -fuels in road vehicles    341
      • 7.5.1.4 CO₂ -fuels in shipping              342
      • 7.5.1.5 CO₂ -fuels in aviation                342
      • 7.5.1.6 Power-to-methane     342
        • 7.5.1.6.1           Biological fermentation           343
        • 7.5.1.6.2           Costs  343
      • 7.5.1.7 Algae based biofuels 346
      • 7.5.1.8 CO₂-fuels from solar 347
      • 7.5.1.9 Companies     349
      • 7.5.1.10            Challenges      351
    • 7.5.2    Chemicals and polymers       351
      • 7.5.2.1 Polycarbonate from CO₂         352
      • 7.5.2.2 Carbon nanostructures          352
      • 7.5.2.3 Scalability        354
      • 7.5.2.4 Applications   355
        • 7.5.2.4.1           Urea production           355
        • 7.5.2.4.2           CO₂-derived polymers             355
        • 7.5.2.4.3           Inert gas in semiconductor manufacturing 356
        • 7.5.2.4.4           Carbon nanotubes     356
      • 7.5.2.5 Companies     357
    • 7.5.3    Construction materials           358
      • 7.5.3.1 Overview           358
      • 7.5.3.2 CCUS technologies   361
      • 7.5.3.3 Carbonated aggregates          364
      • 7.5.3.4 Additives during mixing           365
      • 7.5.3.5 Concrete curing           366
      • 7.5.3.6 Costs  366
      • 7.5.3.7 Market trends and business models              367
      • 7.5.3.8 Companies     370
      • 7.5.3.9 Challenges      371
    • 7.5.4    CO2 Utilization in Biological Yield-Boosting              372
      • 7.5.4.1 Overview           372
      • 7.5.4.2 Applications   372
        • 7.5.4.2.1           Greenhouses 372
        • 7.5.4.2.2           Algae cultivation          372
          • 7.5.4.2.2.1      CO₂-enhanced algae cultivation: open systems    373
          • 7.5.4.2.2.2      CO₂-enhanced algae cultivation: closed systems 373
        • 7.5.4.2.3           Microbial conversion 375
        • 7.5.4.2.4           Food and feed production     376
      • 7.5.4.3 Companies     376
  • 7.6        CO₂ Utilization in Enhanced Oil Recovery   377
    • 7.6.1    Overview           377
      • 7.6.1.1 Process              378
      • 7.6.1.2 CO₂ sources   379
    • 7.6.2    CO₂-EOR facilities and projects         379
    • 7.6.3    Challenges      381
  • 7.7        Enhanced mineralization       381
    • 7.7.1    Advantages     381
    • 7.7.2    In situ and ex-situ mineralization      382
    • 7.7.3    Enhanced mineralization pathways                382
    • 7.7.4    Challenges      383

 

8             CARBON DIOXIDE STORAGE               385

  • 8.1        Introduction    385
  • 8.2        CO2 storage sites       387
    • 8.2.1    Storage types for geologic CO2 storage       388
    • 8.2.2    Oil and gas fields         389
    • 8.2.3    Saline formations       391
    • 8.2.4    Coal seams and shale             393
    • 8.2.5    Basalts and ultra-mafic rocks             394
  • 8.3        CO₂ leakage    395
  • 8.4        Global CO2 storage capacity              396
  • 8.5        CO₂ Storage Projects 400
  • 8.6        CO₂ -EOR          402
    • 8.6.1    Description     402
    • 8.6.2    Injected CO₂   403
    • 8.6.3    CO₂ capture with CO₂ -EOR facilities             404
    • 8.6.4    Companies     405
    • 8.6.5    Economics      405
  • 8.7        Costs  406
  • 8.8        Challenges      407

 

9             CARBON DIOXIDE TRANSPORTATION          408

  • 9.1        Introduction    408
  • 9.2        CO₂ transportation methods and conditions           408
  • 9.3        CO₂ transportation by pipeline           409
  • 9.4        CO₂ transportation by ship   410
  • 9.5        CO₂ transportation by rail and truck               411
  • 9.6        Cost analysis of different methods 411
  • 9.7        Companies     412

