Nanocellulose, carbon nanotubes, graphene and other 2D materials will make a huge impact in the next 10-15 years.
Many industries including electronics, automotive, aerospace, telecommunications and healthcare are exploring the use of high impact nanomaterials such as nanocellulose, carbon nanotubes and graphene. Other 2-D nanomaterials such as silicene, graphyne, graphdiyne, grapahane and molybdenum disulfide are also under intense study. CNTs and graphene are the strongest, lightest and most conductive fibers known to man, with a performance-per-weight greater than any other material.
All of these materials possess outstanding properties and represent potentially the most economically viable and lucrative nanomaterials through to the middle of the next decade and beyond. Most are relatively new nanomaterials but are coming onto the market fast and will find widespread applications over the next decade in sectors such as composites, electronics, filtration, medical and life sciences, oil and energy, automotive, aerospace, coatings, military, consumer goods and sensors.
This 1031 page report outlines the global scenario for these materials including:
- Industry growth and prospects
- Industry structure
- Historical data
- Market forecasts
- Key market drivers and restraints
- Technology roadmaps and application timelines
- Over 250 tables and figures
- Producers, research centre and application developer profiles
Published January 2017 | 1031 pages
1 RESEARCH METHODOLOGY………………………………………………………………………………………….. 60
1.1 NANOMATERIALS MARKET RATING SYSTEM…………………………………………………………… 61
1.2 COMMERCIAL IMPACT RATING SYSTEM…………………………………………………………………… 62
1.3 MARKET CHALLENGES RATING SYSTEM…………………………………………………………………. 63
2 EXECUTIVE SUMMARY……………………………………………………………………………………………………. 65
2.1 CARBON NANOTUBES…………………………………………………………………………………………………. 65
2.1.1 Exceptional properties……………………………………………………………………………………………. 67
2.1.2 Products and applications………………………………………………………………………………………. 69
2.1.3 Threat from the graphene market…………………………………………………………………………… 69
2.1.4 Production……………………………………………………………………………………………………………… 70
2.1.4.1 Multi-walled nanotube (MWNT) production……………………………………………………. 70
2.1.4.2 Single-walled nanotube (SWNT) production………………………………………………….. 71
2.1.5 Global demand for carbon nanotubes……………………………………………………………………. 73
2.1.5.1 Current products……………………………………………………………………………………………. 75
2.1.5.2 Future products……………………………………………………………………………………………… 76
2.1.6 Market drivers and trends………………………………………………………………………………………. 76
2.1.6.1 Electronics……………………………………………………………………………………………………… 76
2.1.6.2 Electric vehicles and lithium-ion batteries………………………………………………………. 77
2.1.7 Market and production challenges…………………………………………………………………………. 78
2.1.7.1 Safety issues…………………………………………………………………………………………………. 78
2.1.7.2 Dispersion……………………………………………………………………………………………………… 78
2.1.7.3 Synthesis and supply quality………………………………………………………………………….. 79
2.1.7.4 Cost……………………………………………………………………………………………………………….. 79
2.1.7.5 Competition from other materials…………………………………………………………………… 79
2.2 TWO-DIMENSIONAL (2D) MATERIALS………………………………………………………………………… 79
2.3 GRAPHENE…………………………………………………………………………………………………………………… 80
2.3.1 Products…………………………………………………………………………………………………………………. 81
2.3.2 Short-term opportunities…………………………………………………………………………………………. 81
2.3.3 Medium-term opportunities…………………………………………………………………………………….. 83
2.3.4 Remarkable properties…………………………………………………………………………………………… 84
2.3.5 Global funding and initiatives…………………………………………………………………………………. 84
2.3.5.1 Europe…………………………………………………………………………………………………………… 84
2.3.5.2 Asia……………………………………………………………………………………………………………….. 84
2.3.5.3 United States…………………………………………………………………………………………………. 85
2.3.6 Products and applications………………………………………………………………………………………. 86
2.3.7 Production……………………………………………………………………………………………………………… 87
2.3.8 Market drivers and trends………………………………………………………………………………………. 89
2.3.8.1 Production exceeds demand…………………………………………………………………………. 89
2.3.8.2 Market revenues remain small………………………………………………………………………. 90
2.3.8.3 Scalability and cost………………………………………………………………………………………… 91
2.3.8.4 Applications hitting the market……………………………………………………………………….. 92
2.3.8.5 Wait and see?……………………………………………………………………………………………….. 93
2.3.8.6 Asia and US lead the race……………………………………………………………………………… 93
2.3.8.7 Competition from other materials…………………………………………………………………… 94
2.3.9 Market and technical challenges……………………………………………………………………………. 95
2.3.9.1 Inconsistent supply quality…………………………………………………………………………….. 95
2.3.9.2 Functionalization and dispersion……………………………………………………………………. 95
2.3.9.3 Cost……………………………………………………………………………………………………………….. 96
2.3.9.4 Product integration………………………………………………………………………………………… 96
2.3.9.5 Regulation and standards……………………………………………………………………………… 96
2.3.9.6 Lack of a band gap………………………………………………………………………………………… 96
2.4 NANOCELLULOSE………………………………………………………………………………………………………… 97
2.4.1 Applications……………………………………………………………………………………………………………. 98
2.4.2 Production……………………………………………………………………………………………………………. 101
2.4.3 Market drivers………………………………………………………………………………………………………. 103
2.4.3.1 Sustainable materials…………………………………………………………………………………… 103
2.4.3.2 Improved products……………………………………………………………………………………….. 103
2.4.3.3 Unique properties………………………………………………………………………………………… 104
2.4.3.4 Recent improvements in production and product integration……………………….. 105
2.4.4 Market and technical challenges………………………………………………………………………….. 105
2.4.4.1 Characterization…………………………………………………………………………………………… 105
2.4.4.2 Production……………………………………………………………………………………………………. 105
2.4.4.3 Functionalization………………………………………………………………………………………….. 105
2.4.4.4 Moisture absorption and aggregation…………………………………………………………… 106
2.4.4.5 Scalability…………………………………………………………………………………………………….. 106
2.4.4.6 Lack of current products………………………………………………………………………………. 106
3 INTRODUCTION………………………………………………………………………………………………………………. 112
3.1 Properties of nanomaterials………………………………………………………………………………………….. 112
3.2 Categorization………………………………………………………………………………………………………………. 113
4 CARBON NANOTUBES………………………………………………………………………………………………….. 115
4.1 Multi-walled nanotubes (MWNT)………………………………………………………………………………….. 115
4.2 Single-wall carbon nanotubes (SWNT)………………………………………………………………………… 116
4.2.1 Single-chirality……………………………………………………………………………………………………… 118
4.3 Double-walled carbon nanotubes (DWNTs)…………………………………………………………………. 119
4.4 Few-walled carbon nanotubes (FWNTs)………………………………………………………………………. 120
4.5 Carbon Nanohorns (CNHs)………………………………………………………………………………………….. 120
4.6 Carbon Onions……………………………………………………………………………………………………………… 121
4.7 Fullerenes…………………………………………………………………………………………………………………….. 122
4.8 Boron Nitride nanotubes (BNNTs)………………………………………………………………………………… 123
4.9 Properties…………………………………………………………………………………………………………………….. 124
4.10 Applications of carbon nanotubes…………………………………………………………………………….. 125
4.10.1 High volume applications…………………………………………………………………………………. 125
4.10.2 Low volume applications………………………………………………………………………………….. 126
4.10.3 Novel applications……………………………………………………………………………………………. 126
5 GRAPHENE……………………………………………………………………………………………………………………… 127
5.1 History………………………………………………………………………………………………………………………….. 127
5.2 Forms of graphene……………………………………………………………………………………………………….. 128
5.3 Properties…………………………………………………………………………………………………………………….. 130
5.4 3D Graphene………………………………………………………………………………………………………………… 131
5.5 Graphene Quantum Dots……………………………………………………………………………………………… 131
5.5.1 Synthesis……………………………………………………………………………………………………………… 132
5.5.2 Applications………………………………………………………………………………………………………….. 133
5.5.3 Producers…………………………………………………………………………………………………………….. 134
6 OTHER 2D MATERIALS………………………………………………………………………………………………….. 135
6.1 Black phosphorus/Phosphorene…………………………………………………………………………………… 136
6.1.1 Properties…………………………………………………………………………………………………………….. 136
6.1.2 Applications………………………………………………………………………………………………………….. 138
6.2 C2N………………………………………………………………………………………………………………………………. 138
6.2.1 Properties…………………………………………………………………………………………………………….. 139
6.2.2 Applications………………………………………………………………………………………………………….. 140
6.3 Carbon nitride………………………………………………………………………………………………………………. 140
6.3.1 Properties…………………………………………………………………………………………………………….. 140
6.3.2 Applications………………………………………………………………………………………………………….. 141
6.4 Germanene………………………………………………………………………………………………………………….. 141
6.4.1 Properties…………………………………………………………………………………………………………….. 141
6.4.2 Applications………………………………………………………………………………………………………….. 142
6.5 Graphdiyne…………………………………………………………………………………………………………………… 142
6.5.1 Properties…………………………………………………………………………………………………………….. 143
6.5.2 Applications………………………………………………………………………………………………………….. 144
6.6 Graphane……………………………………………………………………………………………………………………… 144
6.6.1 Properties…………………………………………………………………………………………………………….. 145
6.6.2 Applications………………………………………………………………………………………………………….. 145
6.7 Hexagonal boron nitride……………………………………………………………………………………………….. 146
6.7.1 Properties…………………………………………………………………………………………………………….. 147
6.7.2 Applications………………………………………………………………………………………………………….. 148
6.7.3 Producers…………………………………………………………………………………………………………….. 148
6.8 Molybdenum disulfide (MoS2)………………………………………………………………………………………. 148
6.8.1 Properties…………………………………………………………………………………………………………….. 149
6.8.2 Applications………………………………………………………………………………………………………….. 150
6.9 Rhenium disulfide (ReS2) and diselenide (ReSe2)………………………………………………………. 152
6.9.1 Properties…………………………………………………………………………………………………………….. 153
6.9.2 Applications………………………………………………………………………………………………………….. 153
6.10 Silicene…………………………………………………………………………………………………………………….. 154
6.10.1 Properties………………………………………………………………………………………………………… 154
6.10.2 Applications……………………………………………………………………………………………………… 155
6.11 Stanene/tinene…………………………………………………………………………………………………………. 157
6.11.1 Properties………………………………………………………………………………………………………… 158
6.12 Applications……………………………………………………………………………………………………………… 159
6.13 Tungsten diselenide…………………………………………………………………………………………………. 159
6.13.1 Properties………………………………………………………………………………………………………… 160
6.13.2 Applications……………………………………………………………………………………………………… 160
7 NANOCELLULOSE…………………………………………………………………………………………………………. 160
7.1 What is nanocellulose?………………………………………………………………………………………………… 160
7.2 Types of nanocellulose…………………………………………………………………………………………………. 162
7.3 NanoFibrillar Cellulose (NFC)………………………………………………………………………………………. 165
7.3.1.1 Applications…………………………………………………………………………………………………. 165
7.3.1.2 Production methods…………………………………………………………………………………….. 166
7.3.2 NanoCrystalline Cellulose (NCC)…………………………………………………………………………. 168
7.3.2.1 Applications…………………………………………………………………………………………………. 169
7.3.3 Bacterial Cellulose (BCC)…………………………………………………………………………………….. 170
7.3.3.1 Applications…………………………………………………………………………………………………. 170
7.4 Synthesis of cellulose materials……………………………………………………………………………………. 171
7.4.1 Microcrystalline cellulose (MCC)………………………………………………………………………….. 171
7.4.2 Microfibrillated cellulose (MFC)……………………………………………………………………………. 172
7.4.3 Nanofibrillated cellulose (MFC)…………………………………………………………………………….. 172
7.4.4 Cellulose nanocrystals (CNC)………………………………………………………………………………. 173
7.4.5 Bacterial cellulose particles (CNC)……………………………………………………………………….. 174
7.5 Properties of nanocellulose………………………………………………………………………………………….. 174
7.6 Advantages of nanocellulose……………………………………………………………………………………….. 176
8 COMPARATIVE ANALYSIS OF GRAPHENE AND CARBON NANOTUBES………………… 177
8.1 Comparative properties………………………………………………………………………………………………… 178
8.2 Cost and production……………………………………………………………………………………………………… 179
8.3 Carbon nanotube-graphene hybrids…………………………………………………………………………….. 180
8.4 Competitive market analysis of carbon nanotubes and graphene………………………………… 181
9 CARBON NANOTUBE SYNTHESIS……………………………………………………………………………….. 183
9.1 Arc discharge synthesis……………………………………………………………………………………………….. 184
9.2 Chemical Vapor Deposition (CVD)……………………………………………………………………………….. 185
9.3 Plasma enhanced chemical vapor deposition (PECVD)……………………………………………….. 186
9.4 High-pressure carbon monoxide synthesis…………………………………………………………………… 187
9.4.1 High Pressure CO (HiPco)…………………………………………………………………………………… 187
9.4.2 CoMoCAT…………………………………………………………………………………………………………….. 187
9.5 Flame synthesis……………………………………………………………………………………………………………. 188
9.6 Laser ablation synthesis……………………………………………………………………………………………….. 189
9.7 Silane solution method…………………………………………………………………………………………………. 190
10 GRAPHENE SYNTHESIS………………………………………………………………………………………………… 191
10.1 Large area graphene films……………………………………………………………………………………….. 191
10.2 Graphene oxide flakes and graphene nanoplatelets………………………………………………… 192
