Global 6G Technology Market 2025-2045: Next-Generation Wireless Communications, Advanced Materials, and Devices

0

cover

  • Published: September 2024
  • Pages: 395
  • Tables: 53
  • Figures: 46

 

As 5G networks continue to roll out globally, researchers and industry leaders are already setting their sights on the next generation: 6G. The 6G market is poised for massive growth over the next decade, driven by the need for ultra-fast and high-capacity wireless connectivity. 6G networks represent the next frontier in hyperconnected mobility, building on the capabilities of 5G to deliver radical increases in speed, reliability and scale. This technological leap is expected to enable transformative applications across sectors from transportation to healthcare while supporting sustainable development. However, realizing the full potential of 6G requires overcoming key challenges around technical complexity, standardization, infrastructure costs and use case validation. This comprehensive market report delves into the future of 6G technology, exploring its potential applications, key players, and the revolutionary changes it promises to bring to various sectors. Report contents include: 

  • Evolution of mobile networks from the first generation (1G) to the current fifth generation (5G). This historical perspective provides crucial context for understanding the leap that 6G represents. While 5G has introduced unprecedented speeds and low latency, 6G aims to push these boundaries even further, promising terabit-per-second data rates, microsecond latency, and ubiquitous connectivity.
  • 6G: Beyond the Limitations of 5G: Despite the significant advancements brought by 5G, certain limitations have become apparent. The report identifies these constraints and explains how 6G aims to address them. Key benefits of 6G are explored, including its potential to enable truly immersive augmented and virtual reality experiences, autonomous systems, and the Internet of Everything (IoE).
  • Advanced Materials and Hardware Developments crucial for realizing 6G networks. This includes an in-depth look at
    • Semiconductor technologies for 6G, including CMOS, SiGe, GaAs, GaN, and InP
    • Reconfigurable Intelligent Surfaces (RIS) and metamaterials
    • Low-loss materials and dielectrics
    • Thermal management solutions
    • Graphene and other 2D materials
  • The 6G Market: Current State and Future Outlook
  • Market challenges and bottlenecks.
  • Global 6G Landscape: Key Markets and Players An analysis of key geographical markets for 6G is provided, focusing on North America, Asia Pacific, and Europe. The report identifies the main market players, including telecommunications companies, equipment manufacturers, and technology providers. It also outlines significant 6G projects and government initiatives worldwide, offering insights into the global race for 6G leadership.
  • 6G Hardware Roadmap: A detailed 6G hardware roadmap is presented, outlining the expected timeline for key technological developments.
  • 6G Networks and Technologies-technical aspects of 6G networks, including:
    • 6G spectrum utilization
    • Space-Air-Ground Integrated Networks (SAGIN)
    • Artificial Intelligence-powered 6G networks
    • Terahertz (THz) communications
    • Visible Light Communication
    • Quantum communication technologies
  • Internet of Things (IoT) and Edge Computing in 6G-how 6G will enable:
    • Smart cities and smart environments
    • Enhanced healthcare systems
    • Advanced smart grids
    • Intelligent transportation networks
    • Next-generation smart factories and farming
  • Beyond Communications: Sensing and Imaging Applications:
    • THz sensing for various industrial and security applications
    • Advanced imaging capabilities for medical diagnostics and industrial inspection
  • Energy Efficiency and Sustainability in 6G:
    • Zero Energy Devices (ZED) for 6G
    • Energy harvesting technologies
    • Ultra-low power electronics. These technologies are crucial for ensuring that the increased capabilities of 6G do not come at the cost of unsustainable energy consumption.
  • Global Market Forecasts for 6G (2025-2045) including:
    • Overall market revenues
    • Base station deployments
    • 6G dielectric and thermal materials market
    • Low-loss material market
    • Reconfigurable Intelligent Surface (RIS) tiles market
  • Company Profiles. Comprehensive profiles of key companies driving 6G innovation, including:
    • Major telecommunications companies (Huawei, Nokia, Ericsson, Samsung)
    • Tech giants (Apple, Google, NVIDIA)
    • Specialized 6G technology providers (Metawave, Pivotal Commware)
    • Materials and component manufacturers (NXP Semiconductors, Solvay)

 

This extensive market report on 6G technology offers a comprehensive overview of the next generation of wireless communication. From the underlying technologies and materials to market forecasts and key players, it provides valuable insights for industry professionals, policymakers, investors, and anyone interested in the future of telecommunications. As 6G moves from concept to reality over the coming years, the insights provided in this report will be crucial for understanding and navigating this revolutionary technology. With its potential to transform industries, enable new applications, and reshape our digital landscape, 6G represents not just the next step in wireless evolution, but a leap into a new era of connectivity and innovation.