 

10          COMPANY PROFILES                414 (310 company profiles)

 

11          REFERENCES 617

 

List of Tables

  • Table 1. Technology Readiness Level (TRL) Examples.       32
  • Table 2. Carbon Capture, Utilisation and Storage (CCUS) market drivers and trends.   38
  • Table 3. Carbon capture, usage, and storage (CCUS) industry developments 2020-2024.        40
  • Table 4. CCUS VC deals 2022-2024.              46
  • Table 5. CCUS government funding and investment-10 year outlook.      48
  • Table 6. Demonstration and commercial CCUS facilities in China.           51
  • Table 7. Global commercial CCUS facilities-in operation.               56
  • Table 8. Global commercial CCUS facilities-under development/construction.               59
  • Table 9. Key market barriers for CCUS.         65
  • Table 10. Key compliance carbon pricing initiatives around the world.   66
  • Table 11. CCUS business models: full chain, part chain, and hubs and clusters.            69
  • Table 12. CCUS capture capacity forecast by CO₂ endpoint, Mtpa of CO₂, to 2045.      75
  • Table 13. Capture capacity by region to 2045, Mtpa.          75
  • Table 14. CCUS revenue potential for captured CO₂ offtaker, billion US $ to 2045.        76
  • Table 15. CCUS capacity forecast by capture type, Mtpa of CO₂, to 2045.           76
  • Table 16. Point-source CCUS capture capacity forecast by CO₂ source sector, Mtpa of CO₂, to 2045.                76
  • Table 17. CO2 utilization and removal pathways    79
  • Table 18. Approaches for capturing carbon dioxide (CO2) from point sources. 83
  • Table 19. CO2 capture technologies.             84
  • Table 20. Advantages and challenges of carbon capture technologies. 85
  • Table 21. Overview of commercial materials and processes utilized in carbon capture.             86
  • Table 22. Methods of CO2 transport.             92
  • Table 23. Carbon capture, transport, and storage cost per unit of CO2  94
  • Table 24. Estimated capital costs for commercial-scale carbon capture.             94
  • Table 25. Comparison of CO₂ capture technologies.           98
  • Table 26. Typical conditions and performance for different capture technologies.         99
  • Table 27. PSCC technologies.             103
  • Table 28. Point source examples.     103
  • Table 29. Comparison of point-source CO₂ capture systems        104
  • Table 30. Blue hydrogen projects.    115
  • Table 31. Commercial CO₂ capture systems for blue H2. 116
  • Table 32. Market players in blue hydrogen. 117
  • Table 33. CCUS Projects in the Cement Sector.      118
  • Table 34. Carbon capture technologies in the cement sector.      119
  • Table 35. Cost and technological status of carbon capture in the cement sector.           120
  • Table 36. Assessment of carbon capture materials              122
  • Table 37. Chemical solvents used in post-combustion.   125
  • Table 38. Comparison of key chemical solvent-based systems. 126
  • Table 39. Chemical absorption solvents used in current operational CCUS point-source projects.    127
  • Table 40.Comparison of key physical absorption solvents.             127
  • Table 41.Physical solvents used in current operational CCUS point-source projects.  128
  • Table 42.Emerging solvents for carbon capture      129
  • Table 43. Oxygen separation technologies for oxy-fuel combustion.        130
  • Table 44. Large-scale oxyfuel CCUS cement projects.       131
  • Table 45. Commercially available physical solvents for pre-combustion carbon capture.        135
  • Table 46. Main capture processes and their separation technologies.    135
  • Table 47. Absorption methods for CO2 capture overview.               136
  • Table 48. Commercially available physical solvents used in CO2 absorption.  138
  • Table 49. Adsorption methods for CO2 capture overview.               140
  • Table 50. Solid sorbents explored for carbon capture.       142
  • Table 51. Carbon-based adsorbents for CO₂ capture.        144
  • Table 52. Polymer-based adsorbents.           145
  • Table 53. Solid sorbents for post-combustion CO₂ capture.          147
  • Table 54. Emerging Solid Sorbent Systems.               148
  • Table 55. Membrane-based methods for CO2 capture overview.               149
  • Table 56. Comparison of membrane materials for CCUS 151
  • Table 57.Commercial status of membranes in carbon capture    152
  • Table 58. Membranes for pre-combustion capture.             154
