- Published: October 2024
- Pages: 652
- Tables: 222
- Figures: 158
- Series: Bio-Economy
As the world intensifies its efforts to achieve net-zero emissions, Carbon capture, utilization, and storage (CCUS) technologies are emerging as critical solutions for reducing emissions across essential hard-to-abate sectors sectors. CCUS refers to technologies that capture CO2 emissions and use or store them, leading to permanent sequestration. CCUS technologies capture carbon dioxide emissions from large power sources, including power generation or industrial facilities that use either fossil fuels or biomass for fuel. CO2 can also be captured directly from the atmosphere. If not utilized onsite, captured CO2 is compressed and transported by pipeline, ship, rail or truck to be used in a range of applications, or injected into deep geological formations (including depleted oil and gas reservoirs or saline formations) which trap the CO2 for permanent storage.
The increasing interest in CO2 conversion technologies is reflected in the growing amount of private and public funding that has been channelled to companies in this field. Over the last decade, global private funding for CO2 use start-ups is over $9 billion, primarily in the form of venture capital and growth equity. Large corporations are also increasing their R&D investments and governments are allocating increasing funding.
In 2024, carbon capture investments have been a key focus for energy-related corporate and VC investment. The largest deal in Q1 was a $90m series A funding round for CarbonCapture, a US-based CO2 removal technology developer, backed by Aramco Ventures, Amazon’s Climate Pledge Fund and Siemens Financial Services. Other carbon capture-related deals included the $36m series A round by direct air capture tech developer Avnos, backed by Shell Ventures. Mission Zero Technologies received $28m in a series A round, backed by Siemens. US-based ocean’s carbon removal tech developer Captura also closed a $22m series A round that featured Aramco Ventures, Equinor Ventures as well as other corporates like Eni, Hitachi and EDP.
The Global Carbon Capture, Utilization and Storage (CCUS) Market 2025-2045 offers an in-depth analysis offers valuable insights for stakeholders in the energy, industrial, and environmental sectors, as well as policymakers, investors, and researchers seeking to understand the transformative potential of CCUS in the global transition to a low-carbon economy. Report contents include:
- Analysis of market trends for integrated CCUS solutions, the rise of direct air capture technologies, and the growing interest in CO2 utilization for value-added products.
- In-depth examination of key CCUS technologies, their current state of development, and future innovations:
- Carbon Capture:
- Post-combustion capture
- Pre-combustion capture
- Oxy-fuel combustion
- Direct air capture (DAC)
- Emerging capture technologies (e.g., membrane-based, cryogenic)
- Carbon Utilization:
- CO2-derived fuels and chemicals
- Building materials and concrete curing
- Enhanced oil recovery (EOR)
- Biological utilization (e.g., algae cultivation)
- Mineralization processes
- Carbon Storage:
- Geological sequestration in saline aquifers
- Depleted oil and gas reservoirs
- Enhanced oil recovery (EOR) with storage
- Mineral carbonation
- Ocean storage (potential future applications)
- Carbon Capture:
- Technology readiness levels (TRLs) of various CCUS approaches, highlighting areas of rapid advancement and identifying potential game-changers in the industry.
- Global CCUS capacity additions by technology and region
- CO2 capture volumes by source (power generation, industry, direct air capture)
- Utilization volumes by application (fuels, chemicals, materials, EOR)
- Storage volumes by type (geological, mineralization, other)
- Market size and revenue projections for key CCUS segments
- Investment trends and capital expenditure forecasts
- Comprehensive overview of the CCUS industry value chain, from technology providers and equipment manufacturers to project developers and end-users.
- Detailed profiles of over 310 companies across the CCUS value chain. Companies profiled include 3R-BioPhosphate, 44.01, 8Rivers, Adaptavate, Aeroborn B.V., Aether Diamonds, Again, Air Company, Air Liquide S.A., Air Products and Chemicals Inc., Air Protein, Air Quality Solutions Worldwide DAC, Aircela Inc, Airco Process Technology, Airex Energy, AirHive, Airovation Technologies, Algal Bio Co. Ltd., Algenol, Algiecel ApS, Andes Ag Inc., Aqualung Carbon Capture, Arborea, Arca, Arkeon Biotechnologies, Asahi Kasei, AspiraDAC Pty Ltd., Aspiring Materials, Atoco, Avantium N.V., Avnos Inc., Aymium, Axens SA, Azolla, BASF Group, Barton Blakeley Technologies Ltd., BC Biocarbon, Blue Planet Systems Corporation, BluSky Inc., BP PLC, Breathe Applied Sciences, Bright Renewables, Brilliant Planet, bse Methanol GmbH, C-Capture, C2CNT LLC, C4X Technologies Inc., Cambridge Carbon Capture Ltd., Capchar Ltd., Captura Corporation, Capture6, Carba, CarbiCrete, Carbfix, Carboclave, Carbo Culture, Carbofex Oy, Carbominer, Carbonade, Carbonaide Oy, Carbonaught Pty Ltd., CarbonBuilt, Carbon CANTONNE, Carbon Capture Inc. (CarbonCapture), Carbon Capture Machine (UK), Carbon Centric AS, Carbon Clean Solutions Limited, Carbon Collect Limited, Carbon Engineering Ltd., Carbon Geocapture Corp, Carbon Infinity Limited, Carbon Limit, Carbon Neutral Fuels, Carbon Recycling International, Carbon Re, Carbon Reform Inc., Carbon Ridge Inc., Carbon Sink LLC, CarbonStar Systems, Carbon Upcycling Technologies, CarbonCure Technologies Inc., Carbonfree Chemicals, CarbonFree, CarbonMeta Research Ltd, Carbonova, CarbonOrO Products B.V., CarbonQuest, Carbon-Zero US LLC, CarbonScape Ltd., Carbon8 Systems, Carbon Blade, Carbon Blue, Carbyon BV, Cella Mineral Storage, Cemvita Factory Inc., CERT Systems Inc., CFOAM Limited, Charm Industrial, Chevron Corporation, Chiyoda Corporation, China Energy Investment Corporation (CHN Energy), Climeworks, CNF Biofuel AS, CO2 Capsol, CO2Rail Company, CO2CirculAir B.V., Compact Carbon Capture AS (Baker Hughes), Concrete4Change, Coval Energy B.V., Covestro AG, C-Quester Inc., Cquestr8 Limited, CyanoCapture, D-CRBN, Decarbontek LLC, Deep Branch Biotechnology, Deep Sky, Denbury Inc., Dimensional Energy, Dioxide Materials, Dioxycle, Earth RepAIR, Ebb Carbon and many more.
- Analysis of key players' strategies, market positioning, and competitive advantages
- Assessment of partnerships, mergers, and acquisitions shaping the industry
- Evaluation of emerging start-ups and innovative technology providers
- Regional Analysis including current and planned CCUS projects, regulatory frameworks, investment climates, and growth opportunities.