10.3 Production methods…………………………………………………………………………………………………. 193
10.3.1 Production directly from natural graphite ore……………………………………………………. 195
10.3.2 Alternative starting materials……………………………………………………………………………. 195
10.3.3 Quality……………………………………………………………………………………………………………… 195
10.4 Synthesis and production by types of graphene………………………………………………………. 196
10.4.1 Graphene nanoplatelets (GNPs)……………………………………………………………………… 197
10.4.2 Graphene nanoribbons…………………………………………………………………………………….. 197
10.4.3 Large-area graphene films……………………………………………………………………………….. 198
10.4.4 Graphene oxide flakes (GO)……………………………………………………………………………. 199
10.5 Pros and cons of graphene production methods……………………………………………………… 200
10.5.1 Chemical Vapor Deposition (CVD)…………………………………………………………………… 201
10.5.2 Exfoliation method……………………………………………………………………………………………. 202
10.5.3 Epitaxial growth method…………………………………………………………………………………… 202
10.5.4 Wet chemistry method (liquid phase exfoliation)……………………………………………… 203
10.5.5 Micromechanical cleavage method………………………………………………………………….. 204
10.5.6 Green reduction of graphene oxide………………………………………………………………….. 204
10.5.7 Plasma…………………………………………………………………………………………………………….. 205
10.6 Recent synthesis methods……………………………………………………………………………………….. 205
10.6.1 Ben-Gurion University of the Negev (BGU) and University of Western Australia 205
10.6.2 Graphene Frontiers………………………………………………………………………………………….. 205
10.6.3 MIT and the University of Michigan………………………………………………………………….. 206
10.6.4 Oak Ridge National Laboratory/University of Texas/General Graphene………….. 207
10.6.5 University of Florida/Donghua University…………………………………………………………. 207
10.6.6 Ulsan National Institute of Science and Technology (UNIST) and Case Western Reserve University……………………………………………………………………………………………………………. 208
10.6.7 Trinity College Dublin……………………………………………………………………………………….. 208
10.6.8 Sungkyunkwan University and Samsung Advanced Institute of Technology (SAIT) 208
10.6.9 Korea Institute of Science and Technology (KIST), Chonbuk National University and KRICT 208
10.6.10 NanoXplore……………………………………………………………………………………………………… 208
10.6.11 Carbon Sciences Inc………………………………………………………………………………………… 208
10.6.12 California Institute of Technology…………………………………………………………………….. 209
10.6.13 Shanghai Institute of Microsystem and Information Technology………………………. 209
10.6.14 Oxford University……………………………………………………………………………………………… 209
10.6.15 University of Tokyo…………………………………………………………………………………………… 209
10.7 Synthesis methods by company………………………………………………………………………………. 211
10.8 NANOCELLULOSE SYNTHESIS…………………………………………………………………………….. 213
10.8.1 Production methods…………………………………………………………………………………………. 214
10.8.1.1 Nanofibrillated cellulose production methods………………………………………………. 216
10.8.1.2 Nanocrystalline celluose production methods……………………………………………… 216
11 CARBON NANOTUBES MARKET STRUCTURE…………………………………………………………… 217
12 GRAPHENE MARKET STRUCTURE………………………………………………………………………………. 219
13 NANOCELLULOSE MARKET STRUCTURE………………………………………………………………….. 222
14 REGULATIONS AND STANDARDS……………………………………………………………………………….. 229
14.1 Europe……………………………………………………………………………………………………………………… 229
14.1.1 REACH…………………………………………………………………………………………………………….. 229
14.1.2 Biocidal Products Regulation…………………………………………………………………………… 230
14.1.3 National nanomaterials registers……………………………………………………………………… 230
14.1.4 Cosmetics regulation……………………………………………………………………………………….. 231
14.1.5 Food safety………………………………………………………………………………………………………. 232
14.2 United States……………………………………………………………………………………………………………. 233
14.2.1 Toxic Substances Control Act (TSCA)……………………………………………………………… 233
14.3 Asia………………………………………………………………………………………………………………………….. 234
14.3.1 Japan……………………………………………………………………………………………………………….. 234
14.3.2 South Korea…………………………………………………………………………………………………….. 234
14.3.3 Taiwan……………………………………………………………………………………………………………… 234
14.3.4 Australia…………………………………………………………………………………………………………… 234
15 CARBON NANOTUBES PATENTS…………………………………………………………………………………. 236
16 GRAPHENE PATENTS……………………………………………………………………………………………………. 240
16.1 Fabrication processes………………………………………………………………………………………………. 240
16.2 Academia…………………………………………………………………………………………………………………. 240
16.3 Regional leaders………………………………………………………………………………………………………. 241
17 NANOCELLULOSE PATENTS………………………………………………………………………………………… 245
18 TECHNOLOGY READINESS LEVEL………………………………………………………………………………. 251
18.1 Carbon nanotubes……………………………………………………………………………………………………. 251
18.2 Graphene…………………………………………………………………………………………………………………. 253
18.3 Nanodiamonds…………………………………………………………………………………………………………. 254
18.4 Nanocellulose…………………………………………………………………………………………………………… 255
19 CARBON NANOTUBES END USER MARKET SEGMENT ANALYSIS…………………………. 257
19.1 Production volumes in metric tons, 2010-2025………………………………………………………… 257
19.2 Carbon nanotube producer production capacities……………………………………………………. 262
19.3 Regional demand for carbon nanotubes………………………………………………………………….. 264
19.3.1 Japan……………………………………………………………………………………………………………….. 266
19.3.2 China……………………………………………………………………………………………………………….. 267
19.4 Main carbon nanotubes producers…………………………………………………………………………… 268
19.4.1 SWNT production…………………………………………………………………………………………….. 269
19.4.1.1 OCSiAl…………………………………………………………………………………………………………. 269
19.4.1.2 FGV Cambridge Nanosystems…………………………………………………………………….. 269
19.4.1.3 Zeon Corporation…………………………………………………………………………………………. 269
19.5 Price of carbon nanotubes-MWNTs, SWNTs and FWNTs……………………………………….. 270
19.5.1 MWNTs……………………………………………………………………………………………………………. 270
19.5.2 SWNTs…………………………………………………………………………………………………………….. 271
19.6 APPLICATIONS……………………………………………………………………………………………………….. 272
20 GRAPHENE END USER MARKET SEGMENT ANALYSIS……………………………………………. 273
20.1 Graphene production volumes 2010-2025……………………………………………………………….. 274
20.2 Graphene producers and production capacities………………………………………………………. 275
21 NANOCELLULOSE END USER MARKET SEGMENT ANALYSIS………………………………… 281
21.1 Production of nanocellulose……………………………………………………………………………………… 281
21.1.1 Microfibrillated cellulose…………………………………………………………………………………… 281
21.1.2 Cellulose nanofiber production………………………………………………………………………… 281
21.1.3 Cellulose nanocrystal production……………………………………………………………………… 282
21.1.4 Production volumes, by region…………………………………………………………………………. 283
21.1.5 Applications……………………………………………………………………………………………………… 284
21.1.6 Prices……………………………………………………………………………………………………………….. 287
22 ADHESIVES…………………………………………………………………………………………………………………….. 288
22.1 MARKET DRIVERS AND TRENDS…………………………………………………………………………. 289
22.1.1 Thermal management in high temperature electronics……………………………………. 289
22.1.2 Environmental sustainability…………………………………………………………………………….. 289
22.2 PROPERTIES AND APPLICATIONS………………………………………………………………………. 289
22.3 MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 290
22.3.1 Total market size……………………………………………………………………………………………… 291
22.3.2 High impact nanomaterials opportunity…………………………………………………………………… 291
22.4 MARKET CHALLENGES…………………………………………………………………………………………. 291
22.5 APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 292
22.5.1 Carbon nanotubes……………………………………………………………………………………………. 292
22.5.2 Graphene…………………………………………………………………………………………………………. 293
23 AEROSPACE…………………………………………………………………………………………………………………… 293
23.1 MARKET DRIVERS AND TRENDS…………………………………………………………………………. 293
23.1.1 Safety………………………………………………………………………………………………………………. 294
23.1.2 Reduced fuel consumption and costs………………………………………………………………. 294
23.1.3 Increased durability………………………………………………………………………………………….. 294
23.1.4 Multi-functionality……………………………………………………………………………………………… 294
23.1.5 Need for new de-icing solutions……………………………………………………………………….. 295
23.1.6 Weight reduction………………………………………………………………………………………………. 295
23.1.7 Need for improved lightning protection materials…………………………………………….. 296
23.2 PROPERTIES AND APPLICATIONS………………………………………………………………………. 296
23.2.1 Composites……………………………………………………………………………………………………… 296
23.2.1.1 ESD protection…………………………………………………………………………………………….. 298
23.2.1.2 Conductive cables……………………………………………………………………………………….. 298
23.2.1.3 Anti-friction braking systems………………………………………………………………………… 298
23.2.2 Coatings…………………………………………………………………………………………………………… 298
23.2.2.1 Anti-icing……………………………………………………………………………………………………… 299
23.2.3 Sensors……………………………………………………………………………………………………………. 300
23.3 MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 300
23.3.1 Total market size……………………………………………………………………………………………… 300
23.3.2 Carbon nanomaterials opportunity…………………………………………………………………… 301
23.4 MARKET CHALLENGES…………………………………………………………………………………………. 302
23.5 APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 303
23.5.1 Carbon nanotubes……………………………………………………………………………………………. 303
23.5.2 Graphene…………………………………………………………………………………………………………. 305
24 AUTOMOTIVE………………………………………………………………………………………………………………….. 306
24.1 MARKET DRIVER AND TRENDS……………………………………………………………………………. 306
24.1.1 Environmental regulations……………………………………………………………………………….. 307
24.1.2 Lightweighting………………………………………………………………………………………………….. 307
24.1.3 Increasing use of natural fiber composites………………………………………………………. 308
24.1.4 Safety………………………………………………………………………………………………………………. 309
24.1.5 Cost…………………………………………………………………………………………………………………. 309
24.1.6 Need for enhanced conductivity in fuel components………………………………………… 310
24.1.7 Increase in the use of touch-based automotive applications……………………………. 310
24.2 PROPERTIES AND APPLICATIONS………………………………………………………………………. 311
24.2.1 Composites……………………………………………………………………………………………………… 312
24.2.2 Thermally conductive additives………………………………………………………………………… 314
24.2.3 Vehicle mass reduction……………………………………………………………………………………. 314
24.2.4 Lithium-ion batteries in electric and hybrid vehicles…………………………………………. 314
24.2.5 Paints and coatings………………………………………………………………………………………….. 314
24.3 MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 317
24.3.1 Composites……………………………………………………………………………………………………… 317
24.3.1.1 Total market size…………………………………………………………………………………………. 317
24.3.1.2 High impact nanomaterials opportunity………………………………………………………………. 318
24.3.2 Coatings…………………………………………………………………………………………………………… 318
24.3.2.1 Total market size…………………………………………………………………………………………. 318
24.3.2.2 High impact nanomaterials opportunity………………………………………………………………. 319
24.3.3 MARKET CHALLENGES…………………………………………………………………………………. 320
24.4 APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 321
24.4.1 Carbon nanotubes……………………………………………………………………………………………. 321
24.4.2 Graphene…………………………………………………………………………………………………………. 322
24.4.3 Nanocellulose………………………………………………………………………………………………….. 323
25 BIOMEDICAL & HEALTHCARE……………………………………………………………………………………… 324
25.1 MARKET DRIVERS AND TRENDS…………………………………………………………………………. 326
25.1.1 Improved drug delivery for cancer therapy………………………………………………………. 326
25.1.2 Shortcomings of chemotherapies…………………………………………………………………….. 326
25.1.3 Biocompatibility of medical implants………………………………………………………………… 326
25.1.4 Anti-biotic resistance………………………………………………………………………………………… 327
25.1.5 Growth in advanced woundcare market…………………………………………………………… 327
25.1.6 Growth in the wearable monitoring market………………………………………………………. 327
25.2 APPLICATIONS……………………………………………………………………………………………………….. 329
25.2.1 Cancer therapy………………………………………………………………………………………………… 329
25.2.1.1 Immunotherapy……………………………………………………………………………………………. 331
25.2.1.2 Thermal ablation………………………………………………………………………………………….. 331
25.2.1.3 Stem cell therapy…………………………………………………………………………………………. 331
25.2.1.4 Graphene oxide for therapy and drug delivery…………………………………………….. 331
25.2.1.5 Graphene nanosheets…………………………………………………………………………………. 332
25.2.1.6 Gene delivery………………………………………………………………………………………………. 332
25.2.1.7 Photodynamic Therapy………………………………………………………………………………… 332
25.2.2 Medical implants and devices………………………………………………………………………….. 332
25.2.3 Drug delivery……………………………………………………………………………………………………. 334
25.2.4 Wound dressings……………………………………………………………………………………………… 334
25.2.5 Biosensors……………………………………………………………………………………………………….. 335
25.2.5.1 FRET biosensors for DNA detection……………………………………………………………. 337
25.2.6 Medical imaging……………………………………………………………………………………………….. 337
25.2.7 Tissue engineering…………………………………………………………………………………………… 338
25.2.8 Dental………………………………………………………………………………………………………………. 338
25.2.9 Electrophysiology…………………………………………………………………………………………….. 338
25.2.10 Laterial flow immunosay labels………………………………………………………………………… 339
25.3 MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 339
25.4 MARKET CHALLENGES…………………………………………………………………………………………. 342
25.4.1 Potential toxicity……………………………………………………………………………………………….. 342
25.4.2 Safety………………………………………………………………………………………………………………. 342