  • Table 59. Status of cryogenic CO₂ capture technologies. 156
  • Table 60. Benefits and drawbacks of microalgae carbon capture.             161
  • Table 61. Comparison of main separation technologies.  162
  • Table 62. Technology readiness level (TRL) of gas separation technologies          163
  • Table 63. Opportunities and Barriers by sector.      164
  • Table 64. Existing and planned capacity for sequestration of biogenic carbon. 170
  • Table 65. Existing facilities with capture and/or geologic sequestration of biogenic CO2.          171
  • Table 66. DAC technologies.                173
  • Table 67. Advantages and disadvantages of DAC. 175
  • Table 68. Advantages of DAC as a CO2 removal strategy. 176
  • Table 69. Companies developing airflow equipment integration with DAC.         183
  • Table 70. Companies developing Passive Direct Air Capture (PDAC) technologies.       183
  • Table 71. Companies developing regeneration methods for DAC technologies.               184
  • Table 72. DAC companies and technologies.           185
  • Table 73. DAC technology developers and production.     187
  • Table 74. DAC projects in development.      192
  • Table 75. DACCS carbon removal capacity forecast (million metric tons of CO₂ per year), 2024-2045, base case.       193
  • Table 76. DACCS carbon removal capacity forecast (million metric tons of CO₂ per year), 2030-2045, optimistic case.           193
  • Table 77. Costs summary for DAC.  194
  • Table 78. Typical cost contributions of the main components of a DACCS system.       195
  • Table 79. Cost estimates of DAC.     199
  • Table 80. Challenges for DAC technology.  200
  • Table 81. DAC companies and technologies.           203
  • Table 82. Example CO2 utilization pathways.           204
  • Table 83. Markets for Direct Air Capture and Storage (DACCS).   206
  • Table 84. Market overview for CO2 derived fuels.  206
  • Table 85. Microalgae products and prices. 210
  • Table 86. Main Solar-Driven CO2 Conversion Approaches.            211
  • Table 87. Companies in CO2-derived fuel products.           212
  • Table 88. Commodity chemicals and fuels manufactured from CO2.     215
  • Table 89. CO2 utilization products developed by chemical and plastic producers.        217
  • Table 90. Companies in CO2-derived chemicals products.            218
  • Table 91. Carbon capture technologies and projects in the cement sector          221
  • Table 92. Companies in CO2 derived building materials. 225
  • Table 93. Market challenges for CO2 utilization in construction materials.          227
  • Table 94. Companies in CO2 Utilization in Biological Yield-Boosting.      231
  • Table 95. CO2 sequestering technologies and their use in food. 232
  • Table 96. Applications of CCS in oil and gas production.  232
  • Table 97. Benchmarking comparison of various CDR technologies based on key parameters.              237
  • Table 98. DACCS carbon credit revenue forecast (million US$), 2024-2045.      239
  • Table 99. CDR Value Chain. 240
  • Table 100. CO₂ capture technologies for BECCS.  247
  • Table 101. Feedstocks for Bioenergy with Carbon Removal and Storage (BiCRS):           253
  • Table 102. Existing and planned capacity for sequestration of biogenic carbon.              254
  • Table 103. Existing facilities with capture and/or geologic sequestration of biogenic CO2.       254
  • Table 104. Challenges of BECCS      257
  • Table 105.Comparison of enhanced weathering materials             261
  • Table 106. Enhanced Weathering Applications.     261
  • Table 107. Trends and opportunities in enhanced weathering.     262
  • Table 108. Challenges and risks in enhanced weathering.               262
  • Table 109. Nature-based CDR approaches.              264
  • Table 110. Companies in robotics in afforestation/reforestation.               267
  • Table 111. Comparison of A/R and BECCS.               268
  • Table 112. Trends and Opportunities in afforestation/reforestation.         268
  • Table 113. Challenges and risks in afforestation/reforestation.   269
  • Table 114. Soil carbon sequestration practices.     271
  • Table 115. Soil sampling and analysis methods.   273
  • Table 116. Remote sensing and modeling techniques.      273
  • Table 117. Carbon credit protocols and standards.             273
  • Table 118. Trends and opportunities in soil carbon sequestration (SCS).              274
  • Table 119. Key aspects of soil carbon credits.         275
