The Global Market for Sol-Gel Coatings 2020-2030

0

Published January 18 2021, 580 pages, 161 figures, 158 tables

Organic/inorganic hybrid coatings prepared via the sol–gel process have garnered considerable research and commercial interest for application on glass, metallic and polymeric substrates .

The sol-gel process is considered attractive due to simple processing and relative low-cost, resulting in the creation of multi-functional, protective surfaces. This is due to the unique structure and properties of silica-based coatings and of hybrid inorganic-organic silicas in particular.

Enhanced coatings and surfaces obtained via this low-temperature route display a large range of bulk and surface properties that can be tailored by specific applications. The versatility of sol-gel coatings has enabled solutions in industries such as electronics, optics, solar energy harvesting, aerospace, automotive engineering, marine protection, textiles and healthcare. The sol-gel method also allows for control of the synthesis of multifunctional hybrid materials, where the organic, inorganic and, in some cases, biological precursors and polymers are mixed at a nanometer scale.

Properties that can be achieved with sol-gel coatings include:

  • Hydrophobic surfaces;
  • Anti-fingerprinting;
  • Oleophobic surfaces;
  • Anti-microbial surfaces;
  • Easy to clean surfaces;
  • Protective transparent coatings;
  • Corrosion resistance;
  • Low friction;
  • Chemical resistance;
  • Free of fluoropolymers;
  • Antistatic surfaces;
  • Conducting/semi-conducting surfaces;
  • Extreme mechanical wear resistant properties;
  • UV protection.

 

End user markets include:

  • construction (pipes, facades, bridges)
  • automotive (paint surface treatments, metal parts, metal structures,window, mirrors and lamps, plastic hoods)
  • marine
  • electronics (components, screens and displays, plastic and metal parts)
  • sanitary
  • oil and gas (pipes)
  • energy (wind power structures and bladesglass surfaces on solar panels)
  • paper coatings.
  • food manufacturing. 
  • cookware. 

 

Report contents include:

  • Comprehensive quantitative data and forecasts for the global sol-gel coatings market.
  • Qualitative insight and perspective on the current market and future trends in end user markets.
  • End user market analysis and technology timelines.
  • Tables illustrating market size and by end user demand.
  • Full company profiles of sol-gel coatings application developers including technology descriptions, products, contact details, and end user markets.

 

Table of contents (PDF)

1              EXECUTIVE SUMMARY   41

  • 1.1          Sol-gel coatings 41
  • 1.2          Advantages of nanocoatings over traditional coatings      41
    • 1.2.1      Advantages of sol-gel coatings    42
  • 1.3          Sol-gel coatings fabrication and application           43
  • 1.4          Improvements and disruption in coatings markets            44
  • 1.5          End user market for nanocoatings            46
  • 1.6          The nanocoatings market in 2020              49
  • 1.7          Global market size, historical and estimated to 2020         49
    • 1.7.1      Global revenues for nanocoatings 2010-2030       50
    • 1.7.2      Regional demand for nanocoatings          51
  • 1.8          Market challenges           52

 

2              NANOCOATINGS              54

  • 2.1          Properties           54
  • 2.2          Benefits of using nanocoatings   55
    • 2.2.1      Types of nanocoatings   56
  • 2.3          Production and synthesis methods          57

 

3              THE SOL-GEL PROCESS   66

  • 3.1          Properties and benefits of sol-gel coatings            66
  • 3.2          Advantages of the sol-gel process             67
  • 3.3          Issues with the sol-gel process   68

 

4              HYDROPHOBIC COATINGS AND SURFACES            68

  • 4.1          Hydrophilic coatings       69
  • 4.2          Hydrophobic coatings     69
    • 4.2.1      Properties           69
  • 4.2.2      Application in facemasks              70

 

5              SUPERHYDROPHOBIC COATINGS AND SURFACES 71

  • 5.1          Properties           71
    • 5.1.1      Antibacterial use              72
  • 5.2          Durability issues               72

 

6              OLEOPHOBIC AND OMNIPHOBIC COATINGS AND SURFACES         73

 

 

