The Global Market for Carbon Nanomaterials: Carbon Nanotubes, Graphene, 2D Materials and Nanodiamonds

0

Published February 2018| 1000 pages. 297 tables, 172 figures | Table of contents

This is a golden era for nanostructured carbon materials research. Graphitic carbon materials such as carbon nanotubes (CNTs) and graphene are the strongest, lightest and most conductive fibres known to man, with a performance-per-weight greater than any other material. In direct competition in a number of markets, they are complementary in others.

Once the most promising of all nanomaterials, CNTs face stiff competition in conductive applications from graphene and other 2D materials and in mechanically enhanced composites from nanocellulose. However, after considerable research efforts, numerous multi-walled carbon nanotubes (MWNTs)-enhanced products are commercially available. Super-aligned CNT arrays, films and yarns have found applications in consumer electronics, batteries, polymer composites, aerospace, sensors, heaters, filters and biomedicine.

Large-scale industrial production of single-walled carbon nanotubes (SWNTs) has been initiated, promising new market opportunities in transparent conductive films, transistors, sensors and memory devices. SWNTs are regarded as one of the most promising candidates to utilized as building blocks in next generation electronics.

Two-dimensional(2D) materials are currently one of the most active areas of nanomaterials research, and offer a huge opportunity for both fundamental studies and practical applications, including superfast, low-power, flexible and wearable electronics, sensors, photonics and electrochemical energy storage devices that will have an immense impact on our society.

Graphene is a ground-breaking two-dimensional (2D) material that possesses extraordinary electrical and mechanical properties that promise a new generation of innovative devices. New methods of scalable synthesis of high-quality graphene, clean delamination transfer and device integration have resulted in the commercialization of state-of-the-art electronics such as graphene touchscreens in smartphones and flexible RF devices on plastics.

Beyond graphene, emerging elementary 2D materials such as transition metal dichalcogenides, group V systems including phosphorene, and related isoelectronic structures will potentially allow for flexible electronics and field-effect transistors that exhibit ambipolar transport behaviour with either a direct band-gap or greater gate modulation.

Nanodiamonds (NDs), also called detonation diamonds (DND) or ultradispersed diamonds (UDD), are relatively easy and inexpensive to produce, and have moved towards large-scale commercialization due to their excellent mechanical, thermal properties and chemical stability.

This 1000 page report on the carbon nanotubes, graphene and 2D materials and nanodiamonds market is by far the most comprehensive and authoritative report produced.

  • Production volumes, estimated to 2027
  • Commercialization timelines and technology trends
  • Carbon nanotubes and graphene products, now and planned
  • Comparative analysis of carbon nanotubes and graphene
  • Assessment of carbon nanomaterials market including production volumes, competitive landscape, commercial prospects, applications, demand by market and region, commercialization timelines, prices and producer profiles.
  • Assessment of end user markets for carbon nanomaterials including market drivers and trends, applications, market opportunity, market challenges and application and product developer profiles.
  • Unique assessment tools for the carbon nanomaterials market, end user applications, economic impact, addressable markets and market challenges to provide the complete picture of where the real opportunities in carbon nanomaterials are.
  • Company profiles of carbon nanotubes, graphene, 2D materials and nanodiamonds producers and product developers, including products, target markets and contact details
The Carbon Nanomaterials Global Opportunity Report
The Carbon Nanomaterials Global Opportunity Report
Instant PDF download on completion of purchase.
The Carbon Nanomaterials Global Opportunity Report
The Carbon Nanomaterials Global Opportunity Report
PDF plus hard copy in glossy print format. 5-7 working days delivery. Price includes postage and packing.
The Carbon Nanomaterials Global Opportunity Report
The Carbon Nanomaterials Global Opportunity Report
PDF download. Company wide licence.

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com.

TABLE OF CONTENTS

1       RESEARCH METHODOLOGY………………………………………………………………………………………….. 51

  • 1.1    Carbon nanomaterials market rating system………………………………………………………………….. 51
  • 1.2    Commercial impact rating system…………………………………………………………………………………… 53
  • 1.3    Market challenges impact rating system………………………………………………………………………… 55

2       EXECUTIVE SUMMARY……………………………………………………………………………………………………. 58

  • 2.1    CARBON NANOTUBES…………………………………………………………………………………………………. 58
    • 2.1.1     Exceptional properties……………………………………………………………………………………………. 60
    • 2.1.2     Products and applications………………………………………………………………………………………. 61
    • 2.1.3     Competition from graphene……………………………………………………………………………………. 67
    • 2.1.4     Production……………………………………………………………………………………………………………… 68
      • 2.1.4.1       Multi-walled nanotube (MWNT) production……………………………………………………. 68
      • 2.1.4.2       Single-walled nanotube (SWNT) production………………………………………………….. 69
    • 2.1.5     Global demand for carbon nanotubes……………………………………………………………………. 71
      • 2.1.5.1       Current products……………………………………………………………………………………………. 73
      • 2.1.5.2       Future products……………………………………………………………………………………………… 74
    • 2.1.6     Market drivers and trends………………………………………………………………………………………. 74
      • 2.1.6.1       Electronics……………………………………………………………………………………………………… 74
      • 2.1.6.2       Electric vehicles and lithium-ion batteries………………………………………………………. 75
    • 2.1.7     Market and production challenges…………………………………………………………………………. 75
      • 2.1.7.1       Safety issues…………………………………………………………………………………………………. 76
      • 2.1.7.2       Dispersion……………………………………………………………………………………………………… 76
      • 2.1.7.3       Synthesis and supply quality………………………………………………………………………….. 76
      • 2.1.7.4       Cost……………………………………………………………………………………………………………….. 77
      • 2.1.7.5       Competition from other materials…………………………………………………………………… 77
  • 2.2    2D MATERIALS……………………………………………………………………………………………………………… 79
  • 2.3    GRAPHENE…………………………………………………………………………………………………………………… 79
    • 2.3.1     The market in 2016………………………………………………………………………………………………… 80
    • 2.3.2     The market in 2017………………………………………………………………………………………………… 80
    • 2.3.3     Production……………………………………………………………………………………………………………… 81
    • 2.3.4     Products…………………………………………………………………………………………………………………. 83
    • 2.3.5     Graphene investments 2016-2017…………………………………………………………………………. 85
    • 2.3.6     Market outlook for 2018…………………………………………………………………………………………. 86
    • 2.3.7     Global funding and initiatives…………………………………………………………………………………. 92
    • 2.3.8     Products and applications………………………………………………………………………………………. 93
    • 2.3.9     Production……………………………………………………………………………………………………………… 95
    • 2.3.10        Market drivers and trends………………………………………………………………………………….. 96
      • 2.3.10.1     Production exceeds demand…………………………………………………………………………. 96
      • 2.3.10.2     Market revenues remain small………………………………………………………………………. 96
      • 2.3.10.3     Scalability and cost………………………………………………………………………………………… 97
      • 2.3.10.4     Applications hitting the market……………………………………………………………………….. 98
      • 2.3.10.5     Wait and see?……………………………………………………………………………………………….. 98
      • 2.3.10.6     Asia and US lead the race……………………………………………………………………………… 99
      • 2.3.10.7     China commercializing at a fast rate……………………………………………………………… 99
      • 2.3.10.8     Competition from other materials…………………………………………………………………… 99
    • 2.3.11        Market and technical challenges……………………………………………………………………… 100
      • 2.3.11.1     Inconsistent supply quality…………………………………………………………………………… 100
      • 2.3.11.2     Functionalization and dispersion………………………………………………………………….. 101
      • 2.3.11.3     Cost……………………………………………………………………………………………………………… 101
      • 2.3.11.4     Product integration………………………………………………………………………………………. 101
      • 2.3.11.5     Regulation and standards……………………………………………………………………………. 102
      • 2.3.11.6     Lack of a band gap………………………………………………………………………………………. 102
    • 2.3.12        Key players………………………………………………………………………………………………………. 102
      • 2.3.12.1     Asia-Pacific………………………………………………………………………………………………….. 102
      • 2.3.12.2     North America……………………………………………………………………………………………… 105
      • 2.3.12.3     Europe…………………………………………………………………………………………………………. 106