  • Table 120. Challenges and Risks in SCS.     276
  • Table 121. Summary of key properties of biochar. 281
  • Table 122. Biochar physicochemical and morphological properties         281
  • Table 123. Biochar feedstocks-source, carbon content, and characteristics.    283
  • Table 124. Biochar production technologies, description, advantages and disadvantages.    284
  • Table 125. Comparison of slow and fast pyrolysis for biomass.  287
  • Table 126. Comparison of thermochemical processes for biochar production.                288
  • Table 127. Biochar production equipment manufacturers.            289
  • Table 128. Competitive materials and technologies that can also earn carbon credits.              292
  • Table 129. Bio-oil-based CDR pros and cons.          293
  • Table 130. Ocean-based CDR methods.     297
  • Table 131. Benchmarking of ocean-based CDR methods:              299
  • Table 132.Ocean-based CDR: biotic methods.       300
  • Table 133. Technology in direct ocean capture.      306
  • Table 134. Future direct ocean capture technologies.       306
  • Table 135. Trends and opportunities in ocean-based CDR.            307
  • Table 136. Challenges and risks in ocean-based CDR.      309
  • Table 137. Carbon utilization revenue forecast by product (US$).              314
  • Table 138. Carbon utilization business models.     316
  • Table 139. CO2 utilization and removal pathways.                317
  • Table 140. Market challenges for CO2 utilization. 319
  • Table 141. Example CO2 utilization pathways.        320
  • Table 142. CO2 derived products via Thermochemical conversion-applications, advantages and disadvantages.            323
  • Table 143. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages.            327
  • Table 144. CO2 derived products via biological conversion-applications, advantages and disadvantages.            331
  • Table 145. Companies developing and producing CO2-based polymers.             333
  • Table 146. Companies developing mineral carbonation technologies.   335
  • Table 147. Comparison of emerging CO₂ utilization applications.              336
  • Table 148. Main routes to CO₂-fuels.              337
  • Table 149. Market overview for CO2 derived fuels.               338
  • Table 150. Main routes to CO₂ -fuels              340
  • Table 151. Power-to-Methane projects.        344
  • Table 152. Microalgae products and prices.              347
  • Table 153. Main Solar-Driven CO2 Conversion Approaches.         348
  • Table 154. Companies in CO2-derived fuel products.        349
  • Table 155. Commodity chemicals and fuels manufactured from CO2.  354
  • Table 156. Companies in CO2-derived chemicals products.         357
  • Table 157. Carbon capture technologies and projects in the cement sector       362
  • Table 158. Prefabricated versus ready-mixed concrete markets .               365
  • Table 159. CO₂ utilization business models in building materials.             367
  • Table 160. Companies in CO2 derived building materials.              370
  • Table 161. Market challenges for CO2 utilization in construction materials.       371
  • Table 162. Companies in CO2 Utilization in Biological Yield-Boosting.   376
  • Table 163. Applications of CCS in oil and gas production.               377
  • Table 164. CO2 EOR/Storage Challenges.  384
  • Table 165. Storage and utilization of CO2.  385
  • Table 166. Mechanisms of subsurface CO₂ trapping.         387
  • Table 167. Global depleted reservoir storage projects.      388
  • Table 168. Global CO2 ECBM storage projects.      389
  • Table 169. CO2 EOR/storage projects.          390
  • Table 170. Global storage sites-saline aquifer projects.    392
  • Table 171. Global storage capacity estimates, by region. 396
  • Table 172. MRV Technologies and Costs in CO₂ Storage. 399
  • Table 173.  Carbon storage challenges.       399
  • Table 174. Status of CO₂ Storage Projects. 400
  • Table 175. Types of CO₂ -EOR designs.         403
  • Table 176. CO₂ capture with CO₂ -EOR facilities.   404
  • Table 177. CO₂ -EOR companies.    405
  • Table 178. Phases of CO₂ for transportation.            408
  • Table 179. CO₂ transportation methods and conditions. 408
  • Table 180. Status of CO₂ transportation methods in CCS projects.           409
  • Table 181. CO₂ pipelines Technical challenges.     409
  • Table 182. Cost comparison of CO₂ transportation methods        411
  • Table 183. CO₂ transport operators.               412