25.4.3 Dispersion………………………………………………………………………………………………………… 342
25.5 APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 343
25.5.1 Carbon nanotubes……………………………………………………………………………………………. 343
25.5.2 Graphene…………………………………………………………………………………………………………. 344
25.5.3 Nanocellulose………………………………………………………………………………………………….. 346
26 COATINGS………………………………………………………………………………………………………………………. 347
26.1 MARKET DRIVERS AND TRENDS…………………………………………………………………………. 347
26.1.1 New functionalities and improved properties……………………………………………………. 348
26.1.2 Need for more effective protection…………………………………………………………………… 350
26.1.3 Sustainability and regulation……………………………………………………………………………. 350
26.1.4 Cost of corrosion……………………………………………………………………………………………… 351
26.1.5 Need for improved hygiene……………………………………………………………………………… 352
26.1.6 Cost of weather-related damage……………………………………………………………………… 352
26.1.7 Increased demand for coatings for extreme environments………………………………. 353
26.1.8 Increased demand for abrasion and scratch resistant coatings……………………….. 353
26.1.9 Increased demand for UV-resistant coatings…………………………………………………… 353
26.1.10 Growth in superhydrophobic coatings market………………………………………………….. 353
26.2 PROPERTIES AND APPLICATIONS………………………………………………………………………. 354
26.2.1 Anti-static coatings…………………………………………………………………………………………… 357
26.2.2 Anti-corrosion coatings…………………………………………………………………………………….. 357
26.2.2.1 Marine………………………………………………………………………………………………………….. 359
26.2.2.2 Oil and gas…………………………………………………………………………………………………… 359
26.2.3 Anti-microbial…………………………………………………………………………………………………… 360
26.2.4 Anti-icing………………………………………………………………………………………………………….. 360
26.2.5 Barrier coatings………………………………………………………………………………………………… 361
26.2.6 Heat protection………………………………………………………………………………………………… 362
26.2.7 Anti-fouling……………………………………………………………………………………………………….. 363
26.2.8 Wear and abrasion resistance…………………………………………………………………………. 364
26.2.9 Smart windows………………………………………………………………………………………………… 366
26.2.10 Anti-counterfeiting films……………………………………………………………………………………. 366
26.2.11 Gas barriers……………………………………………………………………………………………………… 366
26.3 MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 367
26.4 MARKET CHALLENGES…………………………………………………………………………………………. 374
26.4.1 High viscosity…………………………………………………………………………………………………… 374
26.4.2 Moisture sorption……………………………………………………………………………………………… 374
26.4.3 Durability………………………………………………………………………………………………………….. 375
26.4.4 Dispersion………………………………………………………………………………………………………… 375
26.4.5 Transparency…………………………………………………………………………………………………… 375
26.4.6 Production, scalability and cost………………………………………………………………………… 376
26.5 PRODUCT DEVELOPERS………………………………………………………………………………………. 376
26.5.1 Carbon nanotubes……………………………………………………………………………………………. 376
26.5.2 Graphene…………………………………………………………………………………………………………. 377
26.5.3 Nanocellulose………………………………………………………………………………………………….. 378
27 COMPOSITES………………………………………………………………………………………………………………….. 379
27.1 MARKET DRIVERS AND TRENDS…………………………………………………………………………. 379
27.1.1 Growing use of polymer composites………………………………………………………………… 379
27.1.2 Increased need for advanced, protective materials………………………………………….. 379
27.1.3 Improved performance over traditional composites…………………………………………. 379
27.1.4 Multi-functionality……………………………………………………………………………………………… 380
27.1.5 Growth in use in the wind energy market…………………………………………………………. 380
27.1.6 Need for new flame retardant materials…………………………………………………………… 381
27.1.7 Environmental impact of carbon fibers…………………………………………………………….. 381
27.1.8 Shortcomings of natural fiber composites and glass fiber reinforced composites 381
27.1.9 Growth in the bio-based packaging sector……………………………………………………….. 382
27.1.10 Growth in the barrier food packaging sector…………………………………………………….. 383
27.1.11 Shortcoming of packaging biopolymers……………………………………………………………. 385
27.1.12 Sustainable packaging solutions……………………………………………………………………… 385
27.1.13 Demand for packaging with enhanced functionality…………………………………………. 385
27.2 PROPERTIES AND APPLICATIONS………………………………………………………………………. 387
27.2.1 Polymer composites…………………………………………………………………………………………. 387
27.2.2 Barrier packaging…………………………………………………………………………………………….. 390
27.2.2.1 Anti-bacterial……………………………………………………………………………………………….. 391
27.2.2.2 Gas barrier…………………………………………………………………………………………………… 391
27.2.3 Electrostatic discharge (ESD) and electromagnetic interference (EMI) shielding 392
27.2.4 Wind turbines…………………………………………………………………………………………………… 393
27.2.5 Ballistic protection……………………………………………………………………………………………. 393
27.2.6 Cement additives……………………………………………………………………………………………… 394
27.2.7 Sporting goods…………………………………………………………………………………………………. 395
27.2.8 Wire and cable…………………………………………………………………………………………………. 395
27.2.9 Thermal management……………………………………………………………………………………… 395
27.2.10 Rubber and elastomers……………………………………………………………………………………. 396
27.3 MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 397
27.3.1 Total market size……………………………………………………………………………………………… 397
27.3.2 High Impact nanomaterials opportunity……………………………………………………………. 397
27.4 MARKET CHALLENGES…………………………………………………………………………………………. 400
27.5 APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 402
27.5.1 Carbon nanotubes……………………………………………………………………………………………. 402
27.5.2 Graphene…………………………………………………………………………………………………………. 405
27.5.3 Nanocellulose………………………………………………………………………………………………….. 406
28 ELECTRONICS AND PHOTONICS…………………………………………………………………………………. 407
28.1 Carbon nanotubes in electronics……………………………………………………………………………… 407
28.2 Graphene and 2D materials in electronics……………………………………………………………….. 408
28.2.1 Properties………………………………………………………………………………………………………… 408
28.2.2 Applications……………………………………………………………………………………………………… 408
28.3 FLEXIBLE ELECTRONICS, CONDUCTIVE FILMS AND DISPLAYS………………………. 408
28.3.1 MARKET DRIVERS AND TRENDS…………………………………………………………………. 408
28.3.1.1 ITO replacement for flexible electronics………………………………………………………. 408
28.3.1.2 Growth in the wearable electronics market………………………………………………….. 410
28.3.1.3 Touch technology requirements…………………………………………………………………… 410
28.3.1.4 Need for improved barrier function………………………………………………………………. 411
28.3.1.5 Energy needs of wearable devices………………………………………………………………. 411
28.3.1.6 Increased power and performance of sensors with reduced cost………………… 411
28.3.1.7 Growth in the printed sensors market………………………………………………………….. 412
28.3.1.8 Growth in the home diagnostics and point of care market…………………………… 412
28.3.2 PROPERTIES AND APPLICATIONS………………………………………………………………. 412
28.3.2.1 Transparent electrodes in flexible electronics………………………………………………. 412
28.3.2.2 SWNTs………………………………………………………………………………………………………… 415
28.3.2.3 Double-walled carbon nanotubes………………………………………………………………… 416
28.3.2.4 Graphene…………………………………………………………………………………………………….. 416
28.3.2.5 Electronic paper…………………………………………………………………………………………… 419
28.3.2.6 Wearable electronics…………………………………………………………………………………… 420
28.3.2.7 Flexible energy storage……………………………………………………………………………….. 425
28.3.2.8 Wearable sensors………………………………………………………………………………………… 426
28.3.2.9 Wearable gas sensors…………………………………………………………………………………. 427
28.3.2.10 Wearable strain sensors………………………………………………………………………….. 428
28.3.2.11 Wearable tactile sensors…………………………………………………………………………. 428
28.3.2.12 Wearable health monitoring…………………………………………………………………….. 428
28.3.3 MARKET SIZE AND OPPORTUNITY……………………………………………………………… 433
28.3.3.1 Touch panel and ITO replacement………………………………………………………………. 433
28.3.3.2 Wearable electronics…………………………………………………………………………………… 441
28.3.3.3 Wearable health monitoring…………………………………………………………………………. 443
28.3.3.4 Wearable energy storage and harvesting devices……………………………………….. 445
28.3.4 CHALLENGES…………………………………………………………………………………………………. 449
28.3.4.1 Competing materials……………………………………………………………………………………. 449
28.3.4.2 Cost in comparison to ITO…………………………………………………………………………… 450
28.3.4.3 Fabricating SWNT devices………………………………………………………………………….. 450
28.3.4.4 Problems with transfer and growth………………………………………………………………. 450
28.3.4.5 Improving sheet resistance………………………………………………………………………….. 451
28.3.4.6 Difficulties in display panel integration…………………………………………………………. 452
28.3.4.7 Manufacturing……………………………………………………………………………………………… 452
28.3.4.8 Integration……………………………………………………………………………………………………. 453
28.3.4.9 Competing materials……………………………………………………………………………………. 453
28.3.5 APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 454
28.3.5.1 Carbon nanotubes……………………………………………………………………………………….. 454
28.3.5.2 Graphene…………………………………………………………………………………………………….. 456
28.3.5.3 Nanocellulose……………………………………………………………………………………… 457
28.4 CONDUCTIVE INKS………………………………………………………………………………………………… 458
28.4.1 MARKET DRIVERS AND TRENDS…………………………………………………………………. 458
28.4.1.1 Increased demand for printed electronics……………………………………………………. 458
28.4.1.2 Limitations of existing conductive inks…………………………………………………………. 458
28.4.1.3 Growth in the 3D printing market…………………………………………………………………. 459
28.4.1.4 Growth in the printed sensors market………………………………………………………….. 460
28.4.2 PROPERTIES AND APPLICATIONS………………………………………………………………. 460
28.4.2.1 Carbon nanotubes……………………………………………………………………………………….. 460
28.4.2.2 Graphene…………………………………………………………………………………………………….. 461
28.4.3 MARKET SIZE AND OPPORTUNITY……………………………………………………………… 464
28.4.3.1 Total market size…………………………………………………………………………………………. 464
28.4.3.2 Carbon nanomaterials opportunity………………………………………………………………. 465
28.4.4 MARKET CHALLENGES…………………………………………………………………………………. 467
28.4.5 APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 468
28.4.5.1 Carbon nanotubes……………………………………………………………………………………….. 468
28.4.5.2 Graphene…………………………………………………………………………………………………….. 468
28.5 TRANSISTORS AND INTEGRATED CIRCUITS……………………………………………………… 470
28.5.1 MARKET DRIVERS AND TRENDS…………………………………………………………………. 470
28.5.1.1 Scaling…………………………………………………………………………………………………………. 470
28.5.1.2 Limitations of current materials……………………………………………………………………. 472
28.5.1.3 Limitations of copper as interconnect materials…………………………………………… 472
28.5.1.4 Need to improve bonding technology…………………………………………………………… 473
28.5.1.5 Need to improve thermal properties…………………………………………………………….. 473
28.5.2 PROPERTIES AND APPLICATIONS………………………………………………………………. 473
28.5.2.1 Carbon nanotubes……………………………………………………………………………………….. 474
28.5.2.2 Graphene…………………………………………………………………………………………………….. 477
28.5.2.3 Graphene Radio Frequency (RF) circuits…………………………………………………….. 477
28.5.2.4 Graphene spintronics…………………………………………………………………………………… 478
28.5.3 MARKET SIZE AND OPPORTUNITY……………………………………………………………… 479
28.5.4 CHALLENGES…………………………………………………………………………………………………. 481
28.5.4.1 Device complexity………………………………………………………………………………………… 481
28.5.4.2 Competition from other materials…………………………………………………………………. 481
28.5.4.3 Lack of band gap…………………………………………………………………………………………. 481
28.5.4.4 Transfer and integration………………………………………………………………………………. 481
28.5.5 APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 483
28.5.5.1 Carbon nanotubes……………………………………………………………………………………….. 483
28.5.5.2 Graphene…………………………………………………………………………………………………….. 483
28.6 MEMORY DEVICES………………………………………………………………………………………………… 485
28.6.1 MARKET DRIVERS AND TRENDS…………………………………………………………………. 485
28.6.1.1 Density and voltage scaling…………………………………………………………………………. 485
28.6.1.2 Growth in the smartphone and tablet markets……………………………………………… 486
28.6.1.3 Growth in the flexible electronics market……………………………………………………… 486
28.6.2 PROPERTIES AND APPLICATIONS………………………………………………………………. 488
28.6.2.1 Carbon nanotubes……………………………………………………………………………………….. 489
28.6.2.2 Graphene…………………………………………………………………………………………………….. 492
28.6.3 MARKET SIZE AND OPPORTUNITY……………………………………………………………… 493
28.6.3.1 Total market size…………………………………………………………………………………………. 493
28.6.4 APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 494
28.6.4.1 Carbon nanotubes……………………………………………………………………………………….. 494
28.6.4.2 Graphene…………………………………………………………………………………………………….. 495
28.7 PHOTONICS……………………………………………………………………………………………………………. 496
28.7.1 MARKET DRIVERS AND TRENDS…………………………………………………………………. 496
28.7.1.1 Increased bandwidth at reduced cost………………………………………………………….. 496
28.7.1.2 Increasing sensitivity of photodetectors……………………………………………………….. 496
28.7.2 PROPERTIES AND APPLICATIONS………………………………………………………………. 497
28.7.2.1 Si photonics versus graphene……………………………………………………………………… 498
28.7.2.2 Optical modulators………………………………………………………………………………………. 498
28.7.2.3 Photodetectors…………………………………………………………………………………………….. 499
28.7.2.4 Plasmonics………………………………………………………………………………………………….. 501
28.7.2.5 Fiber lasers………………………………………………………………………………………………….. 501
28.7.3 CHALLENGES…………………………………………………………………………………………………. 501