- Policy and Regulatory Landscape
- Analysis of global, regional, and national climate policies impacting CCUS
- Overview of carbon pricing mechanisms and their effect on CCUS economics
- Examination of incentives, tax credits, and support schemes for CCUS projects
- Assessment of regulatory frameworks for CO2 transport and storage
- Projections of future policy developments and their market implications
- Detailed cost breakdowns for capture, transport, utilization, and storage
- Analysis of cost reduction trends and projections
- Comparison of CCUS costs across different applications and technologies
- Assessment of revenue streams and business models for CCUS projects
- Evaluation of the role of carbon markets in CCUS economics
- Challenges and Opportunities including:
- High capital and operational costs
- Technological barriers and scale-up issues
- Public perception and social acceptance
- Regulatory uncertainty and policy risks
- Infrastructure development needs
- Emerging opportunities, such as:
- Integration with hydrogen production for blue hydrogen
- Negative emissions technologies (NETs) like BECCS and DACCS
- Development of CCUS hubs and clusters
- Novel CO2 utilization pathways in high-value products
- Potential for CCUS in hard-to-abate sectors
- Future Outlook and Scenarios including
- Pace of technological innovation
- Strength of climate policies and carbon pricing
- Public acceptance and support for CCUS
- Integration with other clean energy technologies
- Global economic trends and energy market dynamics
This comprehensive market report is an essential resource for:
- Energy and industrial companies exploring CCUS opportunities
- Technology providers and equipment manufacturers in the CCUS space
- Project developers and investors in clean energy and climate solutions
- Policymakers and regulators shaping climate and energy policies
- Research institutions and academics studying carbon management strategies
- Environmental organizations and think tanks focused on climate change mitigation
- Financial institutions and analysts assessing the CCUS market potential
1 EXECUTIVE SUMMARY 33
- 1.1 Main sources of carbon dioxide emissions 33
- 1.2 CO2 as a commodity 34
- 1.3 Meeting climate targets 37
- 1.4 Market drivers and trends 37
- 1.5 The current market and future outlook 38
- 1.6 CCUS Industry developments 2020-2024 39
- 1.7 CCUS investments 44
- 1.7.1 Venture Capital Funding 44
- 1.7.1.1 2010-2023 45
- 1.7.1.2 CCUS VC deals 2022-2024 45
- 1.7.1 Venture Capital Funding 44
- 1.8 Government CCUS initiatives 48
- 1.8.1 North America 48
- 1.8.2 Europe 49
- 1.8.3 Asia 50
- 1.8.3.1 Japan 50
- 1.8.3.2 Singapore 50
- 1.8.3.3 China 50
- 1.9 Market map 52
- 1.10 Commercial CCUS facilities and projects 55
- 1.10.1 Facilities 55
- 1.10.1.1 Operational 55
- 1.10.1.2 Under development/construction 57
- 1.10.1 Facilities 55
- 1.11 CCUS Value Chain 63
- 1.12 Key market barriers for CCUS 64
- 1.13 Carbon pricing 64
- 1.13.1 Compliance Carbon Pricing Mechanisms 65
- 1.13.2 Alternative to Carbon Pricing: 45Q Tax Credits 67
- 1.13.3 Business models 68
- 1.13.4 The European Union Emission Trading Scheme (EU ETS) 69
- 1.13.5 Carbon Pricing in the US 70
- 1.13.6 Carbon Pricing in China 70
- 1.13.7 Voluntary Carbon Markets 71
- 1.13.8 Challenges with Carbon Pricing 72
- 1.14 Global market forecasts 73
- 1.14.1 CCUS capture capacity forecast by end point 73
- 1.14.2 Capture capacity by region to 2045, Mtpa 74
- 1.14.3 Revenues 75
- 1.14.4 CCUS capacity forecast by capture type 75
2 INTRODUCTION 77
- 2.1 What is CCUS? 77
- 2.1.1 Carbon Capture 82
- 2.1.1.1 Source Characterization 82
- 2.1.1.2 Purification 82
- 2.1.1.3 CO2 capture technologies 83
- 2.1.2 Carbon Utilization 86
- 2.1.2.1 CO2 utilization pathways 87
- 2.1.3 Carbon storage 87
- 2.1.3.1 Passive storage 87
- 2.1.3.2 Enhanced oil recovery 88
- 2.1.1 Carbon Capture 82
- 2.2 Transporting CO2 89
- 2.2.1 Methods of CO2 transport 89
- 2.2.1.1 Pipeline 90
- 2.2.1.2 Ship 90
- 2.2.1.3 Road 91
- 2.2.1.4 Rail 91
- 2.2.2 Safety 91
- 2.2.1 Methods of CO2 transport 89
- 2.3 Costs 92
- 2.3.1 Cost of CO2 transport 93
- 2.4 Carbon credits 95
3 CARBON DIOXIDE CAPTURE 96
- 3.1 CO₂ capture technologies 96
- 3.2 >90% capture rate 98
- 3.3 99% capture rate 98
- 3.4 CO2 capture from point sources 100
- 3.4.1 Energy Availability and Costs 103
- 3.4.2 Power plants with CCUS 103
- 3.4.3 Transportation 104
- 3.4.4 Global point source CO2 capture capacities 105
- 3.4.5 By source 106
- 3.4.6 Blue hydrogen 107
- 3.4.6.1 Steam-methane reforming (SMR) 108
- 3.4.6.2 Autothermal reforming (ATR) 108
- 3.4.6.3 Partial oxidation (POX) 109
- 3.4.6.4 Sorption Enhanced Steam Methane Reforming (SE-SMR) 110
- 3.4.6.5 Pre-Combustion vs. Post-Combustion carbon capture 111
- 3.4.6.6 Blue hydrogen projects 112
- 3.4.6.7 Costs 112
- 3.4.6.8 Market players 113
- 3.4.7 Carbon capture in cement 114
- 3.4.7.1 CCUS Projects 115
- 3.4.7.2 Carbon capture technologies 116
- 3.4.7.3 Costs 117
- 3.4.7.4 Challenges 117
- 3.4.8 Maritime carbon capture 118
- 3.5 Main carbon capture processes 118
- 3.5.1 Materials 118
- 3.5.2 Post-combustion 120
- 3.5.2.1 Chemicals/Solvents 121
- 3.5.2.2 Amine-based post-combustion CO₂ absorption 123
- 3.5.2.3 Physical absorption solvents 124
- 3.5.3 Oxy-fuel combustion 126
- 3.5.3.1 Oxyfuel CCUS cement projects 127
- 3.5.3.2 Chemical Looping-Based Capture 128
- 3.5.4 Liquid or supercritical CO2: Allam-Fetvedt Cycle 129
- 3.5.5 Pre-combustion 130
- 3.6 Carbon separation technologies 131
- 3.6.1 Absorption capture 132
- 3.6.2 Adsorption capture 136
- 3.6.2.1 Solid sorbent-based CO₂ separation 137
- 3.6.2.2 Metal organic framework (MOF) adsorbents 139
- 3.6.2.3 Zeolite-based adsorbents 139
- 3.6.2.4 Solid amine-based adsorbents 139
- 3.6.2.5 Carbon-based adsorbents 140
- 3.6.2.6 Polymer-based adsorbents 141
- 3.6.2.7 Solid sorbents in pre-combustion 141
- 3.6.2.8 Sorption Enhanced Water Gas Shift (SEWGS) 142
- 3.6.2.9 Solid sorbents in post-combustion 143
- 3.6.3 Membranes 145
- 3.6.3.1 Membrane-based CO₂ separation 146