3       CARBON NANOMATERIALS OVERVIEW……………………………………………………………………… 107

  • 3.1    Properties of nanomaterials………………………………………………………………………………………….. 107
  • 3.2    Categorization………………………………………………………………………………………………………………. 108
  • 3.3    CARBON NANOTUBES……………………………………………………………………………………………….. 109
    • 3.3.1     Multi-walled nanotubes (MWNT)………………………………………………………………………….. 111
      • 3.3.1.1       Properties…………………………………………………………………………………………………….. 111
      • 3.3.1.2       Applications…………………………………………………………………………………………………. 111
    • 3.3.2     Single-wall carbon nanotubes (SWNT)………………………………………………………………… 112
      • 3.3.2.1       Properties…………………………………………………………………………………………………….. 113
      • 3.3.2.2       Applications…………………………………………………………………………………………………. 113
      • 3.3.2.3       Single-chirality……………………………………………………………………………………………… 116
    • 3.3.3     Comparison between MWNTs and SWNTs…………………………………………………………. 117
    • 3.3.4     Double-walled carbon nanotubes (DWNTs)…………………………………………………………. 117
      • 3.3.4.1       Properties…………………………………………………………………………………………………….. 117
      • 3.3.4.2       Applications…………………………………………………………………………………………………. 118
    • 3.3.5     Few-walled carbon nanotubes (FWNTs)………………………………………………………………. 118
      • 3.3.5.1       Properties…………………………………………………………………………………………………….. 118
      • 3.3.5.2       Applications…………………………………………………………………………………………………. 118
    • 3.3.6     Carbon Nanohorns (CNHs)………………………………………………………………………………….. 119
      • 3.3.6.1       Properties…………………………………………………………………………………………………….. 119
      • 3.3.6.2       Applications…………………………………………………………………………………………………. 119
    • 3.3.7     Carbon Onions…………………………………………………………………………………………………….. 120
      • 3.3.7.1       Properties…………………………………………………………………………………………………….. 120
      • 3.3.7.2       Applications…………………………………………………………………………………………………. 121
    • 3.3.8     Fullerenes…………………………………………………………………………………………………………….. 121
      • 3.3.8.1       Properties…………………………………………………………………………………………………….. 121
      • 3.3.8.2       Applications…………………………………………………………………………………………………. 122
    • 3.3.9     Boron Nitride nanotubes (BNNTs)……………………………………………………………………….. 123
      • 3.3.9.1       Properties…………………………………………………………………………………………………….. 123
      • 3.3.9.2       Applications…………………………………………………………………………………………………. 124
  • 3.4    Applications of carbon nanotubes………………………………………………………………………………… 124
  • 3.5    GRAPHENE…………………………………………………………………………………………………………………. 125
    • 3.5.1     History………………………………………………………………………………………………………………….. 125
    • 3.5.2     Forms of graphene………………………………………………………………………………………………. 126
    • 3.5.3     Properties…………………………………………………………………………………………………………….. 127
    • 3.5.4     3D Graphene……………………………………………………………………………………………………….. 129
    • 3.5.5     Graphene Quantum Dots……………………………………………………………………………………… 129
      • 3.5.5.1       Synthesis……………………………………………………………………………………………………… 131
      • 3.5.5.2       Applications…………………………………………………………………………………………………. 131
      • 3.5.5.3       Producers…………………………………………………………………………………………………….. 133
  • 3.6    NANODIAMONDS………………………………………………………………………………………………………… 134
    • 3.6.1     Properties…………………………………………………………………………………………………………….. 135
  • 3.7    OTHER 2-D MATERIALS…………………………………………………………………………………………….. 137
    • 3.7.1     Black phosphorus/Phosphorene…………………………………………………………………………… 138
      • 3.7.1.1       Properties…………………………………………………………………………………………………….. 139
      • 3.7.1.2       Applications…………………………………………………………………………………………………. 140
    • 3.7.2     C2N………………………………………………………………………………………………………………………. 141
      • 3.7.2.1       Properties…………………………………………………………………………………………………….. 141
      • 3.7.2.2       Applications…………………………………………………………………………………………………. 142
    • 3.7.3     Carbon nitride………………………………………………………………………………………………………. 142
      • 3.7.3.1       Properties…………………………………………………………………………………………………….. 142
      • 3.7.3.2       Applications…………………………………………………………………………………………………. 143
    • 3.7.4     Germanene………………………………………………………………………………………………………….. 143
      • 3.7.4.1       Properties…………………………………………………………………………………………………….. 143
      • 3.7.4.2       Applications…………………………………………………………………………………………………. 144
    • 3.7.5     Graphdiyne…………………………………………………………………………………………………………… 144
      • 3.7.5.1       Properties…………………………………………………………………………………………………….. 145
      • 3.7.5.2       Applications…………………………………………………………………………………………………. 145
    • 3.7.6     Graphane……………………………………………………………………………………………………………… 146
      • 3.7.6.1       Properties…………………………………………………………………………………………………….. 147
      • 3.7.6.2       Applications…………………………………………………………………………………………………. 147
    • 3.7.7     Hexagonal boron nitride……………………………………………………………………………………….. 148
      • 3.7.7.1       Properties…………………………………………………………………………………………………….. 149
      • 3.7.7.2       Applications…………………………………………………………………………………………………. 149
      • 3.7.7.3       Producers…………………………………………………………………………………………………….. 150
    • 3.7.8     Molybdenum disulfide (MoS2)………………………………………………………………………………. 150
      • 3.7.8.1       Properties…………………………………………………………………………………………………….. 150
      • 3.7.8.2       Applications…………………………………………………………………………………………………. 151
    • 3.7.9     Rhenium disulfide (ReS2) and diselenide (ReSe2)………………………………………………. 153
      • 3.7.9.1       Properties…………………………………………………………………………………………………….. 153
      • 3.7.9.2       Applications…………………………………………………………………………………………………. 154
    • 3.7.10        Silicene…………………………………………………………………………………………………………….. 154
      • 3.7.10.1     Properties…………………………………………………………………………………………………….. 155
      • 3.7.10.2     Applications…………………………………………………………………………………………………. 155
    • 3.7.11        Stanene/tinene…………………………………………………………………………………………………. 157
      • 3.7.11.1     Properties…………………………………………………………………………………………………….. 157
      • 3.7.11.2     Applications…………………………………………………………………………………………………. 158
    • 3.7.12        Tungsten diselenide…………………………………………………………………………………………. 158
      • 3.7.12.1     Properties…………………………………………………………………………………………………….. 159
      • 3.7.12.2     Applications…………………………………………………………………………………………………. 159
  • 3.7.13        Comparative analysis of graphene and other 2-D nanomaterials…………………….. 160

4       COMPARATIVE ANALYSIS GRAPHENE AND CARBON NANOTUBES………………………. 162

  • 4.1    Comparative properties………………………………………………………………………………………………… 163
  • 4.2    Cost and production……………………………………………………………………………………………………… 164
  • 4.3    Carbon nanotube-graphene hybrids…………………………………………………………………………….. 165

5       CARBON NANOTUBE SYNTHESIS……………………………………………………………………………….. 166

6       GRAPHENE SYNTHESIS………………………………………………………………………………………………… 174

7       REGULATIONS AND STANDARDS……………………………………………………………………………….. 196

  • 7.1    Standards…………………………………………………………………………………………………………………….. 196
  • 7.2    Europe………………………………………………………………………………………………………………………….. 197
    • 7.2.1     REACH………………………………………………………………………………………………………………… 197
    • 7.2.2     Biocidal Products Regulation……………………………………………………………………………….. 197
    • 7.2.3     National nanomaterials registers………………………………………………………………………….. 198
    • 7.2.4     Cosmetics regulation……………………………………………………………………………………………. 198
    • 7.2.5     Food safety………………………………………………………………………………………………………….. 199
  • 7.3    United States………………………………………………………………………………………………………………… 200
    • 7.3.1     Toxic Substances Control Act (TSCA)…………………………………………………………………. 200
  • 7.4    Asia………………………………………………………………………………………………………………………………. 201
    • 7.4.1     Japan…………………………………………………………………………………………………………………… 201
    • 7.4.2     South Korea…………………………………………………………………………………………………………. 202
    • 7.4.3     Taiwan…………………………………………………………………………………………………………………. 202
    • 7.4.4     Australia……………………………………………………………………………………………………………….. 202
  • 7.5    Workplace exposure…………………………………………………………………………………………………….. 203

8       CARBON NANOTUBES PATENTS…………………………………………………………………………………. 204

9       GRAPHENE PATENTS……………………………………………………………………………………………………. 207

  • 9.1    Fabrication processes………………………………………………………………………………………………….. 207
  • 9.2    Academia……………………………………………………………………………………………………………………… 207
  • 9.3    Regional leaders…………………………………………………………………………………………………………… 208

10     CARBON NANOTUBES TECHNOLOGY READINESS LEVEL………………………………………. 211

11     GRAPHENE TECHNOLOGY READINESS LEVEL…………………………………………………………. 213

12     CARBON NANOTUBES MARKET STRUCTURE…………………………………………………………… 215

13     GRAPHENE MARKET STRUCTURE………………………………………………………………………………. 217

14     CARBON NANOTUBES PRODUCTION ANALYSIS………………………………………………………. 221

  • 14.1      Production volumes in metric tons, 2010-2027………………………………………………………… 221
  • 14.2      Carbon nanotube producer production capacities……………………………………………………. 226
  • 14.3      Regional demand for carbon nanotubes………………………………………………………………….. 228
    • 14.3.1        Japan……………………………………………………………………………………………………………….. 229
    • 14.3.2        China……………………………………………………………………………………………………………….. 230
  • 14.4      Main carbon nanotubes producers…………………………………………………………………………… 231
    • 14.4.1        SWNT production…………………………………………………………………………………………….. 231
      • 14.4.1.1     OCSiAl…………………………………………………………………………………………………………. 231
      • 14.4.1.2     FGV Cambridge Nanosystems…………………………………………………………………….. 231
      • 14.4.1.3     Zeon Corporation…………………………………………………………………………………………. 232
  • 14.5      Price of carbon nanotubes-MWNTs, SWNTs and FWNTs……………………………………….. 232
    • 14.5.1        MWNTs……………………………………………………………………………………………………………. 233
    • 14.5.2        SWNTs…………………………………………………………………………………………………………….. 233
  • 14.6      APPLICATIONS……………………………………………………………………………………………………….. 234

15     GRAHENE PRODUCTION ANALYSIS……………………………………………………………………………. 237

  • 15.1      Graphene production volumes 2010-2027……………………………………………………………….. 237
  • 15.2      Graphene pricing……………………………………………………………………………………………………… 239
    • 15.2.1        Pristine Graphene Flakes pricing…………………………………………………………………….. 240
    • 15.2.2        Few-Layer Graphene pricing……………………………………………………………………………. 241
    • 15.2.3        Graphene Nanoplatelets pricing………………………………………………………………………. 242
    • 15.2.4        Reduced Graphene Oxide pricing……………………………………………………………………. 243
    • 15.2.5        Graphene Quantum Dots pricing……………………………………………………………………… 244
    • 15.2.6        Graphene Oxide Nanosheets pricing……………………………………………………………….. 245
    • 15.2.7        Multilayer Graphene (MLG) pricing………………………………………………………………….. 245
    • 15.2.8        Mass production of lower grade graphene materials……………………………………….. 246
    • 15.2.9        High grade graphene difficult to mass produce………………………………………………… 246
    • 15.2.10      Bulk supply………………………………………………………………………………………………………. 247
    • 15.2.11      Commoditisation………………………………………………………………………………………………. 248
  • 15.3      Graphene producers and production capacities………………………………………………………. 248

16     NANODIAMONDS END USER MARKET ANALYSIS……………………………………………………… 250

  • 16.1      Applications……………………………………………………………………………………………………………… 250
  • 16.2      Demand by market…………………………………………………………………………………………………… 251
  • 16.3      Market challenges……………………………………………………………………………………………………. 253
  • 16.4      Technology readiness level (TRL)……………………………………………………………………………. 253
  • 16.5      Production volumes in tons, 2010-2025…………………………………………………………………… 254
  • 16.6      Production volumes, by region…………………………………………………………………………………. 255
  • 16.7      Prices……………………………………………………………………………………………………………………….. 256

17     CARBON NANOTUBES INDUSTRY NEWS 2013-2017…………………………………………………. 257

18     GRAPHENE INDUSTRY DEVELOPMENTS 2013-2018-INVESTMENTS, PRODUCTS AND PRODUCTION………………………………………………………………………………………………………………………….. 273