28.7.3.1 Need to design devices that harness graphene’s properties……………………….. 501
28.7.3.2 Problems with transfer…………………………………………………………………………………. 501
28.7.3.3 THz absorbance and nonlinearity………………………………………………………………… 502
28.7.3.4 Stability and sensitivity…………………………………………………………………………………. 502
28.7.4 MARKET SIZE AND OPPORTUNITY……………………………………………………………… 502
28.7.4.1 Total market size…………………………………………………………………………………………. 502
28.7.4.2 Nanotechnology and nanomaterials opportunity………………………………………….. 502
28.7.5 MARKET CHALLENGES…………………………………………………………………………………. 503
28.7.6 APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 504
29 ENERGY STORAGE, CONVERSION AND EXPLORATION…………………………………………… 505
29.1 BATTERIES……………………………………………………………………………………………………………… 505
29.1.1 MARKET DRIVERS AND TRENDS…………………………………………………………………. 505
29.1.1.1 Growth in personal electronics, electric vehicles and smart grids markets….. 506
29.1.1.2 Reduce dependence on lithium……………………………………………………………………. 506
29.1.1.3 Shortcomings of existing battery and supercapacitor technology………………… 506
29.1.1.4 Reduced costs for widespread application…………………………………………………… 507
29.1.1.5 Power sources for flexible electronics………………………………………………………….. 508
29.1.2 PROPERTIES AND APPLICATIONS………………………………………………………………. 508
29.1.2.1 Li-ion batteries (LIB)…………………………………………………………………………………….. 508
29.1.2.2 Lithium-air batteries……………………………………………………………………………………… 509
29.1.2.3 Sodium-ion batteries……………………………………………………………………………………. 510
29.1.3 MARKET SIZE AND OPPORTUNITY……………………………………………………………… 510
29.1.3.1 Total market size…………………………………………………………………………………………. 510
29.1.3.2 High impact nanomaterials opportunity………………………………………….. 510
29.1.4 CHALLENGES…………………………………………………………………………………………………. 511
29.1.5 APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 512
29.2 SUPERCAPACITORS……………………………………………………………………………………………… 518
29.2.1 MARKET DRIVERS AND TRENDS…………………………………………………………………. 518
29.2.1.1 Reducing costs……………………………………………………………………………………………. 518
29.2.1.2 Demand from portable electronics……………………………………………………………….. 518
29.2.1.3 Inefficiencies of standard battery technology……………………………………………….. 518
29.2.1.4 Problems with activated carbon…………………………………………………………………… 518
29.2.2 PROPERTIES AND APPLICATIONS………………………………………………………………. 518
29.2.2.1 Carbon nanotubes……………………………………………………………………………………….. 519
29.2.2.2 Graphene…………………………………………………………………………………………………….. 519
29.2.2.3 Graphene/CNT hybrids………………………………………………………………………………… 520
29.2.3 MARKET SIZE AND OPPORTUNITY……………………………………………………………… 521
29.2.3.1 Total market size…………………………………………………………………………………………. 521
29.2.3.2 High impact nanomaterials opportunity………………………………………………………………. 521
29.2.4 CHALLENGES…………………………………………………………………………………………………. 522
29.2.4.1 Low energy storage capacity of graphene…………………………………………………… 522
29.2.5 APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 523
29.3 PHOTOVOLTAICS…………………………………………………………………………………………………… 524
29.3.1 MARKET DRIVERS AND TRENDS…………………………………………………………………. 524
29.3.1.1 Need for new materials and novel devices………………………………………………….. 524
29.3.1.2 Need for cost-effective solar energy for wider adoptions……………………………… 525
29.3.1.3 Varying environmental conditions require new coating technology……………… 525
29.3.2 PROPERTIES AND APPLICATIONS………………………………………………………………. 526
29.3.2.1 Solar cells……………………………………………………………………………………………………. 527
29.3.2.2 Solar coatings……………………………………………………………………………………………… 529
29.3.3 MARKET SIZE AND OPPORTUNITY……………………………………………………………… 530
29.3.3.1 Total market size…………………………………………………………………………………………. 530
29.3.3.2 Carbon nanomaterials opportunity………………………………………………………………. 530
29.3.4 MARKET CHALLENGES…………………………………………………………………………………. 531
29.3.5 APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 532
29.4 FUEL CELLS AND HYDROGEN STORAGE…………………………………………………………… 533
29.4.1 MARKET DRIVERS AND TRENDS…………………………………………………………………. 533
29.4.1.1 Need for alternative energy sources……………………………………………………………. 533
29.4.1.2 Demand from transportation and portable and stationary power sectors…….. 534
29.4.1.3 Temperature problems with current fuel cell technology……………………………… 534
29.4.1.4 Reducing corrosion problems………………………………………………………………………. 534
29.4.1.5 Limitations of platinum…………………………………………………………………………………. 534
29.4.1.6 Reducing cost and increasing reliability of current fuel cell technology……….. 534
29.4.2 APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 535
29.4.3 PROPERTIES AND APPLICATIONS………………………………………………………………. 536
29.4.3.1 Fuel cells……………………………………………………………………………………………………… 537
29.4.3.2 Hydrogen storage………………………………………………………………………………………… 538
29.4.4 MARKET SIZE AND OPPORTUNITY……………………………………………………………… 539
29.4.4.1 Total market size…………………………………………………………………………………………. 539
29.4.4.2 High impact nanomaterials opportunity………………………………………………………………. 539
29.4.5 CHALLENGES…………………………………………………………………………………………………. 539
29.5 LED LIGHTING AND UVC……………………………………………………………………………………….. 540
29.5.1 MARKET DRIVERS AND TRENDS…………………………………………………………………. 540
29.5.1.1 Need to develop low-cost lighting………………………………………………………………… 540
29.5.1.2 Environmental regulation……………………………………………………………………………… 540
29.5.1.3 Limited efficiency of phosphors in LEDs………………………………………………………. 541
29.5.1.4 Shortcomings with LED lighting technologies………………………………………………. 541
29.5.1.5 Improving flexibility………………………………………………………………………………………. 541
29.5.1.6 Improving performance and costs of UV-LEDs……………………………………………. 541
29.5.2 PROPERTIES AND APPLICATIONS………………………………………………………………. 542
29.5.3 MARKET SIZE AND OPPORTUNITY……………………………………………………………… 542
29.5.3.1 Total market size…………………………………………………………………………………………. 542
29.5.3.2 High impact nanomaterials opportunity………………………………………………………………. 543
29.5.4 MARKET CHALLENGES…………………………………………………………………………………. 543
29.5.5 APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 544
29.6 OIL AND GAS EXPLORATION………………………………………………………………………………… 545
29.6.1 MARKET DRIVERS AND TRENDS…………………………………………………………………. 545
29.6.1.1 Need to reduce operating costs and improve operation efficiency………………. 545
29.6.1.2 Increased demands of drilling environments……………………………………………….. 545
29.6.1.3 Need for improved drilling fluids…………………………………………………………………… 546
29.6.1.4 Increased exploration in extreme environments…………………………………………… 547
29.6.1.5 Environmental and regulatory……………………………………………………………………… 547
29.6.2 PROPERTIES AND APPLICATIONS………………………………………………………………. 547
29.6.2.1 Sensing and reservoir management……………………………………………………………. 547
29.6.2.2 Coatings………………………………………………………………………………………………………. 549
29.6.2.3 Drilling fluids………………………………………………………………………………………………… 550
29.6.2.4 Sorbent materials………………………………………………………………………………………… 551
29.6.2.5 Separation…………………………………………………………………………………………………… 551
29.6.2.6 Extraction…………………………………………………………………………………………………………. 552
29.6.3 MARKET SIZE AND OPPORTUNITY……………………………………………………………… 552
29.6.3.1 Total market size…………………………………………………………………………………………. 552
29.6.3.2 High impact nanomaterials opportunity………………………………………….. 552
29.6.4 MARKET CHALLENGES…………………………………………………………………………………. 555
29.7 APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 556
29.7.1 Carbon nanotubes……………………………………………………………………………………………. 556
29.7.2 Graphene…………………………………………………………………………………………………………. 558
29.7.3 Nanocellulose………………………………………………………………………………………………….. 562
30 FILTRATION AND SEPARATION…………………………………………………………………………………… 563
30.1 MARKET DRIVERS AND TRENDS…………………………………………………………………………. 563
30.1.1 Water shortage and population growth…………………………………………………………….. 563
30.1.2 Need for improved and low cost membrane technology………………………………….. 564
30.1.3 Need for improved groundwater treatment technologies………………………………….. 564
30.1.4 Cost and efficiency…………………………………………………………………………………………… 565
30.1.5 Growth in the air filter market…………………………………………………………………………… 565
30.1.6 Need for environmentally, safe filters……………………………………………………………….. 565
30.2 PROPERTIES AND APPLICTIONS…………………………………………………………………………. 566
30.2.1 Desalination and water filtration……………………………………………………………………….. 568
30.2.2 Gas separation………………………………………………………………………………………………… 570
30.2.3 Air filtration……………………………………………………………………………………………………….. 570
30.2.4 Virus filtration…………………………………………………………………………………………………… 571
30.3 MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 572
30.4 MARKET CHALLENGES…………………………………………………………………………………………. 575
30.4.1.1 Uniform pore size and distribution……………………………………………………………….. 575
30.4.1.2 Cost……………………………………………………………………………………………………………… 575
30.5 APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 576
30.5.1 Carbon nanotubes……………………………………………………………………………………………. 576
30.5.2 Graphene…………………………………………………………………………………………………………. 577
30.5.3 Nanocellulose………………………………………………………………………………………………….. 578
31 LUBRICANTS………………………………………………………………………………………………………………….. 579
31.1 MARKET DRIVERS AND TRENDS…………………………………………………………………………. 579
31.1.1 Need for new additives that provide “more for less”…………………………………………. 579
31.1.2 Need for higher-performing lubricants for fuel efficiency………………………………….. 579
31.1.3 Environmental concerns…………………………………………………………………………………… 579
31.2 PROPERTIES AND APPLICATIONS………………………………………………………………………. 580
31.3 MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 581
31.3.1 Total market size……………………………………………………………………………………………… 581
31.3.2 High impact nanomaterials opportunity…………………………………………………………………… 581
31.4 CHALLENGES…………………………………………………………………………………………………………. 582
31.5 APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 583
31.5.1 Carbon nanotubes……………………………………………………………………………………………. 583
31.5.2 Graphene…………………………………………………………………………………………………………. 583
32 SENSORS………………………………………………………………………………………………………………………… 584
32.1 MARKET DRIVERS AND TRENDS…………………………………………………………………………. 584
32.1.1 Increased power and performance with reduced cost……………………………………… 584
32.1.2 Enhanced sensitivity………………………………………………………………………………………… 584
32.1.3 Replacing silver electrodes………………………………………………………………………………. 585
32.1.4 Growth in the home diagnostics and point of care market……………………………….. 585
32.1.5 Improved thermal stability………………………………………………………………………………… 585
32.2 PROPERTIES AND APPLICATIONS………………………………………………………………………. 585
32.2.1 Gas sensors…………………………………………………………………………………………………….. 587
32.2.2 Strain sensors………………………………………………………………………………………………….. 588
32.2.3 Biosensors……………………………………………………………………………………………………….. 589
32.2.4 Food sensors…………………………………………………………………………………………………… 589
32.2.5 Infrared (IR) sensors………………………………………………………………………………………… 590
32.2.6 Optical sensors………………………………………………………………………………………………… 590
32.2.7 Pressure sensors…………………………………………………………………………………………….. 591
32.2.8 Humidity sensors……………………………………………………………………………………………… 591
32.2.9 Acoustic sensors……………………………………………………………………………………………… 592
32.2.10 Wireless sensors……………………………………………………………………………………………… 592
32.3 MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 593
32.4 Challenges……………………………………………………………………………………………………………….. 594
32.5 APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 594
32.5.1 Carbon nanotubes……………………………………………………………………………………………. 595
32.5.2 Graphene…………………………………………………………………………………………………………. 596
33 TEXTILES AND APPAREL…………………………………………………………………………………………….. 597
33.1 MARKET DRIVERS AND TRENDS…………………………………………………………………………. 597
33.1.1 Growth in the wearable electronics market………………………………………………………. 597
33.1.2 Growth in remote health monitoring and diagnostics……………………………………….. 598
33.1.3 Growth in the market for anti-microbial textiles………………………………………………… 599
33.1.4 Need to improve the properties of cloth or fabric materials………………………………. 599
33.1.5 Environmental and regulatory………………………………………………………………………….. 600
33.1.6 Reduction in size, appearance and cost of sensors…………………………………………. 601
33.1.7 Increasing demand for smart fitness clothing…………………………………………………… 601
33.1.8 Improved medical analysis………………………………………………………………………………. 601
33.1.9 Smart workwear for improved worker safety……………………………………………………. 602
33.2 PROPERTIES AND APPLICATONS……………………………………………………………………….. 602
33.2.1 Protective textiles…………………………………………………………………………………………….. 603
33.2.2 Electronic textiles…………………………………………………………………………………………….. 604
33.3 MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 609
33.3.1.1 Protective textiles………………………………………………………………………………………… 609
33.3.1.2 Electronic textiles…………………………………………………………………………………………. 610
33.4 APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 615
33.4.1 Carbon nanotubes……………………………………………………………………………………………. 615
33.4.2 Graphene…………………………………………………………………………………………………………. 615
34 3D PRINTING…………………………………………………………………………………………………………………… 616