7              NANOMATERIALS USED IN SOL-GEL COATINGS       76

  • 7.1          Graphene           78
    • 7.1.1      Properties and coatings applications        78
      • 7.1.1.1   Anti-corrosion coatings  79
      • 7.1.1.2   Graphene oxide 81
      • 7.1.1.3   Reduced graphene oxide (rGO) 82
      • 7.1.1.4   Anti-icing             83
      • 7.1.1.5   Barrier coatings 83
      • 7.1.1.6   Heat protection 84
      • 7.1.1.7   Smart windows 85
  • 7.2          Carbon nanotubes (MWCNT and SWCNT)              85
    • 7.2.1      Properties and applications          85
      • 7.2.1.1   Conductive films and coatings     85
      • 7.2.1.2   EMI shielding     86
      • 7.2.1.3   Anti-fouling        86
      • 7.2.1.4   Flame retardant               86
      • 7.2.1.5   Antimicrobial activity      87
    • 7.2.2      SWCNTs               87
      • 7.2.2.1   Properties and applications          87
  • 7.3          Fullerenes           90
    • 7.3.1      Properties           90
    • 7.3.2      Antimicrobial activity      90
  • 7.4          Silicon dioxide/silica nanoparticles (Nano-SiO2)  91
      • 7.4.1      Properties and applications          92
    • 7.4.1.1   Antimicrobial and antiviral activity            92
    • 7.4.1.2   Easy-clean and dirt repellent       92
    • 7.4.1.3   Anti-fogging       93
    • 7.4.1.4   Scratch and wear resistance        93
    • 7.4.1.5   Anti-reflection  93
  • 7.5          Nanosilver          94
    • 7.5.1      Properties and applications          94
      • 7.5.1.1   Anti-bacterial     95
      • 7.5.1.2   Silver nanocoatings         95
      • 7.5.1.3   Antimicrobial silver paints            96
      • 7.5.1.4   Anti-reflection  96
      • 7.5.1.5   Textiles 97
      • 7.5.1.6   Wound dressings             97
      • 7.5.1.7   Consumer products        97
      • 7.5.1.8   Air filtration        97
  • 7.6          Titanium dioxide nanoparticles (nano-TiO2)         98
    • 7.6.1      Properties and applications          98
      • 7.6.1.1   Exterior and construction glass coatings 99
      • 7.6.1.2   Outdoor air pollution      101
      • 7.6.1.3   Interior coatings               102
      • 7.6.1.4   Improving indoor air quality        102
      • 7.6.1.5   Medical facilities               103
      • 7.6.1.6   Waste Water Treatment               103
      • 7.6.1.7   UV protection coatings  104
      • 7.6.1.8   Antimicrobial coating indoor light activation         105
  • 7.7          Aluminium oxide nanoparticles (Al2O3-NPs)        105
    • 7.7.1      Properties and applications          105
  • 7.8          Zinc oxide nanoparticles (ZnO-NPs)          106
    • 7.8.1      Properties and applications          106
      • 7.8.1.1   UV protection    106
      • 7.8.1.2   Anti-bacterial     107
  • 7.9          Dendrimers        110
    • 7.9.1      Properties and applications          110
  • 7.10        Nanodiamonds 110
    • 7.10.1    Properties and applications          110
  • 7.11        Nanocellulose (Cellulose nanofibers, cellulose nanocrystals and bacterial cellulose)            114
    • 7.11.1    Properties and applications          114
      • 7.11.1.1                Cellulose nanofibers (CNF)           115
      • 7.11.1.2                NanoCrystalline Cellulose (NCC) 117
      • 7.11.1.3                Bacterial Cellulose (BCC)               119
      • 7.11.1.4                Abrasion and scratch resistance 120
      • 7.11.1.5                UV-resistant      120
      • 7.11.1.6                Superhydrophobic coatings         121
      • 7.11.1.7                Gas barriers        121
      • 7.11.1.8                Anti-bacterial     122
  • 7.12        Chitosan nanoparticles  122
    • 7.12.1    Properties           122
    • 7.12.2    Wound dressings             124
    • 7.12.3    Packaging coatings and films       124
    • 7.12.4    Food storage      124
  • 7.13        Copper nanoparticles     125
    • 7.13.1    Properties           125
    • 7.13.2    Application in antimicrobial nanocoatings             125

 

8              APPLICATIONS OF SOL-GEL COATINGS        126

  • 8.1          ANTI-FINGERPRINT NANOCOATINGS       126
    • 8.1.1      Market overview             126
    • 8.1.2      Market assessment        127
    • 8.1.3      Market drivers and trends            128
    • 8.1.4      Applications       130
      • 8.1.4.1   Touchscreens    130
      • 8.1.4.2   Spray-on anti-fingerprint coating               131
    • 8.1.5      Global market size           132
    • 8.1.6      Product developers        133
  • 8.2          ANTI-MICROBIAL AND ANTI-VIRAL NANOCOATINGS         137
    • 8.2.1      Mode of action  137
    • 8.2.2      Anti-viral coatings and surfaces 138
    • 8.2.3      Market overview             140