- 3.6.3.2 Post-combustion CO₂ capture 149
- 3.6.3.2.1 Facilitated transport membranes 149
- 3.6.3.3 Pre-combustion capture 150
- 3.6.4 Liquid or supercritical CO2 (Cryogenic) capture 151
- 3.6.4.1 Cryogenic CO₂ capture 151
- 3.6.5 Calcium Looping 153
- 3.6.5.1 Calix Advanced Calciner 153
- 3.6.6 Other technologies 154
- 3.6.6.1 LEILAC process 155
- 3.6.6.2 CO₂ capture with Solid Oxide Fuel Cells (SOFCs) 155
- 3.6.6.3 CO₂ capture with Molten Carbonate Fuel Cells (MCFCs) 156
- 3.6.6.4 Microalgae Carbon Capture 157
- 3.6.7 Comparison of key separation technologies 158
- 3.6.8 Technology readiness level (TRL) of gas separation technologies 159
- 3.7 Opportunities and barriers 160
- 3.8 Costs of CO2 capture 161
- 3.9 CO2 capture capacity 162
- 3.10 Direct air capture (DAC) 165
- 3.10.1 Technology description 165
- 3.10.1.1 Sorbent-based CO2 Capture 165
- 3.10.1.2 Solvent-based CO2 Capture 165
- 3.10.1.3 DAC Solid Sorbent Swing Adsorption Processes 166
- 3.10.1.4 Electro-Swing Adsorption (ESA) of CO2 for DAC 166
- 3.10.1.5 Solid and liquid DAC 167
- 3.10.2 Advantages of DAC 168
- 3.10.3 Deployment 169
- 3.10.4 Point source carbon capture versus Direct Air Capture 170
- 3.10.5 Technologies 170
- 3.10.5.1 Solid sorbents 172
- 3.10.5.2 Liquid sorbents 174
- 3.10.5.3 Liquid solvents 175
- 3.10.5.4 Airflow equipment integration 175
- 3.10.5.5 Passive Direct Air Capture (PDAC) 175
- 3.10.5.6 Direct conversion 176
- 3.10.5.7 Co-product generation 176
- 3.10.5.8 Low Temperature DAC 176
- 3.10.5.9 Regeneration methods 176
- 3.10.6 Electricity and Heat Sources 177
- 3.10.7 Commercialization and plants 177
- 3.10.8 Metal-organic frameworks (MOFs) in DAC 178
- 3.10.9 DAC plants and projects-current and planned 179
- 3.10.10 Capacity forecasts 185
- 3.10.11 Costs 186
- 3.10.12 Market challenges for DAC 192
- 3.10.13 Market prospects for direct air capture 193
- 3.10.14 Players and production 195
- 3.10.15 Co2 utilization pathways 196
- 3.10.16 Markets for Direct Air Capture and Storage (DACCS) 197
- 3.10.16.1 Fuels 198
- 3.10.16.1.1 Overview 198
- 3.10.16.1.2 Production routes 200
- 3.10.16.1.3 Methanol 200
- 3.10.16.1.4 Algae based biofuels 201
- 3.10.16.1.5 CO₂-fuels from solar 202
- 3.10.16.1.6 Companies 204
- 3.10.16.1.7 Challenges 206
- 3.10.16.2 Chemicals, plastics and polymers 206
- 3.10.16.2.1 Overview 206
- 3.10.16.2.2 Scalability 207
- 3.10.16.2.3 Plastics and polymers 208
- 3.10.16.2.3.1 CO2 utilization products 209
- 3.10.16.2.4 Urea production 210
- 3.10.16.2.5 Inert gas in semiconductor manufacturing 210
- 3.10.16.2.6 Carbon nanotubes 210
- 3.10.16.2.7 Companies 210
- 3.10.16.3 Construction materials 212
- 3.10.16.3.1 Overview 212
- 3.10.16.3.2 CCUS technologies 213
- 3.10.16.3.3 Carbonated aggregates 215
- 3.10.16.3.4 Additives during mixing 217
- 3.10.16.3.5 Concrete curing 217
- 3.10.16.3.6 Costs 217
- 3.10.16.3.7 Companies 217
- 3.10.16.3.8 Challenges 219
- 3.10.16.4 CO2 Utilization in Biological Yield-Boosting 220
- 3.10.16.4.1 Overview 220
- 3.10.16.4.2 Applications 220
- 3.10.16.4.2.1 Greenhouses 220
- 3.10.16.4.2.2 Algae cultivation 220
- 3.10.16.4.2.3 Microbial conversion 220
- 3.10.16.4.3 Companies 222
- 3.10.16.5 Food and feed production 223
- 3.10.16.6 CO₂ Utilization in Enhanced Oil Recovery 223
- 3.10.16.6.1 Overview 223
- 3.10.16.6.1.1 Process 224
- 3.10.16.6.1.2 CO₂ sources 225
- 3.10.16.6.2 CO₂-EOR facilities and projects 225
- 3.10.16.6.1 Overview 223
- 3.10.16.1 Fuels 198
- 3.10.1 Technology description 165
4 CARBON DIOXIDE REMOVAL 227
- 4.1 Conventional CDR on land 228
- 4.1.1 Wetland and peatland restoration 228
- 4.1.2 Cropland, grassland, and agroforestry 229
- 4.2 Technological CDR Solutions 229
- 4.3 Main CDR methods 230
- 4.4 Novel CDR methods 231
- 4.5 Technology Readiness Level (TRL): Carbon Dioxide Removal Methods 233
- 4.6 Carbon Credits 233
- 4.6.1 CO2 Utilization 234
- 4.6.2 Biochar and Agricultural Products 234
- 4.6.3 Renewable Energy Generation 234
- 4.6.4 Ecosystem Services 234
- 4.7 Types of Carbon Credits 235
- 4.7.1 Voluntary Carbon Credits 235
- 4.7.2 Compliance Carbon Credits 236
- 4.7.3 Corporate commitments 238
- 4.7.4 Increasing government support and regulations 238
- 4.7.5 Advancements in carbon offset project verification and monitoring 239
- 4.7.6 Potential for blockchain technology in carbon credit trading 240
- 4.7.7 Prices 241
- 4.7.8 Buying and Selling Carbon Credits 242
- 4.7.8.1 Carbon credit exchanges and trading platforms 242
- 4.7.8.2 Over-the-counter (OTC) transactions 243
- 4.7.8.3 Pricing mechanisms and factors affecting carbon credit prices 243
- 4.7.9 Certification 243
- 4.7.10 Challenges and risks 244
- 4.8 Value chain 245
- 4.9 Monitoring, reporting, and verification 246
- 4.10 Government policies 246
- 4.11 Bioenergy with Carbon Removal and Storage (BiCRS) 247
- 4.11.1 Advantages 247
- 4.11.2 Challenges 249
- 4.11.3 Costs 250
- 4.11.4 Feedstocks 251
- 4.12 BECCS 252
- 4.12.1 Technology overview 253
- 4.12.1.1 Point Source Capture Technologies for BECCS 255
- 4.12.1.2 Energy efficiency 255
- 4.12.1.3 Heat generation 255
- 4.12.1.4 Waste-to-Energy 256
- 4.12.1.5 Blue Hydrogen Production 256
- 4.12.2 Biomass conversion 256
- 4.12.3 CO₂ capture technologies 257
- 4.12.4 BECCS facilities 259
- 4.12.5 Cost analysis 260
- 4.12.6 BECCS carbon credits 260
- 4.12.7 Sustainability 261
- 4.12.8 Challenges 261
- 4.12.1 Technology overview 253
- 4.13 Enhanced Weathering 262
- 4.13.1 Overview 263
- 4.13.1.1 Role of enhanced weathering in carbon dioxide removal 263
- 4.13.1.2 CO₂ mineralization 264
- 4.13.2 Enhanced Weathering Processes and Materials 265
- 4.13.3 Enhanced Weathering Applications 265
- 4.13.4 Trends and Opportunities 266
- 4.13.5 Challenges and Risks 266
- 4.13.6 Cost analysis 267
- 4.13.7 SWOT analysis 267
- 4.13.1 Overview 263
- 4.14 Afforestation/Reforestation 268
- 4.14.1 Overview 268
- 4.14.2 Carbon dioxide removal methods 268
- 4.14.3 Projects 271
- 4.14.4 Remote sensing in A/R 271
- 4.14.5 Robotics 271
- 4.14.6 Trends and Opportunities 273
- 4.14.7 Challenges and Risks 274