34.1 MARKET DRIVERS AND TRENDS…………………………………………………………………………. 616
34.1.1 Improved materials at lower cost……………………………………………………………………… 616
34.1.2 Limitations of current thermoplastics……………………………………………………………….. 616
34.2 PROPERTIES AND APPLICATIONS………………………………………………………………………. 616
34.3 MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 618
34.4 CHALLENGES…………………………………………………………………………………………………………. 620
34.5 APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 621
34.5.1 Carbon nanotubes……………………………………………………………………………………………. 621
34.5.2 Graphene…………………………………………………………………………………………………………. 621
34.5.3 Nanocellulose………………………………………………………………………………………….. 622
35 PAPER & BOARD……………………………………………………………………………………………………………. 622
35.1 Market drivers and trends………………………………………………………………………………………… 622
35.1.1 Environmental………………………………………………………………………………………………….. 622
35.1.2 Need to develop innovative new products in the paper and board industry……… 623
35.2 Applications……………………………………………………………………………………………………………… 623
35.2.1.1 Paper packaging………………………………………………………………………………………….. 624
35.2.1.2 Paper coatings…………………………………………………………………………………………….. 625
35.2.1.3 Anti-microbials……………………………………………………………………………………………… 625
35.3 Market size………………………………………………………………………………………………………………. 625
35.4 Nanocellulose opportunity………………………………………………………………………………………… 627
35.5 Market challenges……………………………………………………………………………………………………. 627
35.6 Commercial activity………………………………………………………………………………………………….. 628
36 AEROGELS……………………………………………………………………………………………………………………… 630
36.1 Market drivers and trends………………………………………………………………………………………… 630
36.1.1 Energy efficiency……………………………………………………………………………………………… 630
36.1.2 Demand for environmentally-friendly, lightweight materials……………………………… 630
36.2 Market size………………………………………………………………………………………………………………. 630
36.3 Applications……………………………………………………………………………………………………………… 631
36.3.1 Thermal insulation……………………………………………………………………………………………. 631
36.3.2 Medical…………………………………………………………………………………………………………….. 631
36.3.3 Shape memory………………………………………………………………………………………………… 632
36.4 Product developers in aerogels………………………………………………………………………………… 632
37 RHEOLOGY MODIFIERS………………………………………………………………………………………………… 632
37.1 Applications……………………………………………………………………………………………………………… 632
37.1.1 Food………………………………………………………………………………………………………………… 634
37.1.2 Pharmaceuticals………………………………………………………………………………………………. 634
37.1.3 Cosmetics………………………………………………………………………………………………………… 634
37.2 Commercial activity………………………………………………………………………………………………….. 634
38 CARBON NANOTUBES PRODUCERS AND PRODUCT DEVELOPERS………………………. 636-753 (183 company profiles)
39 GRAPHENE PRODUCERS AND PRODUCT DEVELOPERS…………………………………………. 754-881 (187 company profiles)
40 NANOCELLULOSE COMPANY PROFILES……………………………………………………………………. 882
40.1 Producers and types of nanocellulose produced (NCF, NCC, BCC)……………………………. 882
40.2 Target markets for producers……………………………………………………………………………………….. 883
40.3 NANOFIBRILLAR CELLULOSE (NFC) PRODUCERS………………………………………………… 885
40.4 CELLULOSE NANOCRYSTAL (CNC) PRODUCERS………………………………………………….. 963
40.5 BACTERIAL CELLULOSE (BC) PRODUCERS……………………………………………………………. 977
40.6 OTHER PRODUCERS AND APPLICATION DEVELOPERS……………………………………….. 980
40 REFERENCES…………………………………………………………………………………………………………………. 992
TABLES
Table 1: Nanomaterials scorecard for carbon nanotubes……………………………………………………………. 64
Table 2: Market summary for carbon nanotubes-Selling grade particle diameter, usage, advantages, average price/ton, high volume applications, low volume applications and novel applications…………………………………………………………………………………………………………………………… 65
Table 3: Properties of CNTs and comparable materials……………………………………………………………… 67
Table 4: Annual production capacity of MWNT and SWNT producers……………………………………….. 69
Table 5: SWNT producers production capacities 2015……………………………………………………………….. 71
Table 6: Global production of carbon nanotubes, 2010-2025 in tons/year. Base year for projections is 2014………………………………………………………………………………………………………………………………….. 73
Table 7: Consumer products incorporating graphene…………………………………………………………………. 80
Table 8: Graphene target markets-Applications potential addressable market size……………………. 85
Table 9: Graphene producers annual production capacities………………………………………………………. 87
Table 10: Global production of graphene, 2010-2025 in tons/year. Base year for projections is 2014………………………………………………………………………………………………………………………………………………. 88
Table 11: Graphene types and cost per kg…………………………………………………………………………………. 91
Table 12: Markets and applications for nanocellulose………………………………………………………………… 98
Table 13: Nanocellulose production plants worldwide and production status…………………………… 101
Table 15: Market summary for nanocellulose-Selling grade particle diameter, usage, advantages, average price/ton, market estimates, global consumption, main current applications, future applications…………………………………………………………………………………………………………………………. 109
Table 16: Categorization of nanomaterials……………………………………………………………………………….. 112
Table 17: Comparison between single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes…………………………………………………………………………………………………………………………… 117
Table 18: Properties of carbon nanotubes………………………………………………………………………………… 123
Table 19: Properties of graphene……………………………………………………………………………………………… 129
Table 20: Graphene quantum dot producers……………………………………………………………………………. 133
Table 22: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2…………………………………………………………………………………………………………………………………………….. 136
Table 23: Markets and applications of phosphorene………………………………………………………………… 137
Table 24: Markets and applications of C2N………………………………………………………………………………. 139
Table 25: Markets and applications of hexagonal boron-nitride………………………………………………… 141
Table 26: Markets and applications of graphdiyne……………………………………………………………………. 143
Table 27: Markets and applications of graphane………………………………………………………………………. 144
Table 28: Markets and applications of hexagonal boron-nitride………………………………………………… 147
Table 29: Markets and applications of MoS2…………………………………………………………………………….. 149
Table 30: Markets and applications of Rhenium disulfide (ReS2) and diselenide (ReSe2)………. 152
Table 31: Markets and applications of silicene…………………………………………………………………………. 154
Table 32: Markets and applications of stanene/tinene……………………………………………………………… 158
Table 33: Markets and applications of tungsten diselenide………………………………………………………. 159
Table 34: Nanocellulose properties…………………………………………………………………………………………… 163
Table 35: Applications of nanofibrillar cellulose (NFC)……………………………………………………………… 164
Table 36: Production methods of NFC producers…………………………………………………………………….. 165
Table 37: Applications of nanocrystalline cellulose (NCC)………………………………………………………… 168
Table 38: Applications of bacterial cellulose (BC)…………………………………………………………………….. 169
Table 39: Microcrystalline cellulose (MCC) preparation methods, resulting materials and applications…………………………………………………………………………………………………………………………. 170
Table 40: Microfibrillated cellulose (MFC) preparation methods, resulting materials and applications…………………………………………………………………………………………………………………………………………….. 171
Table 41: Nanofibrillated cellulose (MFC) preparation methods, resulting materials and applications…………………………………………………………………………………………………………………………………………….. 171
Table 42: Cellulose nanocrystals (MFC) preparation methods, resulting materials and applications…………………………………………………………………………………………………………………………………………….. 172
Table 43: Cellulose nanocrystals (MFC) preparation methods, resulting materials and applications…………………………………………………………………………………………………………………………………………….. 173
Table 44: Properties and applications of nanocellulose……………………………………………………………. 174
Table 45: Comparative properties of carbon materials……………………………………………………………… 177
Table 46: Comparative properties of graphene with nanoclays and carbon nanotubes……………. 179
Table 47: Competitive analysis of Carbon nanotubes and graphene by application area and potential impact by 2025…………………………………………………………………………………………………….. 180
Table 48: SWNT synthesis methods…………………………………………………………………………………………. 183
Table 49: Large area graphene films-Markets, applications and current global market……………. 190
Table 50: Graphene oxide flakes/graphene nanoplatelets-Markets, applications and current global market…………………………………………………………………………………………………………………………………. 191
Table 51: Main production methods for graphene…………………………………………………………………….. 192
Table 52: Graphene synthesis methods, by company………………………………………………………………. 210
Table 53: Properties of cellulose nanofibrils relative to metallic and polymeric materials…………. 212
Table 54: Nanocellulose nanocrystal sources and scale………………………………………………………….. 213
Table 55: Nanofibrillated cellulose production methods……………………………………………………………. 215
Table 56: Cellulose nanocrystals (NCC) production methods…………………………………………………… 215
Table 57: Carbon nanotubes market structure………………………………………………………………………….. 216
Table 58: Graphene market structure……………………………………………………………………………………….. 218
Table 59: Nanocellulose market structure………………………………………………………………………………… 222
Table 60: Current and potential end users for nanocellulose, by market and company……………. 226
Table 61: Current and potential nanocellulose end users…………………………………………………………. 227
Table 62: National nanomaterials registries in Europe……………………………………………………………… 229
Table 63: Nanomaterials regulatory bodies in Australia……………………………………………………………. 234
Table 64: Top ten countries based on number of nanotechnology patents in USPTO 2014-2015. 236
Table 65: Published patent publications for graphene, 2004-2014…………………………………………… 240
Table 66: Leading graphene patentees…………………………………………………………………………………….. 241
Table 67: Industrial graphene patents in 2014………………………………………………………………………….. 242
Table 68: Published patent publications for nanocellulose, 1997-2013…………………………………….. 244
Table 69: Nanocellulose patents as of May 2015……………………………………………………………………… 245
Table 70: Research publications on nanocellulose materials and composites, 1996-2013………. 245
Table 71: Nanocellulose patents by organisation……………………………………………………………………… 246
Table 72: Nanocellulose patents by organisation, 2014……………………………………………………………. 247
Table 73: Main patent assignees for NCC, as of May 2015……………………………………………………… 248
Table 74: Main patent assignees for NFC, as of May 2015………………………………………………………. 248
Table 75: Main patent assignees for BCC, as of May 2015………………………………………………………. 248
Table 76: Production volumes of carbon nanotubes (tons), 2010-2025……………………………………. 257
Table 77: Annual production capacity of MWNT producers………………………………………………………. 261
Table 78: SWNT producers production capacities 2015…………………………………………………………… 262
Table 79: Example carbon nanotubes prices……………………………………………………………………………. 270
Table 80: Markets, benefits and applications of Carbon Nanotubes…………………………………………. 271
Table 81: Potential market penetration and volume estimates (tons) for graphene in key applications…………………………………………………………………………………………………………………………. 273
Table 82: Global production of graphene, 2010-2025 in tons/year. Base year for projections is 2014…………………………………………………………………………………………………………………………………………….. 274
Table 83: Graphene producers and production capacity (Current and projected), prices and target markets……………………………………………………………………………………………………………………………….. 275
Table 86: Production capacities of CNF producers per annum in tons, current and planned……. 281
Table 87: Production capacities of CNC producers per annum in tons, current and planned…… 283
Table 88: Markets and applications for nanocellulose………………………………………………………………. 284
Table 89: Product/price/application matrix of nanocellulose producers…………………………………….. 287
Table 90: Graphene properties relevant to application in adhesives………………………………………… 290
Table 91: Applications in adhesives, by carbon nanomaterials type and benefits thereof………… 290
Table 92: Carbon nanomaterials in the adhesives market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………. 291
Table 93: Market challenges rating for nanotechnology and nanomaterials in the adhesives market…………………………………………………………………………………………………………………………………………….. 292
Table 94: Carbon nanotubes product and application developers in the adhesives industry……. 292
Table 95: Graphene product and application developers in the adhesives industry………………… 293
Table 96: Applications in aerospace composites, by carbon nanomaterials type and benefits thereof………………………………………………………………………………………………………………………………… 297
Table 97: Applications in aerospace coatings, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………………………………….. 299
Table 98: Carbon nanomaterials in the aerospace market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………. 301