    • 8.2.4      Market assessment        142
    • 8.2.5      Market drivers and trends            142
    • 8.2.6      Applications       145
    • 8.2.7      Global market size           147
    • 8.2.8      Product developers        148
  • 8.3          ANTI-CORROSION NANOCOATINGS         151
    • 8.3.1      Market overview             151
    • 8.3.2      Market assessment        153
    • 8.3.3      Market drivers and trends            153
    • 8.3.4      Applications       154
      • 8.3.4.1   Smart self-healing coatings          156
      • 8.3.4.2   Superhydrophobic coatings         156
      • 8.3.4.3   Graphene           157
    • 8.3.5      Global market size           158
    • 8.3.6      Product developers        160
  • 8.4          ABRASION & WEAR-RESISTANT NANOCOATINGS 163
    • 8.4.1      Market overview             163
    • 8.4.2      Market assessment        164
    • 8.4.3      Market drivers and trends            165
    • 8.4.4      Applications       166
    • 8.4.5      Global market size           166
    • 8.4.6      Product developers        168
  • 8.5          BARRIER NANOCOATINGS            170
    • 8.5.1      Market assessment        170
    • 8.5.2      Market drivers and trends            170
    • 8.5.3      Applications       171
      • 8.5.3.1   Food and Beverage Packaging    171
      • 8.5.3.2   Moisture protection       171
      • 8.5.3.3   Graphene           172
    • 8.5.4      Global market size           172
    • 8.5.5      Product developers        174
  • 8.6          ANTI-FOULING AND EASY-TO-CLEAN NANOCOATINGS     176
    • 8.6.1      Market overview             176
    • 8.6.2      Market assessment        177
    • 8.6.3      Market drivers and trends            177
    • 8.6.4      Applications       178
      • 8.6.4.1   Hydrophobic and olephobic coatings       178
      • 8.6.4.2   Anti-graffiti         179
    • 8.6.5      Global market size           179
    • 8.6.6      Product developers        181
  • 8.7          SELF-CLEANING NANOCOATINGS              184
    • 8.7.1      Market overview             184
    • 8.7.2      Market assessment        185
    • 8.7.3      Market drivers and trends            186
    • 8.7.4      Applications       186
    • 8.7.5      Global market size           187
    • 8.7.6      Product developers        189
  • 8.8          PHOTOCATALYTIC NANOCOATINGS         191
    • 8.8.1      Market overview             191
    • 8.8.2      Market assessment        192
    • 8.8.3      Market drivers and trends            192
    • 8.8.4      Applications       193
      • 8.8.4.1   Self-Cleaning coatings-glass         194
      • 8.8.4.2   Self-cleaning coatings-building and construction surfaces               194
      • 8.8.4.3   Photocatalytic oxidation (PCO) indoor air filters  196
      • 8.8.4.4   Water treatment             197
      • 8.8.4.5   Medical facilities               197
      • 8.8.4.6   Antimicrobial coating indoor light activation         198
    • 8.8.5      Global market size           198
    • 8.8.6      Product developers        201
  • 8.9          UV-RESISTANT NANOCOATINGS 203
    • 8.9.1      Market overview             203
    • 8.9.2      Market assessment        204
    • 8.9.3      Market drivers and trends            204
    • 8.9.4      Applications       205
      • 8.9.4.1   Textiles 205
      • 8.9.4.2   Wood coatings  205
    • 8.9.5      Global market size           206
    • 8.9.6      Product developers        209
  • 8.10        THERMAL BARRIER AND FLAME RETARDANT NANOCOATINGS     210
    • 8.10.1    Market overview             210
    • 8.10.2    Market assessment        211
    • 8.10.3    Market drivers and trends            211
    • 8.10.4    Applications       212
    • 8.10.5    Global market size           213
    • 8.10.6    Product developers        216
  • 8.11        ANTI-ICING AND DE-ICING NANOCOATINGS         217
    • 8.11.1    Market overview             217
    • 8.11.2    Market assessment        217
    • 8.11.3    Market drivers and trends            218
    • 8.11.4    Applications       220
      • 8.11.4.1                Hydrophobic and superhydrophobic coatings (HSH)          220
      • 8.11.4.2                Heatable coatings            221
      • 8.11.4.3                Anti-freeze protein coatings        222
    • 8.11.5    Global market size           223
    • 8.11.6    Product developers        225
  • 8.12        ANTI-REFLECTIVE NANOCOATINGS           227
    • 8.12.1    Market overview             227
    • 8.12.2    Market drivers and trends            227
    • 8.12.3    Applications       229
    • 8.12.4    Global market size           229
    • 8.12.5    Product developers        231