- 4.14.8 SWOT analysis 274
- 4.15 Soil carbon sequestration (SCS) 275
- 4.15.1 Overview 275
- 4.15.2 Practices 276
- 4.15.3 Measuring and Verifying 277
- 4.15.4 Trends and Opportunities 278
- 4.15.5 Carbon credits 279
- 4.15.6 Challenges and Risks 280
- 4.15.7 SWOT analysis 280
- 4.16 Biochar 282
- 4.16.1 What is biochar? 282
- 4.16.2 Carbon sequestration 284
- 4.16.3 Properties of biochar 284
- 4.16.4 Feedstocks 287
- 4.16.5 Production processes 287
- 4.16.5.1 Sustainable production 288
- 4.16.5.2 Pyrolysis 289
- 4.16.5.2.1 Slow pyrolysis 289
- 4.16.5.2.2 Fast pyrolysis 290
- 4.16.5.3 Gasification 291
- 4.16.5.4 Hydrothermal carbonization (HTC) 291
- 4.16.5.5 Torrefaction 291
- 4.16.5.6 Equipment manufacturers 292
- 4.16.6 Biochar pricing 293
- 4.16.7 Biochar carbon credits 293
- 4.16.7.1 Overview 293
- 4.16.7.2 Removal and reduction credits 294
- 4.16.7.3 The advantage of biochar 294
- 4.16.7.4 Prices 294
- 4.16.7.5 Buyers of biochar credits 295
- 4.16.7.6 Competitive materials and technologies 295
- 4.16.8 Bio-oil based CDR 296
- 4.16.9 Biomass burial for CO₂ removal 297
- 4.16.10 Bio-based construction materials for CDR 298
- 4.16.11 SWOT analysis 299
- 4.17 Ocean-based CDR 300
- 4.17.1 Overview 300
- 4.17.2 Ocean pumps 301
- 4.17.3 CO₂ capture from seawater 302
- 4.17.4 Ocean fertilisation 302
- 4.17.5 Coastal blue carbon 304
- 4.17.6 Algal cultivation 305
- 4.17.7 Artificial upwelling 305
- 4.17.8 MRV for marine CDR 306
- 4.17.9 Ocean alkalinisation 307
- 4.17.10 Ocean alkalinity enhancement (OAE) 308
- 4.17.11 Electrochemical ocean alkalinity enhancement 308
- 4.17.12 Direct ocean capture technology 309
- 4.17.13 Artificial downwelling 310
- 4.17.14 Trends and Opportunities 310
- 4.17.15 Ocean-based carbon credits 311
- 4.17.16 Cost analysis 311
- 4.17.17 Challenges and Risks 312
- 4.17.18 SWOT analysis 313
5 CARBON DIOXIDE UTILIZATION 314
- 5.1 Overview 314
- 5.1.1 Current market status 314
- 5.2 Carbon utilization business models 319
- 5.2.1 Benefits of carbon utilization 320
- 5.2.2 Market challenges 322
- 5.3 Co2 utilization pathways 323
- 5.4 Conversion processes 325
- 5.4.1 Thermochemical 325
- 5.4.1.1 Process overview 326
- 5.4.1.2 Plasma-assisted CO2 conversion 328
- 5.4.2 Electrochemical conversion of CO2 329
- 5.4.2.1 Process overview 329
- 5.4.3 Photocatalytic and photothermal catalytic conversion of CO2 331
- 5.4.4 Catalytic conversion of CO2 332
- 5.4.5 Biological conversion of CO2 332
- 5.4.6 Copolymerization of CO2 335
- 5.4.7 Mineral carbonation 336
- 5.4.1 Thermochemical 325
- 5.5 CO2-Utilization in Fuels 339
- 5.5.1 Overview 339
- 5.5.2 Production routes 342
- 5.5.3 CO₂ -fuels in road vehicles 346
- 5.5.4 CO₂ -fuels in shipping 346
- 5.5.5 CO₂ -fuels in aviation 346
- 5.5.6 Costs of e-fuel 347
- 5.5.7 Power-to-methane 348
- 5.5.7.1 Thermocatalytic pathway to e-methane 348
- 5.5.7.2 Biological fermentation 349
- 5.5.7.3 Costs 349
- 5.5.8 Algae based biofuels 353
- 5.5.9 DAC for e-fuels 354
- 5.5.10 Syngas Production Options 355
- 5.5.11 CO₂-fuels from solar 356
- 5.5.12 Companies 358
- 5.5.13 Challenges 360
- 5.5.14 Global market forecasts 2025-2045 360
- 5.6 CO2-Utilization in Chemicals 361
- 5.6.1 Overview 361
- 5.6.2 Carbon nanostructures 361
- 5.6.3 Scalability 363
- 5.6.4 Pathways 364
- 5.6.4.1 Thermochemical 364
- 5.6.4.2 Electrochemical 366
- 5.6.4.2.1 Low-Temperature Electrochemical CO₂ Reduction 367
- 5.6.4.2.2 High-Temperature Solid Oxide Electrolyzers 367
- 5.6.4.2.3 Coupling H2 and Electrochemical CO₂ Reduction 368
- 5.6.4.3 Microbial conversion 369
- 5.6.4.4 Other 370
- 5.6.4.4.1 Photocatalytic 370
- 5.6.4.4.2 Plasma technology 371
- 5.6.5 Applications 371
- 5.6.5.1 Urea production 371
- 5.6.5.2 CO₂-derived polymers 371
- 5.6.5.2.1 Pathways 371
- 5.6.5.2.2 Polycarbonate from CO₂ 372
- 5.6.5.2.3 Methanol to olefins (polypropylene production) 373
- 5.6.5.2.4 Ethanol to polymers 373
- 5.6.5.3 Inert gas in semiconductor manufacturing 373
- 5.6.6 Companies 374
- 5.6.7 Global market forecasts 2025-2045 376
- 5.7 CO2-Utilization in Construction and Building Materials 377
- 5.7.1 Overview 377
- 5.7.2 Market drivers 377
- 5.7.3 Key CO₂ utilization technologies in construction 380
- 5.7.4 Carbonated aggregates 382
- 5.7.5 Additives during mixing 383
- 5.7.6 Concrete curing 385
- 5.7.7 Costs 385
- 5.7.8 Market trends and business models 385
- 5.7.9 Carbon credits 388
- 5.7.10 Companies 389
- 5.7.11 Challenges 390
- 5.7.12 Global market forecasts 391
- 5.8 CO2-Utilization in Biological Yield-Boosting 392
- 5.8.1 Overview 392
- 5.8.2 CO₂ utilization in biological processes 392
- 5.8.3 Applications 392
- 5.8.3.1 Greenhouses 392
- 5.8.3.1.1 CO₂ enrichment 392
- 5.8.3.2 Algae cultivation 393
- 5.8.3.2.1 CO₂-enhanced algae cultivation: open systems 394
- 5.8.3.2.2 CO₂-enhanced algae cultivation: closed systems 394
- 5.8.3.3 Microbial conversion 395
- 5.8.3.4 Food and feed production 396
- 5.8.3.1 Greenhouses 392
- 5.8.4 Companies 397
- 5.8.5 Global market forecasts 2025-2045 398
- 5.9 CO₂ Utilization in Enhanced Oil Recovery 399
- 5.9.1 Overview 399
- 5.9.1.1 Process 399
- 5.9.1.2 CO₂ sources 400
- 5.9.2 CO₂-EOR facilities and projects 400
- 5.9.3 Challenges 401
- 5.9.4 Global market forecasts 2025-2045 402
- 5.9.1 Overview 399
- 5.10 Enhanced mineralization 402
- 5.10.1 Advantages 402
- 5.10.2 In situ and ex-situ mineralization 403
- 5.10.3 Enhanced mineralization pathways 404
- 5.10.4 Challenges 404
6 CARBON DIOXIDE STORAGE 406
- 6.1 Introduction 406
- 6.2 CO2 storage sites 408
- 6.2.1 Storage types for geologic CO2 storage 409
- 6.2.2 Oil and gas fields 410
- 6.2.3 Saline formations 411
- 6.2.4 Coal seams and shale 414
- 6.2.5 Basalts and ultra-mafic rocks 414
- 6.3 CO₂ leakage 415
- 6.4 Global CO2 storage capacity 416
- 6.5 CO₂ Storage Projects 421
- 6.6 CO₂ -EOR 423
- 6.6.1 Description 423
- 6.6.2 Injected CO₂ 423
- 6.6.3 CO₂ capture with CO₂ -EOR facilities 424
- 6.6.4 Companies 425
- 6.6.5 Economics 426
- 6.7 Costs 427
- 6.8 Challenges 428
7 CARBON DIOXIDE TRANSPORTATION 429
- 7.1 Introduction 429
