The Global Market for Carbon Nanomaterials

0

Carbon Nanotubes, Graphene, 2D Materials, Fullerenes, Carbon Quantum Dots and Nanodiamonds

Carbon based-nanomaterials include fullerenes, carbon nanotubes (CNTs), graphene and its derivatives, graphene oxide, nanodiamonds, and carbon-based quantum dots (CQDs). Due to their unique structural dimensions and excellent mechanical, electrical, thermal, optical and chemical properties, carbon nanomaterials have gained great interest in a wide range of industrial market.

Carbon nanotubes (CNTs) and graphene are the strongest, lightest and most conductive fibres known to man, with a performance-per-weight greater than any other material. In direct competition in a number of markets, they are complementary in others.

Once the most promising of all nanomaterials, MWCNTs face stiff competition in conductive applications from graphene and other 2D materials and in mechanically enhanced composites from nanocellulose. Several major producers have closed their MWCNT capacities, but applications continue to come to market and LG Chem has established a large-scale production facility. Super-aligned CNT arrays, films and yarns have found applications in consumer electronics, batteries, polymer composites, aerospace, sensors, heaters, filters and biomedicine.

Large-scale industrial production of single-walled carbon nanotubes (SWCNTs) has been initiated, promising new market opportunities in transparent conductive films, condcuctive materials, transistors, sensors and memory devices. Again, a number of producers have ceased production, but those left are finding increased demand for their materials. SCWNTs are regarded as one of the most promising candidates to utilized as building blocks in next generation electronics.

Two-dimensional(2D) materials are currently one of the most active areas of nanomaterials research, and offer a huge opportunity for both fundamental studies and practical applications, including superfast, low-power, flexible and wearable electronics, sensors, photonics and electrochemical energy storage devices that will have an immense impact on our society.

Graphene is a ground-breaking two-dimensional (2D) material that possesses extraordinary electrical and mechanical properties that promise a new generation of innovative devices. New methods of scalable synthesis of high-quality graphene, clean delamination transfer and device integration have resulted in the commercialization of state-of-the-art electronics such as graphene touchscreens in smartphones and flexible RF devices on plastics.

Beyond graphene, emerging elementary 2D materials such as transition metal dichalcogenides, group V systems including phosphorene, and related isoelectronic structures will potentially allow for flexible electronics and field-effect transistors that exhibit ambipolar transport behaviour with either a direct band-gap or greater gate modulation.

Nanodiamonds (NDs), also called detonation diamonds (DND) or ultradispersed diamonds (UDD), are relatively easy and inexpensive to produce, and have moved towards large-scale commercialization due to their excellent mechanical, thermal properties and chemical stability.

Other carbon nanomaterials of interest include fullerenes and more recently, carbon quantum dots.

This report on the carbon nanotubes, graphene and 2D materials and nanodiamonds market is by far the most comprehensive and authoritative report produced.

Report contents include:

  • Production volumes, estimated to 2030
  • Commercialization timelines and technology trends
  • Current carbon nanotubes, fullerene, nanodiamond and graphene products,
  • Comparative analysis of carbon nanotubes and graphene and competitive landscape
  • Assessment of carbon nanomaterials market including production volumes, competitive landscape, commercial prospects, applications, demand by market and region, commercialization timelines, prices and producer profiles.
  • Assessment of end user markets for carbon nanomaterials including market drivers and trends, applications, market opportunity, market challenges and application and product developer profiles.
  • Unique assessment tools for the carbon nanomaterials market, end user applications, economic impact, addressable markets and market challenges to provide the complete picture of where the real opportunities in carbon nanomaterials are.
  • Company profiles of carbon nanotubes, graphene, 2D materials, fullerenes, carbon quantum dots and nanodiamonds producers and product developers, including products, target markets and contact details

Published December 2018| 856 pages. 318 tables, 186 figures | Table of contents

The Global Market for Carbon Nanomaterials
The Global Market for Carbon Nanomaterials
Instant PDF download on completion of purchase.
The Global Market for Carbon Nanomaterials
The Global Market for Carbon Nanomaterials
Print edition.
The Global Market for Carbon Nanomaterials
The Global Market for Carbon Nanomaterials
PDF plus hard copy in glossy print format. 5-7 working days delivery. Price includes postage and packing.
The Global Market for Carbon Nanomaterials
The Global Market for Carbon Nanomaterials
Company wide licence (5 users +).

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com.

 

TABLE OF CONTENT

1        RESEARCH METHODOLOGY……………………………………………………………………………………………………. 45

2        EXECUTIVE SUMMARY……………………………………………………………………………………………………………. 51

  • 2.1     CARBON NANOTUBES………………………………………………………………………………………………………… 51
    • 2.1.1       Exceptional properties…………………………………………………………………………………………………… 53
    • 2.1.2       Products and applications……………………………………………………………………………………………… 54
      • 2.1.2.1    MWCNTs………………………………………………………………………………………………………………. 54
      • 2.1.2.2    SWCNTs……………………………………………………………………………………………………………….. 56
    • 2.1.3       Competition from graphene……………………………………………………………………………………………. 61
    • 2.1.4       Production………………………………………………………………………………………………………………….. 62
      • 2.1.4.1    Multi-walled nanotube (MWCNT) production………………………………………………………………….. 62
      • 2.1.4.2    Single-walled nanotube (SWCNT) production………………………………………………………………… 63
    • 2.1.5       Global demand for carbon nanotubes……………………………………………………………………………….. 65
      • 2.1.5.1    Current products……………………………………………………………………………………………………… 67
      • 2.1.5.2    Future products……………………………………………………………………………………………………….. 67
    • 2.1.6       Market drivers and trends………………………………………………………………………………………………. 67
  • 2.2     2D MATERIALS…………………………………………………………………………………………………………………… 71
  • 2.3     GRAPHENE……………………………………………………………………………………………………………………….. 71
    • 2.3.1       The market in 2016………………………………………………………………………………………………………. 72
    • 2.3.2       The market in 2017………………………………………………………………………………………………………. 72
    • 2.3.3       The market in 2018………………………………………………………………………………………………………. 73
    • 2.3.4       Key players………………………………………………………………………………………………………………… 73
    • 2.3.5       Production………………………………………………………………………………………………………………….. 75
    • 2.3.6       Products……………………………………………………………………………………………………………………. 76
    • 2.3.7       Graphene investments 2016-2018…………………………………………………………………………………… 78
    • 2.3.8       Market outlook…………………………………………………………………………………………………………….. 79
    • 2.3.9       Global funding and initiatives………………………………………………………………………………………….. 84
    • 2.3.10     Products and applications……………………………………………………………………………………………… 85
    • 2.3.11     Production………………………………………………………………………………………………………………….. 86
    • 2.3.12     Market drivers and trends………………………………………………………………………………………………. 88
    • 2.3.13     Market and technical challenges……………………………………………………………………………………… 91
    • 2.3.14     Key players………………………………………………………………………………………………………………… 92
  • 2.4     FULLERENES…………………………………………………………………………………………………………………… 96
  • 2.5     CARBON QUANTUM DOTS…………………………………………………………………………………………………… 96

3        CARBON NANOMATERIALS OVERVIEW……………………………………………………………………………………. 98

  • 3.1     Properties of nanomaterials……………………………………………………………………………………………………. 98
  • 3.2     Categorization…………………………………………………………………………………………………………………….. 98
  • 3.3     CARBON NANOTUBES………………………………………………………………………………………………………… 99
    • 3.3.1       Multi-walled nanotubes (MWCNT)………………………………………………………………………………….. 101
      • 3.3.1.1    Properties…………………………………………………………………………………………………………….. 101
      • 3.3.1.2    Applications………………………………………………………………………………………………………….. 101
    • 3.3.2       Single-wall carbon nanotubes (SWCNT)………………………………………………………………………….. 102
      • 3.3.2.1    Properties…………………………………………………………………………………………………………….. 103
      • 3.3.2.2    Applications………………………………………………………………………………………………………….. 103
      • 3.3.2.3    Single-chirality………………………………………………………………………………………………………. 105
    • 3.3.3       Comparison between MWCNTs and SWCNTs………………………………………………………………….. 106
    • 3.3.4       Double-walled carbon nanotubes (DWNTs)……………………………………………………………………… 106
      • 3.3.4.1    Properties…………………………………………………………………………………………………………….. 106
      • 3.3.4.2    Applications………………………………………………………………………………………………………….. 107
    • 3.3.5       Few-walled carbon nanotubes (FWNTs)………………………………………………………………………….. 107
      • 3.3.5.1    Properties…………………………………………………………………………………………………………….. 107
      • 3.3.5.2    Applications………………………………………………………………………………………………………….. 107
    • 3.3.6       Carbon Nanohorns (CNHs)…………………………………………………………………………………………… 107
      • 3.3.6.1    Properties…………………………………………………………………………………………………………….. 107
      • 3.3.6.2    Applications………………………………………………………………………………………………………….. 108
    • 3.3.7       Carbon Onions………………………………………………………………………………………………………….. 108
      • 3.3.7.1    Properties…………………………………………………………………………………………………………….. 108
      • 3.3.7.2    Applications………………………………………………………………………………………………………….. 109
    • 3.3.8       Fullerenes………………………………………………………………………………………………………………… 110
      • 3.3.8.1    Properties…………………………………………………………………………………………………………….. 110
      • 3.3.8.2    Applications………………………………………………………………………………………………………….. 110
    • 3.3.9       Boron Nitride nanotubes (BNNTs)………………………………………………………………………………….. 111
      • 3.3.9.1    Properties…………………………………………………………………………………………………………….. 111
      • 3.3.9.2    Applications………………………………………………………………………………………………………….. 112
    • 3.3.10     Carbon quantum dots (CQds)……………………………………………………………………………………….. 112
      • 3.3.10.1       Properties………………………………………………………………………………………………………… 112
      • 3.3.10.2       Applications……………………………………………………………………………………………………… 112
  • 3.4     GRAPHENE……………………………………………………………………………………………………………………… 113
    • 3.4.1       History……………………………………………………………………………………………………………………… 113
    • 3.4.2       Forms of graphene……………………………………………………………………………………………………… 114
    • 3.4.3       Properties…………………………………………………………………………………………………………………. 115
    • 3.4.4       3D Graphene…………………………………………………………………………………………………………….. 116
    • 3.4.5       Graphene Quantum Dots……………………………………………………………………………………………… 116
      • 3.4.5.1    Synthesis……………………………………………………………………………………………………………… 118
      • 3.4.5.2    Applications………………………………………………………………………………………………………….. 118
    • 3.4.5.3    Producers…………………………………………………………………………………………………………….. 120
  • 3.5     NANODIAMONDS………………………………………………………………………………………………………………. 121
    • 3.5.1       Properties…………………………………………………………………………………………………………………. 121
  • 3.6     Carbon quantum dots (CDs)…………………………………………………………………………………………………. 123
    • 3.6.1       Properties…………………………………………………………………………………………………………………. 124
    • 3.6.2       Applications………………………………………………………………………………………………………………. 125
  • 3.7     OTHER 2-D MATERIALS…………………………………………………………………………………………………….. 126
    • 3.7.1       Beyond moore’s law……………………………………………………………………………………………………. 126
    • 3.7.2       Batteries…………………………………………………………………………………………………………………… 127
    • 3.7.3       PHOSPHORENE……………………………………………………………………………………………………….. 127
    • 3.7.6       GRAPHITIC CARBON NITRIDE (g-C3N4)……………………………………………………………………….. 132
    • 3.7.10     GERMANENE…………………………………………………………………………………………………………… 135
    • 3.7.11     GRAPHDIYNE…………………………………………………………………………………………………………… 137
    • 3.7.12     GRAPHANE……………………………………………………………………………………………………………… 139
    • 3.7.13     HEXAGONAL BORON-NITRIDE……………………………………………………………………………………. 141
    • 3.7.14     MOLYBDENUM DISULFIDE (MoS2)………………………………………………………………………………. 144
    • 3.7.15     RHENIUM DISULFIDE (ReS2) AND DISELENIDE (ReSe2)…………………………………………………. 148
    • 3.7.16     SILICENE…………………………………………………………………………………………………………………. 149
    • 3.7.17     STANENE/TINENE…………………………………………………………………………………………………….. 152
    • 3.7.18     TUNGSTEN DISELENIDE……………………………………………………………………………………………. 154
    • 3.7.19     ANTIMONENE…………………………………………………………………………………………………………… 156
    • 3.7.20     DIAMENE…………………………………………………………………………………………………………………. 1577
    • 3.7.21     INDIUM SELENIDE…………………………………………………………………………………………………….. 157
    • 3.7.22     COMPARATIVE ANALYSIS OF GRAPHENE AND OTHER 2D MATERIALS…………………………… 158