19     END USER MARKET ANALYSIS FOR CARBON NANOMATERIALS…………………………… 324

  • 19.1      3D PRINTING…………………………………………………………………………………………………………… 324
  • 19.1.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 324
  • 19.1.2        APPLICATIONS………………………………………………………………………………………………. 325
  • 19.1.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 326
  • 19.1.4        MARKET CHALLENGES…………………………………………………………………………………. 328
  • 19.1.5        PRODUCT DEVELOPERS………………………………………………………………………………. 329
  • 19.2      ADHESIVES…………………………………………………………………………………………………………….. 331
  • 19.2.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 331
  • 19.2.2        APPLICATIONS………………………………………………………………………………………………. 332
  • 19.2.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 333
  • 19.2.4        MARKET CHALLENGES…………………………………………………………………………………. 335
  • 19.2.5        PRODUCT DEVELOPERS………………………………………………………………………………. 336
  • 19.3      AEROSPACE AND AVIATION…………………………………………………………………………………. 337
  • 19.3.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 337
  • 19.3.2        APPLICATIONS………………………………………………………………………………………………. 339
  • 19.3.2.1     Composites………………………………………………………………………………………………….. 341
  • 19.3.2.2     Coatings………………………………………………………………………………………………………. 344
  • 19.3.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 348
  • 19.3.4        MARKET CHALLENGES…………………………………………………………………………………. 352
  • 19.3.5        PRODUCT DEVELOPERS………………………………………………………………………………. 353
  • 19.4      AUTOMOTIVE…………………………………………………………………………………………………………. 356
  • 19.4.1        MARKET DRIVER AND TRENDS……………………………………………………………………. 357
  • 19.4.2        APPLICATIONS………………………………………………………………………………………………. 358
  • 19.4.2.1     Composites………………………………………………………………………………………………….. 359
  • 19.4.2.2     Thermally conductive additives……………………………………………………………………. 360
  • 19.4.2.3     Tires…………………………………………………………………………………………………………….. 361
  • 19.4.2.4     Heat dissipation in electric vehicles……………………………………………………………… 361
  • 19.4.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 363
  • 19.4.4        MARKET CHALLENGES…………………………………………………………………………………. 366
  • 19.4.5        PRODUCT DEVELOPERS………………………………………………………………………………. 367
  • 19.5      COATINGS………………………………………………………………………………………………………………. 370
  • 19.5.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 371
  • 19.5.1.1     Sustainability and regulation………………………………………………………………………… 371
  • 19.5.1.2     Cost of corrosion………………………………………………………………………………………….. 372
  • 19.5.1.3     Improved hygiene………………………………………………………………………………………… 372
  • 19.5.1.4     Cost of weather-related damage………………………………………………………………….. 373
  • 19.5.2        APPLICATIONS………………………………………………………………………………………………. 375
  • 19.5.2.1     Anti-static coatings………………………………………………………………………………………. 377
  • 19.5.2.2     Anti-corrosion coatings………………………………………………………………………………… 377
  • 19.5.2.3     Oil and gas…………………………………………………………………………………………………… 379
  • 19.5.2.4     Marine………………………………………………………………………………………………………….. 379
  • 19.5.2.5     Anti-microbial……………………………………………………………………………………………….. 379
  • 19.5.2.6     Anti-icing……………………………………………………………………………………………………… 380
  • 19.5.2.7     Barrier coatings……………………………………………………………………………………………. 381
  • 19.5.2.8     Heat protection…………………………………………………………………………………………….. 382
  • 19.5.2.9     Anti-fouling…………………………………………………………………………………………………… 383
  • 19.5.2.10       Wear and abrasion resistance…………………………………………………………………. 384
  • 19.5.2.11       Smart windows………………………………………………………………………………………… 385
  • 19.5.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 386
  • 19.5.3.1     Thermal barrier coatings……………………………………………………………………………… 389
  • 19.5.3.2     Barrier coatings……………………………………………………………………………………………. 390
  • 19.5.3.3     Anti-microbial coatings…………………………………………………………………………………. 390
  • 19.5.3.4     De-icing or anti-icing coatings……………………………………………………………………… 390
  • 19.5.3.5     Abrasion and wear resistant coatings………………………………………………………….. 390
  • 19.5.3.6     Anti-corrosion coatings………………………………………………………………………………… 390
  • 19.5.4        MARKET CHALLENGES…………………………………………………………………………………. 392
  • 19.5.4.1     Dispersion……………………………………………………………………………………………………. 392
  • 19.5.4.2     Production, scalability and cost……………………………………………………………………. 392
  • 19.5.5        PRODUCT DEVELOPERS………………………………………………………………………………. 393
  • 19.6      COMPOSITES…………………………………………………………………………………………………………. 396
  • 19.6.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 397
  • 19.6.2        APPLICATIONS………………………………………………………………………………………………. 399
  • 19.6.2.1     Polymer composites…………………………………………………………………………………….. 399
  • 19.6.2.2     Barrier packaging………………………………………………………………………………………… 403
  • 19.6.2.3     Electrostatic discharge (ESD) and electromagnetic interference (EMI) shielding                   403
  • 19.6.2.4     Wind turbines………………………………………………………………………………………………. 403
  • 19.6.2.5     Ballistic protection………………………………………………………………………………………… 404
  • 19.6.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 405
  • 19.6.4        MARKET CHALLENGES…………………………………………………………………………………. 408
  • 19.6.5        PRODUCT DEVELOPERS………………………………………………………………………………. 409
  • 19.7      ELECTRONICS……………………………………………………………………………………………………….. 414
  • 19.7.1        FLEXIBLE ELECTRONICS, CONDUCTIVE FILMS AND DISPLAYS………………. 415
  • 19.7.1.1     MARKET DRIVERS AND TRENDS…………………………………………………………….. 415
  • 19.7.1.2     APPLICATIONS…………………………………………………………………………………………… 417
  • 19.7.1.3     MARKET SIZE AND OPPORTUNITY………………………………………………………….. 438
  • 19.7.1.4     MARKET CHALLENGES…………………………………………………………………………….. 444
  • 19.7.1.5     Competing materials……………………………………………………………………………………. 445
  • 19.7.1.6     PRODUCT DEVELOPERS………………………………………………………………………….. 449
  • 19.7.2        CONDUCTIVE INKS………………………………………………………………………………………… 453
  • 19.7.2.1     MARKET DRIVERS AND TRENDS…………………………………………………………….. 453
  • 19.7.2.2     APPLICATIONS…………………………………………………………………………………………… 455
  • 19.7.2.3     MARKET SIZE AND OPPORTUNITY………………………………………………………….. 463
  • 19.7.2.4     MARKET CHALLENGES…………………………………………………………………………….. 466
  • 19.7.2.5     PRODUCT DEVELOPERS………………………………………………………………………….. 467
  • 19.7.3        TRANSISTORS, INTEGRATED CIRCUITS AND OTHER COMPONENTS…….. 469
  • 19.7.3.1     APPLICATIONS…………………………………………………………………………………………… 470
  • 19.7.3.2     MARKET SIZE AND OPPORTUNITY………………………………………………………….. 478
  • 19.7.3.3     MARKET CHALLENGES…………………………………………………………………………….. 482
  • 19.7.3.4     PRODUCT DEVELOPERS………………………………………………………………………….. 485
  • 19.7.4        MEMORY DEVICES………………………………………………………………………………………… 487
  • 19.7.4.1     MARKET DRIVERS AND TRENDS…………………………………………………………….. 487
  • 19.7.4.2     APPLICATIONS…………………………………………………………………………………………… 488
  • 19.7.4.3     MARKET SIZE AND OPPORTUNITY………………………………………………………….. 492
  • 19.7.4.4     MARKET CHALLENGES…………………………………………………………………………….. 493
  • 19.7.4.5     PRODUCT DEVELOPERS………………………………………………………………………….. 494
  • 19.7.5        PHOTONICS……………………………………………………………………………………………………. 498
  • 19.7.5.1     MARKET DRIVERS…………………………………………………………………………………….. 498
  • 19.7.5.2     APPLICATIONS…………………………………………………………………………………………… 499
  • 19.7.5.3     MARKET SIZE AND OPPORTUNITY………………………………………………………….. 504
  • 19.7.5.4     MARKET CHALLENGES…………………………………………………………………………….. 504
  • 19.7.6        PRODUCT DEVELOPERS………………………………………………………………………………. 505
  • 19.8      ENERGY STORAGE AND CONVERSION………………………………………………………………. 506
  • 19.8.1        BATTERIES…………………………………………………………………………………………………….. 507