- 7.2 CO₂ transportation methods and conditions 429
- 7.3 CO₂ transportation by pipeline 430
- 7.4 CO₂ transportation by ship 431
- 7.5 CO₂ transportation by rail and truck 432
- 7.6 Cost analysis of different methods 432
- 7.7 Companies 433
8 COMPANY PROFILES 435 (313 company profiles)
9 APPENDICES 640
- 9.1 Abbreviations 640
- 9.2 Research Methodology 641
- 9.3 Definition of Carbon Capture, Utilisation and Storage (CCUS) 641
- 9.4 Technology Readiness Level (TRL) 642
10 REFERENCES 644
List of Tables
- Table 1. Carbon Capture, Utilisation and Storage (CCUS) market drivers and trends. 37
- Table 2. Carbon capture, usage, and storage (CCUS) industry developments 2020-2024. 39
- Table 3. CCUS VC deals 2022-2024. 45
- Table 4. CCUS government funding and investment-10 year outlook. 48
- Table 5. Demonstration and commercial CCUS facilities in China. 50
- Table 6. Global commercial CCUS facilities-in operation. 55
- Table 7. Global commercial CCUS facilities-under development/construction. 58
- Table 8. Key market barriers for CCUS. 64
- Table 9. Key compliance carbon pricing initiatives around the world. 65
- Table 10. CCUS business models: full chain, part chain, and hubs and clusters. 68
- Table 11. CCUS capture capacity forecast by CO₂ endpoint, Mtpa of CO₂, to 2045. 74
- Table 12. Capture capacity by region to 2045, Mtpa. 74
- Table 13. CCUS revenue potential for captured CO₂ offtaker, billion US $ to 2045. 75
- Table 14. CCUS capacity forecast by capture type, Mtpa of CO₂, to 2045. 75
- Table 15. Point-source CCUS capture capacity forecast by CO₂ source sector, Mtpa of CO₂, to 2045. 75
- Table 16. CO2 utilization and removal pathways 78
- Table 17. Approaches for capturing carbon dioxide (CO2) from point sources. 82
- Table 18. CO2 capture technologies. 83
- Table 19. Advantages and challenges of carbon capture technologies. 84
- Table 20. Overview of commercial materials and processes utilized in carbon capture. 84
- Table 21. Methods of CO2 transport. 90
- Table 22. Carbon capture, transport, and storage cost per unit of CO2 92
- Table 23. Estimated capital costs for commercial-scale carbon capture. 92
- Table 24. Comparison of CO₂ capture technologies. 96
- Table 25. Typical conditions and performance for different capture technologies. 97
- Table 26. PSCC technologies. 100
- Table 27. Point source examples. 101
- Table 28. Comparison of point-source CO₂ capture systems 102
- Table 29. Blue hydrogen projects. 112
- Table 30. Commercial CO₂ capture systems for blue H2. 113
- Table 31. Market players in blue hydrogen. 113
- Table 32. CCUS Projects in the Cement Sector. 115
- Table 33. Carbon capture technologies in the cement sector. 116
- Table 34. Cost and technological status of carbon capture in the cement sector. 117
- Table 35. Assessment of carbon capture materials 119
- Table 36. Chemical solvents used in post-combustion. 121
- Table 37. Comparison of key chemical solvent-based systems. 122
- Table 38. Chemical absorption solvents used in current operational CCUS point-source projects. 123
- Table 39.Comparison of key physical absorption solvents. 124
- Table 40.Physical solvents used in current operational CCUS point-source projects. 124
- Table 41.Emerging solvents for carbon capture 125
- Table 42. Oxygen separation technologies for oxy-fuel combustion. 126
- Table 43. Large-scale oxyfuel CCUS cement projects. 127
- Table 44. Commercially available physical solvents for pre-combustion carbon capture. 131
- Table 45. Main capture processes and their separation technologies. 131
- Table 46. Absorption methods for CO2 capture overview. 132
- Table 47. Commercially available physical solvents used in CO2 absorption. 134
- Table 48. Adsorption methods for CO2 capture overview. 136
- Table 49. Solid sorbents explored for carbon capture. 138
- Table 50. Carbon-based adsorbents for CO₂ capture. 140
- Table 51. Polymer-based adsorbents. 141
- Table 52. Solid sorbents for post-combustion CO₂ capture. 143
- Table 53. Emerging Solid Sorbent Systems. 143
- Table 54. Membrane-based methods for CO2 capture overview. 145
- Table 55. Comparison of membrane materials for CCUS 147
- Table 56.Commercial status of membranes in carbon capture 148
- Table 57. Membranes for pre-combustion capture. 150
- Table 58. Status of cryogenic CO₂ capture technologies. 152
- Table 59. Benefits and drawbacks of microalgae carbon capture. 157
- Table 60. Comparison of main separation technologies. 158
- Table 61. Technology readiness level (TRL) of gas separation technologies 159
- Table 62. Opportunities and Barriers by sector. 160
- Table 63. DAC technologies. 165
- Table 64. Advantages and disadvantages of DAC. 168
- Table 65. Advantages of DAC as a CO2 removal strategy. 168
- Table 66. Companies developing airflow equipment integration with DAC. 175
- Table 67. Companies developing Passive Direct Air Capture (PDAC) technologies. 175
- Table 68. Companies developing regeneration methods for DAC technologies. 176
- Table 69. DAC companies and technologies. 178
- Table 70. DAC technology developers and production. 180
- Table 71. DAC projects in development. 184
- Table 72. DACCS carbon removal capacity forecast (million metric tons of CO₂ per year), 2024-2045, base case. 185
- Table 73. DACCS carbon removal capacity forecast (million metric tons of CO₂ per year), 2030-2045, optimistic case. 186
- Table 74. Costs summary for DAC. 186
- Table 75. Typical cost contributions of the main components of a DACCS system. 188
- Table 76. Cost estimates of DAC. 191
- Table 77. Challenges for DAC technology. 192
- Table 78. DAC companies and technologies. 195
- Table 79. Example CO2 utilization pathways. 196
- Table 80. Markets for Direct Air Capture and Storage (DACCS). 197
- Table 81. Market overview for CO2 derived fuels. 198
- Table 82. Microalgae products and prices. 202
- Table 83. Main Solar-Driven CO2 Conversion Approaches. 203
- Table 84. Companies in CO2-derived fuel products. 204
- Table 85. Commodity chemicals and fuels manufactured from CO2. 207