 

9              MARKET SEGMENT ANALYSIS, BY END USER MARKET       233

  • 9.1          AVIATION AND AEROSPACE         234
    • 9.1.1      Market drivers and trends            234
    • 9.1.2      Applications       235
      • 9.1.2.1   Thermal protection         237
      • 9.1.2.2   Icing prevention               237
      • 9.1.2.3   Conductive and anti-static            237
      • 9.1.2.4   Corrosion resistant          238
      • 9.1.2.5   Insect contamination      238
    • 9.1.3      Global market size           239
      • 9.1.3.1   Nanocoatings opportunity           239
      • 9.1.3.2   Global revenues 2010-2030          240
    • 9.1.4      Companies         241
  • 9.2          AUTOMOTIVE   245
    • 9.2.1      Market drivers and trends            245
    • 9.2.2      Applications       245
      • 9.2.2.1   Anti-scratch nanocoatings            246
      • 9.2.2.2   Conductive coatings        246
      • 9.2.2.3   Hydrophobic and oleophobic      247
      • 9.2.2.4   Anti-corrosion   247
      • 9.2.2.5   UV-resistance   247
      • 9.2.2.6   Thermal barrier 248
      • 9.2.2.7   Flame retardant               248
      • 9.2.2.8   Anti-fingerprint 248
      • 9.2.2.9   Anti-bacterial     248
      • 9.2.2.10                Self-healing        249
    • 9.2.3      Global market size           249
    • 9.2.3.1   Nanocoatings opportunity           249
    • 9.2.3.2   Global revenues 2010-2030          251
    • 9.2.4      Companies         252
  • 9.3          CONSTRUCTION               256
    • 9.3.1      Market drivers and trends            256
      • 9.3.2      Applications       256
      • 9.3.2.1   Protective coatings for glass, concrete and other construction materials  258
      • 9.3.2.2   Photocatalytic nano-TiO2 coatings            258
      • 9.3.2.3   Anti-graffiti         260
      • 9.3.2.4   UV-protection   260
      • 9.3.2.5   Titanium dioxide nanoparticles  260
      • 9.3.2.6   Zinc oxide nanoparticles               261
    • 9.3.3      Global market size           261
      • 9.3.3.1   Nanocoatings opportunity           261
      • 9.3.3.2   Global revenues 2010-2030          263
    • 9.3.4      Companies         264
  • 9.4          ELECTRONICS     269
    • 9.4.1      Market drivers  269
    • 9.4.2      Applications       270
      • 9.4.2.1   Transparent functional coatings 270
      • 9.4.2.2   Anti-reflective coatings for displays          270
      • 9.4.2.3   Waterproof coatings       271
      • 9.4.2.4   Conductive nanocoatings and films          273
      • 9.4.2.5   Anti-fingerprint 273
      • 9.4.2.6   Anti-abrasion     274
      • 9.4.2.7   Conductive         274
      • 9.4.2.8   Self-healing consumer electronic device coatings               274
      • 9.4.2.9   Flexible and stretchable electronics         275
    • 9.4.3      Global market size           276
      • 9.4.3.1   Nanocoatings opportunity           276
      • 9.4.3.2   Global revenues 2010-2030          277
    • 9.4.4      Companies         278
  • 9.5          HOUSEHOLD CARE, SANITARY AND INDOOR AIR QUALITY               282
    • 9.5.1      Market drivers and trends            282
    • 9.5.2      Applications       282
      • 9.5.2.1   Self-cleaning and easy-to-clean 282
      • 9.5.2.2   Food preparation and processing              282
      • 9.5.2.3   Indoor pollutants and air quality                283
    • 9.5.3      Global market size           284
      • 9.5.3.1   Nanocoatings opportunity           284
      • 9.5.3.2   Global revenues 2010-2030          286
    • 9.5.4      Companies         287
  • 9.6          MARINE               290
    • 9.6.1      Market drivers and trends            290
    • 9.6.2      Applications       291
    • 9.6.3      Global market size           292
      • 9.6.3.1   Nanocoatings opportunity           292
      • 9.6.3.2   Global revenues 2010-2030          292
    • 9.6.4      Companies         294
  • 9.7          MEDICAL & HEALTHCARE              296
    • 9.7.1      Market drivers and trends            296
    • 9.7.2      Applications       297
      • 9.7.2.1   Anti-fouling coatings       298
      • 9.7.2.2   Anti-microbial, anti-viral and infection control     298
      • 9.7.2.3   Medical textiles 298
      • 9.7.2.4   Nanosilver          298
      • 9.7.2.5   Medical device coatings 299
    • 9.7.3      Global market size           301
      • 9.7.3.1   Nanocoatings opportunity           301
      • 9.7.3.2   Global revenues 2010-2030          302
    • 9.7.4      Companies         304
  • 9.8          MILITARY AND DEFENCE                308
    • 9.8.1      Market drivers and trends            308
    • 9.8.2      Applications       308
      • 9.8.2.1   Textiles 309
      • 9.8.2.2   Military equipment         309
      • 9.8.2.3   Chemical and biological protection           309
      • 9.8.2.4   Decontamination             309
      • 9.8.2.5   Thermal barrier 309
      • 9.8.2.6   EMI/ESD Shielding           310
      • 9.8.2.7   Anti-reflection  310
    • 9.8.3      Global market size           310
      • 9.8.3.1   Nanocoatings opportunity           310
      • 9.8.3.2   Global market revenues 2010-2030          311
    • 9.8.4      Companies         312
  • 9.9          PACKAGING       315
    • 9.9.1      Market drivers and trends            315
    • 9.9.2      Applications       316
      • 9.9.2.1   Barrier films        316
      • 9.9.2.2   Anti-microbial    317
      • 9.9.2.3   Biobased and active packaging   318
    • 9.9.3      Global market size           319
      • 9.9.3.1   Nanocoatings opportunity           319
      • 9.9.3.2   Global market revenues 2010-2030          320
    • 9.9.4      Companies         321
  • 9.10        TEXTILES AND APPAREL 323
    • 9.10.1    Market drivers and trends            323
    • 9.10.2    Applications       323
      • 9.10.2.1                Protective textiles           324
      • 9.10.2.2                UV-resistant textile coatings       329
      • 9.10.2.3                Conductive coatings        329
    • 9.10.3    Global market size           330
      • 9.10.3.1                Nanocoatings opportunity           331
      • 9.10.3.2                Global market revenues 2010-2030          333
    • 9.10.4    Companies         334
  • 9.11        ENERGY                337
    • 9.11.1    Market drivers and trends            337
    • 9.11.2    Applications       337
      • 9.11.2.1                Wind energy      337
      • 9.11.2.2                Solar      338
      • 9.11.2.3                Anti-reflection  340
      • 9.11.2.4                Gas turbine coatings       340
    • 9.11.3    Global market size           340
      • 9.11.3.1                Nanocoatings opportunity           340
      • 9.11.3.2                Global market revenues 2010-2030          342
    • 9.11.4    Companies         344
  • 9.12        OIL AND GAS      346
    • 9.12.1    Market drivers and trends            346
    • 9.12.2    Applications       347
      • 9.12.2.1                Anti-corrosion pipelines 349
      • 9.12.2.2                Drilling in sub-zero climates         350
    • 9.12.3    Global market size           350
      • 9.12.3.1                Nanocoatings opportunity           350
      • 9.12.3.2                Global market revenues 2010-2030          351
    • 9.12.4    Companies         353
  • 9.13        TOOLS AND MACHINING              355
    • 9.13.1    Market drivers and trends            355
    • 9.13.2    Applications       355
    • 9.13.3    Global market size           356
      • 9.13.3.1                Global market revenues 2010-2030          356
    • 9.13.4    Companies         357