  • 19.8.1.1     MARKET DRIVERS AND TRENDS…………………………………………………………….. 507
  • 19.8.1.2     APPLICATIONS…………………………………………………………………………………………… 511
  • 19.8.1.3     MARKET SIZE AND OPPORTUNITY………………………………………………………….. 517
  • 19.8.1.4     MARKET CHALLENGES…………………………………………………………………………….. 521
  • 19.8.2        SUPERCAPACITORS……………………………………………………………………………………… 523
  • 19.8.2.1     MARKET DRIVERS AND TRENDS…………………………………………………………….. 523
  • 19.8.2.2     APPLICATIONS…………………………………………………………………………………………… 524
  • 19.8.2.3     MARKET SIZE AND OPPORTUNITY………………………………………………………….. 531
  • 19.8.2.4     MARKET CHALLENGES…………………………………………………………………………….. 533
  • 19.8.3        PHOTOVOLTAICS…………………………………………………………………………………………… 535
  • 19.8.3.1     MARKET DRIVERS AND TRENDS…………………………………………………………….. 535
  • 19.8.3.2     APPLICATIONS…………………………………………………………………………………………… 537
  • 19.8.3.3     MARKET SIZE AND OPPORTUNITY………………………………………………………….. 542
  • 19.8.3.4     MARKET CHALLENGES…………………………………………………………………………….. 544
  • 19.8.4        FUEL CELLS AND HYDROGEN STORAGE…………………………………………………… 546
  • 19.8.4.1     MARKET DRIVERS…………………………………………………………………………………….. 546
  • 19.8.4.2     APPLICATIONS…………………………………………………………………………………………… 548
  • 19.8.4.3     MARKET SIZE AND OPPORTUNITY………………………………………………………….. 549
  • 19.8.4.4     MARKET CHALLENGES…………………………………………………………………………….. 551
  • 19.8.4.5     PRODUCT DEVELOPERS………………………………………………………………………….. 551
  • 19.9      LED LIGHTING AND UVC……………………………………………………………………………………….. 560
  • 19.9.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 560
  • 19.9.2        PROPERTIES AND APPLICATIONS………………………………………………………………. 561
  • 19.9.2.1     Flexible OLED lighting…………………………………………………………………………………. 561
  • 19.9.3        GLOBAL MARKET SIZE AND OPPORTUNITY………………………………………………. 562
  • 19.9.4        MARKET CHALLENGES…………………………………………………………………………………. 564
  • 19.9.5        PRODUCT DEVELOPERS………………………………………………………………………………. 564
  • 19.10    FILTRATION AND SEPARATION……………………………………………………………………………. 566
  • 19.10.1      MARKET DRIVERS AND TRENDS…………………………………………………………………. 566
  • 19.10.2      APPLICATIONS………………………………………………………………………………………………. 567
  • 19.10.3      Water filtration………………………………………………………………………………………………….. 571
  • 19.10.4      Gas separation………………………………………………………………………………………………… 572
  • 19.10.5      Photocatalytic absorbents………………………………………………………………………………… 572
  • 19.10.6      Air filtration……………………………………………………………………………………………………….. 573
  • 19.10.7      MARKET SIZE AND OPPORTUNITY……………………………………………………………… 574
  • 19.10.8      MARKET CHALLENGES…………………………………………………………………………………. 576
  • 19.10.9      PRODUCT DEVELOPERS………………………………………………………………………………. 578
  • 19.11    LIFE SCIENCES AND MEDICAL…………………………………………………………………………….. 580
  • 19.11.1      MARKET DRIVERS AND TRENDS…………………………………………………………………. 581
  • 19.11.2      APPLICATIONS………………………………………………………………………………………………. 582
  • 19.11.2.1       Cancer therapy………………………………………………………………………………………… 586
  • 19.11.2.2       Medical implants and devices………………………………………………………………….. 588
  • 19.11.2.3       Wound dressings…………………………………………………………………………………….. 588
  • 19.11.2.4       Biosensors……………………………………………………………………………………………….. 589
  • 19.11.2.5       Medical imaging………………………………………………………………………………………. 590
  • 19.11.2.6       Tissue engineering………………………………………………………………………………….. 590
  • 19.11.2.7       Dental………………………………………………………………………………………………………. 591
  • 19.11.2.8       Electrophysiology…………………………………………………………………………………….. 591
  • 19.11.2.9       Wearable and mobile health monitoring…………………………………………………… 591
  • 19.11.3      MARKET SIZE AND OPPORTUNITY……………………………………………………………… 604
  • 19.11.3.1       Wearable healthcare……………………………………………………………………………….. 606
  • 19.11.4      MARKET CHALLENGES…………………………………………………………………………………. 610
  • 19.11.5      PRODUCT DEVELOPERS………………………………………………………………………………. 612
  • 19.12    LUBRICANTS…………………………………………………………………………………………………………… 616
  • 19.12.1      MARKET DRIVERS AND TRENDS…………………………………………………………………. 616
  • 19.12.2      APPLICATIONS………………………………………………………………………………………………. 617
  • 19.12.3      MARKET SIZE AND OPPORTUNITY……………………………………………………………… 619
  • 19.12.4      MARKET CHALLENGES…………………………………………………………………………………. 621
  • 19.12.5      PRODUCT DEVELOPERS………………………………………………………………………………. 621
  • 19.13    OIL AND GAS………………………………………………………………………………………………………….. 623
  • 19.13.1      MARKET DRIVERS AND TRENDS…………………………………………………………………. 623
  • 19.13.2      APPLICATIONS………………………………………………………………………………………………. 624
  • 19.13.2.1       Sensing and reservoir management………………………………………………………… 625
  • 19.13.2.2       Coatings…………………………………………………………………………………………………… 626
  • 19.13.2.3       Drilling fluids…………………………………………………………………………………………….. 627
  • 19.13.2.4       Sorbent materials…………………………………………………………………………………….. 627
  • 19.13.2.5       Catalysts………………………………………………………………………………………………….. 628
  • 19.13.2.6       Separation……………………………………………………………………………………………….. 628
  • 19.13.3      MARKET SIZE AND OPPORTUNITY……………………………………………………………… 629
  • 19.13.4      MARKET CHALLENGES…………………………………………………………………………………. 632
  • 19.13.5      PRODUCT DEVELOPERS………………………………………………………………………………. 633
  • 19.14    RUBBER AND TIRES………………………………………………………………………………………………. 634
  • 19.14.1      APPLICATIONS………………………………………………………………………………………………. 634
  • 19.14.2      GLOBAL MARKET SIZE AND OPPORTUNITY………………………………………………. 634
  • 19.14.3      MARKET CHALLENGES…………………………………………………………………………………. 636
  • 19.14.4      PRODUCT DEVELOPERS………………………………………………………………………………. 636
  • 19.15    SENSORS……………………………………………………………………………………………………………….. 638
  • 19.15.1      MARKET DRIVERS AND TRENDS…………………………………………………………………. 638
  • 19.15.2      APPLICATIONS………………………………………………………………………………………………. 639
  • 19.15.2.1       Infrared (IR) sensors………………………………………………………………………………… 644
  • 19.15.2.2       Electrochemical and gas sensors…………………………………………………………….. 644
  • 19.15.2.3       Pressure sensors…………………………………………………………………………………….. 645
  • 19.15.2.4       Biosensors……………………………………………………………………………………………….. 645
  • 19.15.2.5       Optical sensors………………………………………………………………………………………… 647
  • 19.15.2.6       Humidity sensors……………………………………………………………………………………… 648
  • 19.15.2.7       Strain sensors………………………………………………………………………………………….. 648
  • 19.15.2.8       Acoustic sensors……………………………………………………………………………………… 648
  • 19.15.2.9       Wireless sensors……………………………………………………………………………………… 648
  • 19.15.2.10     Surface enhanced Raman scattering………………………………………………………. 648
  • 19.15.3      MARKET SIZE AND OPPORTUNITY……………………………………………………………… 649
  • 19.15.4      MARKET CHALLENGES…………………………………………………………………………………. 651
  • 19.15.4.1       Selectivity………………………………………………………………………………………………… 651
  • 19.15.4.2       Scaling and manufacturing………………………………………………………………………. 652
  • 19.15.4.3       Sensor recovery………………………………………………………………………………………. 652
  • 19.15.5      PRODUCT DEVELOPERS………………………………………………………………………………. 653
  • 19.16    SMART TEXTILES AND APPAREL…………………………………………………………………………. 657
  • 19.16.1      MARKET DRIVERS AND TRENDS…………………………………………………………………. 657
  • 19.16.2      APPLICATIONS………………………………………………………………………………………………. 660
  • 19.16.3      Conductive coatings…………………………………………………………………………………………. 664
  • 19.16.4      Conductive yarns……………………………………………………………………………………………… 665
  • 19.16.5      MARKET SIZE AND OPPORTUNITY……………………………………………………………… 666
  • 19.16.6      MARKET CHALLENGES…………………………………………………………………………………. 671
  • 19.16.7      PRODUCT DEVELOPERS………………………………………………………………………………. 673