 

List of Figures

  • Figure 1. Carbon emissions by sector.          34
  • Figure 2. Overview of CCUS market 36
  • Figure 3. CCUS business model.      37
  • Figure 4. Pathways for CO2 use.        38
  • Figure 5. Regional capacity share 2023-2033.         40
  • Figure 6. Global investment in carbon capture 2010-2023, millions USD.            46
  • Figure 7. Carbon Capture, Utilization, & Storage (CCUS) Market Map.    55
  • Figure 8. CCS deployment projects, historical and to 2035.          56
  • Figure 9. Existing and planned CCS projects.           64
  • Figure 10. CCUS Value Chain.            64
  • Figure 11. Schematic of CCUS process.      78
  • Figure 12. Pathways for CO2 utilization and removal.         79
  • Figure 13. A pre-combustion capture system.         84
  • Figure 14. Carbon dioxide utilization and removal cycle.  88
  • Figure 15. Various pathways for CO2 utilization.    89
  • Figure 16. Example of underground carbon dioxide storage.         90
  • Figure 17. Transport of CCS technologies. 91
  • Figure 18. Railroad car for liquid CO₂ transport       93
  • Figure 19. Estimated costs of capture of one metric ton of carbon dioxide (Co2) by sector.     95
  • Figure 20. Cost of CO2 transported at different flowrates 96
  • Figure 21. Cost estimates for long-distance CO2 transport.          97
  • Figure 22. CO2 capture and separation technology.            98
  • Figure 23. Global capacity of point-source carbon capture and storage facilities.          108
  • Figure 24. Global carbon capture capacity by CO2 source, 2023.             109
  • Figure 25. Global carbon capture capacity by CO2 source, 2040.             110
  • Figure 26. SMR process flow diagram of steam methane reforming with carbon capture and storage (SMR-CCS).    111
  • Figure 27. Process flow diagram of autothermal reforming with a carbon capture and storage (ATR-CCS) plant.  112
  • Figure 28. POX process flow diagram.          113
  • Figure 29. Process flow diagram for a typical SE-SMR.       114
  • Figure 30. Post-combustion carbon capture process.        124
  • Figure 31. Post-combustion CO2 Capture in a Coal-Fired Power Plant. 124
  • Figure 32. Oxy-combustion carbon capture process.         130
  • Figure 33. Process schematic of chemical looping.             133
  • Figure 34. Liquid or supercritical CO2 carbon capture process.  134
  • Figure 35. Pre-combustion carbon capture process.          135
  • Figure 36. Amine-based absorption technology.    138
  • Figure 37. Pressure swing absorption technology. 142
  • Figure 38. Membrane separation technology.           150
  • Figure 39. Liquid or supercritical CO2 (cryogenic) distillation.      156
  • Figure 40. Cryocap™ process.             157
  • Figure 41. Calix advanced calcination reactor.        158
  • Figure 42. LEILAC process.   159
  • Figure 43. Fuel Cell CO2 Capture diagram.               160
  • Figure 44. Microalgal carbon capture.           161
  • Figure 45. Cost of carbon capture.  166
  • Figure 46. CO2 capture capacity to 2030, MtCO2.               167
  • Figure 47. Capacity of large-scale CO2 capture projects, current and planned vs. the Net Zero Scenario, 2020-2030.              168
  • Figure 48. Bioenergy with carbon capture and storage (BECCS) process.             169
  • Figure 49. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.        175
  • Figure 50. Global CO2 capture from biomass and DAC in the Net Zero Scenario.            175
  • Figure 51. Potential for DAC removal versus other carbon removal methods.    177
  • Figure 52.  DAC technologies.             178