 

10           COMPANY PROFILES       359

 

 

11           RESEARCH METHODOLOGY         562

  • 11.1        Aims and objectives of the study               562
  • 11.2        Market definition             563
    • 11.2.1    Properties of nanomaterials        563
    • 11.2.2    Categorization   564

 

12           REFERENCES       566

 

TABLES

  • Table 1: Properties of nanocoatings.        43
  • Table 2. Market drivers and trends in nanocoatings.         44
  • Table 3: End user markets for nanocoatings.        47
  • Table 4: Global revenues for nanocoatings, 2010-2030, millions USD.        50
  • Table 5: Market and technical challenges for nanocoatings.           52
  • Table 6: Technology for synthesizing nanocoatings agents.            57
  • Table 7: Film coatings techniques.            58
  • Table 8. Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces.   69
  • Table 9: Disadvantages of commonly utilized superhydrophobic coating methods.             72
  • Table 10: Applications of oleophobic & omniphobic coatings.       74
  • Table 11: Nanomaterials used in sol-gel coatings and applications.             76
  • Table 12: Graphene properties relevant to application in coatings.             79
  • Table 13: Uncoated vs. graphene coated (right) steel wire in corrosive environment solution after 30 days.             80
  • Table 14. Bactericidal characters of graphene-based materials.   82
  • Table 15: Market and applications for SWCNTs in coatings.            88
  • Table 16. Types of carbon-based nanoparticles as antimicrobial agent, their mechanisms of action and characteristics.                91
  • Table 17. Applications of nanosilver in coatings. 95
  • Table 18. Markets and applications for antimicrobial nanosilver nanocoatings.     96
  • Table 19. Antibacterial effects of ZnO NPs in different bacterial species.  108
  • Table 20. Market and applications for NDs in anti-friction and anti-corrosion coatings.      111
  • Table 21. Applications of nanocellulose in coatings.          115
  • Table 22: Applications of cellulose nanofibers(CNF).         116
  • Table 23: Applications of bacterial cellulose (BC).               120
  • Table 24. Mechanism of chitosan antimicrobial action.    123
  • Table 25. Market overview  for anti-fingerprint nanocoatings.      126
  • Table 26: Market assessment for anti-fingerprint nanocoatings.  127
  • Table 27. Market drivers and trends for anti-fingerprint nanocoatings.     128
  • Table 28: Anti-fingerprint coatings product and application developers.  133
  • Table 29. Growth Modes of Bacteria and characteristics. 138
  • Table 30. Anti-microbial nanocoatings-Nanomaterials used, principles, properties and applications             140
  • Table 31. Market assessment for anti-microbial nanocoatings.     142
  • Table 32. Market drivers and trends for anti-microbial and anti-viral nanocoatings.            142
  • Table 33. Nanomaterials used in anti-microbial and anti-viral nanocoatings and applications.         145
  • Table 34: Anti-microbial amd anti-viral nanocoatings product and application developers.              148
  • Table 35. Market overview for anti-corrosion nanocoatings.         151
  • Table 36: Market assessment for anti-corrosion nanocoatings.    153
  • Table 37. Market drivers and trends for use of anti-corrosion nanocoatings.          153
  • Table 38: Superior corrosion protection using graphene-added epoxy coatings, right, as compared to a commercial zinc-rich epoxy primer, left.         157
  • Table 39: Applications for anti-corrosion nanocoatings.   157
  • Table 40: Opportunity for anti-corrosion nanocoatings by 2030.   158
  • Table 41: Anti-corrosion nanocoatings product and application developers.          160
  • Table 42. Market overview for abrasion and wear-resistant nanocoatings.             163
  • Table 43. Market assessment for abrasion and wear-resistant nanocoatings          164
  • Table 44. Market driversaand trends for use of abrasion and wear resistant nanocoatings.              165
  • Table 45. Applications for abrasion and wear-resistant nanocoatings.       166
  • Table 46. Potential addressable market for abrasion and wear-resistant nanocoatings      166
  • Table 47: Abrasion and wear resistant nanocoatings product and application developers. 168
  • Table 48.Market assessment for barrier nanocoatings and films. 170
  • Table 49. Market drivers and trends for barrier nanocoatings       170
  • Table 50. Potential addressable market for barrier nanocoatings.               173
  • Table 51: Barrier nanocoatings product and application developers.         174
  • Table 52: Anti-fouling and easy-to-clean nanocoatings-Nanomaterials used, principles, properties and applications.                176
  • Table 53. Market assessment for anti-fouling and easy-to-clean nanocoatings.     177
  • Table 54. Market drivers and trends for use of anti-fouling and easy to clean nanocoatings.            177
  • Table 55. Anti-fouling and easy-to-clean nanocoatings markets, applications and potential addressable market.   179
  • Table 56: Anti-fouling and easy-to-clean nanocoatings product and application developers.           181
  • Table 57. Market overview for self-cleaning nanocoatings.            184
  • Table 58. Market assessment for self-cleaning (bionic) nanocoatings.       185
  • Table 59. Market drivers and trends for self-cleaning nanocoatings.          186
  • Table 60. Self-cleaning (bionic) nanocoatings-Markets and applications.  187
  • Table 61: Self-cleaning (bionic) nanocoatings product and application developers.             189
  • Table 62. Market overview for photocatalytic nanocoatings.         191
  • Table 63. Market assessment for photocatalytic nanocoatings.    192
  • Table 64. Market drivers and trends in photocatalytic nanocoatings.         193
  • Table 65. Photocatalytic nanocoatings-Markets, applications and potential addressable market size by 2027.          199
  • Table 66: Self-cleaning (photocatalytic) nanocoatings product and application developers.             201
  • Table 67. Market overview for UV resistant nanocoatings.             203
  • Table 68. Market assessment for UV-resistant nanocoatings.       204
  • Table 69: Market assessment for UV-resistant nanocoatings.       204
  • Table 70. Market drivers and trends in UV-resistant nanocoatings.            204
  • Table 71. UV-resistant nanocoatings-Markets, applications and potential addressable market.      206
  • Table 72: UV-resistant nanocoatings product and application developers.              209
  • Table 73. Market overview for thermal barrier and flame retardant nanocoatings.              210
  • Table 74. Market assessment for thermal barrier and flame retardant nanocoatings.         211
  • Table 75. Market drivers and trends in thermal barrier and flame retardant nanocoatings.              211
  • Table 76. Nanomaterials utilized in thermal barrier and flame retardant coatings and benefits thereof.    212