 

Download table of contents (PDF)

1             EXECUTIVE SUMMARY            19

  • 1.1        From 1G to 6G               21
  • 1.2        Evolution from 5G Networks                25
    • 1.2.1    Limitations with 5G    27
    • 1.2.2    Benefits of 6G                28
    • 1.2.3    Advanced materials in 6G     31
    • 1.2.4    Recent hardware developments       33
  • 1.3        The 6G Market in 2024             35
  • 1.4        Market outlook for 6G               37
    • 1.4.1    Proliferation in Consumer Technology           37
    • 1.4.2    Industrial and Enterprise Transformation   38
    • 1.4.3    Economic Competitiveness 39
    • 1.4.4    Sustainability 40
  • 1.5        Market drivers and trends      41
  • 1.6        Market challenges and bottlenecks                43
  • 1.7        Applications   46
    • 1.7.1    Connected Autonomous Vehicle Systems 46
    • 1.7.2    Next Generation Industrial Automation        47
    • 1.7.3    Healthcare Solutions               48
    • 1.7.4    Immersive Extended Reality Experiences    49
  • 1.8        Key geographical markets for 6G      50
    • 1.8.1    North America              50
    • 1.8.2    Asia Pacific     51
    • 1.8.3    Europe                53
  • 1.9        Main market players  55
  • 1.10     6G projects, by country           58
  • 1.11     Global 6G government initiatives      60
  • 1.12     6G hardware roadmap            62
  • 1.13     SWOT analysis              65
  • 1.14     Sustainability in 6G    67

 

2             INTRODUCTION          68

  • 2.1        6G spectrum  68
  • 2.2        Applications of 6G      72
  • 2.3        6G devices and infrastructure            73
  • 2.4        6G services     75
  • 2.5        6G base stations         76
  • 2.6        Satellite networks for 6G        78
  • 2.7        6G drones        80
  • 2.8        Wireless powered IoE for 6G                82
  • 2.9        Key technologies for THz communication  84
  • 2.10     6G networks   87
    • 2.10.1 SAGIN - Space-air-ground integrated networks       87
    • 2.10.2 Underwater     88
    • 2.10.3 Key Technologies         90
    • 2.10.4 AI-powered 6G networks        90
  • 2.11     Global architecture concepts for 6G networks        91
    • 2.11.1 Cell-Free Massive MIMO        92
    • 2.11.2 Integrated Space and Terrestrial Networks 93
    • 2.11.3 AI-Defined Networking            95
    • 2.11.4 Energy Harvesting Grids         96
    • 2.11.5 Visible Light Communication              97
    • 2.11.6 Quantum Backbones               99
    • 2.11.7 Internet of Bio-Nano Things 99
    • 2.11.8 Terahertz Mesh Networks       101
    • 2.11.9 AI-Optimized Topologies        101
    • 2.11.10              THz wireless   102
    • 2.11.11              Holographic beamforming    104
    • 2.11.12              Intelligent reflecting surfaces             106
    • 2.11.13              TeraHertz amplification          108
    • 2.11.14              Visible light sensing  108
    • 2.11.15              Quantum communication    109
    • 2.11.16              Bio-computing networks        110
    • 2.11.17              Blockchain      111
  • 2.12     6G Radio system         113
    • 2.12.1 Overview           113
      • 2.12.1.1            Millimeter-wave (mmWave) communications         114
      • 2.12.1.2            THz communications               115
      • 2.12.1.3            Optical wireless communications   116
        • 2.12.1.3.1        Visible light communication (VLC)  116
        • 2.12.1.3.2        Light-Fidelity (LiFi)      117
        • 2.12.1.3.3        Optical camera communication (OCC)       118
        • 2.12.1.3.4        LiDAR technology        118
        • 2.12.1.3.5        Free space optical (FSO) communication  120
    • 2.12.2 Bandwidth and Modulation  120
    • 2.12.3 Power consumption  122
  • 2.13     6G Non-terrestrial networks 124
    • 2.13.1 Overview           124
    • 2.13.2 Commercial activities              126
  • 2.14     Internet of things (IoT)              127
    • 2.14.1 Smart cities     129
    • 2.14.2 Smart radio environments     131
    • 2.14.3 Smart healthcare        133
    • 2.14.4 Smart grid        136
    • 2.14.5 Smart transportation 138
    • 2.14.6 Smart factories             139
    • 2.14.7 Smart farming               141
  • 2.15     Edge computing           142
  • 2.16     Artificial intelligence and machine learning              145