- Table 86. CO2 utilization products developed by chemical and plastic producers. 209
- Table 87. Companies in CO2-derived chemicals products. 210
- Table 88. Carbon capture technologies and projects in the cement sector 213
- Table 89. Companies in CO2 derived building materials. 217
- Table 90. Market challenges for CO2 utilization in construction materials. 219
- Table 91. Companies in CO2 Utilization in Biological Yield-Boosting. 222
- Table 92. CO2 sequestering technologies and their use in food. 223
- Table 93. Applications of CCS in oil and gas production. 223
- Table 94.Market Drivers for Carbon Dioxide Removal (CDR). 227
- Table 95. CDR versus CCUS 228
- Table 96. Status and Potential of CDR Technologies. 229
- Table 97. Main CDR methods. 230
- Table 98. Novel CDR Methods 231
- Table 99.Carbon Dioxide Removal Technology Benchmarking 232
- Table 100. Comparison of voluntary and compliance carbon credits. 237
- Table 101. DACCS carbon credit revenue forecast (million US$), 2024-2045. 237
- Table 102. Examples of government support and regulations. 239
- Table 103. Carbon credit prices. 241
- Table 104. Carbon credit prices by company and technology. 241
- Table 105. Carbon credit market sizes. 242
- Table 106. Carbon Credit Exchanges and Trading Platforms. 242
- Table 107. Challenges and Risks. 244
- Table 108. CDR Value Chain. 245
- Table 109. Feedstocks for Bioenergy with Carbon Removal and Storage (BiCRS): 251
- Table 110. CO₂ capture technologies for BECCS. 257
- Table 111. Existing and planned capacity for sequestration of biogenic carbon. 259
- Table 112. Existing facilities with capture and/or geologic sequestration of biogenic CO2. 259
- Table 113. Challenges of BECCS 261
- Table 114.Comparison of enhanced weathering materials 265
- Table 115. Enhanced Weathering Applications. 265
- Table 116. Trends and opportunities in enhanced weathering. 266
- Table 117. Challenges and risks in enhanced weathering. 266
- Table 118. Nature-based CDR approaches. 269
- Table 119. Comparison of A/R and BECCS Solutions. 270
- Table 120. Status of Forest Carbon Removal Projects. 271
- Table 121. Companies in robotics in afforestation/reforestation. 272
- Table 122. Comparison of A/R and BECCS. 272
- Table 123. Trends and Opportunities in afforestation/reforestation. 273
- Table 124. Challenges and risks in afforestation/reforestation. 274
- Table 125. Soil carbon sequestration practices. 276
- Table 126. Soil sampling and analysis methods. 277
- Table 127. Remote sensing and modeling techniques. 278
- Table 128. Carbon credit protocols and standards. 278
- Table 129. Trends and opportunities in soil carbon sequestration (SCS). 278
- Table 130. Key aspects of soil carbon credits. 279
- Table 131. Challenges and Risks in SCS. 280
- Table 132. Summary of key properties of biochar. 285
- Table 133. Biochar physicochemical and morphological properties 285
- Table 134. Biochar feedstocks-source, carbon content, and characteristics. 287
- Table 135. Biochar production technologies, description, advantages and disadvantages. 288
- Table 136. Comparison of slow and fast pyrolysis for biomass. 290
- Table 137. Comparison of thermochemical processes for biochar production. 292
- Table 138. Biochar production equipment manufacturers. 292
- Table 139. Competitive materials and technologies that can also earn carbon credits. 295
- Table 140. Bio-oil-based CDR pros and cons. 296
- Table 141. Ocean-based CDR methods. 300
- Table 142. Benchmarking of ocean-based CDR methods: 302
- Table 143.Ocean-based CDR: biotic methods. 303
- Table 144. Technology in direct ocean capture. 309
- Table 145. Future direct ocean capture technologies. 309
- Table 146. Trends and opportunities in ocean-based CDR. 310
- Table 147. Challenges and risks in ocean-based CDR. 312
- Table 148. Carbon utilization revenue forecast by product (US$). 317
- Table 149. Carbon utilization business models. 319
- Table 150. CO2 utilization and removal pathways. 320
- Table 151. Market challenges for CO2 utilization. 322
- Table 152. Example CO2 utilization pathways. 323
- Table 153. CO2 derived products via Thermochemical conversion-applications, advantages and disadvantages. 326
- Table 154. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages. 329
- Table 155. CO2 derived products via biological conversion-applications, advantages and disadvantages. 333
- Table 156. Companies developing and producing CO2-based polymers. 335
- Table 157. Companies developing mineral carbonation technologies. 337
- Table 158. Comparison of emerging CO₂ utilization applications. 338
- Table 159. Main routes to CO₂-fuels. 340
- Table 160. Market overview for CO2 derived fuels. 340
- Table 161. Main routes to CO₂ -fuels 343
- Table 162.Comparison of e-fuels to fossil and biofuels. 344
- Table 163. Existing and future CO₂-derived synfuels (kerosene, diesel, and gasoline) projects.. : 345
- Table 164. CO2-Derived Methane Projects. 348
- Table 165. Power-to-Methane projects worldwide. 349
- Table 166. Power-to-Methane projects. 351
- Table 167. Microalgae products and prices. 354
- Table 168. Syngas Production Options for E-fuels. 355
- Table 169. Main Solar-Driven CO2 Conversion Approaches. 357
- Table 170. Companies in CO2-derived fuel products. 358
- Table 171. CO₂ utilization forecast for fuels by fuel type (million tonnes of CO₂/year), 2025-2045. 360
- Table 172. Global revenue forecast for CO₂-derived fuels by fuel type (million US$), 2025-2045. 360
- Table 173. Commodity chemicals and fuels manufactured from CO2. 364
- Table 174.CO₂-derived Chemicals: Thermochemical Pathways. 364
- Table 175. Thermochemical Methods: CO₂-derived Methanol. 365
- Table 176. CO₂-derived Methanol Projects. 365
- Table 177. CO₂-Derived Methanol: Economic and Market Analysis (Next 5-10 Years). 366
- Table 178. Electrochemical CO₂ Reduction Technologies. 366
- Table 179. Comparison of RWGS and SOEC Co-electrolysis Routes. 367
- Table 180. Cost Comparison of CO₂ Electrochemical Technologies. 368
- Table 181. Technology Readiness Level (TRL): CO₂U Chemicals. 374