  • Table 77. Thermal barrier and flame retardant nanocoatings-Markets, applications and potential addressable markets.                214
  • Table 78: Thermal barrier and flame retardant nanocoatings product and application developers.               216
  • Table 79. Market overview for anti-icing and de-icing nanocoatings.          217
  • Table 80. Market assessment for anti-icing and de-icing nanocoatings.     218
  • Table 81. Market drivers and trends for use of anti-icing and de-icing nanocoatings.          218
  • Table 82: Nanomaterials utilized in anti-icing coatings and benefits thereof.          222
  • Table 83. Anti-icing and de-icing nanocoatings-Markets, applications and potential addressable markets. 223
  • Table 84: Anti-icing and de-icing nanocoatings product and application developers.           225
  • Table 85: Anti-reflective nanocoatings-Nanomaterials used, principles, properties and applications.           227
  • Table 86. Market drivers and trends in Anti-reflective nanocoatings.         227
  • Table 87. Market opportunity for anti-reflection nanocoatings.   230
  • Table 88: Anti-reflective nanocoatings product and application developers.          231
  • Table 89. Market drivers and trends for nanocoatings in aviation and aerospace. 234
  • Table 90: Types of nanocoatings utilized in aerospace and application.     236
  • Table 91: Revenues for nanocoatings in the aerospace industry, 2010-2030.           240
  • Table 92: Aerospace nanocoatings product developers.  242
  • Table 93: Market drivers and trends for nanocoatings in the automotive market. 245
  • Table 94: Anti-scratch automotive nanocoatings.               246
  • Table 95: Conductive automotive nanocoatings. 246
  • Table 96: Hydro- and oleophobic automotive nanocoatings.         247
  • Table 97: Anti-corrosion automotive nanocoatings.          247
  • Table 98: UV-resistance automotive nanocoatings.           247
  • Table 99: Thermal barrier automotive nanocoatings.        248
  • Table 100: Flame retardant automotive nanocoatings.    248
  • Table 101: Anti-fingerprint automotive nanocoatings.     248
  • Table 102: Anti-bacterial automotive nanocoatings.         248
  • Table 103: Self-healing automotive nanocoatings.             249
  • Table 104: Revenues for nanocoatings in the automotive industry, 2010-2030, US$, conservative and optimistic estimate.             251
  • Table 105: Automotive nanocoatings product developers.             252
  • Table 106: Market drivers and trends for nanocoatings in the construction market.            256
  • Table 107: Nanocoatings applied in the construction industry-type of coating, nanomaterials utilized and benefits.                257
  • Table 108: Photocatalytic nanocoatings-Markets and applications.             259
  • Table 109: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2030, US$.        263
  • Table 110: Construction, architecture and exterior protection nanocoatings product developers. 264
  • Table 111: Market drivers for nanocoatings in electronics.             269
  • Table 112: Main companies in waterproof nanocoatings for electronics, products and synthesis methods.              272
  • Table 113: Conductive electronics nanocoatings.               273
  • Table 114: Anti-fingerprint electronics nanocoatings.       273
  • Table 115: Anti-abrasion electronics nanocoatings.           274
  • Table 116: Conductive electronics nanocoatings.               274
  • Table 117: Revenues for nanocoatings in electronics, 2010-2030, US$.     277
  • Table 118: Nanocoatings applications developers in electronics. 278
  • Table 119: Market drivers and trends for nanocoatings in household care and sanitary.    282
  • Table 120: Revenues for nanocoatings in household care, sanitary and indoor air quality, 2010-2030, US$.              286
  • Table 121: Household care, sanitary and indoor air quality nanocoatings product developers.       287
  • Table 122: Market drivers and trends for nanocoatings in the marine industry.     290
  • Table 123: Nanocoatings applied in the marine industry-type of coating, nanomaterials utilized and benefits.        291
  • Table 124: Revenues for nanocoatings in the marine sector, 2010-2030, US$.        292
  • Table 125: Marine nanocoatings product developers.      294
  • Table 126: Market drivers and trends for nanocoatings in medicine and healthcare.           296
  • Table 127: Nanocoatings applied in the medical industry-type of coating, nanomaterials utilized, benefits and applications.       298
  • Table 128: Types of advanced coatings applied in medical devices and implants.  300
  • Table 129: Nanomaterials utilized in medical implants.    300
  • Table 130: Revenues for nanocoatings in medical and healthcare, 2010-2030, US$.            303
  • Table 131: Medical and healthcare nanocoatings product developers.     304
  • Table 132: Market drivers and trends for nanocoatings in the military and defence industry.         308
  • Table 133: Revenues for nanocoatings in military and defence, 2010-2030, US$.  311
  • Table 134: Military and defence nanocoatings product and application developers.           312
  • Table 135: Market drivers and trends for nanocoatings in the packaging industry.               315
  • Table 136: Revenues for nanocoatings in packaging, 2010-2030, US$.       320
  • Table 137: Packaging nanocoatings companies.  321
  • Table 138: Market drivers and trends for nanocoatings in the textiles and apparel industry.           323
  • Table 139: Applications in textiles, by advanced materials type and benefits thereof.        324
  • Table 140: Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications.       326
  • Table 141: Applications and benefits of graphene in textiles and apparel.                329
  • Table 142: Revenues for nanocoatings in textiles and apparel, 2010-2030, US$.    333
  • Table 143: Textiles nanocoatings product developers.     334
  • Table 144: Market drivers and trends for nanocoatings in the energy industry.     337
  • Table 145: Revenues for nanocoatings in energy, 2010-2030, US$.             342
  • Table 146: Renewable energy nanocoatings product developers. 344
  • Table 147: Market drivers and trends for nanocoatings in the oil and gas exploration industry.      346
  • Table 148: Desirable functional properties for the oil and gas industry afforded by nanomaterials in coatings.        348
  • Table 149: Revenues for nanocoatings in oil and gas exploration, 2010-2030, US$.              351
  • Table 150: Oil and gas nanocoatings product developers.              353
  • Table 151: Market drivers and trends for nanocoatings in tools and machining.    355
  • Table 152: Revenues for nanocoatings in Tools and manufacturing, 2010-2030, US$.         356
  • Table 153: Tools and manufacturing nanocoatings product and application developers.   357
  • Table 156. Photocatalytic coating schematic.       429
  • Table 158: Categorization of nanomaterials.         564