20     CARBON NANOTUBES PRODUCERS AND PRODUCT DEVELOPERS………………………. 675 (203 company profiles)

 

21     GRAPHENE PRODUCERS……………………………………………………………………………………………… 802 (116 company profiles)

 

22     GRAPHENE PRODUCT AND APPLICATION DEVELOPERS……………………………………….. 886 (106 company profiles)

 

23     NANODIAMONDS PRODUCERS……………………………………………………………………………………. 955 (14 company profiles)

 

24     REFERENCES…………………………………………………………………………………………………………………. 962

 

TABLES

  • Table 1: Market summary for carbon nanotubes-Selling grade particle diameter, usage, advantages, average price/ton, high volume applications, low volume applications and novel applications…………………………………………………………………………………………………………………………… 58
  • Table 2: Properties of CNTs and comparable materials……………………………………………………………… 60
  • Table 3: Market opportunity assessment for CNTs in order of opportunity from high to low……….. 62
  • Table 4: Annual production capacity of MWNT producers 2017…………………………………………………. 68
  • Table 5: SWNT producers production capacities 2017……………………………………………………………….. 70
  • Table 6: Production volumes of MWNTs (tons), 2010-2027……………………………………………………….. 72
  • Table 7: Competitive analysis of Carbon nanotubes and graphene by application area and potential impact by 2027……………………………………………………………………………………………………………………… 78
  • Table 8: Demand for graphene (tons), 2010-2027……………………………………………………………………… 82
  • Table 9: Consumer products incorporating graphene…………………………………………………………………. 84
  • Table 10: Graphene investments and financial agreements 2017………………………………………………. 85
  • Table 11: Market opportunity assessment matrix for graphene applications………………………………. 88
  • Table 12: Graphene target markets-Applications and potential addressable market size…………… 94
  • Table 13: Main graphene producers by country and annual production capacities…………………….. 95
  • Table 14: Categorization of nanomaterials……………………………………………………………………………….. 108
  • Table 15: Properties of carbon nanotubes………………………………………………………………………………… 109
  • Table 16: Applications of multi-walled carbon nanotubes…………………………………………………………. 112
  • Table 17: Markets, benefits and applications of Single-Walled Carbon Nanotubes………………….. 114
  • Table 18: Comparison between single-walled carbon nanotubes and multi-walled carbon nanotubes…………………………………………………………………………………………………………………………… 117
  • Table 19: Markets, benefits and applications of fullerenes……………………………………………………….. 122
  • Table 20: Applications of carbon nanotubes…………………………………………………………………………….. 124
  • Table 21: Properties of graphene……………………………………………………………………………………………… 128
  • Table 22: Comparison of graphene QDs and semiconductor QDs…………………………………………… 130
  • Table 23: Graphene quantum dot producers……………………………………………………………………………. 133
  • Table 24: Market summary for nanodiamonds-Selling grade particle diameter, usage, advantages, average price/ton, high volume applications, low volume applications and novel applications. 136
  • Table 25: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2…………………………………………………………………………………………………………………………………………….. 139
  • Table 26: Markets and applications of phosphorene………………………………………………………………… 140
  • Table 27: Markets and applications of C2N………………………………………………………………………………. 142
  • Table 28: Markets and applications of hexagonal boron-nitride………………………………………………… 144
  • Table 29: Markets and applications of graphdiyne……………………………………………………………………. 145
  • Table 30: Markets and applications of graphane………………………………………………………………………. 147
  • Table 31: Markets and applications of hexagonal boron-nitride………………………………………………… 149
  • Table 32: Markets and applications of MoS2…………………………………………………………………………….. 151
  • Table 33: Markets and applications of Rhenium disulfide (ReS2) and diselenide (ReSe2)………. 154
  • Table 34: Markets and applications of silicene…………………………………………………………………………. 155
  • Table 35: Markets and applications of stanene/tinene……………………………………………………………… 158
  • Table 36: Markets and applications of tungsten diselenide………………………………………………………. 159
  • Table 37: Comparative analysis of graphene and other 2-D nanomaterials……………………………… 160
  • Table 38: Comparative properties of carbon materials……………………………………………………………… 163
  • Table 39: Comparative properties of graphene with nanoclays and carbon nanotubes……………. 165
  • Table 40: SWNT synthesis methods…………………………………………………………………………………………. 167
  • Table 41: Large area graphene films-Markets, applications and current global market……………. 174
  • Table 42: Graphene oxide flakes/graphene nanoplatelets-Markets, applications and current global market…………………………………………………………………………………………………………………………………. 175
  • Table 43: Main production methods for graphene…………………………………………………………………….. 176
  • Table 44: Large area graphene films-Markets, applications and current global market……………. 182
  • Table 45: Graphene synthesis methods, by company………………………………………………………………. 194
  • Table 46: National nanomaterials registries in Europe……………………………………………………………… 198
  • Table 47: Nanomaterials regulatory bodies in Australia……………………………………………………………. 202
  • Table 48: Top ten countries based on number of nanotechnology patents in USPTO 2014-2015. 205
  • Table 49: Published patent publications for graphene, 2004-2014…………………………………………… 208
  • Table 50: Leading graphene patentees…………………………………………………………………………………….. 209
  • Table 51: Industrial graphene patents in 2014………………………………………………………………………….. 209
  • Table 52: Carbon nanotubes market structure………………………………………………………………………….. 215
  • Table 53: Graphene market structure……………………………………………………………………………………….. 217
  • Table 54: Production volumes of carbon nanotubes (tons), 2010-2027……………………………………. 222
  • Table 55: Annual production capacity of MWNT producers………………………………………………………. 227
  • Table 56: SWNT producer’s production capacities 2016………………………………………………………….. 228
  • Table 57: Example carbon nanotubes prices……………………………………………………………………………. 233
  • Table 58: Markets, benefits and applications of Carbon Nanotubes…………………………………………. 234
  • Table 59: Global production of graphene, 2010-2027 in tons/year. Base year for projections is 2015…………………………………………………………………………………………………………………………………………….. 237
  • Table 60: Types of graphene and prices…………………………………………………………………………………… 239
  • Table 61: Pristine graphene flakes pricing by producer……………………………………………………………. 240
  • Table 62: Few-layer graphene pricing by producer…………………………………………………………………… 241
  • Table 63: Graphene nanoplatelets pricing by producer…………………………………………………………….. 242
  • Table 64: Reduced graphene oxide pricing, by producer…………………………………………………………. 243
  • Table 65: Graphene quantum dots pricing by producer……………………………………………………………. 244
  • Table 66: Graphene oxide nanosheets pricing by producer……………………………………………………… 245
  • Table 67: Multi-layer graphene pricing by producer………………………………………………………………….. 245
  • Table 68: Production capacities of graphene producers, current and planned, metric tons……… 248
  • Table 69: Markets, benefits and applications of nanodiamonds……………………………………………….. 250
  • Table 70: Production volumes of nanodiamonds (tons), 2010-2027…………………………………………. 254
  • Table 71: Example prices of nanodiamonds…………………………………………………………………………….. 256
  • Table 72: Market drivers for use of carbon nanomaterials in 3D printing………………………………….. 324
  • Table 73: Graphene properties relevant to application in 3D printing……………………………………….. 325
  • Table 74: Applications and benefits of carbon nanomaterials in 3D printing…………………………….. 325
  • Table 75: Market size for carbon nanomaterials in 3D printing…………………………………………………. 326
  • Table 76: Market opportunity assessment for CNTs in 3D printing…………………………………………… 327
  • Table 77: Market opportunity assessment for graphene in 3D printing…………………………………….. 327
  • Table 78: Market challenges for carbon nanomaterials in 3D printing………………………………………. 328
  • Table 79: Market challenges rating for carbon nanomaterials in the 3D printing market…………… 329
  • Table 80: Carbon nanotubes product and application developers in the 3D printing industry…… 329
  • Table 81: Graphene product and application developers in the 3D printing industry………………… 330
  • Table 82: Market drivers for use of carbon nanomaterials in adhesives…………………………………… 331
  • Table 83: Graphene properties relevant to application in adhesives………………………………………… 332
  • Table 84: Applications and benefits of carbon nanomaterials in adhesives………………………………. 333
  • Table 85: Market size for carbon nanomaterials in adhesives………………………………………………….. 333
  • Table 86: Market opportunity assessment for CNTs in adhesives……………………………………………. 334
  • Table 87: Market opportunity assessment for graphene in adhesives………………………………………. 335
  • Table 88: Market challenges rating for carbon nanomaterials in the adhesives market……………. 336
  • Table 89: Carbon nanotubes product and application developers in the adhesives industry……. 336
  • Table 90:  Graphene product and application developers in the adhesives industry………………… 337
  • Table 91: Market drivers for use of carbon nanomaterials in aerospace…………………………………… 337
  • Table 92: Applications and benefits of CNTs in aerospace………………………………………………………. 339
  • Table 93: Applications in aerospace composites, by nanomaterials type and benefits thereof…. 343
  • Table 94: Types of nanocoatings utilized in aerospace and application……………………………………. 345
  • Table 95: Market size for carbon nanomaterials in aerospace………………………………………………….. 349
  • Table 96: Market opportunity assessment for CNTs in aerospace……………………………………………. 350
  • Table 97: Market opportunity assessment for graphene in aerospace……………………………………… 350
  • Table 98: Market challenges rating for carbon nanomaterials in the aerospace market…………… 352
  • Table 99: Carbon nanotubes product and application developers in the aerospace industry…… 353
  • Table 100: Graphene product and application developers in the aerospace industry………………. 355
  • Table 101: Market drivers for use of carbon nanomaterials in automotive………………………………… 357
  • Table 102: Applications and benefits of carbon nanomaterials in automotive…………………………… 362
  • Table 103: Market size for carbon nanomaterials in automotive………………………………………………. 363
  • Table 104: Market opportunity assessment for CNTs in automotive…………………………………………. 364
  • Table 105: Market opportunity assessment for graphene in the automotive industry……………….. 365