  • Figure 53. Schematic of Climeworks DAC system.               179
  • Figure 54. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.                180
  • Figure 55.  Flow diagram for solid sorbent DAC.     180
  • Figure 56. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.           182
  • Figure 57. Global capacity of direct air capture facilities. 187
  • Figure 58. Global map of DAC and CCS plants.      192
  • Figure 59. Schematic of costs of DAC technologies.           197
  • Figure 60. DAC cost breakdown and comparison. 198
  • Figure 61. Operating costs of generic liquid and solid-based DAC systems.       200
  • Figure 62. Co2 utilization pathways and products.               205
  • Figure 63. Conversion route for CO2-derived fuels and chemical intermediates.            207
  • Figure 64.  Conversion pathways for CO2-derived methane, methanol and diesel.        208
  • Figure 65. CO2 feedstock for the production of e-methanol.         209
  • Figure 66. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c           211
  • Figure 67. Audi synthetic fuels.          212
  • Figure 68.  Conversion of CO2 into chemicals and fuels via different pathways.              215
  • Figure 69.  Conversion pathways for CO2-derived polymeric materials  216
  • Figure 70. Conversion pathway for CO2-derived building materials.        221
  • Figure 71. Schematic of CCUS in cement sector.  221
  • Figure 72. Carbon8 Systems’ ACT process.               224
  • Figure 73. CO2 utilization in the Carbon Cure process.     224
  • Figure 74. Algal cultivation in the desert.     229
  • Figure 75. Example pathways for products from cyanobacteria. 230
  • Figure 76. Typical Flow Diagram for CO2 EOR.        233
  • Figure 77. Large CO2-EOR projects in different project stages by industry.          235
  • Figure 78. Bioenergy with carbon capture and storage (BECCS) process.             244
  • Figure 79. SWOT analysis: enhanced weathering. 264
  • Figure 80. SWOT analysis: afforestation/reforestation.     270
  • Figure 81. SWOT analysis: SCS.        277
  • Figure 82. Schematic of biochar production.           278
  • Figure 83. Biochars from different sources, and by pyrolyzation at different temperatures.      279
  • Figure 84. Compressed biochar.       283
  • Figure 85. Biochar production diagram.      284
  • Figure 86. Pyrolysis process and by-products in agriculture.         286
  • Figure 87. SWOT analysis: Biochar for CDR.             296
  • Figure 88. SWOT analysis: ocean-based CDR.        310
  • Figure 89. CO2 non-conversion and conversion technology, advantages and disadvantages.               311
  • Figure 90. Applications for CO2.       313
  • Figure 91. Cost to capture one metric ton of carbon, by sector.   314
  • Figure 92. Life cycle of CO2-derived products and services.          319
  • Figure 93. Co2 utilization pathways and products.               322
  • Figure 94. Plasma technology configurations and their advantages and disadvantages for CO2 conversion.     326
  • Figure 95. Electrochemical CO₂ reduction products.          326
  • Figure 96. LanzaTech gas-fermentation process.   330
  • Figure 97. Schematic of biological CO2 conversion into e-fuels. 330
  • Figure 98. Econic catalyst systems.                333
  • Figure 99. Mineral carbonation processes. 335
  • Figure 100. Conversion route for CO2-derived fuels and chemical intermediates.         339
  • Figure 101.  Conversion pathways for CO2-derived methane, methanol and diesel.     340
  • Figure 102. CO2 feedstock for the production of e-methanol.      346