 

3             MATERIALS AND TECHNOLOGIES   147

  • 3.1        Phase array antennas              148
    • 3.1.1    Overview           148
    • 3.1.2    Antenna types               150
  • 3.2        Phase array modules                152
    • 3.2.1    Overview           152
    • 3.2.2    Commercial and proof-of-concepts              153
  • 3.3        Packaging technologies          155
    • 3.3.1    Overview           155
    • 3.3.2    Antenna packages     157
  • 3.4        Inorganic compounds              159
    • 3.4.1    Overview           159
    • 3.4.2    Materials           160
  • 3.5        Elements          162
    • 3.5.1    Overview           162
    • 3.5.2    Materials           164
  • 3.6        Organic compounds 166
    • 3.6.1    Overview           166
    • 3.6.2    Materials           167
  • 3.7        Semiconductor technologies for 6G               170
    • 3.7.1    CMOS 171
      • 3.7.1.1 CMOS technology - Bulk vs SOI         172
      • 3.7.1.2 RF CMOS technology                172
      • 3.7.1.3 CMOS and hybrid lll-V+CMOS approaches sub-THz            173
      • 3.7.1.4 6G CMOS design         175
      • 3.7.1.5 PD-SOI CMOS and SiGe BiCMOS for 6G      176
    • 3.7.2    SiGe     177
      • 3.7.2.1 RF SiGe technology    179
    • 3.7.3    GaAs and GaN              179
    • 3.7.4    InP         181
    • 3.7.5    Si vs III-V semiconductors     183
    • 3.7.5.1 Key Differences            183
    • 3.7.6    Semiconductor technology choices for THz RF       184
    • 3.7.7    Key THz Technologies               186
    • 3.7.8    Challenges      188
  • 3.8        Reconfigurable intelligent surfaces (RIS)    188
    • 3.8.1    6G Reconfigurable intelligent surfaces and metamaterials            188
    • 3.8.2    Overview           191
    • 3.8.3    Applications in 6G      193
    • 3.8.4    Transparent IRS and RIS         194
    • 3.8.5    Simultaneous transmissive and reflective STAR RIS            195
    • 3.8.6    Semi-passive and active RIS materials and components 197
    • 3.8.7    Hardware          199
    • 3.8.8    Metamaterials and Metasurfaces    203
    • 3.8.9    Liquid crystal polymers (LCP) for RIS             204
    • 3.8.10 Beam management   205
    • 3.8.11 Companies     207
    • 3.8.12 SWOT analysis              209
  • 3.9        Metamaterials               211
    • 3.9.1    Overview           212
    • 3.9.2    Applications   214
      • 3.9.2.1 Reconfigurable antennas      215
      • 3.9.2.2 Wireless sensing         215
      • 3.9.2.3 Wi-Fi/Bluetooth            216
      • 3.9.2.4 5G and 6G Metasurfaces for Wireless Communications  218
      • 3.9.2.5 Hypersurfaces               220
      • 3.9.2.6 Active material patterning     221
      • 3.9.2.7 Optical ENX metamaterials  221
      • 3.9.2.8 Metamaterials for RIS               221
      • 3.9.2.9 Liquid crystal polymers           222
    • 3.9.3    Companies     225
    • 3.9.4    SWOT analysis              227
  • 3.10     Low-loss materials     229
    • 3.10.1 Overview           229
    • 3.10.2 6G low-loss materials              233
    • 3.10.3 Companies     238
    • 3.10.4 SWOT analysis              239
  • 3.11     6G dielectrics 241
    • 3.11.1 Overview           241
    • 3.11.2 Companies     246
    • 3.11.3 SWOT analysis              248
  • 3.12     Cell-Free Massive MIMO        248
    • 3.12.1 Overview           248
    • 3.12.2 Cellular mMIMO, network mMIMO, and cell-free mMIMO               250
  • 3.13     Fiber optics     251
    • 3.13.1 Overview           251
    • 3.13.2 Materials and applications in 6G      252