4        COMPARATIVE ANALYSIS GRAPHENE AND CARBON NANOTUBES…………………………………………… 160

  • 4.1     Comparative properties……………………………………………………………………………………………………….. 160
  • 4.2     Cost and production……………………………………………………………………………………………………………. 161
  • 4.3     Carbon nanotube-graphene hybrids………………………………………………………………………………………… 162

5        CARBON NANOTUBE SYNTHESIS…………………………………………………………………………………………… 163

6        GRAPHENE SYNTHESIS………………………………………………………………………………………………………… 169

7        COMPETITIVE LANDSCAPE FOR CARBON-BASED ADDITIVES…………………………………………………… 187

  • 7.1     Carbon fibers…………………………………………………………………………………………………………………….. 187
  • 7.2     Carbon black……………………………………………………………………………………………………………………… 188

8        REGULATIONS AND STANDARDS…………………………………………………………………………………………… 193

9        CARBON NANOTUBES PATENTS……………………………………………………………………………………………. 199

10      GRAPHENE PATENTS……………………………………………………………………………………………………………. 200

11      CARBON NANOTUBES TECHNOLOGY READINESS LEVEL………………………………………………………… 203

12      GRAPHENE TECHNOLOGY READINESS LEVEL………………………………………………………………………… 204

13      CARBON NANOTUBES MARKET STRUCTURE………………………………………………………………………….. 206

14      GRAPHENE MARKET STRUCTURE…………………………………………………………………………………………. 208

15      CARBON NANOTUBES PRODUCTION ANALYSIS……………………………………………………………………… 211

  • 15.1        Production volumes in metric tons, 2010-2030………………………………………………………………………. 211
  • 15.2        Carbon nanotube producer production capacities………………………………………………………………….. 216
  • 15.3        Regional demand for carbon nanotubes………………………………………………………………………………. 217
  • 15.3.1     Japan………………………………………………………………………………………………………………………. 218
  • 15.3.2     China………………………………………………………………………………………………………………………. 219
  • 15.4        Main carbon nanotubes producers……………………………………………………………………………………… 219
  • 15.4.1     SWCNT production…………………………………………………………………………………………………….. 220
  • 15.5        Price of carbon nanotubes-MWCNTs, SWCNTs and FWNTs…………………………………………………… 221
  • 15.5.1     MWCNTs…………………………………………………………………………………………………………………. 221
  • 15.5.2     SWCNTs………………………………………………………………………………………………………………….. 221
  • 15.6        APPLICATIONS…………………………………………………………………………………………………………….. 222

16      GRAHENE PRODUCTION ANALYSIS……………………………………………………………………………………….. 224

  • 16.1        Graphene production volumes 2010-2030……………………………………………………………………………. 225
  • 16.2        Graphene pricing……………………………………………………………………………………………………………. 226
    • 16.2.1     Pristine Graphene Flakes pricing……………………………………………………………………………………. 228
    • 16.2.2     Few-Layer Graphene pricing…………………………………………………………………………………………. 228
    • 16.2.3     Graphene Nanoplatelets pricing…………………………………………………………………………………….. 229
    • 16.2.4     Reduced Graphene Oxide pricing………………………………………………………………………………….. 229
    • 16.2.5     Graphene Quantum Dots pricing……………………………………………………………………………………. 230
    • 16.2.6     Graphene Oxide Nanosheets pricing………………………………………………………………………………. 231
    • 16.2.7     Multilayer Graphene (MLG) pricing…………………………………………………………………………………. 231
    • 16.2.8     Mass production of lower grade graphene materials…………………………………………………………… 232
    • 16.2.9     High grade graphene difficult to mass produce………………………………………………………………….. 232
    • 16.2.10        Bulk supply…………………………………………………………………………………………………………… 232
    • 16.2.11        Commoditisation……………………………………………………………………………………………………. 233
  • 16.3        Graphene producers and production capacities…………………………………………………………………….. 233

17      NANODIAMONDS MARKET ANALYSIS…………………………………………………………………………………….. 235

  • 17.1        Applications………………………………………………………………………………………………………………….. 235
  • 17.2        Demand by market…………………………………………………………………………………………………………. 236
  • 17.3        Market challenges………………………………………………………………………………………………………….. 237
  • 17.4        Technology readiness level (TRL)………………………………………………………………………………………. 237
  • 17.5        Production volumes in tons, 2010-2030……………………………………………………………………………….. 238
  • 17.6        Production volumes, by region…………………………………………………………………………………………… 239
  • 17.7        Prices………………………………………………………………………………………………………………………….. 240

18      FULLERENES MARKET ANALYSIS………………………………………………………………………………………….. 241

  • 18.1        Properties…………………………………………………………………………………………………………………….. 241
  • 18.2        Applications………………………………………………………………………………………………………………….. 242
  • 18.3        Technology readiness level (TRL)………………………………………………………………………………………. 242
  • 18.4        Demand by market…………………………………………………………………………………………………………. 243
  • 18.5        Demand in tons, 2010-2030……………………………………………………………………………………………… 244
  • 18.6        Demand by region………………………………………………………………………………………………………….. 245
  • 18.7        Prices………………………………………………………………………………………………………………………….. 246