 

FIGURES

  • Figure 1: Global revenues for nanocoatings, 2010-2030, millions USD.      51
  • Figure 2: Regional demand for nanocoatings, 2019, millions USD.               52
  • Figure 3: Hydrophobic fluoropolymer nanocoatings on electronic circuit boards. 55
  • Figure 4: Nanocoatings synthesis techniques.      57
  • Figure 5: Techniques for constructing superhydrophobic coatings on substrates. 60
  • Figure 6: Electrospray deposition.             61
  • Figure 7: CVD technique.              62
  • Figure 8: Schematic of ALD.          64
  • Figure 9: SEM images of different layers of TiO2 nanoparticles in steel surface.    65
  • Figure 10: The coating system is applied to the surface.The solvent evaporates.  67
  • Figure 11: A first organization takes place where the silicon-containing bonding component (blue dots in figure 2) bonds covalently with the surface and cross-links with neighbouring molecules to form a strong three-dimensional.                67
  • Figure 12: During the curing, the compounds or- ganise themselves in a nanoscale monolayer. The fluorine-containing repellent component (red dots in figure 3) on top makes the glass hydro- phobic and oleophobic.               67
  • Figure 13: (a) Water drops on a lotus leaf.             69
  • Figure 14. A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°.              70
  • Figure 15: Contact angle on superhydrophobic coated surface.   71
  • Figure 16: SLIPS repellent coatings.          74
  • Figure 17: Omniphobic coatings.                75
  • Figure 18: Graphair membrane coating. 79
  • Figure 19: Antimicrobial activity of Graphene oxide (GO).              81
  • Figure 20: Conductive graphene coatings for rotor blades.             83
  • Figure 21: Water permeation through a brick without (left) and with (right) “graphene paint” coating.       84
  • Figure 22: Graphene heat transfer coating.           85
  • Figure 23 Carbon nanotube cable coatings.           86
  • Figure 24 Formation of a protective CNT-based char layer during combustion of a CNT-modified coating. 87
  • Figure 25. Mechanism of antimicrobial activity of carbon nanotubes.       87
  • Figure 26: Fullerene schematic. 90
  • Figure 27: Hydrophobic easy-to-clean coating.    93
  • Figure 28: Anti-fogging nanocoatings on protective eyewear.       93
  • Figure 29: Silica nanoparticle anti-reflection coating on glass.       94
  • Figure 30 Anti-bacterials mechanism of silver nanoparticle coating.           95
  • Figure 31: Mechanism of photocatalysis on a surface treated with TiO2 nanoparticles.      98
  • Figure 32:  Schematic showing the self-cleaning phenomena on superhydrophilic surface.              99
  • Figure 33: Titanium dioxide-coated glass (left) and ordinary glass (right). 100
  • Figure 34:  Self-Cleaning mechanism utilizing photooxidation.      101
  • Figure 35: Schematic of photocatalytic air purifying pavement.   102
  • Figure 36: Schematic of photocatalytic indoor air purification filter.           103
  • Figure 37: Schematic of photocatalytic water purification.              104
  • Figure 38. Schematic of antibacterial activity of ZnO NPs.               108
  • Figure 39: Types of nanocellulose.            114
  • Figure 40: CNF gel.           116
  • Figure 41: TEM image of cellulose nanocrystals. 117
  • Figure 42: Extracting CNC from trees.      118
  • Figure 43: An iridescent biomimetic cellulose multilayer film remains after water that contains cellulose nanocrystals evaporates.        119
  • Figure 44: CNC slurry.     119
  • Figure 45. TEM images of Burkholderia seminalis treated with (a, c) buffer (control) and (b, d) 2.0 mg/mL chitosan; (A: additional layer; B: membrane damage).               123
  • Figure 46: Anti-fingerprint nanocoating on glass. 126
  • Figure 47: Schematic of anti-fingerprint nanocoatings.    130
  • Figure 48: Toray anti-fingerprint film (left) and an existing lipophilic film (right).   130
  • Figure 49: Types of anti-fingerprint coatings applied to touchscreens.      131
  • Figure 50: Anti-fingerprint nanocoatings applications.      131
  • Figure 51: Revenues for anti-fingerprint nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD). 133
  • Figure 52. Schematic of anti-viral coating using nano-actives for inactivation of any adhered virus on the surfaces.                139
  • Figure 53. Nano-coated self-cleaning touchscreen.           147
  • Figure 54: Revenues for Anti-microbial and anti-viral nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD).              148
  • Figure 55: Nanovate CoP coating.              155
  • Figure 56: 2000 hour salt fog results for Teslan nanocoatings.      155
  • Figure 57: AnCatt proprietary polyaniline nanodispersion and coating structure.  156
  • Figure 58: Hybrid self-healing sol-gel coating.      156
  • Figure 59: Schematic of anti-corrosion via superhydrophobic surface.      156
  • Figure 60: Potential addressable market for anti-corrosion nanocoatings by 2030.               159
  • Figure 61: Revenues for anti-corrosion nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD).           160
  • Figure 62: Revenues for abrasion and wear resistant nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD). 167
  • Figure 63: Nanocomposite oxygen barrier schematic.      171
  • Figure 64:  Schematic of barrier nanoparticles deposited on flexible substrates.   172
  • Figure 65: Revenues for barrier nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD).    174
  • Figure 66: Anti-fouling treatment for heat-exchangers.   179
  • Figure 67: Removal of graffiti after application of nanocoating.    179
  • Figure 68: Potential addressable market for anti-fouling and easy-to-clean nanocoatings by 2030.                180
  • Figure 69: Revenues for anti-fouling and easy-to-clean nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD).              181
  • Figure 70: Self-cleaning superhydrophobic coating schematic.      186
  • Figure 71: Potential addressable market for self-cleaning (bionic) nanocoatings by 2030.  188
  • Figure 72. Revenues for self-cleaning (bionic) nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates               189
  • Figure 73.  Schematic showing the self-cleaning phenomena on superhydrophilic surface.              194
  • Figure 74: Schematic of photocatalytic air purifying pavement.   195
  • Figure 75:  Self-Cleaning mechanism utilizing photooxidation.      196
  • Figure 76: Photocatalytic oxidation (PCO) air filter.            197
  • Figure 77: Schematic of photocatalytic water purification.              197
  • Figure 78: Tokyo Station GranRoof. The titanium dioxide coating ensures long-lasting whiteness. 199
  • Figure 79: Potential addressable market for self-cleaning (photocatalytic) nanocoatings by 2030.  200
  • Figure 80. Revenues for self-cleaning (photocatalytic) nanocoatings, 2019-2030, US$, adjusted for COVID-19 related demand, conservative and high estimates             200
  • Figure 81: Markets for UV-resistant nanocoatings, %, 2019.           207
  • Figure 82: Potential addressable market for UV-resistant nanocoatings.  208
  • Figure 83: Revenues for UV-resistant nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD).           209