  • Table 106: Applications and commercialization challenges for carbon nanomaterials in the automotive market………………………………………………………………………………………………………………. 366
  • Table 107: Market challenges rating for CNTs in the automotive market………………………………….. 367
  • Table 108: Carbon nanotubes product and application developers in the automotive market….. 367
  • Table 109: Graphene product and application developers in the automotive market……………….. 368
  • Table 110: Properties of nanocoatings……………………………………………………………………………………… 370
  • Table 111: Graphene properties relevant to application in coatings…………………………………………. 376
  • Table 112: Markets for nanocoatings……………………………………………………………………………………….. 387
  • Table 113: Market opportunity assessment for carbon nanomaterials in the coatings market….. 392
  • Table 114: Market challenges rating for carbon nanomaterials in the coatings market…………….. 393
  • Table 115: Carbon nanotubes product and application developers in the coatings industry…….. 393
  • Table 116: Graphene product and application developers in the coatings industry………………….. 394
  • Table 117: Market drivers for use of carbon nanomaterials in composites……………………………….. 397
  • Table 118: Comparative properties of polymer composites reinforcing materials…………………….. 399
  • Table 119: Applications and benefits of carbon nanomaterials in composites………………………….. 400
  • Table 120: Market size for carbon nanomaterials in composites………………………………………………. 405
  • Table 121: Market opportunity assessment for CNTs in composites………………………………………… 406
  • Table 122: Market opportunity assessment for graphene in composites………………………………….. 407
  • Table 123: Applications and commercialization challenges for carbon nanomaterials in composites…………………………………………………………………………………………………………………………………………….. 408
  • Table 124: Market challenges rating for carbon nanomaterials in the composites market………… 409
  • Table 125: Carbon nanotubes product and application developers in the composites market…. 409
  • Table 126: Graphene product and application developers in the composites market……………….. 412
  • Table 127: Market drivers for use of carbon nanomaterials in flexible electronics and conductive films…………………………………………………………………………………………………………………………………….. 415
  • Table 128: Applications and benefits of carbon nanomaterials in flexible electronics and conductive films…………………………………………………………………………………………………………………………………….. 420
  • Table 129: Comparison of ITO replacements…………………………………………………………………………… 423
  • Table 130: Wearable electronics devices and stage of development……………………………………….. 428
  • Table 131: Graphene properties relevant to application in sensors………………………………………….. 434
  • Table 132: Market size for carbon nanomaterials in flexible electronics and conductive films….. 438
  • Table 133: Market opportunity assessment for CNTs in flexible electronics, wearables, conductive films and displays……………………………………………………………………………………………………………….. 440
  • Table 134: Market opportunity assessment for graphene in flexible electronics, wearables, conductive films and displays……………………………………………………………………………………………… 441
  • Table 135: Global market for wearable electronics, 2015-2027, by application, billions $………… 442
  • Table 136: Applications and commercialization challenges for CNTs in flexible electronics and conductive films………………………………………………………………………………………………………………….. 447
  • Table 137: Market challenges rating for carbon nanomaterials in the flexible electronics and conductive films market………………………………………………………………………………………………………. 449
  • Table 138: Carbon nanotubes product and application developers in transparent conductive films and displays……………………………………………………………………………………………………………………….. 449
  • Table 139: Graphene product and application developers in transparent conductive films………. 452
  • Table 140: Market drivers for use of carbon nanomaterials in conductive inks…………………………. 453
  • Table 141: Comparative properties of conductive inks……………………………………………………………… 456
  • Table 142: Opportunities for advanced materials in printed electronics……………………………………. 459
  • Table 143: Applications in flexible and stretchable batteries, by nanomaterials type and benefits thereof………………………………………………………………………………………………………………………………… 461
  • Table 144: Market opportunity assessment for graphene in conductive inks……………………………. 463
  • Table 145: Market opportunity assessment for CNTs in conductive inks………………………………….. 464
  • Table 146: Conductive inks in the flexible and stretchable electronics market 2017-2027 revenue forecast (million $), by ink types………………………………………………………………………………………….. 466
  • Table 147: Market challenges for carbon nanomaterials in conductive inks……………………………… 466
  • Table 148: Market challenges rating for carbon nanomaterials in the conductive inks market…. 467
  • Table 149: Carbon nanotubes product and application developers in conductive inks…………….. 467
  • Table 150: Graphene product and application developers in conductive inks………………………….. 467
  • Table 151: Market drivers for carbon nanomaterials in transistors, integrated circuits and other components………………………………………………………………………………………………………………………… 469
  • Table 152: Applications and benefits of CNTs in transistors, integrated circuits and other components………………………………………………………………………………………………………………………… 473
  • Table 153: Comparative properties of silicon and graphene transistors……………………………………. 475
  • Table 154: Applications and benefits of graphene in transistors, integrated circuits and other components………………………………………………………………………………………………………………………… 477
  • Table 155: Market size for carbon nanomaterials in transistors, integrated circuits and other components………………………………………………………………………………………………………………………… 478
  • Table 156: Market opportunity assessment for CNTs in transistors, integrated circuits and other components………………………………………………………………………………………………………………………… 479
  • Table 157: Market opportunity assessment for graphene in transistors, integrated circuits and other components………………………………………………………………………………………………………………………… 481
  • Table 158: Market challenges rating for graphene in the transistors and integrated circuits market…………………………………………………………………………………………………………………………………………….. 483
  • Table 159: Applications and commercialization challenges for CNTs in the transistors, integrated circuits and other components market………………………………………………………………………………… 483
  • Table 160: Market challenges rating for CNTs in the transistors, integrated circuits and other components market…………………………………………………………………………………………………………….. 484
  • Table 161: Carbon nanotubes product and application developers in transistors, integrated circuits and other components………………………………………………………………………………………………………… 485
  • Table 162: Graphene product and application developers in transistors and integrated circuits. 486
  • Table 163: Market drivers for use of carbon nanomaterials in memory devices……………………….. 487
  • Table 164: Applications and benefits of CNTs in memory devices……………………………………………. 490
  • Table 165: Market size for carbon nanomaterials in memory devices………………………………………. 492
  • Table 166: Market opportunity assessment for CNTs in memory devices………………………………… 493
  • Table 167: Market challenges rating for carbon nanomaterials in the memory devices market… 493
  • Table 168: Carbon nanotubes product and application developers in memory devices……………. 497
  • Table 169: Graphene product and application developers in memory devices…………………………. 497
  • Table 170: Market drivers for use of carbon nanomaterials in photonics………………………………….. 498
  • Table 171: Applications and benefits of CNTs in photonics………………………………………………………. 499
  • Table 172: Graphene properties relevant to application in optical modulators………………………….. 500
  • Table 173: Applications and benefits of graphene in photonics………………………………………………… 503
  • Table 174: Market size for carbon nanomaterials in photonics…………………………………………………. 504
  • Table 175: Market challenges rating for carbon nanomaterials in the photonics market…………… 504
  • Table 176: Graphene product and application developers in photonics……………………………………. 505
  • Table 177: Market drivers for use of carbon nanomaterials in batteries……………………………………. 508
  • Table 178: Applications and benefits of CNTs in batteries……………………………………………………….. 511
  • Table 179: Applications in flexible and stretchable batteries, by materials type and benefits thereof…………………………………………………………………………………………………………………………………………….. 516
  • Table 180: Market size for carbon nanomaterials in batteries…………………………………………………… 518
  • Table 181: Potential addressable market for thin film, flexible and printed batteries………………… 519
  • Table 182: Market opportunity assessment for graphene in batteries………………………………………. 521
  • Table 183: Market challenges in CNT batteries………………………………………………………………………… 521
  • Table 184: Market challenges rating for CNTs in the batteries market……………………………………… 522
  • Table 185: Market challenges rating for graphene in the batteries market……………………………….. 523
  • Table 186: Market drivers for use of carbon nanomaterials in supercapacitors………………………… 523
  • Table 187: Applications and benefits of CNTs in supercapacitors……………………………………………. 525
  • Table 188: Comparative properties of graphene supercapacitors and lithium-ion batteries……… 526
  • Table 189: Applications and benefits of graphene in supercapacitors………………………………………. 527
  • Table 190: Properties of carbon materials in high-performance supercapacitors……………………… 528
  • Table 191: Applications in flexible and stretchable supercapacitors, by nanomaterials type and benefits thereof…………………………………………………………………………………………………………………… 530
  • Table 192: Market size for carbon nanomaterials in supercapacitors……………………………………….. 531
  • Table 193: Market opportunity assessment for CNTs in supercapacitors…………………………………. 532
  • Table 194: Market opportunity assessment for graphene in supercapacitors…………………………… 533
  • Table 195: Market challenges in supercapacitors…………………………………………………………………….. 533
  • Table 196: Market challenges rating for CNTs in the supercapacitors market………………………….. 534
  • Table 197: Market challenges rating for graphene in the supercapacitors market……………………. 535
  • Table 198: Market drivers for use of carbon nanomaterials in photovoltaics…………………………….. 535