19      CARBON NANOTUBES/OTHER CARBON NANOMATERIALS INDUSTRY NEWS 2013-2018………………………………………………………………….. 247

20      GRAPHENE INDUSTRY DEVELOPMENTS 2013-2018-INVESTMENTS, PRODUCTS AND PRODUCTION 259

21      END USER MARKET ANALYSIS FOR CARBON NANOMATERIALS………………………………………………. 300

  • 21.1        3D PRINTING……………………………………………………………………………………………………………….. 300
    • 21.1.1     MARKET DRIVERS AND TRENDS………………………………………………………………………………… 300
    • 21.1.2     APPLICATIONS…………………………………………………………………………………………………………. 300
    • 21.1.3     MARKET SIZE AND OPPORTUNITY……………………………………………………………………………… 302
    • 21.1.4     MARKET CHALLENGES……………………………………………………………………………………………… 304
    • 21.1.5     PRODUCT DEVELOPERS…………………………………………………………………………………………… 304
  • 21.2        ADHESIVES…………………………………………………………………………………………………………………. 306
    • 21.2.1     MARKET DRIVERS AND TRENDS………………………………………………………………………………… 306
    • 21.2.2     APPLICATIONS…………………………………………………………………………………………………………. 307
    • 21.2.3     MARKET SIZE AND OPPORTUNITY……………………………………………………………………………… 308
    • 21.2.4     MARKET CHALLENGES……………………………………………………………………………………………… 310
    • 21.2.5     PRODUCT DEVELOPERS…………………………………………………………………………………………… 311
  • 21.3        AEROSPACE AND AVIATION………………………………………………………………………………………….. 312
    • 21.3.1     MARKET DRIVERS AND TRENDS………………………………………………………………………………… 312
    • 21.3.2     APPLICATIONS…………………………………………………………………………………………………………. 313
      • 21.3.2.1       Composites………………………………………………………………………………………………………. 315
      • 21.3.2.2       Coatings………………………………………………………………………………………………………….. 317
    • 21.3.3     MARKET SIZE AND OPPORTUNITY……………………………………………………………………………… 321
    • 21.3.4     MARKET CHALLENGES……………………………………………………………………………………………… 323
    • 21.3.5     PRODUCT DEVELOPERS…………………………………………………………………………………………… 324
  • 21.4        AUTOMOTIVE………………………………………………………………………………………………………………. 327
    • 21.4.1     MARKET DRIVER AND TRENDS………………………………………………………………………………….. 327
    • 21.4.2     APPLICATIONS…………………………………………………………………………………………………………. 329
      • 21.4.2.1       Composites………………………………………………………………………………………………………. 330
      • 21.4.2.2       Thermally conductive additives……………………………………………………………………………… 330
      • 21.4.2.3       Tires……………………………………………………………………………………………………………….. 331
      • 21.4.2.4       Heat dissipation in electric vehicles………………………………………………………………………… 331
    • 21.4.3     MARKET SIZE AND OPPORTUNITY……………………………………………………………………………… 333
    • 21.4.4     MARKET CHALLENGES……………………………………………………………………………………………… 335
    • 21.4.5     PRODUCT DEVELOPERS…………………………………………………………………………………………… 336
  • 21.5        COATINGS…………………………………………………………………………………………………………………… 339
    • 21.5.1     MARKET DRIVERS AND TRENDS………………………………………………………………………………… 340
    • 21.5.2     APPLICATIONS…………………………………………………………………………………………………………. 342
      • 21.5.2.1       Anti-static coatings…………………………………………………………………………………………….. 344
      • 21.5.2.2       Anti-corrosion coatings……………………………………………………………………………………….. 344
      • 21.5.2.3       Oil and gas……………………………………………………………………………………………………….. 345
      • 21.5.2.4       Marine…………………………………………………………………………………………………………….. 345
      • 21.5.2.5       Anti-microbial……………………………………………………………………………………………………. 346
      • 21.5.2.6       Anti-icing………………………………………………………………………………………………………….. 346
      • 21.5.2.7       Barrier coatings…………………………………………………………………………………………………. 347
      • 21.5.2.8       Heat protection………………………………………………………………………………………………….. 348
      • 21.5.2.9       Anti-fouling……………………………………………………………………………………………………….. 349
      • 21.5.2.10     Wear and abrasion resistance………………………………………………………………………………. 350
      • 21.5.2.11     Smart windows………………………………………………………………………………………………….. 350
    • 21.5.3     MARKET SIZE AND OPPORTUNITY……………………………………………………………………………… 351
    • 21.5.4     MARKET CHALLENGES……………………………………………………………………………………………… 356
    • 21.5.5     PRODUCT DEVELOPERS…………………………………………………………………………………………… 357
  • 21.6        COMPOSITES………………………………………………………………………………………………………………. 359
    • 21.6.1     MARKET DRIVERS AND TRENDS………………………………………………………………………………… 360
    • 21.6.2     APPLICATIONS…………………………………………………………………………………………………………. 362
      • 21.6.2.1       Polymer composites…………………………………………………………………………………………… 362
      • 21.6.2.2       Barrier packaging………………………………………………………………………………………………. 365
      • 21.6.2.3       Electrostatic discharge (ESD) and electromagnetic interference (EMI) shielding………………. 365
      • 21.6.2.4       Wind turbines……………………………………………………………………………………………………. 365
      • 21.6.2.5       Ballistic protection………………………………………………………………………………………………. 366
    • 21.6.3     MARKET SIZE AND OPPORTUNITY……………………………………………………………………………… 366
    • 21.6.4     MARKET CHALLENGES……………………………………………………………………………………………… 370
    • 21.6.5     PRODUCT DEVELOPERS…………………………………………………………………………………………… 371
  • 21.7        ELECTRONICS……………………………………………………………………………………………………………… 374
    • 21.7.1     FLEXIBLE ELECTRONICS, CONDUCTIVE FILMS AND DISPLAYS……………………………………… 375
      • 21.7.1.1       MARKET DRIVERS AND TRENDS……………………………………………………………………….. 375
      • 21.7.1.2       APPLICATIONS………………………………………………………………………………………………… 376
      • 21.7.1.3       MARKET SIZE AND OPPORTUNITY…………………………………………………………………….. 393
      • 21.7.1.4       MARKET CHALLENGES…………………………………………………………………………………….. 398
      • 21.7.1.5       Competing materials…………………………………………………………………………………………… 399
      • 21.7.1.6       PRODUCT DEVELOPERS………………………………………………………………………………….. 402
    • 21.7.2     CONDUCTIVE INKS…………………………………………………………………………………………………… 405
      • 21.7.2.1       MARKET DRIVERS AND TRENDS……………………………………………………………………….. 405
      • 21.7.2.2       APPLICATIONS………………………………………………………………………………………………… 406
      • 21.7.2.3       MARKET SIZE AND OPPORTUNITY…………………………………………………………………….. 413
      • 21.7.2.4       MARKET CHALLENGES…………………………………………………………………………………….. 416
      • 21.7.2.5       PRODUCT DEVELOPERS………………………………………………………………………………….. 417
    • 21.7.3     TRANSISTORS, INTEGRATED CIRCUITS AND OTHER COMPONENTS……………………………… 418
      • 21.7.3.1       APPLICATIONS………………………………………………………………………………………………… 419
      • 21.7.3.2       MARKET SIZE AND OPPORTUNITY…………………………………………………………………….. 425
      • 21.7.3.3       MARKET CHALLENGES…………………………………………………………………………………….. 428
      • 21.7.3.4       PRODUCT DEVELOPERS………………………………………………………………………………….. 431
    • 21.7.4     MEMORY DEVICES…………………………………………………………………………………………………… 432
      • 21.7.4.1       MARKET DRIVERS AND TRENDS……………………………………………………………………….. 432
      • 21.7.4.2       APPLICATIONS………………………………………………………………………………………………… 434
      • 21.7.4.3       MARKET SIZE AND OPPORTUNITY…………………………………………………………………….. 436
      • 21.7.4.4       MARKET CHALLENGES…………………………………………………………………………………….. 437
      • 21.7.4.5       PRODUCT DEVELOPERS………………………………………………………………………………….. 438
    • 21.7.5     PHOTONICS…………………………………………………………………………………………………………….. 441
      • 21.7.5.1       MARKET DRIVERS……………………………………………………………………………………………. 441
      • 21.7.5.2       APPLICATIONS………………………………………………………………………………………………… 442
      • 21.7.5.3       MARKET SIZE AND OPPORTUNITY…………………………………………………………………….. 446
      • 21.7.5.4       MARKET CHALLENGES…………………………………………………………………………………….. 447
      • 21.7.6     PRODUCT DEVELOPERS…………………………………………………………………………………………… 447
  • 21.8        ENERGY STORAGE AND CONVERSION…………………………………………………………………………… 448
    • 21.8.1     BATTERIES……………………………………………………………………………………………………………… 449
      • 21.8.1.1       MARKET DRIVERS AND TRENDS……………………………………………………………………….. 449
      • 21.8.1.2       APPLICATIONS………………………………………………………………………………………………… 451
      • 21.8.1.3       MARKET SIZE AND OPPORTUNITY…………………………………………………………………….. 455
      • 21.8.1.4       MARKET CHALLENGES…………………………………………………………………………………….. 459
    • 21.8.2     SUPERCAPACITORS…………………………………………………………………………………………………. 461
      • 21.8.2.1       MARKET DRIVERS AND TRENDS……………………………………………………………………….. 461
      • 21.8.2.2       APPLICATIONS………………………………………………………………………………………………… 461
      • 21.8.2.3       MARKET SIZE AND OPPORTUNITY…………………………………………………………………….. 467
      • 21.8.2.4       MARKET CHALLENGES…………………………………………………………………………………….. 468
    • 21.8.3     PHOTOVOLTAICS……………………………………………………………………………………………………… 470
      • 21.8.3.1       MARKET DRIVERS AND TRENDS……………………………………………………………………….. 470
      • 21.8.3.2       APPLICATIONS………………………………………………………………………………………………… 471
      • 21.8.3.3       MARKET SIZE AND OPPORTUNITY…………………………………………………………………….. 475
      • 21.8.3.4       MARKET CHALLENGES…………………………………………………………………………………….. 478
    • 21.8.4     FUEL CELLS AND HYDROGEN STORAGE…………………………………………………………………….. 479
      • 21.8.4.1       MARKET DRIVERS……………………………………………………………………………………………. 479
      • 21.8.4.2       APPLICATIONS………………………………………………………………………………………………… 481
      • 21.8.4.3       MARKET SIZE AND OPPORTUNITY…………………………………………………………………….. 482
      • 21.8.4.4       MARKET CHALLENGES…………………………………………………………………………………….. 483
    • 21.8.5     PRODUCT DEVELOPERS…………………………………………………………………………………………… 484
  • 21.9        LED LIGHTING AND UVC……………………………………………………………………………………………….. 489
    • 21.9.1     MARKET DRIVERS AND TRENDS………………………………………………………………………………… 490
    • 21.9.2     PROPERTIES AND APPLICATIONS……………………………………………………………………………… 490
      • 21.9.2.1       Flexible OLED lighting………………………………………………………………………………………… 490
    • 21.9.3     GLOBAL MARKET SIZE AND OPPORTUNITY………………………………………………………………… 492
    • 21.9.4     MARKET CHALLENGES……………………………………………………………………………………………… 493
    • 21.9.5     PRODUCT DEVELOPERS…………………………………………………………………………………………… 493
  • 21.10      FILTRATION AND SEPARATION………………………………………………………………………………………. 494
    • 21.10.1        MARKET DRIVERS AND TRENDS……………………………………………………………………………. 494
    • 21.10.2        APPLICATIONS…………………………………………………………………………………………………….. 495
      • 21.10.3        Water filtration……………………………………………………………………………………………………….. 499
      • 21.10.4        Gas separation………………………………………………………………………………………………………. 499
      • 21.10.5        Photocatalytic absorbents………………………………………………………………………………………… 499
      • 21.10.6        Air filtration…………………………………………………………………………………………………………… 500
    • 21.10.7        MARKET SIZE AND OPPORTUNITY…………………………………………………………………………. 500
    • 21.10.8        MARKET CHALLENGES…………………………………………………………………………………………. 503
    • 21.10.9        PRODUCT DEVELOPERS………………………………………………………………………………………. 504
  • 21.11      LIFE SCIENCES AND MEDICAL……………………………………………………………………………………….. 506
    • 21.11.1        MARKET DRIVERS AND TRENDS……………………………………………………………………………. 507
    • 21.11.2        APPLICATIONS…………………………………………………………………………………………………….. 508
      • 21.11.2.1     Cancer therapy………………………………………………………………………………………………….. 511
      • 21.11.2.2     Medical implants and devices……………………………………………………………………………….. 512
      • 21.11.2.3     Wound dressings……………………………………………………………………………………………….. 513
      • 21.11.2.4     Biosensors……………………………………………………………………………………………………….. 513
      • 21.11.2.5     Medical imaging………………………………………………………………………………………………… 514
      • 21.11.2.6     Tissue engineering…………………………………………………………………………………………….. 514
      • 21.11.2.7     Dental……………………………………………………………………………………………………………… 515
      • 21.11.2.8     Electrophysiology………………………………………………………………………………………………. 515
      • 21.11.2.9     Wearable and mobile health monitoring………………………………………………………………….. 515
    • 21.11.3        MARKET SIZE AND OPPORTUNITY…………………………………………………………………………. 524
      • 21.11.3.1     Wearable healthcare…………………………………………………………………………………………… 525
    • 21.11.4        MARKET CHALLENGES…………………………………………………………………………………………. 529
    • 21.11.5        PRODUCT DEVELOPERS………………………………………………………………………………………. 531
  • 21.12      LUBRICANTS……………………………………………………………………………………………………………….. 533
    • 21.12.1        MARKET DRIVERS AND TRENDS……………………………………………………………………………. 533
    • 21.12.2        APPLICATIONS…………………………………………………………………………………………………….. 534
    • 21.12.3        MARKET SIZE AND OPPORTUNITY…………………………………………………………………………. 535
    • 21.12.4        MARKET CHALLENGES…………………………………………………………………………………………. 537
    • 21.12.5        PRODUCT DEVELOPERS………………………………………………………………………………………. 538
  • 21.13      OIL AND GAS……………………………………………………………………………………………………………….. 539
    • 21.13.1        MARKET DRIVERS AND TRENDS……………………………………………………………………………. 539
    • 21.13.2        APPLICATIONS…………………………………………………………………………………………………….. 540
      • 21.13.2.1     Sensing and reservoir management……………………………………………………………………….. 540
      • 21.13.2.2     Coatings………………………………………………………………………………………………………….. 541
      • 21.13.2.3     Drilling fluids……………………………………………………………………………………………………… 542
      • 21.13.2.4     Sorbent materials………………………………………………………………………………………………. 542
      • 21.13.2.5     Catalysts………………………………………………………………………………………………………….. 543
      • 21.13.2.6     Separation……………………………………………………………………………………………………….. 543
    • 21.13.3        MARKET SIZE AND OPPORTUNITY…………………………………………………………………………. 544
    • 21.13.4        MARKET CHALLENGES…………………………………………………………………………………………. 546
    • 21.13.5        PRODUCT DEVELOPERS………………………………………………………………………………………. 547
  • 21.14      RUBBER AND TIRES……………………………………………………………………………………………………… 547
    • 21.14.1        APPLICATIONS…………………………………………………………………………………………………….. 547
    • 21.14.2        GLOBAL MARKET SIZE AND OPPORTUNITY…………………………………………………………….. 548
    • 21.14.3        MARKET CHALLENGES…………………………………………………………………………………………. 549
    • 21.14.4        PRODUCT DEVELOPERS………………………………………………………………………………………. 549
  • 21.15      SENSORS……………………………………………………………………………………………………………………. 550
    • 21.15.1        MARKET DRIVERS AND TRENDS……………………………………………………………………………. 550
    • 21.15.2        APPLICATIONS…………………………………………………………………………………………………….. 551
      • 21.15.2.1     Infrared (IR) sensors…………………………………………………………………………………………… 554
      • 21.15.2.2     Electrochemical and gas sensors………………………………………………………………………….. 555
      • 21.15.2.3     Pressure sensors………………………………………………………………………………………………. 555
      • 21.15.2.4     Biosensors……………………………………………………………………………………………………….. 556
      • 21.15.2.5     Optical sensors…………………………………………………………………………………………………. 557
      • 21.15.2.6     Humidity sensors……………………………………………………………………………………………….. 558
      • 21.15.2.7     Strain sensors…………………………………………………………………………………………………… 558
      • 21.15.2.8     Acoustic sensors……………………………………………………………………………………………….. 558
      • 21.15.2.9     Wireless sensors……………………………………………………………………………………………….. 558
      • 21.15.2.10        Surface enhanced Raman scattering………………………………………………………………….. 558
    • 21.15.3        MARKET SIZE AND OPPORTUNITY…………………………………………………………………………. 558
    • 21.15.4        MARKET CHALLENGES…………………………………………………………………………………………. 561
    • 21.15.5        PRODUCT DEVELOPERS………………………………………………………………………………………. 563
  • 21.16      SMART TEXTILES AND APPAREL……………………………………………………………………………………. 566
    • 21.16.1        MARKET DRIVERS AND TRENDS……………………………………………………………………………. 566
    • 21.16.2        APPLICATIONS…………………………………………………………………………………………………….. 568
      • 21.16.3        Conductive coatings……………………………………………………………………………………………….. 571
      • 21.16.4        Conductive yarns…………………………………………………………………………………………………… 572
    • 21.16.5        MARKET SIZE AND OPPORTUNITY…………………………………………………………………………. 573
    • 21.16.6        MARKET CHALLENGES…………………………………………………………………………………………. 578
    • 21.16.7        PRODUCT DEVELOPERS………………………………………………………………………………………. 579