  • Figure 84: Flame retardant nanocoating.               213
  • Figure 85: Markets for thermal barrier and flame retardant nanocoatings, %, 2019.            214
  • Figure 86: Potential addressable market for thermal barrier and flame retardant nanocoatings by 2030.    215
  • Figure 87: Revenues for thermal barrier and flame retardant  nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD).              216
  • Figure 88: Nanocoated surface in comparison to existing surfaces.             220
  • Figure 89: NANOMYTE® SuperAi, a Durable Anti-ice Coating.         221
  • Figure 90: SLIPS coating schematic.          221
  • Figure 91: Carbon nanotube based anti-icing/de-icing device.      222
  • Figure 92: CNT anti-icing nanocoating.    222
  • Figure 93: Potential addressable market for anti-icing and de-icing nanocoatings by 2030.               224
  • Figure 94: Revenues for anti-icing and de-icing nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD). 224
  • Figure 95: Schematic of AR coating utilizing nanoporous coating. 229
  • Figure 96: Demo solar panels coated with nanocoatings. 229
  • Figure 97: Revenues for anti-reflective nanocoatings, 2019-2030, adjusted for COVID-19 related demand, conservative and high estimates (millions USD).           230
  • Figure 98 Nanocoatings market by end user sector, 2010-2030, USD.        234
  • Figure 99: Nanocoatings in the aerospace industry, by nanocoatings type %, 2019.              239
  • Figure 100: Potential addressable market for nanocoatings in aerospace by 2030.               240
  • Figure 101: Revenues for nanocoatings in the aerospace industry, 2010-2030, US$.            241
  • Figure 102: Nanocoatings in the automotive industry, by coatings type % 2019.    250
  • Figure 103: Potential addressable market for nanocoatings in the automotive sector by 2030.        250
  • Figure 104: Revenues for nanocoatings in the automotive industry, 2010-2030, US$.         252
  • Figure 105: Mechanism of photocatalytic NOx oxidation on active concrete road.                259
  • Figure 106: Jubilee Church in Rome, the outside coated with nano photocatalytic TiO2 coatings.  259
  • Figure 107: FN® photocatalytic coating, applied in the Project of Ecological Sound Barrier, in Prague.         260
  • Figure 108 Smart window film coatings based on indium tin oxide nanocrystals.  261
  • Figure 109: Nanocoatings in construction, architecture and exterior protection, by coatings type %, 2018.                262
  • Figure 110: Potential addressable market for nanocoatings in the construction, architecture and exterior coatings sector by 2030.  263
  • Figure 111: Revenues for nanocoatings in construction, architecture and exterior protection, 2010-2030, US$.      264
  • Figure 112: Reflection of light on anti-glare coating for display.    271
  • Figure 113: Nanocoating submerged in water.    271
  • Figure 114: Phone coated in WaterBlock submerged in water tank.           272
  • Figure 115: Self-healing patent schematic.            275
  • Figure 116: Self-healing glass developed at the University of Tokyo.          275
  • Figure 117: Royole flexible display.           276
  • Figure 118: Potential addressable market for nanocoatings in electronics by 2030.              277
  • Figure 119: Revenues for nanocoatings in electronics, 2010-2030, US$, conservative and optimistic estimates.      278
  • Figure 120: Nanocoatings in household care, sanitary and indoor air quality, by coatings type %, 2018.      285
  • Figure 121: Potential addressable market for nanocoatings in household care, sanitary and indoor air filtration by 2030.     285
  • Figure 122: Revenues for nanocoatings in household care, sanitary and indoor air quality, 2010-2030, US$.             287
  • Figure 123: Potential addressable market for nanocoatings in the marine sector by 2030.                 292
  • Figure 124: Revenues for nanocoatings in the marine sector, 2010-2030, US$.      293
  • Figure 125: Anti-bacertial sol-gel nanoparticle silver coating.        299
  • Figure 126: Nanocoatings in medical and healthcare, by coatings type %, 2019.    302
  • Figure 127: Potential addressable market for nanocoatings in medical & healthcare by 2030.         302
  • Figure 128: Revenues for nanocoatings in medical and healthcare, 2010-2030, US$.           304
  • Figure 129: Nanocoatings in military and defence, by nanocoatings type %, 2018.                310
  • Figure 130: Potential addressable market nanocoatings in military and defence by 2030.  311
  • Figure 131: Revenues for nanocoatings in military and defence, 2010-2030, US$. 312
  • Figure 132: Nanocomposite oxygen barrier schematic.    317
  • Figure 133: Oso fresh food packaging incorporating antimicrobial silver.  317
  • Figure 134: Potential addressable market for nanocoatings in packaging by 2030.                319
  • Figure 135: Revenues for nanocoatings in packaging, 2010-2030, US$.      321
  • Figure 136: Omniphobic-coated fabric.   324
  • Figure 137: Work out shirt incorporating ECG sensors, flexible lights and heating elements.           330
  • Figure 138: Nanocoatings in textiles and apparel, by coatings type %, 2018.            332
  • Figure 139: Potential addressable market for nanocoatings in textiles and apparel by 2030.             332
  • Figure 140: Revenues for nanocoatings in textiles and apparel, 2010-2030, US$.  334
  • Figure 141: Self-Cleaning Hydrophobic Coatings on solar panels. 339
  • Figure 142: Znshine Graphene Series solar coatings.         339
  • Figure 143: Nanocoating for solar panels.              339
  • Figure 144: Nanocoatings in renewable energy, by coatings type %.          341
  • Figure 145: Potential addressable market for nanocoatings in renewable energy by 2030.                342
  • Figure 146: Revenues for nanocoatings in energy, 2010-2030, US$.            343
  • Figure 147: Oil-Repellent self-healing nanocoatings.         349
  • Figure 148: Nanocoatings in oil and gas exploration, by coatings type %. 351
  • Figure 149: Potential addressable market for nanocoatings in oil and gas exploration by 2030.       351
  • Figure 150: Revenues for nanocoatings in oil and gas exploration, 2010-2030, US$.            353
  • Figure 151: Revenues for nanocoatings in Tools and manufacturing, 2010-2030, US$.        357
  • Figure 154. Lab tests on DSP coatings.     420
  • Figure 155: Self-healing mechanism of SmartCorr coating.             428
  • Figure 156. GrapheneCA anti-bacterial and anti-viral coating.       443
  • Figure 157. Microlyte® Matrix bandage for surgical wounds.         461
  • Figure 158. Self-cleaning nanocoating applied to face masks.        468
  • Figure 160. NanoSeptic surfaces.              513
  • Figure 161. NascNanoTechnology personnel shown applying MEDICOAT to airport luggage carts. 520

 

 

The Global Market for Sol-Gel Coatings, PDF
The Global Market for Sol-Gel Coatings, PDF
Instant PDF download on completion of purchase.

The Global Market for Sol Gel Coatings, PDF and Print Edition.
The Global Market for Sol Gel Coatings, PDF and Print Edition.
PDF plus hard copy in glossy print format. 5-7 working days delivery. Price includes postage and packing.

 

To purchase by invoice (bank transfer or cheque) contact info@futuremarketsinc.com.