- Table 182. Companies in CO2-derived chemicals products. 374
- Table 183. CO₂ utilization forecast in chemicals by end-use (million tonnes of CO₂/year), 2025-2045. 376
- Table 184. Global revenue forecast for CO₂-derived chemicals by end-use (million US$), 2025-2045. 376
- Table 185. Carbon capture technologies and projects in the cement sector 380
- Table 186. Prefabricated versus ready-mixed concrete markets . 383
- Table 187. CO₂ utilization in concrete curing or mixing. 384
- Table 188. CO₂ utilization business models in building materials. 386
- Table 189. Companies in CO2 derived building materials. 389
- Table 190. Market challenges for CO2 utilization in construction materials. 390
- Table 191. CO₂ utilization forecast in building materials by end-use (million tonnes of CO₂/year), 2025-2045. 391
- Table 192. Global revenue forecast for CO₂-derived building materials by product (million US$), 2025-2045. 391
- Table 193. Enrichment Technology. 393
- Table 194. Food and Feed Production from CO₂. 397
- Table 195. Companies in CO2 Utilization in Biological Yield-Boosting. 397
- Table 196. CO₂ utilization forecast in biological yield-boosting by end-use (million tonnes of CO₂ per year), 2025-2045. 398
- Table 197. Global revenue forecast for CO₂ use in biological yield-boosting by end-use (million US$), 2025-2045. 398
- Table 198. Applications of CCS in oil and gas production. 399
- Table 199. CO₂ utilization forecast in enhanced oil recovery (million tonnes of CO₂/year), 2025-2045 402
- Table 200. Global revenue forecast for CO₂-enhanced oil recovery (billion US$), 2025-2045. 402
- Table 201. CO2 EOR/Storage Challenges. 405
- Table 202. Storage and utilization of CO2. 406
- Table 203. Mechanisms of subsurface CO₂ trapping. 408
- Table 204. Global depleted reservoir storage projects. 409
- Table 205. Global CO2 ECBM storage projects. 409
- Table 206. CO2 EOR/storage projects. 410
- Table 207. Global storage sites-saline aquifer projects. 412
- Table 208. Global storage capacity estimates, by region. 417
- Table 209. MRV Technologies and Costs in CO₂ Storage. 419
- Table 210. Carbon storage challenges. 420
- Table 211. Status of CO₂ Storage Projects. 421
- Table 212. Types of CO₂ -EOR designs. 424
- Table 213. CO₂ capture with CO₂ -EOR facilities. 424
- Table 214. CO₂ -EOR companies. 425
- Table 215. Phases of CO₂ for transportation. 429
- Table 216. CO₂ transportation methods and conditions. 429
- Table 217. Status of CO₂ transportation methods in CCS projects. 430
- Table 218. CO₂ pipelines Technical challenges. 430
- Table 219. Cost comparison of CO₂ transportation methods 432
- Table 220. CO₂ transport operators. 433
- Table 221. List of abbreviations. 640
- Table 222. Technology Readiness Level (TRL) Examples. 642
List of Figures
- Figure 1. Carbon emissions by sector. 33
- Figure 2. Overview of CCUS market 34
- Figure 3. CCUS business model. 36
- Figure 4. Pathways for CO2 use. 36
- Figure 5. Regional capacity share 2025-2035. 39
- Figure 6. Global investment in carbon capture 2010-2023, millions USD. 45
- Figure 7. Carbon Capture, Utilization, & Storage (CCUS) Market Map. 54
- Figure 8. CCS deployment projects, historical and to 2035. 55
- Figure 9. Existing and planned CCS projects. 63
- Figure 10. CCUS Value Chain. 63
- Figure 11. Schematic of CCUS process. 77
- Figure 12. Pathways for CO2 utilization and removal. 78
- Figure 13. A pre-combustion capture system. 83
- Figure 14. Carbon dioxide utilization and removal cycle. 86
- Figure 15. Various pathways for CO2 utilization. 87
- Figure 16. Example of underground carbon dioxide storage. 88
- Figure 17. Transport of CCS technologies. 89
- Figure 18. Railroad car for liquid CO₂ transport 91
- Figure 19. Estimated costs of capture of one metric ton of carbon dioxide (Co2) by sector. 93
- Figure 20. Cost of CO2 transported at different flowrates 94
- Figure 21. Cost estimates for long-distance CO2 transport. 95
- Figure 22. CO2 capture and separation technology. 96
- Figure 23. Global capacity of point-source carbon capture and storage facilities. 105
- Figure 24. Global carbon capture capacity by CO2 source, 2023. 106
- Figure 25. Global carbon capture capacity by CO2 source, 2045. 107
- Figure 26. SMR process flow diagram of steam methane reforming with carbon capture and storage (SMR-CCS). 108
- Figure 27. Process flow diagram of autothermal reforming with a carbon capture and storage (ATR-CCS) plant. 109
- Figure 28. POX process flow diagram. 110
- Figure 29. Process flow diagram for a typical SE-SMR. 111
- Figure 30. Post-combustion carbon capture process. 120
- Figure 31. Post-combustion CO2 Capture in a Coal-Fired Power Plant. 121
- Figure 32. Oxy-combustion carbon capture process. 127
- Figure 33. Process schematic of chemical looping. 129
- Figure 34. Liquid or supercritical CO2 carbon capture process. 130
- Figure 35. Pre-combustion carbon capture process. 130
- Figure 36. Amine-based absorption technology. 134
- Figure 37. Pressure swing absorption technology. 138
- Figure 38. Membrane separation technology. 146
- Figure 39. Liquid or supercritical CO2 (cryogenic) distillation. 151
- Figure 40. Cryocap™ process. 153
- Figure 41. Calix advanced calcination reactor. 154
- Figure 42. LEILAC process. 155
- Figure 43. Fuel Cell CO2 Capture diagram. 156
- Figure 44. Microalgal carbon capture. 157
- Figure 45. Cost of carbon capture. 162
- Figure 46. CO2 capture capacity to 2030, MtCO2. 163
- Figure 47. Capacity of large-scale CO2 capture projects, current and planned vs. the Net Zero Scenario, 2020-2030. 164
- Figure 48. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse. 167
- Figure 49. Global CO2 capture from biomass and DAC in the Net Zero Scenario. 168
- Figure 50. Potential for DAC removal versus other carbon removal methods. 169
- Figure 51. DAC technologies. 171
- Figure 52. Schematic of Climeworks DAC system. 172
- Figure 53. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland. 173
- Figure 54. Flow diagram for solid sorbent DAC. 173