22      CARBON NANOTUBES PRODUCERS AND PRODUCT DEVELOPERS…………………………………………… 581 (202 company profiles)

23      GRAPHENE PRODUCERS………………………………………………………………………………………………………. 681 (119 company profiles)

24      GRAPHENE PRODUCT AND APPLICATION DEVELOPERS…………………………………………………………. 749 (129 company profiles)

25      NANODIAMONDS PRODUCERS………………………………………………………………………………………………. 815 (14 company profiles)

26      FULLERENES PRODUCERS……………………………………………………………………………………………………. 821 (20 company profiles)

27      CARBON QUANTUM DOTS PRODUCERS…………………………………………………………………………………. 827 (6 company profiles)

28      REFERENCES………………………………………………………………………………………………………………………. 830

TABLES

  • Table 1: Market summary for carbon nanotubes-Selling grade particle diameter, usage, advantages, average price/ton, high volume applications, low volume applications and novel applications……………………………………………….. 52
  • Table 2: Properties of CNTs and comparable materials…………………………………………………………………………….. 54
  • Table 3. Key players in MWCNTs…………………………………………………………………………………………………………. 55
  • Table 4: Applications of carbon nanotubes……………………………………………………………………………………………… 55
  • Table 5: Market opportunity assessment for CNTs in order of opportunity from high to low………………………………… 57
  • Table 6: Annual production capacity of MWCNT producers 2018………………………………………………………………… 62
  • Table 7: SWCNT producers production capacities 2018……………………………………………………………………………. 64
  • Table 8: Production volumes of MWCNTs (tons), 2010-2030……………………………………………………………………… 65
  • Table 9: Competitive analysis of Carbon nanotubes and graphene by application area and potential impact by 2027. 70
  • Table 10. Key players in graphene……………………………………………………………………………………………………….. 73
  • Table 11: Demand for graphene (tons), 2010-2030………………………………………………………………………………….. 75
  • Table 12: Consumer products incorporating graphene………………………………………………………………………………. 77
  • Table 13: Graphene investments and financial agreements 2018………………………………………………………………… 78
  • Table 14: Market opportunity assessment matrix for graphene applications…………………………………………………… 80
  • Table 15: Graphene target markets-Applications and potential addressable market size…………………………………… 85
  • Table 16: Main graphene producers by country and annual production capacities…………………………………………… 87
  • Table 17: Categorization of nanomaterials……………………………………………………………………………………………… 99
  • Table 18: Properties of carbon nanotubes…………………………………………………………………………………………….. 100
  • Table 19: Applications of multi-walled carbon nanotubes………………………………………………………………………….. 102
  • Table 20: Markets, benefits and applications of Single-Walled Carbon Nanotubes…………………………………………. 104
  • Table 21: Comparison between single-walled carbon nanotubes and multi-walled carbon nanotubes…………………. 106
  • Table 22: Markets, benefits and applications of fullerenes………………………………………………………………………… 110
  • Table 23: Applications of carbon quantum dots……………………………………………………………………………………… 112
  • Table 24: Properties of graphene……………………………………………………………………………………………………….. 115
  • Table 25: Comparison of graphene QDs and semiconductor QDs……………………………………………………………… 117
  • Table 26: Graphene quantum dot producers…………………………………………………………………………………………. 120
  • Table 27: Market summary for nanodiamonds-Selling grade particle diameter, usage, advantages, average price/ton, high volume applications, low volume applications and novel applications……………………………………………… 123
  • Table 28: Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1–4……………………………………………………………………….. 124
  • Table 29: Properties of carbon quantum dots………………………………………………………………………………………… 125
  • Table 30: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2……………………… 128
  • Table 31: Market opportunity assessment for phosphorene applications……………………………………………………… 132
  • Table 32: Market opportunity assessment for graphitic carbon nitride applications…………………………………………. 134
  • Table 33: Market opportunity assessment for germanene applications………………………………………………………… 136
  • Table 34: Market opportunity assessment for graphdiyne applications………………………………………………………… 138
  • Table 35: Market opportunity assessment for graphane applications…………………………………………………………… 140
  • Table 36: Market opportunity assessment for hexagonal boron nitride applications………………………………………… 143
  • Table 37: Market opportunity assessment for molybdenum disulfide applications…………………………………………… 147
  • Table 38: Market opportunity assessment for Rhenium disulfide (ReS2) and diselenide (ReSe2) applications……… 149
  • Table 39: Market opportunity assessment for silicene applications……………………………………………………………… 151
  • Table 40: Market opportunity assessment for stanine/tinene applications…………………………………………………….. 154
  • Table 41: Market opportunity assessment for tungsten diselenide applications……………………………………………… 155
  • Table 42: Comparative analysis of graphene and other 2-D nanomaterials…………………………………………………… 158
  • Table 43: Comparative properties of carbon materials…………………………………………………………………………….. 161
  • Table 44: Comparative properties of graphene with nanoclays and carbon nanotubes……………………………………. 162
  • Table 45: SWCNT synthesis methods………………………………………………………………………………………………….. 164
  • Table 46: Large area graphene films-Markets, applications and current global market……………………………………. 170
  • Table 47: Graphene oxide flakes/graphene nanoplatelets-Markets, applications and current global market…………. 170
  • Table 48: Main production methods for graphene…………………………………………………………………………………… 171
  • Table 49: Large area graphene films-Markets, applications and current global market……………………………………. 176
  • Table 50: Graphene synthesis methods, by company……………………………………………………………………………… 186
  • Table 51. Key players in carbon fibers…………………………………………………………………………………………………. 187
  • Table 52. Main applications for carbon fibers, volumes, potential for GNT to gain market share………………………… 188
  • Table 53. Carbon black capacity by company………………………………………………………………………………………… 189
  • Table 54 Specialty carbon black market volume, 2015-2025…………………………………………………………………….. 190
  • Table 55: National nanomaterials registries in Europe……………………………………………………………………………… 194
  • Table 56: Nanomaterials regulatory bodies in Australia……………………………………………………………………………. 198
  • Table 57: Published patent publications for graphene, 2004-2017……………………………………………………………… 201
  • Table 58: Leading graphene patentees………………………………………………………………………………………………… 202
  • Table 59: Carbon nanotubes market structure……………………………………………………………………………………….. 207
  • Table 60: Graphene market structure…………………………………………………………………………………………………… 209
  • Table 61: Production volumes of carbon nanotubes (tons), 2010-2030………………………………………………………… 212
  • Table 62: Annual production capacity of MWCNT producers 2018……………………………………………………………… 216
  • Table 63: SWCNT producer’s production capacities 2018………………………………………………………………………… 217
  • Table 64: Example carbon nanotubes prices…………………………………………………………………………………………. 222
  • Table 65: Markets, benefits and applications of Carbon Nanotubes……………………………………………………………. 222
  • Table 66: Global production of graphene, 2010-2030 in tons/year. Base year for projections is 2015…………………. 225
  • Table 67: Types of graphene and prices………………………………………………………………………………………………. 227
  • Table 68: Pristine graphene flakes pricing by producer……………………………………………………………………………. 228
  • Table 69: Few-layer graphene pricing by producer…………………………………………………………………………………. 228
  • Table 70: Graphene nanoplatelets pricing by producer…………………………………………………………………………….. 229
  • Table 71: Reduced graphene oxide pricing, by producer………………………………………………………………………….. 229
  • Table 72: Graphene quantum dots pricing by producer……………………………………………………………………………. 230
  • Table 73: Graphene oxide nanosheets pricing by producer………………………………………………………………………. 231
  • Table 74: Multi-layer graphene pricing by producer…………………………………………………………………………………. 231
  • Table 75: Production capacities of graphene producers, current and planned, metric tons……………………………….. 233
  • Table 76: Markets, benefits and applications of nanodiamonds………………………………………………………………….. 235
  • Table 77: Production volumes of nanodiamonds (tons), 2010-2030……………………………………………………………. 238
  • Table 78: Example prices of nanodiamonds………………………………………………………………………………………….. 240
  • Table 79: Market summary for fullerenes-Selling grade particle diameter, usage, advantages, average price/ton, high volume applications, low volume applications and novel applications……………………………………………………. 241
  • Table 80: Markets, benefits and applications of fullerenes………………………………………………………………………… 242
  • Table 81: Demadn for fullerenes (tons), 2010-2030………………………………………………………………………………… 244
  • Table 82: Example prices of fullerenes…………………………………………………………………………………………………. 247
  • Table 83: Market drivers for use of carbon nanomaterials in 3D printing………………………………………………………. 300
  • Table 84: Graphene properties relevant to application in 3D printing…………………………………………………………… 301
  • Table 85: Applications and benefits of carbon nanomaterials in 3D printing………………………………………………….. 301
  • Table 86: Market size for carbon nanomaterials in 3D printing…………………………………………………………………… 302
  • Table 87: Market opportunity assessment for CNTs in 3D printing……………………………………………………………… 302
  • Table 88: Market opportunity assessment for graphene in 3D printing…………………………………………………………. 303
  • Table 89: Market challenges for carbon nanomaterials in 3D printing………………………………………………………….. 304
  • Table 90: Market challenges rating for carbon nanomaterials in the 3D printing market…………………………………… 304
  • Table 91: Carbon nanotubes product and application developers in the 3D printing industry…………………………….. 304
  • Table 92: Graphene product and application developers in the 3D printing industry……………………………………….. 305
  • Table 93: Other carbon nanomaterials product and application developers in the 3D printing industry………………… 306
  • Table 94: Market drivers for use of carbon nanomaterials in adhesives……………………………………………………….. 306
  • Table 95: Graphene properties relevant to application in adhesives……………………………………………………………. 307
  • Table 96: Applications and benefits of carbon nanomaterials in adhesives…………………………………………………… 307
  • Table 97: Market size for carbon nanomaterials in adhesives……………………………………………………………………. 308
  • Table 98: Market opportunity assessment for CNTs in adhesives………………………………………………………………. 308
  • Table 99: Market opportunity assessment for graphene in adhesives………………………………………………………….. 309
  • Table 100: Market challenges rating for carbon nanomaterials in the adhesives market………………………………….. 310
  • Table 101: Carbon nanotubes product and application developers in the adhesives industry……………………………. 311
  • Table 102:  Graphene product and application developers in the adhesives industry………………………………………. 311
  • Table 103:  Other carbon nanomaterials product and application developers in the adhesives industry………………. 311
  • Table 104: Market drivers for use of carbon nanomaterials in aerospace……………………………………………………… 312
  • Table 105: Applications and benefits of CNTs in aerospace……………………………………………………………………… 313
  • Table 106: Applications in aerospace composites, by nanomaterials type and benefits thereof…………………………. 316
  • Table 107: Types of nanocoatings utilized in aerospace and application……………………………………………………… 318