Table 99: Market challenges rating for high impact nanomaterials in the aerospace market……. 302
Table 100: Carbon nanotubes product and application developers in the aerospace industry…. 303
Table 101: Graphene product and application developers in the aerospace industry………………. 305
Table 102: Applications of natural fiber composites in vehicles by manufacturers……………………. 309
Table 103: Applications in automotive composites, by carbon nanomaterials type and benefits thereof………………………………………………………………………………………………………………………………… 313
Table 104: Nanocoatings applied in the automotive industry……………………………………………………. 315
Table 105: Application markets, competing materials, high impact nanomaterials advantages and current market size in the automotive sector………………………………………………………………………. 318
Table 106: Carbon nanomaterials in the automotive market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………. 319
Table 107: Market opportunity assessment for nanocellulose in the automotive industry………… 319
Table 108: Applications and commercilization challenges in the automotive market for high impact nanomaterials……………………………………………………………………………………………………………………… 320
Table 109: Market challenges rating for high impact nanomaterials in the automotive market…. 321
Table 110: Carbon nanotubes product and application developers in the automotive industry… 321
Table 111: Graphene product and application developers in the automotive industry……………… 322
Table 112: Companies developing Nanocellulose products in the automotive industry, applications targeted and stage of commercialization…………………………………………………………………………….. 323
Table 113: CNTs in life sciences and biomedicine……………………………………………………………………. 328
Table 114: Graphene properties relevant to application in biomedicine and healthcare…………… 328
Table 115: Nanotechnology and nanomaterials opportunity in the drug formulation and delivery market-applications, stage of commercialization and estimated economic impact……………… 340
Table 116: Nanotechnology and nanomaterials opportunity in medical implants and devices market-applications, stage of commercialization and estimated economic impact…………………………. 341
Table 117: Nanotechnology and nanomaterials opportunity in the wound care market-applications, stage of commercialization and estimated economic impact………………………………………………. 341
Table 118: Carbon nanotubes product and application developers in the medical and healthcare industry……………………………………………………………………………………………………………………………….. 343
Table 119: Graphene product and application developers in the biomedical and healthcare industry…………………………………………………………………………………………………………………………………………….. 344
Table 120: Nanocellulose product developers in medical and healthcare applications…………….. 346
Table 121: Properties of nanocoatings……………………………………………………………………………………… 348
Table 122: Graphene properties relevant to application in coatings…………………………………………. 356
Table 123: Markets for nanocoatings……………………………………………………………………………………….. 368
Table 124: Carbon nanotubes in the coatings market-applications, stage of commercialization and addressable market size…………………………………………………………………………………………………….. 371
Table 125: Graphene and 2D materials in the coatings market-applications, stage of commercialization and estimated economic impact……………………………………………………………. 371
Table 126: Market assessment for nanocellulose in coatings and films……………………………………. 372
Table 127: Application markets, competing materials, nanocellulose advantages and current market size in coatings and films……………………………………………………………………………………………………. 373
Table 128: Market opportunity assessment for nanocellulose in coatings and films…………………. 374
Table 129: Carbon nanotubes product and application developers in the coatings industry…….. 376
Table 130: Graphene product and application developers in the coatings industry………………….. 377
Table 131: Companies developing NFC products in paper coatings and non-packaging coating products, applications targeted and stage of commercialization…………………………………………. 378
Table 132: Examples of antimicrobial immobilization into cellulose nanofibers………………………… 386
Table 133: Graphene properties relevant to application in polymer composites……………………….. 388
Table 134: Applications in polymer composites, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………………………………….. 388
Table 135: Equivalent cost of nanocellulose and competitive materials in polymer composites.. 389
Table 136: Applications of nanocellulose in polymer composites by cellulose type………………….. 390
Table 137: Oxygen permeability of nanocellulose films compared to those made form commercially available petroleum based materials and other polymers…………………………………………………… 392
Table 138: Applications in ESD and EMI shielding composites, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………… 392
Table 139: Applications in thermal management composites, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………… 395
Table 140: Applications in rubber and elastomers, by carbon nanomaterials type and benefits thereof………………………………………………………………………………………………………………………………… 396
Table 141: Potential addressable market size for carbon nanomaterials composites in tons…… 397
Table 142: Carbon nanomaterials in the composites market-applications, stage of commercialization and estimated economic impact……………………………………………………………. 397
Table 143: Market assessment for nanocellulose in polymer composites………………………………… 398
Table 144: Market opportunity assessment for nanocellulose in polymer composites……………… 398
Table 145: Limitations of nanocellulose in the development of polymer nanocomposites………… 399
Table 146: Market challenges rating for high impact nanomaterials in the composites market… 401
Table 148: Carbon nanotubes product and application developers in the composites industry… 402
Table 149: Graphene product and application developers in the composites industry……………… 405
Table 150: Companies developing nanocellulose products in bio packaging, applications targeted and stage of commercialization………………………………………………………………………………………….. 406
Table 151: Comparison of ITO replacements…………………………………………………………………………… 409
Table 152: Properties of SWNTs and graphene relevant to flexible electronics……………………….. 414
Table 153: Comparative cost of TCF materials…………………………………………………………………………. 415
Table 154: Graphene properties relevant to application in sensors………………………………………….. 427
Table 155: Applications in flexible and stretchable health monitors, by nanomaterials type and benefits thereof…………………………………………………………………………………………………………………… 430
Table 156: Applications in patch-type skin sensors, by nanomaterials type and benefits thereof. 433
Table 157: Application markets, competing materials, nanomaterials advantages and current market size in flexible substrates………………………………………………………………………………………… 439
Table 158: Market assessment for nanocellulose in the flexible and printed electronics sector.. 439
Table 159: Market opportunity assessment for Nanocellulose in flexible electronics………………… 440
Table 160: Global market for wearables, 2014-2021, units and US$……………………………………….. 441
Table 161: Potential addressable market for smart textiles and wearables in medical and healthcare…………………………………………………………………………………………………………………………… 443
Table 162: Potential addressable market for thin film, flexible and printed batteries………………… 445
Table 163: Market assessment for the nanotechnology in the wearable energy storage (printed and flexible battery) market……………………………………………………………………………………………………….. 448
Table 164: Market assessment for the nanotechnology in the wearable energy harvesting market…………………………………………………………………………………………………………………………………………….. 449
Table 165: Market challenges rating for high impact nanomaterials in the flexible electronics, conductive films and displays market…………………………………………………………………………………. 453
Table 166: Carbon nanotubes product and application developers in transparent conductive films and displays……………………………………………………………………………………………………………………….. 454
Table 167: Graphene product and application developers in in flexible electronics, flexible conductive films and displays……………………………………………………………………………………………… 456
Table 168: Companies developing Nanocellulose products in paper electronics, applications targeted and stage of commercialization…………………………………………………………………………….. 457
Table 169: Comparative properties of conductive inks……………………………………………………………… 459
Table 170: Applications in conductive inks by nanomaterials type and benefits thereof…………… 463
Table 171: Opportunities for nanomaterials in printed electronics…………………………………………….. 466
Table 172: Nanomaterials in the conductive inks market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………. 466
Table 173: Market challenges rating for nanotechnology and nanomaterials in the conductive inks market…………………………………………………………………………………………………………………………………. 467
Table 174: Carbon nanotubes product and application developers in conductive inks…………….. 468
Table 175: Graphene product and application developers in conductive inks………………………….. 468
Table 176: Comparison of Cu, CNTs and graphene as interconnect materials………………………… 473
Table 177: Applications in transistors, integrated circuits and other components, by carbon nanomaterials type and benefits thereof…………………………………………………………………………….. 473
Table 178: Carbon nanomaterials in the transistors, integrated circuits and other components market-applications, stage of commercialization and estimated economic impact……………… 480
Table 179: Market challenges rating for nanotechnology and nanomaterials in the transistors, integrated circuits and other components market……………………………………………………………….. 482
Table 180: Carbon nanotubes product and application developers in integrated circuits, transistors and other components………………………………………………………………………………………………………… 483
Table 181: Graphene product and application developers in transistors and integrated circuits. 483
Table 182: Nanotechnology and nanomaterials in the memory devices market-applications, stage of commercialization and estimated economic impact……………………………………………………………. 494
Table 183: Carbon nanotubes product and application developers in memory devices……………. 494
Table 184: Graphene product and application developers in memory devices…………………………. 495
Table 185: Applications in photonics, by nanomaterials type and benefits thereof…………………… 497
Table 186: Graphene properties relevant to application in optical modulators………………………….. 499
Table 187: Nanotechnology and nanomaterials in the photonics market-applications, stage of commercialization and estimated economic impact……………………………………………………………. 502
Table 188: Market challenges rating for nanotechnology and nanomaterials in the photonics market…………………………………………………………………………………………………………………………………………….. 504
Table 189: Graphene product and application developers in photonics……………………………………. 504
Table 190: Applications in LIB, by carbon nanomaterials type and benefits thereof…………………. 509
Table 191: Applications in lithium-air batteries, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………………………………….. 509
Table 192: Applications in sodium-ion batteries, by nanomaterials type and benefits thereof….. 510
Table 193: Carbon nanomaterials opportunity in the batteries market-applications, stage of commercialization and estimated economic impact……………………………………………………………. 511
Table 194: Market challenges in batteries………………………………………………………………………………… 511
Table 195: Market challenges rating for nanotechnology and nanomaterials in the batteries market…………………………………………………………………………………………………………………………………………….. 512
Table 196: Carbon nanomaterials application and product developers in batteries………………….. 513
Table 197: Comparative properties of graphene supercapacitors and lithium-ion batteries……… 520
Table 198: Properties of carbon materials in high-performance supercapacitors……………………… 520
Table 199: Carbon nanomaterials in the supercapacitors market-applications, stage of commercialization and estimated economic impact……………………………………………………………. 521
Table 200: Carbon nanomaterials application developers in supercapacitors………………………….. 523
Table 201: Applications in solar, by carbon nanomaterials type and benefits thereof………………. 527
Table 202: Applications in solar coatings, by carbon nanomaterials type and benefits thereof… 529
Table 203: Nanotechnology and nanomaterials in the solar market-applications, stage of commercialization and estimated economic impact……………………………………………………………. 531
Table 204: Market challenges for nanomaterials in solar………………………………………………………….. 532
Table 205: Market challenges rating for nanotechnology and nanomaterials in the solar market. 532