- Figure 55. Direct air capture based on high temperature liquid sorbent by Carbon Engineering. 175
- Figure 56. Global capacity of direct air capture facilities. 179
- Figure 57. Global map of DAC and CCS plants. 185
- Figure 58. Schematic of costs of DAC technologies. 189
- Figure 59. DAC cost breakdown and comparison. 190
- Figure 60. Operating costs of generic liquid and solid-based DAC systems. 192
- Figure 61. Co2 utilization pathways and products. 197
- Figure 62. Conversion route for CO2-derived fuels and chemical intermediates. 199
- Figure 63. Conversion pathways for CO2-derived methane, methanol and diesel. 200
- Figure 64. CO2 feedstock for the production of e-methanol. 201
- Figure 65. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c 203
- Figure 66. Audi synthetic fuels. 204
- Figure 67. Conversion of CO2 into chemicals and fuels via different pathways. 207
- Figure 68. Conversion pathways for CO2-derived polymeric materials 208
- Figure 69. Conversion pathway for CO2-derived building materials. 212
- Figure 70. Schematic of CCUS in cement sector. 213
- Figure 71. Carbon8 Systems’ ACT process. 216
- Figure 72. CO2 utilization in the Carbon Cure process. 216
- Figure 73. Algal cultivation in the desert. 220
- Figure 74. Example pathways for products from cyanobacteria. 221
- Figure 75. Typical Flow Diagram for CO2 EOR. 225
- Figure 76. Large CO2-EOR projects in different project stages by industry. 226
- Figure 77. Bioenergy with carbon capture and storage (BECCS) process. 254
- Figure 78. SWOT analysis: enhanced weathering. 268
- Figure 79. SWOT analysis: afforestation/reforestation. 275
- Figure 80. SWOT analysis: SCS. 281
- Figure 81. Schematic of biochar production. 282
- Figure 82. Biochars from different sources, and by pyrolyzation at different temperatures. 283
- Figure 83. Compressed biochar. 286
- Figure 84. Biochar production diagram. 288
- Figure 85. Pyrolysis process and by-products in agriculture. 290
- Figure 86. SWOT analysis: Biochar for CDR. 299
- Figure 87. SWOT analysis: ocean-based CDR. 313
- Figure 88. CO2 non-conversion and conversion technology, advantages and disadvantages. 314
- Figure 89. Applications for CO2. 316
- Figure 90. Cost to capture one metric ton of carbon, by sector. 317
- Figure 91. Life cycle of CO2-derived products and services. 322
- Figure 92. Co2 utilization pathways and products. 325
- Figure 93. Plasma technology configurations and their advantages and disadvantages for CO2 conversion. 328
- Figure 94. Electrochemical CO₂ reduction products. 329
- Figure 95. LanzaTech gas-fermentation process. 332
- Figure 96. Schematic of biological CO2 conversion into e-fuels. 333
- Figure 97. Econic catalyst systems. 335
- Figure 98. Mineral carbonation processes. 337
- Figure 99. Conversion route for CO2-derived fuels and chemical intermediates. 341
- Figure 100. Conversion pathways for CO2-derived methane, methanol and diesel. 342
- Figure 101. SWOT analysis: e-fuels. 347
- Figure 102. CO2 feedstock for the production of e-methanol. 353
- Figure 103. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2 c 357
- Figure 104. Audi synthetic fuels. 358
- Figure 105. Conversion of CO2 into chemicals and fuels via different pathways. 363
- Figure 106. Conversion pathways for CO2-derived polymeric materials 372
- Figure 107. Conversion pathway for CO2-derived building materials. 377
- Figure 108. Schematic of CCUS in cement sector. 378
- Figure 109. Carbon8 Systems’ ACT process. 382
- Figure 110. CO2 utilization in the Carbon Cure process. 383
- Figure 111. Algal cultivation in the desert. 393
- Figure 112. Example pathways for products from cyanobacteria. 396
- Figure 113. Typical Flow Diagram for CO2 EOR. 400
- Figure 114. Large CO2-EOR projects in different project stages by industry. 401
- Figure 115. Carbon mineralization pathways. 404
- Figure 116. CO2 Storage Overview - Site Options 408
- Figure 117. CO2 injection into a saline formation while producing brine for beneficial use. 412
- Figure 118. Subsurface storage cost estimation. 427
- Figure 119. Air Products production process. 441
- Figure 120. ALGIECEL PhotoBioReactor. 446
- Figure 121. Schematic of carbon capture solar project. 451
- Figure 122. Aspiring Materials method. 452
- Figure 123. Aymium’s Biocarbon production. 455
- Figure 124. Capchar prototype pyrolysis kiln. 466
- Figure 125. Carbonminer technology. 472
- Figure 126. Carbon Blade system. 476
- Figure 127. CarbonCure Technology. 483
- Figure 128. Direct Air Capture Process. 485
- Figure 129. CRI process. 488
- Figure 130. PCCSD Project in China. 501
- Figure 131. Orca facility. 502
- Figure 132. Process flow scheme of Compact Carbon Capture Plant. 506
- Figure 133. Colyser process. 507
- Figure 134. ECFORM electrolysis reactor schematic. 514
- Figure 135. Dioxycle modular electrolyzer. 515
- Figure 136. Fuel Cell Carbon Capture. 532
- Figure 137. Topsoe's SynCORTM autothermal reforming technology. 540
- Figure 138. Carbon Capture balloon. 543
- Figure 139. Holy Grail DAC system. 545
- Figure 140. INERATEC unit. 550
- Figure 141. Infinitree swing method. 551
- Figure 142. Audi/Krajete unit. 557
- Figure 143. Made of Air's HexChar panels. 566
- Figure 144. Mosaic Materials MOFs. 573
- Figure 145. Neustark modular plant. 577
- Figure 146. OCOchem’s Carbon Flux Electrolyzer. 585
- Figure 147. ZerCaL™ process. 587
- Figure 148. CCS project at Arthit offshore gas field. 597
- Figure 149. RepAir technology. 601
- Figure 150. Aker (SLB Capturi) carbon capture system. 612
- Figure 151. Soletair Power unit. 614
- Figure 152. Sunfire process for Blue Crude production. 620
- Figure 153. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right). 623
- Figure 154. Takavator. 625
- Figure 155. O12 Reactor. 630
- Figure 156. Sunglasses with lenses made from CO2-derived materials. 630
- Figure 157. CO2 made car part. 630
- Figure 158. Molecular sieving membrane. 632
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer.
To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.