  • Table 108: Market size for carbon nanomaterials in aerospace………………………………………………………………….. 321
  • Table 109: Market opportunity assessment for CNTs in aerospace…………………………………………………………….. 322
  • Table 110: Market opportunity assessment for graphene in aerospace……………………………………………………….. 322
  • Table 111: Market challenges rating for carbon nanomaterials in the aerospace market………………………………….. 324
  • Table 112: Carbon nanotubes product and application developers in the aerospace industry…………………………… 324
  • Table 113: Graphene product and application developers in the aerospace industry………………………………………. 326
  • Table 114: Other carbon nanomaterials product and application developers in the aerospace industry………………. 326
  • Table 115: Market drivers for use of carbon nanomaterials in automotive…………………………………………………….. 327
  • Table 116: Applications and benefits of carbon nanomaterials in automotive………………………………………………… 332
  • Table 117: Market size for carbon nanomaterials in automotive…………………………………………………………………. 333
  • Table 118: Market opportunity assessment for CNTs in automotive……………………………………………………………. 333
  • Table 119: Market opportunity assessment for graphene in the automotive industry………………………………………. 334
  • Table 120: Applications and commercialization challenges for carbon nanomaterials in the automotive market……. 335
  • Table 121: Market challenges rating for CNTs in the automotive market………………………………………………………. 336
  • Table 122: Carbon nanotubes product and application developers in the automotive market……………………………. 336
  • Table 123: Graphene product and application developers in the automotive market……………………………………….. 337
  • Table 124: Other carbon nanomaterials product and application developers in the automotive market……………….. 338
  • Table 125: Properties of nanocoatings…………………………………………………………………………………………………. 339
  • Table 126: Graphene properties relevant to application in coatings…………………………………………………………….. 343
  • Table 127: Markets for nanocoatings…………………………………………………………………………………………………… 351
  • Table 128: Market opportunity assessment for carbon nanomaterials in the coatings market……………………………. 356
  • Table 129: Market challenges rating for carbon nanomaterials in the coatings market…………………………………….. 356
  • Table 130: Carbon nanotubes product and application developers in the coatings industry………………………………. 357
  • Table 131: Graphene product and application developers in the coatings industry…………………………………………. 357
  • Table 132: Other carbon nanomaterials product and application developers in the coatings industry………………….. 359
  • Table 133: Market drivers for use of carbon nanomaterials in composites……………………………………………………. 360
  • Table 134: Comparative properties of polymer composites reinforcing materials……………………………………………. 362
  • Table 135: Applications and benefits of carbon nanomaterials in composites………………………………………………… 362
  • Table 136: Market size for carbon nanomaterials in composites………………………………………………………………… 366
  • Table 137: Market opportunity assessment for CNTs in composites……………………………………………………………. 367
  • Table 138: Market opportunity assessment for graphene in composites………………………………………………………. 368
  • Table 139: Applications and commercialization challenges for carbon nanomaterials in composites…………………… 370
  • Table 140: Market challenges rating for carbon nanomaterials in the composites market………………………………… 370
  • Table 141: Carbon nanotubes product and application developers in the composites market……………………………. 371
  • Table 142: Graphene product and application developers in the composites market………………………………………. 372
  • Table 143: Other carbon nanomaterials product and application developers in the composites market……………….. 374
  • Table 144: Market drivers for use of carbon nanomaterials in flexible electronics and conductive films……………….. 375
  • Table 145: Applications and benefits of carbon nanomaterials in flexible electronics and conductive films…………… 379
  • Table 146: Comparison of ITO replacements………………………………………………………………………………………… 381
  • Table 147: Wearable electronics devices and stage of development…………………………………………………………… 385
  • Table 148: Graphene properties relevant to application in sensors……………………………………………………………… 390
  • Table 149: Market size for carbon nanomaterials in flexible electronics and conductive films……………………………. 393
  • Table 150: Market opportunity assessment for CNTs in flexible electronics, wearables, conductive films and displays……………………………………………………………………………………………………………………………………………… 394
  • Table 151: Market opportunity assessment for graphene in flexible electronics, wearables, conductive films and displays………………………………………………………………………………………………………………………………….. 395
  • Table 152: Global market for wearable electronics, 2015-2030, by application, billions $…………………………………. 397
  • Table 153: Applications and commercialization challenges for CNTs in flexible electronics and conductive films…… 401
  • Table 154: Market challenges rating for carbon nanomaterials in the flexible electronics and conductive films market. 401
  • Table 155: Carbon nanotubes product and application developers in transparent conductive films and displays…… 402
  • Table 156: Graphene product and application developers in transparent conductive films……………………………….. 404
  • Table 157: Market drivers for use of carbon nanomaterials in conductive inks………………………………………………. 405
  • Table 158: Comparative properties of conductive inks…………………………………………………………………………….. 407
  • Table 159: Opportunities for advanced materials in printed electronics………………………………………………………… 410
  • Table 160: Applications in flexible and stretchable batteries, by nanomaterials type and benefits thereof……………. 411
  • Table 161: Market opportunity assessment for graphene in conductive inks…………………………………………………. 413
  • Table 162: Market opportunity assessment for CNTs in conductive inks………………………………………………………. 414
  • Table 163: Conductive inks in the flexible and stretchable electronics market 2017-2030 revenue forecast (million $), by ink types…………………………………………………………………………………………………………………………………. 416
  • Table 164: Market challenges for carbon nanomaterials in conductive inks………………………………………………….. 416
  • Table 165: Market challenges rating for carbon nanomaterials in the conductive inks market……………………………. 416
  • Table 166: Carbon nanotubes product and application developers in conductive inks…………………………………….. 417
  • Table 167: Graphene product and application developers in conductive inks………………………………………………… 417
  • Table 168: Market drivers for carbon nanomaterials in transistors, integrated circuits and other components……….. 418
  • Table 169: Applications and benefits of CNTs in transistors, integrated circuits and other components………………. 421
  • Table 170: Comparative properties of silicon and graphene transistors……………………………………………………….. 423
  • Table 171: Applications and benefits of graphene in transistors, integrated circuits and other components………….. 424
  • Table 172: Market size for carbon nanomaterials in transistors, integrated circuits and other components…………… 425
  • Table 173: Market opportunity assessment for CNTs in transistors, integrated circuits and other components……… 426
  • Table 174: Market opportunity assessment for graphene in transistors, integrated circuits and other components… 427
  • Table 175: Market challenges rating for graphene in the transistors and integrated circuits market……………………. 429
  • Table 176: Applications and commercialization challenges for CNTs in the transistors, integrated circuits and other components market…………………………………………………………………………………………………………………… 430
  • Table 177: Market challenges rating for CNTs in the transistors, integrated circuits and other components market.. 430
  • Table 178: Carbon nanotubes product and application developers in transistors, integrated circuits and other components…………………………………………………………………………………………………………………………….. 431
  • Table 179: Graphene product and application developers in transistors and integrated circuits…………………………. 431
  • Table 180: Market drivers for use of carbon nanomaterials in memory devices……………………………………………… 433
  • Table 181: Applications and benefits of CNTs in memory devices………………………………………………………………. 435
  • Table 182: Market size for carbon nanomaterials in memory devices………………………………………………………….. 436
  • Table 183: Market opportunity assessment for CNTs in memory devices…………………………………………………….. 437
  • Table 184: Market challenges rating for carbon nanomaterials in the memory devices market………………………….. 438
  • Table 185: Carbon nanotubes product and application developers in memory devices……………………………………. 440
  • Table 186: Graphene product and application developers in memory devices………………………………………………. 441
  • Table 187: Market drivers for use of carbon nanomaterials in photonics………………………………………………………. 441
  • Table 188: Applications and benefits of CNTs in photonics……………………………………………………………………….. 442
  • Table 189: Graphene properties relevant to application in optical modulators……………………………………………….. 443
  • Table 190: Applications and benefits of graphene in photonics………………………………………………………………….. 446
  • Table 191: Market size for carbon nanomaterials in photonics…………………………………………………………………… 446
  • Table 192: Market challenges rating for carbon nanomaterials in the photonics market…………………………………… 447
  • Table 193: Graphene product and application developers in photonics……………………………………………………….. 447
  • Table 194: Market drivers for use of carbon nanomaterials in batteries……………………………………………………….. 449
  • Table 195: Applications and benefits of CNTs in batteries………………………………………………………………………… 452
  • Table 196: Applications in flexible and stretchable batteries, by materials type and benefits thereof…………………… 455
  • Table 197: Market size for carbon nanomaterials in batteries……………………………………………………………………. 456
  • Table 198: Potential addressable market for thin film, flexible and printed batteries………………………………………… 457
  • Table 199: Market opportunity assessment for graphene in batteries………………………………………………………….. 458
  • Table 200: Market challenges in CNT batteries……………………………………………………………………………………… 459
  • Table 201: Market challenges rating for CNTs in the batteries market…………………………………………………………. 459
  • Table 202: Market challenges rating for graphene in the batteries market……………………………………………………. 460
  • Table 203: Market drivers for use of carbon nanomaterials in supercapacitors………………………………………………. 461
  • Table 204: Applications and benefits of CNTs in supercapacitors………………………………………………………………. 462
  • Table 205: Comparative properties of graphene supercapacitors and lithium-ion batteries………………………………. 463
  • Table 206: Applications and benefits of graphene in supercapacitors………………………………………………………….. 463
  • Table 207: Properties of carbon materials in high-performance supercapacitors……………………………………………. 465
  • Table 208: Applications in flexible and stretchable supercapacitors, by nanomaterials type and benefits thereof…… 466
  • Table 209: Market size for carbon nanomaterials in supercapacitors…………………………………………………………… 467
  • Table 210: Market opportunity assessment for CNTs in supercapacitors……………………………………………………… 467
  • Table 211: Market opportunity assessment for graphene in supercapacitors………………………………………………… 468