Table 206: Carbon nanomaterials application developers in solar……………………………………………. 532
Table 207: Carbon nanonomaterials application and product developers in fuel cells and hydrogen storage……………………………………………………………………………………………………………………………….. 535
Table 208: Applications in fuel cells, by carbon nanomaterials type and benefits thereof………… 537
Table 209: Applications hydrogen storage, by carbon nanomaterials type and benefits thereof. 538
Table 210: Carbon nanomaterials in the fuel cells and hydrogen storage market-applications, stage of commercialization and estimated economic impact………………………………………………………… 539
Table 211: Applications in lighting, by carbon nanomaterials type and benefits thereof…………… 542
Table 212: Carbon nanomaterials in the lighting and UVC market-applications, stage of commercialization and estimated economic impact……………………………………………………………. 543
Table 213: Market challenges rating for nanotechnology and nanomaterials in the lighting and UVC market…………………………………………………………………………………………………………………………………. 544
Table 214: Carbon nanomaterials application developers in lighting………………………………………… 544
Table 215: Applications in sensing and reservoir management, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………… 548
Table 216: Applications in oil & gas exploration coatings, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………… 549
Table 217: Applications in oil & gas exploration drilling fluids, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………… 550
Table 218: Applications in oil & gas exploration sorbent materials, by carbon nanomaterials type and benefits thereof……………………………………………………………………………………………………………. 551
Table 219: Applications in separation, by carbon anomaterials type and benefits thereof………… 551
Table 220: Carbon nanomaterials in the oil and gas market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………. 553
Table 221: Application markets, competing materials, NFC advantages and current market size in oil and gas………………………………………………………………………………………………………………………….. 553
Table 222: Market assessment for nanocellulose in oil and gas………………………………………………. 554
Table 223: Nanocellulose in the oil and gas market-applications, stage of commercialization and estimated economic impact………………………………………………………………………………………………… 554
Table 224: Market challenges rating for high-impact nanomaterials in the oil and gas exploration market…………………………………………………………………………………………………………………………………. 555
Table 225: Carbon nanotubes product and application developers in the energy industry……….. 556
Table 226: Graphene product and application developers in the energy industry…………………….. 558
Table 227: Nanocellulose product developers in oil and gas exploration………………………………….. 562
Table 228: Types of filtration…………………………………………………………………………………………………….. 566
Table 229: Applications in desalination and water filtration, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………… 569
Table 230: Applications in gas separation, by nanomaterials type and benefits thereof…………… 570
Table 231: Application markets, competing materials and current market size in filtration……….. 573
Table 232: Graphene and 2D materials in the filtration and separation market-applications, stage of commercialization and estimated economic impact……………………………………………………………. 573
Table 233: Market assessment for nanocellulose in filtration……………………………………………………. 574
Table 234: Market opportunity assessment for nanocellulose in the filtration industry……………… 574
Table 235: Market challenges rating for nanotechnology and nanomaterials in the filtration and environmental remediation market……………………………………………………………………………………… 575
Table 236: Carbon nanotubes product and application developers in the filtration industry……… 576
Table 237: Graphene product and application developers in the filtration industry…………………… 577
Table 238: Companies developing NFC products in filtration, applications targeted and stage of commercialization……………………………………………………………………………………………………………….. 578
Table 239: Applications in lubricants, by carbon nanomaterials type and benefits thereof……….. 580
Table 240: Applications of carbon nanomaterials in lubricants…………………………………………………. 581
Table 241: Nanotechnology and nanomaterials in lubricants market-applications, stage of commercialization and estimated economic impact……………………………………………………………. 582
Table 242: Market challenges rating for nanotechnology and nanomaterials in the lubricants market…………………………………………………………………………………………………………………………………………….. 582
Table 243: Carbon nanotubes product and application developers in the lubricants industry…… 583
Table 244: Graphene product and application developers in the lubricants industry……………….. 583
Table 245: Graphene properties relevant to application in sensors………………………………………….. 586
Table 246: Applications in strain sensors, by carbon nanomaterials type and benefits thereof… 587
Table 247: Applications in strain sensors, by carbon nanomaterials type and benefits thereof… 588
Table 248: Applications in biosensors, by nanomaterials type and benefits thereof…………………. 589
Table 249: Applications in food sensors, by carbon nanomaterials type and benefits thereof….. 589
Table 250: Applications in infrared (IR) sensors, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………………………………….. 590
Table 251: Applications in optical sensors, by carbon nanomaterials type and benefits thereof. 590
Table 252: Applications in pressure sensors, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………………………………….. 591
Table 253: Applications in humidity sensors, by carbon nanomaterials type and benefits thereof. 591
Table 254: Applications in acoustic sensors, by carbon nanomaterials type and benefits thereof. 592
Table 255: Applications in wireless sensors, by carbon nanomaterials type and benefits thereof. 592
Table 256: Carbon nanomaterials in the sensors market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………. 593
Table 257: Market challenges rating for nanotechnology and nanomaterials in the sensors market…………………………………………………………………………………………………………………………………………….. 594
Table 258: Carbon nanotubes product and application developers in the sensors industry……… 595
Table 259: Graphene product and application developers in the sensors industry…………………… 596
Table 260: Desirable functional properties for the textiles industry afforded by the use of high impact nanomaterials………………………………………………………………………………………………………….. 602
Table 261: Applications in textiles, by carbon nanomaterials type and benefits thereof……………. 604
Table 262: Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications…………………………………………………………………………………………………….. 605
Table 263: Global market for smart clothing and apparel, 2014-2021, units and revenues (US$). 610
Table 264: Market assessment for the nanotechnology in the smart clothing and apparel market…………………………………………………………………………………………………………………………………………….. 613
Table 265: Carbon nanomaterials in the textiles market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………. 613
Table 266: Market opportunity assessment for nanocellulose in paper and board…………………… 613
Table 267: Potential volume estimates (tons) and penetration of nanocellulose into textiles……. 614
Table 268: Market assessment for nanocellulose in textiles…………………………………………………….. 614
Table 269: Carbon nanotubes product and application developers in the textiles industry………. 615
Table 270: Graphene product and application developers in the textiles industry…………………… 615
Table 271: Graphene properties relevant to application in 3D printing……………………………………… 617
Table 272: Carbon nanomaterials in the 3D printing market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………. 618
Table 273: Application markets, competing materials, nanocellulose advantages and current market size in 3D printing……………………………………………………………………………………………………………….. 618
Table 274: Market assessment for nanocellulose in 3D printing……………………………………………….. 619
Table 275: Market opportunity assessment for nanocellulose in 3D printing…………………………….. 619
Table 276: Market challenges rating for nanotechnology and nanomaterials in the textiles and apparel market……………………………………………………………………………………………………………………. 620
Table 277: Carbon nanotubes product and application developers in the 3D printing industry… 621
Table 278: Graphene product and application developers in the 3D printing industry………………. 621
Table 279: Companies developing nanocellulose 3D printing products,…………………………………… 622
Table 280: Nanocellulose applications timeline in the paper and board markets……………………… 623
Table 281: Global packaging market, billions US$……………………………………………………………………. 626
Table 282: Market opportunity assessment for nanocellulose in paper and board…………………… 627
Table 283: Market challenges rating for nanocellulose in the paper and board market……………. 628
Table 284: Companies developing nanocellulose products in paper and board, applications targeted and stage of commercialization…………………………………………………………………………….. 628
Table 285: Nanocellulose applications timeline in the aerogels market……………………………………. 631
Table 286: Product developers in aerogels………………………………………………………………………………. 632
Table 287: Nanocellulose applications timeline in the rheology modifiers market…………………….. 632
Table 288: Commercial activity in nanocellulose rheology modifiers………………………………………… 634
Table 289: CNT producers and companies they supply/licence to…………………………………………… 637
Table 290: Graphene producers and types produced………………………………………………………………. 754
Table 291: Graphene industrial collaborations and target markets…………………………………………… 756
Table 292: Nanocellulose producers and types of nanocellulose produced……………………………… 882
Table 293: Target market, by nanocellulose producer……………………………………………………………… 883
FIGURES
Figure 1: Molecular structures of SWNT and MWNT………………………………………………………………….. 68
Figure 2: Production capacities for SWNTs in kilograms, 2005-2014…………………………………………. 73
Figure 3: Demand for graphene, by market, 2015………………………………………………………………………. 82
Figure 4: Demand for graphene, by market, 2015………………………………………………………………………. 83
Figure 5: Global government funding for graphene in millions USD……………………………………………. 85
Figure 6: Global market for graphene 2010-2025 in tons/year……………………………………………………. 90
Figure 7: Global consumption of graphene 2015, by region……………………………………………………….. 94
Figure 8: Scale of cellulose materials…………………………………………………………………………………………. 97
Figure 9: Cellulose nanofiber transparent sheet……………………………………………………………………….. 104
Figure 10: CNF transparent sheet…………………………………………………………………………………………….. 107
Figure 11: Running shoes incorporating cellulose nanofibers…………………………………………………… 108
Figure 12: Ballpoint pen incorporating cellulose nanofibers……………………………………………………… 109
Figure 13: CNF wet powder……………………………………………………………………………………………………… 110
Figure 14: Schematic of single-walled carbon nanotube…………………………………………………………… 117
Figure 15: Double-walled carbon nanotube bundle cross-section micrograph and model………… 119
Figure 16: Schematic representation of carbon nanohorns………………………………………………………. 120
Figure 17: TEM image of carbon onion…………………………………………………………………………………….. 121
Figure 18: Fullerene schematic………………………………………………………………………………………………… 123
Figure 19: Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red……………………………………………………………………………………………………………………….. 124
Figure 20: Graphene layer structure schematic………………………………………………………………………… 127
Figure 21: Graphite and graphene……………………………………………………………………………………………. 128
Figure 22: Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene. ……………………………………………………………………………………………………………………………………………. 129
Figure 23: Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1–4)………………… 132
Figure 24: Graphene quantum dots………………………………………………………………………………………….. 134
Figure 25: Black phosphorus structure……………………………………………………………………………………… 140
Figure 26: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal………………………………………………………………………………………………………………………….. 143
Figure 27: Schematic of germanene…………………………………………………………………………………………. 145
Figure 28: Graphdiyne structure……………………………………………………………………………………………….. 147
Figure 29: Schematic of Graphane crystal………………………………………………………………………………… 149
Figure 30: Structure of hexagonal boron nitride………………………………………………………………………… 151
Figure 31: Structure of 2D molybdenum disulfide…………………………………………………………………….. 153
Figure 32: Atomic force microscopy image of a representative MoS2 thin-film transistor…………. 154
Figure 33: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge……………………………………………………………………………… 156
Figure 34: Schematic of a monolayer of rhenium disulphide…………………………………………………….. 157
Figure 35: Silicene structure……………………………………………………………………………………………………… 158