  • 3.14     Graphene and 2D materials 254
    • 3.14.1 Overview           254
    • 3.14.2 Applications   255
      • 3.14.2.1            Supercapacitors, LiC and pseudocapacitors           255
      • 3.14.2.2            Graphene transistors               257
      • 3.14.2.3            Graphene THz device structures       258
    • 3.14.3 Companies     258
  • 3.15     Thermal management             259
    • 3.15.1 Overview           259
    • 3.15.2 Thermal materials and structures for 6G     261
      • 3.15.2.1            Thermal management materials       262
        • 3.15.2.1.1        Advanced Ceramics  262
        • 3.15.2.1.2        Diamond-based Materials    262
        • 3.15.2.1.3        Graphene and Carbon Nanotubes  263
        • 3.15.2.1.4        Phase Change Materials (PCMs)       264
        • 3.15.2.1.5        Advanced Polymers   264
        • 3.15.2.1.6        Metal Matrix Composites      265
        • 3.15.2.1.7        Two-Dimensional Materials 265
        • 3.15.2.1.8        Nanofluid Coolants   266
        • 3.15.2.1.9        Thermal metamaterials          267
        • 3.15.2.1.10     Hydrogels         267
        • 3.15.2.1.11     Aerogels            268
        • 3.15.2.1.12     Ionogels            268
        • 3.15.2.1.13     Pyrolytic graphite        269
      • 3.15.2.2            Thermoelectrics           270
    • 3.15.3 Companies     274
    • 3.15.4 SWOT analysis              277
  • 3.16     Smart EM devices       279
    • 3.16.1 Overview           279
  • 3.17     Photoactive materials              281
    • 3.17.1 Overview           281
    • 3.17.2 Applications in 6G      282
  • 3.18     Silicon carbide              283
    • 3.18.1 Overview           284
    • 3.18.2 Applications in 6G      285
  • 3.19     Phase-Change Materials        286
    • 3.19.1 Overview           286
    • 3.19.2 Applications in 6G      288
  • 3.20     Vanadium dioxide       289
    • 3.20.1 Overview           289
    • 3.20.2 Applications in 6G      290
  • 3.21     Micro- mechanics, MEMS and microfluidics            292
    • 3.21.1 Overview           292
    • 3.21.2 Applications in 6G      293
  • 3.22     Beyond communications markets and applications           295
    • 3.22.1 THz Sensing    295
    • 3.22.2 THz Imaging    298
  • 3.23     Solid state cooling      300
    • 3.23.1 Overview           300
    • 3.23.2 Companies     303
  • 3.24     Zero Energy Devices  307
    • 3.24.1 Overview           307
    • 3.24.2 6G ZED materials and technologies                308
      • 3.24.2.1            Metamaterials               310
      • 3.24.2.2            IRS        311
      • 3.24.2.3            RIS        313
      • 3.24.2.4            Simultaneous wireless and information transfer SWIPT    313
      • 3.24.2.5            Ambient backscatter communications AmBC        315
      • 3.24.2.6            Energy harvesting for 6G         315
        • 3.24.2.6.1        Photovoltaic   315
        • 3.24.2.6.2        Ambient RF     316
        • 3.24.2.6.3        Electrodynamic            316
        • 3.24.2.6.4        Piezoelectric   317
        • 3.24.2.6.5        Triboelectric    318
        • 3.24.2.6.6        Thermoelectric              319
        • 3.24.2.6.7        Pyroelectric     320
        • 3.24.2.6.8        Thermal hydrovoltaic                321
        • 3.24.2.6.9        Biofuel cells    321
      • 3.24.2.7            Ultra-low power electronics 322
        • 3.24.2.7.1        Supercapacitors          324
        • 3.24.2.7.2        Hybrid approaches    325
        • 3.24.2.7.3        Pseudocapacitors      326