  • Table 212: Market challenges in supercapacitors……………………………………………………………………………………. 469
  • Table 213: Market challenges rating for CNTs in the supercapacitors market……………………………………………….. 469
  • Table 214: Market challenges rating for graphene in the supercapacitors market…………………………………………… 470
  • Table 215: Market drivers for use of carbon nanomaterials in photovoltaics………………………………………………….. 470
  • Table 216: Applications and benefits of CNTs in photovoltaics………………………………………………………………….. 472
  • Table 217: Market size for carbon nanomaterials in photovoltaics………………………………………………………………. 475
  • Table 218: Market size for CNTs in photovoltaics…………………………………………………………………………………… 476
  • Table 219: Market size for graphene in photovoltaics………………………………………………………………………………. 477
  • Table 220: Potential addressable market for CNTs in photovoltaics……………………………………………………………. 477
  • Table 221: Market challenges for CNTs in solar……………………………………………………………………………………… 478
  • Table 222: Market challenges rating for CNTs in the solar market………………………………………………………………. 478
  • Table 223: Market challenges rating for graphene in the solar market…………………………………………………………. 479
  • Table 224: Market drivers for use of carbon nanomaterials in fuel cells and hydrogen storage………………………….. 480
  • Table 225: Electrical conductivity of different catalyst supports compared to carbon nanotubes………………………… 481
  • Table 226: Market size for carbon nanomaterials in fuel cells and hydrogen storage………………………………………. 482
  • Table 227: Market opportunity assessment for carbon nanomaterials in fuel cells and hydrogen storage…………….. 482
  • Table 228: Market challenges rating for carbon nanomaterials in the fuel cells and hydrogen storage market………. 483
  • Table 229: Carbon nanotubes product and application developers in the energy storage, conversion and exploration industries………………………………………………………………………………………………………………………………… 484
  • Table 230: Graphene product and application developers in the energy storage and conversion industry……………. 486
  • Table 231: Other carbon nanomaterials product and application developers in the energy storage, conversion and exploration industries…………………………………………………………………………………………………………………. 489
  • Table 232: Market drivers for use of carbon nanomaterials in LED lighting and UVC………………………………………. 490
  • Table 233: Applications of carbon nanomaterials in lighting………………………………………………………………………. 490
  • Table 234: Market size for carbon nanomaterials in LED lighting and UVC…………………………………………………… 492
  • Table 235: Investment opportunity assessment for carbon nanomaterials in the lighting market………………………… 492
  • Table 236: Market impediments for carbon nanomaterials in lighting…………………………………………………………… 493
  • Table 237: Carbon nanomaterials product and application developers in the LED and UVC lighting market…………. 493
  • Table 238: Market drivers for use of carbon nanomaterials in filtration………………………………………………………… 494
  • Table 239: Comparison of CNT membranes with other membrane technologies……………………………………………. 496
  • Table 240: Applications and benefits of CNTs in filtration and separation…………………………………………………….. 498
  • Table 241: Applications and benefits of graphene in filtration and separation………………………………………………… 498
  • Table 242: Market size for carbon nanomaterials in filtration……………………………………………………………………… 500
  • Table 243: Market opportunity assessment for CNTs in filtration………………………………………………………………… 501
  • Table 244: Market opportunity assessment for graphene in the filtration and separation market………………………… 502
  • Table 245: Market challenges for carbon nanomaterials in filtration…………………………………………………………….. 503
  • Table 246: Market challenges rating for carbon nanomaterials in the filtration market……………………………………… 504
  • Table 247: Carbon nanotubes product and application developers in the filtration industry………………………………. 504
  • Table 248: Graphene product and application developers in the filtration industry………………………………………….. 505
  • Table 249: Other carbon nanomaterials product and application developers in the filtration industry………………….. 506
  • Table 250: Market drivers for use of carbon nanomaterials in the life sciences and medical market…………………… 507
  • Table 251: CNTs in life sciences and biomedicine………………………………………………………………………………….. 508
  • Table 252: Graphene properties relevant to application in biomedicine and healthcare…………………………………… 509
  • Table 253: Applications and benefits of carbon nanomaterials in life sciences and medical……………………………… 509
  • Table 254: Applications in flexible and stretchable health monitors, by advanced materials type and benefits thereof. 517
  • Table 255: Market size for carbon nanomaterials in life sciences and medical………………………………………………. 524
  • Table 256: Potential addressable market for smart textiles and wearables in medical and healthcare………………… 525
  • Table 257: Market opportunity assessment for graphene in biomedical & healthcare markets…………………………… 527
  • Table 258: Market opportunity assessment for CNTs in life sciences and medical…………………………………………. 528
  • Table 259: Applications and commercialization challenges for carbon nanomaterials in life sciences and medical… 529
  • Table 260: Market challenges rating for carbon nanomaterials in the life sciences and medical………………………… 530
  • Table 261: Carbon nanotubes product and application developers in the medical and healthcare industry………….. 531
  • Table 262: Graphene product and application developers in the biomedical and healthcare industry………………….. 532
  • Table 263: Other carbon nanomaterials product and application developers in the medical and healthcare industry. 533
  • Table 264: Market drivers for use of carbon nanomaterials in lubricants………………………………………………………. 533
  • Table 265: Applications of graphene in the lubricants market……………………………………………………………………. 534
  • Table 266: Applications of carbon nanotubes in lubricants………………………………………………………………………… 535
  • Table 267: Applications in lubricants, by nanomaterials type and benefits thereof………………………………………….. 535
  • Table 268: Market size for carbon nanomaterials in lubricants…………………………………………………………………… 536
  • Table 269: Market opportunity assessment for CNTs in lubricants……………………………………………………………… 536
  • Table 270: Market opportunity assessment for graphene in lubricants…………………………………………………………. 536
  • Table 271: Market challenges rating for carbon nanomaterials in the lubricants market…………………………………… 537
  • Table 272: Carbon nanotubes product and application developers in the lubricants industry…………………………….. 538
  • Table 273:  Graphene product and application developers in the lubricants industry………………………………………. 538
  • Table 274: Other carbon nanomaterials product and application developers in the lubricants industry………………… 538
  • Table 275: Market drivers for carbon nanomaterials in oil and gas……………………………………………………………… 539
  • Table 276: Applications of graphene in the oil and gas market…………………………………………………………………… 540
  • Table 277: Market summary and revenues for carbon nanomaterials in the oil and gas market…………………………. 545
  • Table 278: Investment opportunity assessment for CNTs in the oil and gas market………………………………………… 545
  • Table 279: Investment opportunity assessment for graphene in the oil and gas market…………………………………… 546
  • Table 280: Market challenges rating for carbon nanomaterials in the oil and gas exploration market………………….. 546
  • Table 281: Carbon nanomaterial product and application developers in the oil and gas market…………………………. 547
  • Table 282: Applications of carbon nanomaterials in rubber and tires…………………………………………………………… 547
  • Table 283: Market summary and revenues for carbon nanomaterials in the rubber and tires market………………….. 548
  • Table 284: Investment opportunity assessment for carbon nanomaterials in the rubber and tires market…………….. 548
  • Table 285: Market challenges for carbon nanomaterials in rubber and tires………………………………………………….. 549
  • Table 286: Carbon nanomaterials product and application developers in the rubber and tires industry……………….. 549
  • Table 287: Market drivers for use of carbon nanomaterials in sensors………………………………………………………… 550
  • Table 288: Applications and benefits of CNTs in sensors…………………………………………………………………………. 551
  • Table 289: Applications and benefits of graphene in sensors…………………………………………………………………….. 553
  • Table 290: Graphene properties relevant to application in sensors……………………………………………………………… 554
  • Table 291: Comparison of ELISA (enzyme-linked immunosorbent assay) and graphene biosensor…………………… 557
  • Table 292: Market size for carbon nanomaterials in sensors……………………………………………………………………… 558
  • Table 293: Market opportunity assessment for CNTs in sensors………………………………………………………………… 559
  • Table 294: Market opportunity assessment for graphene in the sensors market…………………………………………….. 560
  • Table 295: Market challenges rating for graphene in the sensors market……………………………………………………… 562
  • Table 296: Market challenges for CNTs in sensors…………………………………………………………………………………. 562
  • Table 297: Market challenges rating for CNTs in the sensors market………………………………………………………….. 562
  • Table 298: Carbon nanotubes product and application developers in the sensors industry………………………………. 563
  • Table 299: Graphene product and application developers in the sensors industry………………………………………….. 563
  • Table 300: Other carbon nanomaterials product and application developers in the sensors industry………………….. 564
  • Table 301: Types of smart textiles………………………………………………………………………………………………………. 566
  • Table 302: Smart textile products……………………………………………………………………………………………………….. 567
  • Table 303: Market drivers for use of carbon nanomaterials in smart textiles and apparel…………………………………. 567
  • Table 304: Desirable functional properties for the textiles industry afforded by the use of nanomaterials…………….. 568
  • Table 305: Applications and benefits of CNTs in textiles and apparel………………………………………………………….. 570
  • Table 306: Applications and benefits of graphene in textiles and apparel…………………………………………………….. 572
  • Table 307: Global smart clothing, interactive fabrics and apparel market……………………………………………………… 574
  • Table 308: Market opportunity assessment for CNTs in smart textiles and apparel………………………………………… 576
  • Table 309: Market opportunity assessment for graphene in smart textiles and apparel……………………………………. 577
  • Table 310: Applications and commercialization challenges for carbon nanomaterials in smart textiles and apparel.. 578
  • Table 311: Market challenges rating for CNTs in the smart textiles and apparel market…………………………………… 579
  • Table 312: Carbon nanotubes product and application developers in the textiles industry………………………………… 579
  • Table 313:  Graphene product and application developers in the textiles industry………………………………………….. 579
  • Table 314: CNT producers and companies they supply/licence to………………………………………………………………. 581
  • Table 315: Graphene producers and types produced………………………………………………………………………………. 682
  • Table 316: Graphene producers target market matrix……………………………………………………………………………… 685
  • Table 317: Graphene industrial collaborations, licence agreements and target markets………………………………….. 749
  • Table 318: Graphene product developers and end users target market matrix………………………………………………. 752