Figure 36: Monolayer silicene on a silver (111) substrate…………………………………………………………. 159
Figure 37: Silicene transistor…………………………………………………………………………………………………….. 161
Figure 38: Crystal structure for stanene……………………………………………………………………………………. 162
Figure 39: Atomic structure model for the 2D stanene on Bi2Te3(111)……………………………………. 162
Figure 40: Schematic of tungsten diselenide……………………………………………………………………………. 164
Figure 41: Schematic diagram of partial molecular structure of cellulose chain with numbering for carbon atoms and n= number of cellobiose repeating unit…………………………………………………. 165
Figure 42: Scale of cellulose materials……………………………………………………………………………………… 166
Figure 43: Types of nanocellulose……………………………………………………………………………………………. 167
Figure 44: Relationship between different kinds of nanocelluloses…………………………………………… 168
Figure 45: TEM image of cellulose nanocrystals………………………………………………………………………. 173
Figure 46: Graphene can be rolled up into a carbon nanotube, wrapped into a fullerene, and stacked into graphite…………………………………………………………………………………………………………… 182
Figure 47: Schematic representation of methods used for carbon nanotube synthesis (a) Arc discharge (b) Chemical vapor deposition (c) Laser ablation (d) hydrocarbon flames………….. 187
Figure 48: Arc discharge process for CNTs………………………………………………………………………………. 189
Figure 49: Schematic of thermal-CVD method…………………………………………………………………………. 190
Figure 50: Schematic of plasma-CVD method………………………………………………………………………….. 191
Figure 51: CoMoCAT® process………………………………………………………………………………………………… 192
Figure 52: Schematic for flame synthesis of carbon nanotubes (a) premixed flame (b) counter-flow diffusion flame (c) co-flow diffusion flame (d) inverse diffusion flame…………………………………. 193
Figure 53: Schematic of laser ablation synthesis……………………………………………………………………… 194
Figure 54: Graphene synthesis methods………………………………………………………………………………….. 198
Figure 55: TEM micrographs of: A) HR-CNFs; B) GANF® HR-CNF, it can be observed its high graphitic structure; C) Unraveled ribbon from the HR-CNF; D) Detail of the ribbon; E) Scheme of the structure of the HR-CNFs; F) Large single graphene oxide sheets derived from GANF.. 199
Figure 56: Graphene nanoribbons grown on germanium…………………………………………………………. 202
Figure 57: Methods of synthesizing high-quality graphene……………………………………………………….. 204
Figure 58: Roll-to-roll graphene production process…………………………………………………………………. 210
Figure 59: Schematic of roll-to-roll manufacturing process……………………………………………………….. 211
Figure 60: Microwave irradiation of graphite to produce single-layer graphene………………………… 214
Figure 61: Main steps involved in the preparation of NCC………………………………………………………… 219
Figure 62: Schematic of typical commercialization route for graphene producer……………………… 223
Figure 63: Schematic of typical commercialization route for nanocellulose producer……………….. 226
Figure 64: Volume of industry demand for nanocellulose by nanocellulose producer sales……… 230
Figure 65: Nanotechnology patent applications, 1991-2015…………………………………………………….. 240
Figure 66: Share of nanotechnology related patent applications since 1972, by country………….. 241
Figure 67: CNT patents filed 2000-2014…………………………………………………………………………………… 242
Figure 68: Patent distribution of CNT application areas to 2014………………………………………………. 243
Figure 69: Published patent publications for graphene, 2004-2014………………………………………….. 246
Figure 70: Nanocellulose patents by field of application, 2013………………………………………………… 251
Figure 71: Technology Readiness Level (TRL) for Carbon Nanotubes…………………………………….. 257
Figure 72: Technology Readiness Level (TRL) for graphene……………………………………………………. 258
Figure 73: Technology Readiness Level (TRL) for nanodiamonds…………………………………………… 259
Figure 74: Technology Readiness Level (TRL) for nanocellulose…………………………………………….. 260
Figure 75: Production volumes of carbon nanotubes (tons), 2010-2025…………………………………… 263
Figure 76: Production capacities for SWNTs in kilograms, 2005-2014……………………………………… 264
Figure 77: Demand for carbon nanotubes, by market………………………………………………………………. 265
Figure 78: Production volumes of Carbon Nanotubes 2015, by region…………………………………….. 268
Figure 79: Regional demand for CNTs utilized in batteries………………………………………………………. 269
Figure 80: Regional demand for CNTs utilized in Polymer reinforcement…………………………………. 270
Figure 81: Global market for graphene 2010-2025 in tons/year……………………………………………….. 280
Figure 82: Demand for nanodiamonds, by market……………………………………………………………………. 286
Figure 83: Production volumes of nanodiamonds, 2010-2025………………………………………………….. 288
Figure 84: Production volumes of nanodiamonds 2015, by region…………………………………………… 289
Figure 85: Production volumes of nanocellulose 2015, by region…………………………………………….. 293
Figure 86: Nanomaterials-based automotive components………………………………………………………… 319
Figure 87: The Tesla S’s touchscreen interface……………………………………………………………………….. 320
Figure 88: Graphene Frontiers’ Six™ chemical sensors consists of a field effect transistor (FET) with a graphene channel. Receptor molecules, such as DNA, are attached directly to the graphene channel……………………………………………………………………………………………………………….. 345
Figure 89: Graphene-Oxide based chip prototypes for biopsy-free early cancer diagnosis………. 346
Figure 90: Heat transfer coating developed at MIT…………………………………………………………………… 364
Figure 91: Water permeation through a brick without (left) and with (right) “graphene paint” coating…………………………………………………………………………………………………………………………………………….. 371
Figure 92: Four layers of graphene oxide coatings on polycarbonate………………………………………. 374
Figure 93: Global Paints and Coatings Market, share by end user market……………………………….. 376
Figure 94: Example process for producing NFC packaging film……………………………………………….. 395
Figure 95: Graphene-enabled bendable smartphone……………………………………………………………….. 422
Figure 96: 3D printed carbon nanotube sensor………………………………………………………………………… 423
Figure 97: Graphene electrochromic devices. Top left: Exploded-view illustration of the graphene electrochromic device. The device is formed by attaching two graphene-coated PVC substrates face-to-face and filling the gap with a liquid ionic electrolyte………………………………………………. 426
Figure 98: Flexible transistor sheet…………………………………………………………………………………………… 427
Figure 99: Foldable graphene E-paper…………………………………………………………………………………….. 429
Figure 100: LEDs shining on circuitry imprinted on a 5x5cm sheet of CNF………………………………. 430
Figure 101: NFC computer chip………………………………………………………………………………………………… 431
Figure 102: NFC translucent diffuser schematic……………………………………………………………………….. 432
Figure 103: Panasonic CTN stretchable Resin Film…………………………………………………………………. 433
Figure 104: Nanocellulose photoluminescent paper…………………………………………………………………. 434
Figure 105: LEDs shining on circuitry imprinted on a 5x5cm sheet of CNF………………………………. 435
Figure 106: Wearable gas sensor…………………………………………………………………………………………….. 437
Figure 107: Flexible, lightweight temperature sensor……………………………………………………………….. 438
Figure 108: Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs………………………………………………………………………………………………………………………………… 440
Figure 109: Graphene medical patch……………………………………………………………………………………….. 441
Figure 110: Global touch panel market ($ million), 2011-2018…………………………………………………. 443
Figure 111: Capacitive touch panel market forecast by layer structure (Ksqm)……………………….. 444
Figure 112: Global transparent conductive film market forecast (million $)………………………………. 445
Figure 113: Global transparent conductive film market forecast by materials type, 2015, %……. 446
Figure 114: Global transparent conductive film market forecast by materials type, 2020, %……. 447
Figure 115: Global market revenues for smart wearable devices 2014-2021, in US$………………. 450
Figure 116: Global market revenues for nanotech-enabled smart wearable devices 2014-2021 in US$, conservative estimate………………………………………………………………………………………………… 451
Figure 117: Global market revenues for nanotech-enabled smart wearable devices 2014-2021 in US$, optimistic estimate……………………………………………………………………………………………………… 452
Figure 118: Potential addressable market for nanotech-enabled medical smart textiles and wearables…………………………………………………………………………………………………………………………… 453
Figure 119: Demand for thin film, flexible and printed batteries 2015, by market……………………… 455
Figure 120: Demand for thin film, flexible and printed batteries 2025, by market……………………… 456
Figure 121: Potential addressable market for nanotech-enabled thin film, flexible or printed batteries……………………………………………………………………………………………………………………………… 457
Figure 122: Schematic of the wet roll-to-roll graphene transfer from copper foils to polymeric substrates…………………………………………………………………………………………………………………………… 460
Figure 123: The transmittance of glass/ITO, glass/ITO/four organic layers, and glass/ITO/four organic layers/4-layer graphene…………………………………………………………………………………………. 461
Figure 124: Nanotube inks………………………………………………………………………………………………………… 470
Figure 125: Graphene printed antenna…………………………………………………………………………………….. 470
Figure 126: BGT Materials graphene ink product……………………………………………………………………… 471
Figure 127: Global market for conductive inks and pastes in printed electronics……………………… 474
Figure 128: Transistor architecture trend chart…………………………………………………………………………. 480
Figure 129: Schematic cross-section of a graphene based transistor (GBT, left) and a graphene field-effect transistor (GFET, right)……………………………………………………………………………………… 480
Figure 130: CMOS Technology Roadmap………………………………………………………………………………… 481
Figure 131: Figure 38: Thin film transistor incorporating CNTs…………………………………………………. 484
Figure 132: Graphene IC in wafer tester…………………………………………………………………………………… 486
Figure 133: Schematic cross-section of a graphene based transistor (GBT, left) and a graphene field-effect transistor (GFET, right)……………………………………………………………………………………… 487
Figure 134: Emerging logic devices………………………………………………………………………………………….. 489
Figure 135: Stretchable CNT memory and logic devices for wearable electronics……………………. 496
Figure 136: Graphene oxide-based RRAm device on a flexible substrate………………………………… 496
Figure 137: Emerging memory devices…………………………………………………………………………………….. 497
Figure 138: Carbon nanotubes NRAM chip………………………………………………………………………………. 498
Figure 139: Schematic of NRAM cell………………………………………………………………………………………… 500
Figure 140: Layered structure of tantalum oxide, multilayer graphene and platinum used for resistive random access memory (RRAM)………………………………………………………………………….. 501
Figure 141: A schematic diagram for the mechanism of the resistive switching in metal/GO/Pt.. 502
Figure 142: Hybrid graphene phototransistors………………………………………………………………………….. 509
Figure 143: Wearable health monitor incorporating graphene photodetectors…………………………. 509
Figure 144: Energy densities and specific energy of rechargeable batteries……………………………. 516
Figure 145: Zapgo supercapacitor phone charger……………………………………………………………………. 531
Figure 146: Suntech/TCNT nanotube frame module………………………………………………………………… 535
Figure 147: Nanocellulose sponge developed by EMPA for potential applications in oil recovery. 558
Figure 148: Perforene graphene filter……………………………………………………………………………………….. 577
Figure 149: Nanocellulose virus filter paper……………………………………………………………………………… 581
Figure 150: Global market revenues for smart clothing and apparel 2014-2021, in US$………….. 620
Figure 151: Global market revenues for nanotech-enabled smart clothing and apparel 2014-2021, in US$, conservative estimate…………………………………………………………………………………………….. 621
Figure 152: Global market revenues for nanotech-enabled smart clothing and apparel 2014-2021, in US$, optimistic estimate………………………………………………………………………………………………….. 621
Figure 153: 3D Printed tweezers incorporating Carbon Nanotube Filament…………………………….. 626
Figure 154: Paper and board global demand……………………………………………………………………………. 636
Figure 155: Asahi Kasei CNF fabric sheet………………………………………………………………………………… 906
Figure 156: Properties of Asahi Kasei cellulose nanofiber nonwoven fabric…………………………….. 907
Figure 157: CNF transparent film……………………………………………………………………………………………… 943
Figure 158: CNF wet powder……………………………………………………………………………………………………. 944
Figure 159: Flexible electronic substrate made from CNF………………………………………………………… 970
Figure 160: Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film……………. 975
Figure 161: CNC produced at Tech Futures’ pilot plant; cloudy suspension (1 wt.%), gel-like (10 wt.%), flake-like crystals, and very fine powder. Product advantages include:……………………. 984
Figure 162: NCCTM Process……………………………………………………………………………………………………. 985
Figure 163: Plantrose process………………………………………………………………………………………………….. 991