  • Table 199: Applications and benefits of CNTs in photovoltaics………………………………………………… 538
  • Table 200: Market size for carbon nanomaterials in photovoltaics……………………………………………. 542
  • Table 201: Market size for CNTs in photovoltaics…………………………………………………………………….. 543
  • Table 202: Market size for graphene in photovoltaics………………………………………………………………. 543
  • Table 203: Potential addressable market for CNTs in photovoltaics…………………………………………. 544
  • Table 204: Market challenges for CNTs in solar……………………………………………………………………….. 545
  • Table 205: Market challenges rating for CNTs in the solar market……………………………………………. 545
  • Table 206: Market challenges rating for graphene in the solar market……………………………………… 546
  • Table 207: Market drivers for use of carbon nanomaterials in fuel cells and hydrogen storage.. 546
  • Table 208: Electrical conductivity of different catalyst supports compared to carbon nanotubes. 549
  • Table 209: Market size for carbon nanomaterials in fuel cells and hydrogen storage………………. 550
  • Table 210: Market opportunity assessment for carbon nanomaterials in fuel cells and hydrogen storage……………………………………………………………………………………………………………………………….. 550
  • Table 211: Market challenges rating for carbon nanomaterials in the fuel cells and hydrogen storage market……………………………………………………………………………………………………………………. 551
  • Table 212: Carbon nanotubes product and application developers in the energy storage, conversion and exploration industries…………………………………………………………………………………………………… 551
  • Table 213: Graphene product and application developers in the energy storage and conversion industry……………………………………………………………………………………………………………………………….. 555
  • Table 214: Market drivers for use of carbon nanomaterials in LED lighting and UVC………………. 560
  • Table 215: Applications of carbon nanomaterials in lighting……………………………………………………… 561
  • Table 216: Market size for carbon nanomaterials in LED lighting and UVC……………………………… 562
  • Table 217: Investment opportunity assessment for carbon nanomaterials in the lighting market. 563
  • Table 218: Market impediments for carbon nanomaterials in lighting……………………………………….. 564
  • Table 219: Carbon nanomaterials product and application developers in the LED and UVC lighting market…………………………………………………………………………………………………………………………………. 564
  • Table 220: Market drivers for use of carbon nanomaterials in filtration…………………………………….. 566
  • Table 221: Comparison of CNT membranes with other membrane technologies…………………….. 569
  • Table 222: Applications and benefits of CNTs in filtration and separation………………………………… 570
  • Table 223: Applications and benefits of graphene in filtration and separation………………………….. 571
  • Table 224: Market size for carbon nanomaterials in filtration……………………………………………………. 574
  • Table 225: Market opportunity assessment for CNTs in filtration……………………………………………… 575
  • Table 226: Market opportunity assessment for graphene in the filtration and separation market. 576
  • Table 227: Market challenges for carbon nanomaterials in filtration…………………………………………. 577
  • Table 228: Market challenges rating for carbon nanomaterials in the filtration market……………… 577
  • Table 229: Carbon nanotubes product and application developers in the filtration industry……… 578
  • Table 230: Graphene product and application developers in the filtration industry…………………… 579
  • Table 231: Market drivers for use of carbon nanomaterials in the life sciences and medical market…………………………………………………………………………………………………………………………………………….. 581
  • Table 232: CNTs in life sciences and biomedicine……………………………………………………………………. 583
  • Table 233: Graphene properties relevant to application in biomedicine and healthcare…………… 583
  • Table 234: Applications and benefits of carbon nanomaterials in life sciences and medical…….. 584
  • Table 235: Applications in flexible and stretchable health monitors, by advanced materials type and benefits thereof…………………………………………………………………………………………………………………… 594
  • Table 236: Market size for carbon nanomaterials in life sciences and medical…………………………. 604
  • Table 237: Potential addressable market for smart textiles and wearables in medical and healthcare…………………………………………………………………………………………………………………………… 605
  • Table 238: Market opportunity assessment for graphene in biomedical & healthcare markets… 608
  • Table 239: Market opportunity assessment for CNTs in life sciences and medical…………………… 610
  • Table 240: Applications and commercialization challenges for carbon nanomaterials in life sciences and medical………………………………………………………………………………………………………………………… 610
  • Table 241: Market challenges rating for carbon nanomaterials in the life sciences and medical. 612
  • Table 242: Carbon nanotubes product and application developers in the medical and healthcare industry……………………………………………………………………………………………………………………………….. 612
  • Table 243: Graphene product and application developers in the biomedical and healthcare industry…………………………………………………………………………………………………………………………………………….. 614
  • Table 244: Market drivers for use of carbon nanomaterials in lubricants………………………………….. 616
  • Table 245: Applications of graphene in the lubricants market…………………………………………………… 617
  • Table 246: Applications of carbon nanotubes in lubricants……………………………………………………….. 618
  • Table 247: Applications in lubricants, by nanomaterials type and benefits thereof…………………… 618
  • Table 248: Market size for carbon nanomaterials in lubricants…………………………………………………. 619
  • Table 249: Market opportunity assessment for CNTs in lubricants…………………………………………… 619
  • Table 250: Market opportunity assessment for graphene in lubricants…………………………………….. 620
  • Table 251: Market challenges rating for carbon nanomaterials in the lubricants market…………… 621
  • Table 252: Carbon nanotubes product and application developers in the lubricants industry…… 621
  • Table 253:  Graphene product and application developers in the lubricants industry……………….. 622
  • Table 254: Market drivers for carbon nanomaterials in oil and gas…………………………………………… 623
  • Table 255: Applications of graphene in the oil and gas market………………………………………………… 624
  • Table 256: Market summary and revenues for carbon nanomaterials in the oil and gas market. 630
  • Table 257: Investment opportunity assessment for CNTs in the oil and gas market………………… 631
  • Table 258: Investment opportunity assessment for graphene in the oil and gas market…………… 631
  • Table 259: Market challenges rating for carbon nanomaterials in the oil and gas exploration market…………………………………………………………………………………………………………………………………………….. 633
  • Table 260: Carbon nanomaterial product and application developers in the oil and gas market. 633
  • Table 261: Applications of carbon nanomaterials in rubber and tires……………………………………….. 634
  • Table 262: Market summary and revenues for carbon nanomaterials in the rubber and tires market…………………………………………………………………………………………………………………………………………….. 634
  • Table 263: Investment opportunity assessment for carbon nanomaterials in the rubber and tires market…………………………………………………………………………………………………………………………………. 635
  • Table 264: Market challenges for carbon nanomaterials in rubber and tires…………………………….. 636
  • Table 265: Companies developing graphene-based products in rubber and tires……………………. 636
  • Table 266: Market drivers for use of carbon nanomaterials in sensors…………………………………….. 638
  • Table 267: Applications and benefits of CNTs in sensors…………………………………………………………. 640
  • Table 268: Applications and benefits of graphene in sensors…………………………………………………… 641
  • Table 269: Graphene properties relevant to application in sensors………………………………………….. 643
  • Table 270: Comparison of ELISA (enzyme-linked immunosorbent assay) and graphene biosensor…………………………………………………………………………………………………………………………………………….. 647
  • Table 271: Market size for carbon nanomaterials in sensors……………………………………………………. 649
  • Table 272: Market opportunity assessment for CNTs in sensors……………………………………………… 650
  • Table 273: Market opportunity assessment for graphene in the sensors market……………………… 651
  • Table 274: Market challenges rating for graphene in the sensors market………………………………… 652
  • Table 275: Market challenges for CNTs in sensors………………………………………………………………….. 652
  • Table 276: Market challenges rating for CNTs in the sensors market………………………………………. 653
  • Table 277: Carbon nanotubes product and application developers in the sensors industry……… 653
  • Table 278: Graphene product and application developers in the sensors industry…………………… 654
  • Table 279: Types of smart textiles……………………………………………………………………………………………. 657
  • Table 280: Smart textile products……………………………………………………………………………………………… 658
  • Table 281: Market drivers for use of carbon nanomaterials in smart textiles and apparel………… 659
  • Table 282: Desirable functional properties for the textiles industry afforded by the use of nanomaterials……………………………………………………………………………………………………………………… 660
  • Table 283: Applications and benefits of CNTs in textiles and apparel………………………………………. 662
  • Table 284: Applications and benefits of graphene in textiles and apparel………………………………… 665
  • Table 285: Global smart clothing, interactive fabrics and apparel market…………………………………. 667
  • Table 286: Market opportunity assessment for CNTs in smart textiles and apparel…………………. 670
  • Table 287: Market opportunity assessment for graphene in smart textiles and apparel……………. 671
  • Table 288: Applications and commercialization challenges for carbon nanomaterials in smart textiles and apparel…………………………………………………………………………………………………………….. 671
  • Table 289: Market challenges rating for CNTs in the smart textiles and apparel market………….. 672
  • Table 290: Carbon nanotubes product and application developers in the textiles industry………. 673
  • Table 291:  Graphene product and application developers in the textiles industry…………………… 673
  • Table 292: CNT producers and companies they supply/licence to…………………………………………… 675
  • Table 293: Graphene producers and types produced………………………………………………………………. 802
  • Table 294: Graphene producers target market matrix………………………………………………………………. 807
  • Table 295: Graphene industrial collaborations, licence agreements and target markets………….. 886
  • Table 296: Graphene product developers and end users target market matrix………………………… 890