FIGURES

  • Figure 1: Molecular structures of SWCNT and MWCNT…………………………………………………………………………….. 53
  • Figure 2: The SGCNT synthesis method………………………………………………………………………………………………… 64
  • Figure 3: Production capacities for SWCNTs in kilograms, 2005-2017………………………………………………………….. 65
  • Figure 4: Global demand for MWCNTs (tons), 2010-2030………………………………………………………………………….. 66
  • Figure 5: Graphene production capacity, current and planned…………………………………………………………………….. 75
  • Figure 6: Demand for graphene, 2010-2030……………………………………………………………………………………………. 76
  • Figure 7: Vittoria bike tires incorporating graphene…………………………………………………………………………………… 77
  • Figure 8: Demand for graphene, by market, 2030…………………………………………………………………………………….. 80
  • Figure 9: Global government funding for graphene in millions USD………………………………………………………………. 85
  • Figure 10: Global consumption of graphene 2016, by region………………………………………………………………………. 90
  • Figure 11: 15-inch single-layer graphene sheet being prepared in the Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences……………………………………………………………………………………… 93
  • Figure 12: Schematic of single-walled carbon nanotube…………………………………………………………………………… 103
  • Figure 13: TIM sheet developed by Zeon Corporation……………………………………………………………………………… 104
  • Figure 14: Double-walled carbon nanotube bundle cross-section micrograph and model…………………………………. 107
  • Figure 15: Schematic representation of carbon nanohorns……………………………………………………………………….. 108
  • Figure 16: TEM image of carbon onion………………………………………………………………………………………………… 109
  • Figure 17: Fullerene schematic………………………………………………………………………………………………………….. 110
  • Figure 18: Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red.. 112
  • Figure 19: Graphene layer structure schematic……………………………………………………………………………………… 113
  • Figure 20: Graphite and graphene………………………………………………………………………………………………………. 114
  • Figure 21: Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene. ………………………………………………….. 115
  • Figure 22: Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1–4)………………………………………………………………………. 118
  • Figure 23: Green-fluorescing graphene quantum dots……………………………………………………………………………… 119
  • Figure 24: Graphene quantum dots…………………………………………………………………………………………………….. 120
  • Figure 25: Black phosphorus structure…………………………………………………………………………………………………. 127
  • Figure 26: Black Phosphorus crystal……………………………………………………………………………………………………. 128
  • Figure 27: Bottom gated flexible few-layer phosphorene transistors with the hydrophobic dielectric encapsulation… 130
  • Figure 28: Graphitic carbon nitride………………………………………………………………………………………………………. 133
  • Figure 29: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal. Credit: Ulsan National Institute of Science and Technology………………………………………………………………………….. 133
  • Figure 30: Schematic of germanene……………………………………………………………………………………………………. 135
  • Figure 31: Graphdiyne structure…………………………………………………………………………………………………………. 137
  • Figure 32: Schematic of Graphane crystal…………………………………………………………………………………………….. 139
  • Figure 33: Structure of hexagonal boron nitride……………………………………………………………………………………… 141
  • Figure 34: BN nanosheet textiles application…………………………………………………………………………………………. 143
  • Figure 35: Structure of 2D molybdenum disulfide……………………………………………………………………………………. 144
  • Figure 36: SEM image of MoS2………………………………………………………………………………………………………….. 145
  • Figure 37: Atomic force microscopy image of a representative MoS2 thin-film transistor………………………………….. 146
  • Figure 38: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge………………………………………………………………………………………………………………………. 146
  • Figure 39: Schematic of a monolayer of rhenium disulfide………………………………………………………………………… 148
  • Figure 40: Silicene structure………………………………………………………………………………………………………………. 149
  • Figure 41: Monolayer silicene on a silver (111) substrate…………………………………………………………………………. 150
  • Figure 42: Silicene transistor……………………………………………………………………………………………………………… 151
  • Figure 43: Crystal structure for stanene……………………………………………………………………………………………….. 152
  • Figure 44: Atomic structure model for the 2D stanene on Bi2Te3(111)………………………………………………………… 153
  • Figure 45: Schematic of tungsten diselenide…………………………………………………………………………………………. 155
  • Figure 46: Schematic of Indium Selenide (InSe)…………………………………………………………………………………….. 157
  • Figure 47: Graphene can be rolled up into a carbon nanotube, wrapped into a fullerene, and stacked into graphite. 160
  • Figure 48: Schematic representation of methods used for carbon nanotube synthesis (a) Arc discharge (b) Chemical vapor deposition (c) Laser ablation (d) hydrocarbon flames………………………………………………………………… 163
  • Figure 49: Arc discharge process for CNTs…………………………………………………………………………………………… 165
  • Figure 50: Schematic of thermal-CVD method……………………………………………………………………………………….. 166
  • Figure 51: Schematic of plasma-CVD method……………………………………………………………………………………….. 166
  • Figure 52: CoMoCAT® process………………………………………………………………………………………………………….. 167
  • Figure 53: Schematic for flame synthesis of carbon nanotubes (a) premixed flame (b) counter-flow diffusion flame (c) co-flow diffusion flame (d) inverse diffusion flame…………………………………………………………………………….. 168
  • Figure 54: Schematic of laser ablation synthesis……………………………………………………………………………………. 169
  • Figure 55: Graphene synthesis methods………………………………………………………………………………………………. 173
  • Figure 56: TEM micrographs of: A) HR-CNFs; B) GANF® HR-CNF, it can be observed its high graphitic structure; C) Unraveled ribbon from the HR-CNF; D) Detail of the ribbon; E) Scheme of the structure of the HR-CNFs; F) Large single graphene oxide sheets derived from GANF……………………………………………………………………………. 173
  • Figure 57: Graphene nanoribbons grown on germanium………………………………………………………………………….. 175
  • Figure 58: Methods of synthesizing high-quality graphene………………………………………………………………………… 178
  • Figure 59: Roll-to-roll graphene production process………………………………………………………………………………… 182
  • Figure 60: Schematic of roll-to-roll manufacturing process………………………………………………………………………… 182
  • Figure 61: Microwave irradiation of graphite to produce single-layer graphene……………………………………………… 184
  • Figure 62 Global market for carbon black in 2016, by end user market………………………………………………………… 190
  • Figure 63 Demand for carbon black, by market, 2014-2025, million metric tons…………………………………………….. 191
  • Figure 64 Specialty carbon black market volume, 2015-2025……………………………………………………………………. 192
  • Figure 65: MWCNT patents filed 2000-2017………………………………………………………………………………………….. 199
  • Figure 66: SWCNT patents filed 2000-2017………………………………………………………………………………………….. 200
  • Figure 67: Published patent publications for graphene, 2004-2017…………………………………………………………….. 201
  • Figure 68: Country/region distribution in graphene R&D…………………………………………………………………………… 202
  • Figure 69: Technology Readiness Level (TRL) for Carbon Nanotubes………………………………………………………… 204
  • Figure 70: Technology Readiness Level (TRL) for graphene…………………………………………………………………….. 206
  • Figure 71: Schematic of typical commercialization route for graphene producer…………………………………………….. 208
  • Figure 72: Global demand for carbon nanotubes (tons), 2010-2030……………………………………………………………. 213
  • Figure 73: Demand for carbon nanotubes, by market in 2017, total…………………………………………………………….. 214
  • Figure 74: Demand for single-walled carbon nanotubes, by market, 2017……………………………………………………. 215
  • Figure 75: Demand for single-walled carbon nanotubes, by market, 2030……………………………………………………. 216
  • Figure 76: Production volumes of Carbon Nanotubes 2017, by region…………………………………………………………. 218
  • Figure 77: Global market for graphene 2010-2030 in tons/year………………………………………………………………….. 226
  • Figure 78: Demand for nanodiamonds, by market 2018…………………………………………………………………………… 237
  • Figure 79: Technology Readiness Level (TRL) for nanodiamonds……………………………………………………………… 238
  • Figure 80: Production volumes of nanodiamonds, 2010-2030……………………………………………………………………. 239
  • Figure 81: Production volumes of nanodiamonds 2018, by region………………………………………………………………. 240
  • Figure 82: Technology Readiness Level (TRL) for fullerenes…………………………………………………………………….. 243
  • Figure 83: Demand for fullerenes, by market 2017………………………………………………………………………………….. 243
  • Figure 84: Demand for fullerenes, by region 2030…………………………………………………………………………………… 244
  • Figure 85: Demand for fullerenes (tons), 2010-2030……………………………………………………………………………….. 245
  • Figure 86: Demand for fullerenes by region 2017……………………………………………………………………………………. 246
  • Figure 87: Demand for fullerenes by region 2030……………………………………………………………………………………. 246
  • Figure 88: 3D Printed tweezers incorporating Carbon Nanotube Filament……………………………………………………. 302
  • Figure 89: Graphene Adhesives…………………………………………………………………………………………………………. 307
  • Figure 90: Carbon nanotube Composite Overwrap Pressure Vessel (COPV) developed by NASA…………………….. 315
  • Figure 91: Veelo carbon fiber nanotube sheet……………………………………………………………………………………….. 316
  • Figure 92: HeatCoat CNT anti-icing coatings…………………………………………………………………………………………. 320
  • Figure 93: Potential addressable market for carbon nanomaterials in aerospace…………………………………………… 323
  • Figure 94: Graphene-based automotive components………………………………………………………………………………. 330
  • Figure 95: Antistatic graphene tire………………………………………………………………………………………………………. 331
  • Figure 96: Schematic of CNTs as heat-dissipation sheets………………………………………………………………………… 332