 

4             GLOBAL MARKET FORECASTS FOR 6G, 2025-2045             326

  • 4.1        Market revenues          327
  • 4.2        Base stations 328
  • 4.3        6G dielectric and thermal materials               332
  • 4.4        Low loss material        333
  • 4.5        Thermal materials      334
  • 4.6        RIS tiles              335
    • 4.6.1    Pricing forecasts          335
    • 4.6.2    By square meter           337
    • 4.6.3    By revenues     339

 

5             COMPANY PROFILES                342 (43 company profiles)

 

6             RESEARCH METHODOLOGY              388

 

7             REFERENCES 390

 

List of Tables

  • Table 1. Technology benchmarkmarking  of phase antenna array in 28, 90, and 140 GHz.         19
  • Table 2. Evolution of 1G to 5G mobile wireless communications                22
  • Table 3. Key differences from 5G.     24
  • Table 4. Limitations with 5G.               26
  • Table 5. Advanced materials in 6G. 30
  • Table 6. Market drivers and trends in 6G.    41
  • Table 7. Market challenges and bottlenecks in 6G.              43
  • Table 8. Main market players in 6G. 55
  • Table 9. Global 6G government initiatives. 59
  • Table 10. Comparison of spectrum bands for 6G. 69
  • Table 11. 6G applications.    72
  • Table 12. 6G devices and infrastructure.     73
  • Table 13. Key technologies enabling THz communication.              84
  • Table 14. Comparison between conventional MIMO and massive MIMO.             92
  • Table 15. Comparison between electronic THz design and communication systems. 102
  • Table 16. Key THz Technologies.        120
  • Table 17. Antenna types in 6G.           150
  • Table 18. Inorganic compounds in 6G communications. 159
  • Table 19. Elements in 6G communications.              163
  • Table 20. Organic compounds in 6G communications.     166
  • Table 21. State of the art RF transistors performance.        169
  • Table 22. Comparison of silicon (Si) based semiconductors versus III-V compound semiconductors for applications in 6G communications.            182
  • Table 23. semiconductor technology choice for THz RF.   183
  • Table 24. key THz Technologies.        186
  • Table 25. Transistor performance metrics of different semiconductor technologies.    186
  • Table 26. Power amplifier benchmarks by bands. 187
  • Table 27. Challenges for semiconductor for THz communications,          187
  • Table 28. RIS operation phases.        190
  • Table 29. Reconfigurable intelligent surface (RIS) for 6G. 192
  • Table 30. RIS prototypes.       192
  • Table 31. RIS vs traditional reflecting array antennas,        200
  • Table 32. Companies developing RIS technology. 206
  • Table 33. Applications of metamaterials in 6G.       213
  • Table 34. Unmet need, metamaterial solution and markets.         216
  • Table 35. Companies developing metamaterials and metasurfaces for 6G.        224
  • Table 36. 6G low-loss materials.       233
  • Table 37. Low-loss material choices from 5G to 6G.            234
  • Table 38. Companies developing 6G low-loss materials. 237
  • Table 39. Market players in  6G dielectrics.                246
  • Table 40. Benefits and challenges of cell-free mMIMO.     248
  • Table 41. Market players in graphene and 2D materials for 6G.    258
  • Table 42. Thermal materials and structures for 6G.             267
  • Table 43. Companies developing 6G thermal management materials.   274
  • Table 44. photoactive materials being investigated for applications around 1 THz for future 6G wireless systems.           280
  • Table 45. Market players in solid-state cooling for 6G.       303
  • Table 46. Global market revenue for 6G communications, by market, 2024-2045 (billions USD).        326
  • Table 47. 5G base stations market forecast 2024-2045 (billions USD).  328
  • Table 48. 6G base stations market forecast 2024-2045 (billions USD).  329
  • Table 49. Global market forecast for 6G dielectric and thermal materials 2024-2045 (Millions USD).                332
  • Table 50. Low loss materials for 6G global market, 2024-2045 (by million square meters).       333
  • Table 51. Global 5G vs 6G thermal interface material market 2024-2045 ($ billion).     334
  • Table 52. Forecasts for RIS tiles, 2024-2044 (billion sq. meter).   337
  • Table 53. Forecasts for RIS tiles, 2024-2045 (billion USD).              338