  • Figure 103. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c           348
  • Figure 104. Audi synthetic fuels.       349
  • Figure 105.  Conversion of CO2 into chemicals and fuels via different pathways.            354
  • Figure 106.  Conversion pathways for CO2-derived polymeric materials               356
  • Figure 107. Conversion pathway for CO2-derived building materials.     359
  • Figure 108. Schematic of CCUS in cement sector.                360
  • Figure 109. Carbon8 Systems’ ACT process.             364
  • Figure 110. CO2 utilization in the Carbon Cure process.  365
  • Figure 111. Algal cultivation in the desert.  373
  • Figure 112. Example pathways for products from cyanobacteria.              375
  • Figure 113. Typical Flow Diagram for CO2 EOR.     378
  • Figure 114. Large CO2-EOR projects in different project stages by industry.       380
  • Figure 115. Carbon mineralization pathways.          383
  • Figure 116. CO2 Storage Overview - Site Options  388
  • Figure 117.  CO2 injection into a saline formation while producing brine for beneficial use.    391
  • Figure 118. Subsurface storage cost estimation.   407
  • Figure 119. Air Products production process.          420
  • Figure 120. Aker carbon capture system.    424
  • Figure 121. ALGIECEL PhotoBioReactor.     427
  • Figure 122. Schematic of carbon capture solar project.    431
  • Figure 123. Aspiring Materials method.        432
  • Figure 124. Aymium’s Biocarbon production.          435
  • Figure 125. Capchar prototype pyrolysis kiln.          447
  • Figure 126. Carbonminer technology.           452
  • Figure 127. Carbon Blade system.   457
  • Figure 128. CarbonCure Technology.             463
  • Figure 129. Direct Air Capture Process.        465
  • Figure 130. CRI process.        468
  • Figure 131. PCCSD Project in China.             482
  • Figure 132. Orca facility.         483
  • Figure 133. Process flow scheme of Compact Carbon Capture Plant.    487
  • Figure 134. Colyser process.               488
  • Figure 135. ECFORM electrolysis reactor schematic.         495
  • Figure 136. Dioxycle modular electrolyzer. 496
  • Figure 137. Fuel Cell Carbon Capture.          513
  • Figure 138. Topsoe's SynCORTM autothermal reforming technology.      521
  • Figure 139. Carbon Capture balloon.            524
  • Figure 140. Holy Grail DAC system. 526
  • Figure 141. INERATEC unit.   531
  • Figure 142. Infinitree swing method.              532
  • Figure 143. Audi/Krajete unit.              537
  • Figure 144. Made of Air's HexChar panels. 546
  • Figure 145. Mosaic Materials MOFs.              554
  • Figure 146. Neustark modular plant.             557
  • Figure 147. OCOchem’s Carbon Flux Electrolyzer.                565
  • Figure 148. ZerCaL™ process.              567
  • Figure 149. CCS project at Arthit offshore gas field.             577
  • Figure 150. RepAir technology.           581
  • Figure 151. Soletair Power unit.         592
  • Figure 152. Sunfire process for Blue Crude production.    598
  • Figure 153. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right).   600
  • Figure 154. Takavator.               602
  • Figure 155. O12 Reactor.        607
  • Figure 156. Sunglasses with lenses made from CO2-derived materials.               607
  • Figure 157. CO2 made car part.        608
  • Figure 158. Molecular sieving membrane.  609

 

Carbon Capture, Utilization, and Storage (CCUS) Global Market 2025-2045
Carbon Capture, Utilization, and Storage (CCUS) Global Market 2025-2045
PDF download/by email.

 

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.