  • Figure 97: Heat transfer coating developed at MIT………………………………………………………………………………….. 343
  • Figure 98: Water permeation through a brick without (left) and with (right) “graphene paint” coating…………………… 348
  • Figure 99: Four layers of graphene oxide coatings on polycarbonate………………………………………………………….. 350
  • Figure 100: Global Paints and Coatings Market, share by end user market………………………………………………….. 351
  • Figure 101: Potential addressable market for carbon nanomaterials in the coatings market……………………………… 355
  • Figure 102: CNT anti-icing coating for wind turbines……………………………………………………………………………….. 366
  • Figure 103: Potential addressable market for carbon nanomaterials in composites………………………………………… 369
  • Figure 104: Carbon nanotube thin-film transistors and integrated circuits on a flexible and transparent substrate….. 377
  • Figure 105: Moxi flexible film developed for smartphone application…………………………………………………………… 377
  • Figure 106: Flexible graphene touch screen………………………………………………………………………………………….. 378
  • Figure 107: Galapad Settler smartphone………………………………………………………………………………………………. 379
  • Figure 108: 3D printed carbon nanotube sensor…………………………………………………………………………………….. 380
  • Figure 109: Flexible organic light emitting diode (OLED) using graphene electrode………………………………………… 381
  • Figure 110: Graphene electrochromic devices. Top left: Exploded-view illustration of the graphene electrochromic device. The device is formed by attaching two graphene-coated PVC substrates face-to-face and filling the gap with a liquid ionic electrolyte………………………………………………………………………………………………………………. 382
  • Figure 111: Flexible mobile phones with graphene transparent conductive film……………………………………………… 383
  • Figure 112: Carbon nanotube-based color active matrix electrophoretic display (EPD) e-paper………………………… 384
  • Figure 113: Foldable graphene E-paper……………………………………………………………………………………………….. 384
  • Figure 114: Covestro wearables…………………………………………………………………………………………………………. 386
  • Figure 115: Softceptor sensor……………………………………………………………………………………………………………. 388
  • Figure 116: BeBop Media Arm Controller……………………………………………………………………………………………… 389
  • Figure 117: LG Innotek flexible textile pressure sensor……………………………………………………………………………. 389
  • Figure 118: C2Sense flexible sensor……………………………………………………………………………………………………. 390
  • Figure 119: Wearable gas sensor……………………………………………………………………………………………………….. 391
  • Figure 120: BeBop Sensors Marcel Modular Data Gloves………………………………………………………………………… 392
  • Figure 121: BeBop Sensors Smart Helmet Sensor System………………………………………………………………………. 392
  • Figure 122: Torso and Extremities Protection (TEP) system……………………………………………………………………… 393
  • Figure 123: Potential addressable market for CNTs in flexible electronics, conductive films and displays……………. 396
  • Figure 124: Global market for wearable electronics, 2015-2030, by application, billions $………………………………… 397
  • Figure 125: Global transparent conductive electrodes market forecast by materials type, 2012-2030, millions $…… 398
  • Figure 126: Schematic of the wet roll-to-roll graphene transfer from copper foils to polymeric substrates…………….. 399
  • Figure 127: The transmittance of glass/ITO, glass/ITO/four organic layers, and glass/ITO/four organic layers/4-layer graphene………………………………………………………………………………………………………………………………… 400
  • Figure 128: Nanotube inks………………………………………………………………………………………………………………… 407
  • Figure 129: BGT Materials graphene ink product……………………………………………………………………………………. 409
  • Figure 130: Flexible RFID tag…………………………………………………………………………………………………………….. 409
  • Figure 131: Enfucell Printed Battery…………………………………………………………………………………………………….. 412
  • Figure 132: Graphene printed antenna…………………………………………………………………………………………………. 413
  • Figure 133: Conductive inks in the flexible and stretchable electronics market 2017-2030 revenue forecast (million $), by ink types…………………………………………………………………………………………………………………………………. 415
  • Figure 134: Graphene IC in wafer tester………………………………………………………………………………………………. 420
  • Figure 135: A monolayer WS2-based flexible transistor array……………………………………………………………………. 420
  • Figure 136: Emerging logic devices…………………………………………………………………………………………………….. 421
  • Figure 137: Thin film transistor incorporating CNTs…………………………………………………………………………………. 421
  • Figure 138: Schematic cross-section of a graphene based transistor (GBT, left) and a graphene field-effect transistor (GFET, right)……………………………………………………………………………………………………………………………. 424
  • Figure 139: Potential addressable market for carbon nanomaterials in transistors and integrated circuits……………. 428
  • Figure 140: Carbon nanotubes NRAM chip…………………………………………………………………………………………… 434
  • Figure 141: Stretchable SWCNT memory and logic devices for wearable electronics……………………………………… 435
  • Figure 142: Carbon nanotubes NRAM chip…………………………………………………………………………………………… 436
  • Figure 143: Schematic of NRAM cell…………………………………………………………………………………………………… 440
  • Figure 144: Hybrid graphene phototransistors……………………………………………………………………………………….. 444
  • Figure 145: Wearable health monitor incorporating graphene photodetectors……………………………………………….. 445
  • Figure 146: Flexible PEN coated with graphene and a QD thin film (20nm) is highly visibly transparent and photosensitive………………………………………………………………………………………………………………………….. 445
  • Figure 147: The SkelStart Engine Start Module 2.0 based on the graphene-based SkelCap ultracapacitors………… 449
  • Figure 148: Energy densities and specific energy of rechargeable batteries…………………………………………………. 451
  • Figure 149: Nano Lithium X Battery…………………………………………………………………………………………………….. 453
  • Figure 150: H600 concept car……………………………………………………………………………………………………………. 456
  • Figure 151: Anion concept car……………………………………………………………………………………………………………. 456
  • Figure 152: Skeleton Technologies ultracapacitor…………………………………………………………………………………… 463
  • Figure 153: Zapgo supercapacitor phone charger…………………………………………………………………………………… 464
  • Figure 154: Stretchable graphene supercapacitor…………………………………………………………………………………… 466
  • Figure 155: Suntech/TCNT nanotube frame module……………………………………………………………………………….. 472
  • Figure 156: Solar cell with nanowires and graphene electrode…………………………………………………………………… 474
  • Figure 157: Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper……………………………………………………………………………….. 475
  • Figure 158: LG OLED flexible lighting panel………………………………………………………………………………………….. 491
  • Figure 159: Flexible OLED incorporated into automotive headlight……………………………………………………………… 491
  • Figure 160: Degradation of organic dye molecules by graphene hybrid composite photocatalysts……………………… 500
  • Figure 161: Graphene anti-smog mask………………………………………………………………………………………………… 500
  • Figure 162: Graphene Frontiers’ Six™ chemical sensors consists of a field effect transistor (FET) with a graphene channel. Receptor molecules, such as DNA, are attached directly to the graphene channel………………………. 514
  • Figure 163: Graphene-Oxide based chip prototypes for biopsy-free early cancer diagnosis……………………………… 514
  • Figure 164: Connected human body……………………………………………………………………………………………………. 515
  • Figure 165: Flexible, lightweight temperature sensor……………………………………………………………………………….. 516
  • Figure 166: Graphene-based E-skin patch……………………………………………………………………………………………. 517
  • Figure 167: Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs…………. 519
  • Figure 168: Graphene medical patch…………………………………………………………………………………………………… 520
  • Figure 169: TempTraQ wearable wireless thermometer…………………………………………………………………………… 521
  • Figure 170: Mimo baby monitor………………………………………………………………………………………………………….. 521
  • Figure 171: Nanowire skin hydration patch……………………………………………………………………………………………. 522
  • Figure 172: Wearable sweat sensor…………………………………………………………………………………………………….. 522
  • Figure 173: GraphWear wearable sweat sensor…………………………………………………………………………………….. 523
  • Figure 174: Global medical and healthcare smart textiles and wearables market, 2015-2030, billions $………………. 527
  • Figure 175: Global medical and healthcare smart textiles and wearables market, 2015-2030, billions $………………. 527
  • Figure 176: Schematic of boron doped graphene for application in gas sensors……………………………………………. 541
  • Figure 177: Directa Plus Grafysorber…………………………………………………………………………………………………… 543
  • Figure 178: Nanometer-scale pores in single-layer freestanding graphene membrane can effectively filter NaCl salt from water……………………………………………………………………………………………………………………………………… 544
  • Figure 179: GFET sensors………………………………………………………………………………………………………………… 555
  • Figure 180: First generation point of care diagnostics……………………………………………………………………………… 556
  • Figure 181: Graphene Field Effect Transistor Schematic………………………………………………………………………….. 557
  • Figure 182: Conductive yarns…………………………………………………………………………………………………………….. 573
  • Figure 183: Global smart clothing, interactive fabrics and apparel market 2013-2030 revenue forecast (million $)…. 574
  • Figure 184 Global smart clothing, interactive fabrics and apparel sales by market segment, 2016…………………….. 575
  • Figure 185: Global market revenues for nanotech-enabled smart clothing and apparel 2014-2021, in US$, conservative estimate………………………………………………………………………………………………………………………………….. 576
  • Figure 186: Global market revenues for nanotech-enabled smart clothing and apparel 2014-2021, in US$, optimistic estimate………………………………………………………………………………………………………………………………….. 576