FIGURES

  • Figure 1: Molecular structures of SWNT and MWNT………………………………………………………………….. 60
  • Figure 2: The SGCNT synthesis method……………………………………………………………………………………. 70
  • Figure 3: Production capacities for SWNTs in kilograms, 2005-2017…………………………………………. 71
  • Figure 4: Global demand for MWNTs (tons), 2010-2027……………………………………………………………. 73
  • Figure 5: Graphene production capacity, current and planned…………………………………………………… 82
  • Figure 6: Demand for graphene, 2010-2027………………………………………………………………………………. 83
  • Figure 7: Vittoria bike tires incorporating graphene…………………………………………………………………….. 84
  • Figure 8: Demand for graphene, by market, 2027………………………………………………………………………. 87
  • Figure 9: Global government funding for graphene in millions USD to 2017………………………………. 93
  • Figure 10: Global consumption of graphene 2016, by region……………………………………………………… 99
  • Figure 11: 15-inch single-layer graphene sheet being prepared in the Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences……………………………………………….. 103
  • Figure 12: Schematic of single-walled carbon nanotube…………………………………………………………… 113
  • Figure 13: TIM sheet developed by Zeon Corporation……………………………………………………………… 114
  • Figure 14: Double-walled carbon nanotube bundle cross-section micrograph and model………… 118
  • Figure 15: Schematic representation of carbon nanohorns………………………………………………………. 119
  • Figure 16: TEM image of carbon onion…………………………………………………………………………………….. 120
  • Figure 17: Fullerene schematic………………………………………………………………………………………………… 122
  • Figure 18: Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red……………………………………………………………………………………………………………………….. 123
  • Figure 19: Graphene layer structure schematic………………………………………………………………………… 125
  • Figure 20: Graphite and graphene……………………………………………………………………………………………. 126
  • Figure 21: Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene. ……………………………………………………………………………………………………………………………………………. 127
  • Figure 22: Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1–4)………………… 130
  • Figure 23: Green-fluorescing graphene quantum dots……………………………………………………………… 132
  • Figure 24: Graphene quantum dots………………………………………………………………………………………….. 133
  • Figure 25: Black phosphorus structure……………………………………………………………………………………… 139
  • Figure 26: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal………………………………………………………………………………………………………………………….. 141
  • Figure 27: Schematic of germanene…………………………………………………………………………………………. 143
  • Figure 28: Graphdiyne structure……………………………………………………………………………………………….. 145
  • Figure 29: Schematic of Graphane crystal………………………………………………………………………………… 147
  • Figure 30: Structure of hexagonal boron nitride………………………………………………………………………… 149
  • Figure 31: Structure of 2D molybdenum disulfide…………………………………………………………………….. 150
  • Figure 32: Atomic force microscopy image of a representative MoS2 thin-film transistor…………. 151
  • Figure 33: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge……………………………………………………………………………… 153
  • Figure 34: Schematic of a monolayer of rhenium disulphide…………………………………………………….. 153
  • Figure 35: Silicene structure……………………………………………………………………………………………………… 154
  • Figure 36: Monolayer silicene on a silver (111) substrate…………………………………………………………. 155
  • Figure 37: Silicene transistor…………………………………………………………………………………………………….. 157
  • Figure 38: Crystal structure for stanene……………………………………………………………………………………. 157
  • Figure 39: Atomic structure model for the 2D stanene on Bi2Te3(111)……………………………………. 158
  • Figure 40: Schematic of tungsten diselenide……………………………………………………………………………. 159
  • Figure 41: Graphene can be rolled up into a carbon nanotube, wrapped into a fullerene, and stacked into graphite…………………………………………………………………………………………………………… 162
  • Figure 42: Schematic representation of methods used for carbon nanotube synthesis (a) Arc discharge (b) Chemical vapor deposition (c) Laser ablation (d) hydrocarbon flames………….. 166
  • Figure 43: Arc discharge process for CNTs………………………………………………………………………………. 168
  • Figure 44: Schematic of thermal-CVD method…………………………………………………………………………. 169
  • Figure 45: Schematic of plasma-CVD method………………………………………………………………………….. 170
  • Figure 46: CoMoCAT® process………………………………………………………………………………………………… 171
  • Figure 47: Schematic for flame synthesis of carbon nanotubes (a) premixed flame (b) counter-flow diffusion flame (c) co-flow diffusion flame (d) inverse diffusion flame…………………………………. 172
  • Figure 48: Schematic of laser ablation synthesis……………………………………………………………………… 173
  • Figure 49: Graphene synthesis methods………………………………………………………………………………….. 177
  • Figure 50: TEM micrographs of: A) HR-CNFs; B) GANF® HR-CNF, it can be observed its high graphitic structure; C) Unraveled ribbon from the HR-CNF; D) Detail of the ribbon; E) Scheme of the structure of the HR-CNFs; F) Large single graphene oxide sheets derived from GANF.. 178
  • Figure 51: Graphene nanoribbons grown on germanium…………………………………………………………. 181
  • Figure 52: Methods of synthesizing high-quality graphene……………………………………………………….. 184
  • Figure 53: Roll-to-roll graphene production process…………………………………………………………………. 189
  • Figure 54: Schematic of roll-to-roll manufacturing process……………………………………………………….. 190
  • Figure 55: Microwave irradiation of graphite to produce single-layer graphene………………………… 192
  • Figure 56: Nanotechnology patent applications, 1991-2015…………………………………………………….. 204
  • Figure 57: Share of nanotechnology related patent applications since 1972, by country………….. 205
  • Figure 58: CNT patents filed 2000-2014…………………………………………………………………………………… 206
  • Figure 59: Published patent publications for graphene, 2004-2014………………………………………….. 209
  • Figure 60: Technology Readiness Level (TRL) for Carbon Nanotubes…………………………………….. 212
  • Figure 61: Technology Readiness Level (TRL) for graphene……………………………………………………. 214
  • Figure 62: Schematic of typical commercialization route for graphene producer……………………… 217
  • Figure 63: Global demand for carbon nanotubes (tons), 2010-2027………………………………………… 223
  • Figure 64: Demand for carbon nanotubes, by market in 2017, total…………………………………………. 224
  • Figure 65: Demand for single-walled carbon nanotubes, by market, 2017……………………………….. 225
  • Figure 66: Demand for single-walled carbon nanotubes, by market, 2027……………………………….. 226
  • Figure 67: Production volumes of Carbon Nanotubes 2017, by region…………………………………….. 229
  • Figure 68: Global market for graphene 2010-2027 in tons/year……………………………………………….. 238
  • Figure 69: Demand for nanodiamonds, by market……………………………………………………………………. 252
  • Figure 70: Technology Readiness Level (TRL) for nanodiamonds…………………………………………… 253
  • Figure 71: Production volumes of nanodiamonds, 2010-2027………………………………………………….. 255
  • Figure 72: Production volumes of nanodiamonds 2017, by region…………………………………………… 256
  • Figure 73: 3D Printed tweezers incorporating Carbon Nanotube Filament……………………………….. 326
  • Figure 74: Graphene Adhesives……………………………………………………………………………………………….. 332
  • Figure 75: Carbon nanotube Composite Overwrap Pressure Vessel (COPV) developed by NASA…………………………………………………………………………………………………………………………………………….. 341
  • Figure 76: Veelo carbon fiber nanotube sheet………………………………………………………………………….. 342
  • Figure 77: HeatCoat CNT anti-icing coatings……………………………………………………………………………. 347
  • Figure 78: Potential addressable market for carbon nanomaterials in aerospace…………………….. 351
  • Figure 79: Graphene-based automotive components……………………………………………………………….. 360
  • Figure 80: Antistatic graphene tire……………………………………………………………………………………………. 361
  • Figure 81: Schematic of CNTs as heat-dissipation sheets……………………………………………………….. 362
  • Figure 82: Heat transfer coating developed at MIT…………………………………………………………………… 376
  • Figure 83: Water permeation through a brick without (left) and with (right) “graphene paint” coating…………………………………………………………………………………………………………………………………………….. 382
  • Figure 84: Four layers of graphene oxide coatings on polycarbonate………………………………………. 385
  • Figure 85: Global Paints and Coatings Market, share by end user market……………………………….. 386
  • Figure 86: Potential addressable market for carbon nanomaterials in the coatings market………. 391
  • Figure 87: CNT anti-icing coating for wind turbines………………………………………………………………….. 404
  • Figure 88: Potential addressable market for carbon nanomaterials in composites…………………… 407
  • Figure 89: Carbon nanotube thin-film transistors and integrated circuits on a flexible and transparent substrate………………………………………………………………………………………………………….. 418
  • Figure 90: Moxi flexible film developed for smartphone application………………………………………….. 418
  • Figure 91: Flexible graphene touch screen………………………………………………………………………………. 419
  • Figure 92: Galapad Settler smartphone……………………………………………………………………………………. 420
  • Figure 93: 3D printed carbon nanotube sensor………………………………………………………………………… 422
  • Figure 94: Flexible organic light emitting diode (OLED) using graphene electrode…………………… 423
  • Figure 95: Graphene electrochromic devices. Top left: Exploded-view illustration of the graphene electrochromic device. The device is formed by attaching two graphene-coated PVC substrates face-to-face and filling the gap with a liquid ionic electrolyte………………………………………………. 425
  • Figure 96: Flexible mobile phones with graphene transparent conductive film…………………………. 426
  • Figure 97: Carbon nanotube-based color active matrix electrophoretic display (EPD) e-paper… 426
  • Figure 98: Foldable graphene E-paper…………………………………………………………………………………….. 427
  • Figure 99: Covestro wearables…………………………………………………………………………………………………. 429
  • Figure 100: Softceptor sensor…………………………………………………………………………………………………… 432
  • Figure 101: BeBop Media Arm Controller…………………………………………………………………………………. 432
  • Figure 102: LG Innotek flexible textile pressure sensor……………………………………………………………. 433
  • Figure 103: C2Sense flexible sensor………………………………………………………………………………………… 434
  • Figure 104: Wearable gas sensor…………………………………………………………………………………………….. 436
  • Figure 105: BeBop Sensors Marcel Modular Data Gloves……………………………………………………….. 436
  • Figure 106: BeBop Sensors Smart Helmet Sensor System……………………………………………………… 437
  • Figure 107: Torso and Extremities Protection (TEP) system…………………………………………………….. 438
  • Figure 108: Potential addressable market for CNTs in flexible electronics, conductive films and displays………………………………………………………………………………………………………………………………. 442
  • Figure 109: Global market for wearable electronics, 2015-2027, by application, billions $……….. 442
  • Figure 110: Global transparent conductive electrodes market forecast by materials type, 2012-2027, millions $…………………………………………………………………………………………………………………… 444
  • Figure 111: Schematic of the wet roll-to-roll graphene transfer from copper foils to polymeric substrates…………………………………………………………………………………………………………………………… 446
  • Figure 112: The transmittance of glass/ITO, glass/ITO/four organic layers, and glass/ITO/four organic layers/4-layer graphene…………………………………………………………………………………………. 447
  • Figure 113: Nanotube inks………………………………………………………………………………………………………… 455
  • Figure 114: BGT Materials graphene ink product……………………………………………………………………… 457
  • Figure 115: Flexible RFID tag…………………………………………………………………………………………………… 458
  • Figure 116: Enfucell Printed Battery…………………………………………………………………………………………. 462
  • Figure 117: Graphene printed antenna…………………………………………………………………………………….. 462
  • Figure 118: Conductive inks in the flexible and stretchable electronics market 2017-2027 revenue forecast (million $), by ink types………………………………………………………………………………………….. 465
  • Figure 119: Graphene IC in wafer tester…………………………………………………………………………………… 471
  • Figure 120: A monolayer WS2-based flexible transistor array………………………………………………….. 471
  • Figure 121: Emerging logic devices………………………………………………………………………………………….. 472
  • Figure 122: Thin film transistor incorporating CNTs………………………………………………………………….. 473
  • Figure 123: Schematic cross-section of a graphene based transistor (GBT, left) and a graphene field-effect transistor (GFET, right)……………………………………………………………………………………… 476
  • Figure 124: Potential addressable market for carbon nanomaterials in transistors and integrated circuits………………………………………………………………………………………………………………………………… 481
  • Figure 125: Carbon nanotubes NRAM chip………………………………………………………………………………. 489
  • Figure 126: Stretchable SWCNT memory and logic devices for wearable electronics……………… 490
  • Figure 127: Carbon nanotubes NRAM chip………………………………………………………………………………. 491
  • Figure 128: Schematic of NRAM cell………………………………………………………………………………………… 496
  • Figure 129: Hybrid graphene phototransistors………………………………………………………………………….. 501
  • Figure 130: Wearable health monitor incorporating graphene photodetectors…………………………. 502
  • Figure 131: Flexible PEN coated with graphene and a QD thin film (20nm) is highly visibly transparent and photosensitive…………………………………………………………………………………………… 502
  • Figure 132: The SkelStart Engine Start Module 2.0 based on the graphene-based SkelCap ultracapacitors…………………………………………………………………………………………………………………….. 507
  • Figure 133: Energy densities and specific energy of rechargeable batteries……………………………. 511
  • Figure 134: Nano Lithium X Battery………………………………………………………………………………………….. 513
  • Figure 135: H600 concept car…………………………………………………………………………………………………… 517
  • Figure 136: Anion concept car………………………………………………………………………………………………….. 518
  • Figure 137: Skeleton Technologies ultracapacitor……………………………………………………………………. 526
  • Figure 138: Zapgo supercapacitor phone charger……………………………………………………………………. 528
  • Figure 139: Stretchable graphene supercapacitor……………………………………………………………………. 530
  • Figure 140: Suntech/TCNT nanotube frame module………………………………………………………………… 537
  • Figure 141: Solar cell with nanowires and graphene electrode………………………………………………… 540
  • Figure 142: Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper………………………………… 541
  • Figure 143: LG OLED flexible lighting panel…………………………………………………………………………….. 561
  • Figure 144: Flexible OLED incorporated into automotive headlight………………………………………….. 562
  • Figure 145: Degradation of organic dye molecules by graphene hybrid composite photocatalysts…………………………………………………………………………………………………………………………………………….. 573
  • Figure 146: Graphene anti-smog mask…………………………………………………………………………………….. 573
  • Figure 147: Graphene Frontiers’ Six™ chemical sensors consists of a field effect transistor (FET) with a graphene channel. Receptor molecules, such as DNA, are attached directly to the graphene channel……………………………………………………………………………………………………………….. 589
  • Figure 148: Graphene-Oxide based chip prototypes for biopsy-free early cancer diagnosis……. 590
  • Figure 149: Connected human body………………………………………………………………………………………… 592
  • Figure 150: Flexible, lightweight temperature sensor……………………………………………………………….. 593
  • Figure 151: Graphene-based E-skin patch……………………………………………………………………………….. 594
  • Figure 152: Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs………………………………………………………………………………………………………………………………… 598
  • Figure 153: Graphene medical patch……………………………………………………………………………………….. 599
  • Figure 154: TempTraQ wearable wireless thermometer…………………………………………………………… 600
  • Figure 155: Mimo baby monitor………………………………………………………………………………………………… 600
  • Figure 156: Nanowire skin hydration patch………………………………………………………………………………. 601
  • Figure 157: Wearable sweat sensor…………………………………………………………………………………………. 602
  • Figure 158: GraphWear wearable sweat sensor………………………………………………………………………. 603
  • Figure 159: Global medical and healthcare smart textiles and wearables market, 2015-2027, billions $………………………………………………………………………………………………………………………………………….. 607
  • Figure 160: Global medical and healthcare smart textiles and wearables market, 2015-2027, billions $………………………………………………………………………………………………………………………………………….. 608
  • Figure 161: Schematic of boron doped graphene for application in gas sensors……………………… 626
  • Figure 162: Directa Plus Grafysorber……………………………………………………………………………………….. 628
  • Figure 163: Nanometer-scale pores in single-layer freestanding graphene membrane can effectively filter NaCl salt from water……………………………………………………………………………………………………. 629
  • Figure 164: GFET sensors……………………………………………………………………………………………………….. 645
  • Figure 165: First generation point of care diagnostics………………………………………………………………. 646
  • Figure 166: Graphene Field Effect Transistor Schematic…………………………………………………………. 647
  • Figure 167: Conductive yarns…………………………………………………………………………………………………… 666
  • Figure 168: Global smart clothing, interactive fabrics and apparel market 2013-2027 revenue forecast (million $)………………………………………………………………………………………………………………. 667
  • Figure 169 Global smart clothing, interactive fabrics and apparel sales by market segment, 2016…………………………………………………………………………………………………………………………………………….. 668
  • Figure 170: Global market revenues for nanotech-enabled smart clothing and apparel 2014-2021, in US$, conservative estimate…………………………………………………………………………………………….. 669
  • Figure 171: Global market revenues for nanotech-enabled smart clothing and apparel 2014-2021, in US$, optimistic estimate………………………………………………………………………………………………….. 669