 

List of Figures

  • Figure 1. 140 GHz THz prototype from Samsung and UCSB            19
  • Figure 2. Evolution of Mobile Networks: From 1G to 6G.   21
  • Figure 3. Radio coverage of 6G.         37
  • Figure 4. 6G hardware roadmap.      62
  • Figure 5. 6G communications SWOT analysis.       65
  • Figure 6. 6G spectrum.            68
  • Figure 7. 6G world in 2030.   73
  • Figure 8. Key services and roadmap for 6G.              75
  • Figure 9. 6G Self-powered ultra-massive UM-MIMO base station design.             76
  • Figure 10. 6G-SAGIN architecture.   87
  • Figure 11. 6G System Architecture Design.                91
  • Figure 12. Cell-Free Massive MIMO systems.           92
  • Figure 13. Space-Terrestrial Integrated Network.    93
  • Figure 14. Visible Light Communication in 6G.        96
  • Figure 15. Internet of Bio-Nano Things.        100
  • Figure 16. An illustration of electromagnetic spectrum.    113
  • Figure 17. Network platforms with MEC.     143
  • Figure 18. Phased array antennas for 6G.   147
  • Figure 19. 16-channel 140 GHz phased-array module (middle), dual-channel 140 GHz RFICs (left), 128-element antenna array (right).            152
  • Figure 20. Novel antenna-in-package (AiP) for mmWave systems.            156
  • Figure 21. Stack-up AiP module on a system board.            157
  • Figure 22.  RF Si interposer with integrated InP and CMOS devices and antenna array in a package. 174
  • Figure 23. GaAs based amplifier.      179
  • Figure 24. InP power amplifiers.        180
  • Figure 25. Reconfigurable intelligent reflecting surfaces aided mobile.  191
  • Figure 26. RIS Architecture.  200
  • Figure 27. SWOT analysis for RIS in 6G communications.               208
  • Figure 28. Wireless charging technology prototype.             216
  • Figure 29. Flat-panel satellite antenna (top) and antenna mounted on a vehicle (bottom).       217
  • Figure 30. META Transparent Window Film.               219
  • Figure 31. SWOT analysis for metamaterials in 6G.              226
  • Figure 32. SWOT analysis for low-loss materials for 6G.   239
  • Figure 33. SWOT analysis for 6G dielectrics.             247
  • Figure 34. SWOT analysis for thermal management materials and structures for 6G.  277
  • Figure 35. Global market revenue for 6G communications, by market, 2024-2045 (billions USD).      327
  • Figure 36. Global market revenue for 6G communications.           328
  • Figure 37. Global market forecast for 6G dielectric and thermal materials 2024-2045 (Millions USD).                332
  • Figure 38. Low loss materials for 6G global market, 2024-2045 (by million square meters).     333
  • Figure 39. Global 5G vs 6G thermal interface material market 2024-2045 ($ billion).   334
  • Figure 40. Pricing forecasts 2024-2044, per square meter ($).      335
  • Figure 41. Forecasts for RIS tiles, 2024-2045 (billion sq. meter). 337
  • Figure 42. Forecasts for RIS tiles, 2024-2045 (billion USD).            339
  • Figure 43. metaAIR.   364
  • Figure 44.Millimeter-wave mobile network utilizing a radio-over-fiber system   369
  • Figure 45. Left) Image of beamforming using phased-array wireless device. (Right) Comparison of previously reported transmission with beamforming wireless devices and this achievement..              371
  • Figure 46. Radi-cool metamaterial film.      379

 

Global 6G Technology Market 2025-2045
Global 6G Technology Market 2025-2045
PDF download/by email.

Global 6G Technology Market Report 2025-2045
Global 6G Technology Market Report 2025-2045
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com