The Global Market for High Impact Nanomaterials: Nanocellulose, Carbon Nanotubes, Graphene and 2-D Nanomaterials

0

Nanocellulose, carbon nanotubes, graphene and other 2D materials will make a huge impact in the next 10-15 years.

Nanocellulose, Carbon Nanotubes, Graphene

Many industries including electronics, automotive, aerospace, telecommunications and healthcare are exploring the use of high impact nanomaterials such as nanocellulose, carbon nanotubes and graphene. Other 2-D nanomaterials such as silicene, graphyne, graphdiyne, grapahane and molybdenum disulfide are also under intense study. CNTs and graphene are the strongest, lightest and most conductive fibers known to man, with a performance-per-weight greater than any other material.

All of these materials possess outstanding properties and represent potentially the most economically viable and lucrative nanomaterials through to the middle of the next decade and beyond. Most are relatively new nanomaterials but are coming onto the market fast and will find widespread applications over the next decade in sectors such as composites, electronics, filtration, medical and life sciences, oil and energy, automotive, aerospace, coatings, military, consumer goods and sensors.

This 1031 page report outlines the global scenario for these materials including:

  • Industry growth and prospects
  • Industry structure
  • Historical data
  • Market forecasts
  • Key market drivers and restraints
  • Technology roadmaps and application timelines
  • Over 250 tables and figures
  • Producers, research centre and application developer profiles

Published January 2017 | 1031 pages

The Global Market for High Impact Nanomaterials: Nanocellulose, Carbon Nanotubes, Graphene and 2-D Nanomaterials. PDF download.
The Global Market for High Impact Nanomaterials: Nanocellulose, Carbon Nanotubes, Graphene and 2-D Nanomaterials. PDF download.
Instant PDF download. 1045 pages.

TABLE OF CONTENTS

1       RESEARCH METHODOLOGY………………………………………………………………………………………….. 60

1.1    NANOMATERIALS MARKET RATING SYSTEM…………………………………………………………… 61

1.2    COMMERCIAL IMPACT RATING SYSTEM…………………………………………………………………… 62

1.3    MARKET CHALLENGES RATING SYSTEM…………………………………………………………………. 63

2       EXECUTIVE SUMMARY……………………………………………………………………………………………………. 65

2.1    CARBON NANOTUBES…………………………………………………………………………………………………. 65

2.1.1     Exceptional properties……………………………………………………………………………………………. 67

2.1.2     Products and applications………………………………………………………………………………………. 69

2.1.3     Threat from the graphene market…………………………………………………………………………… 69

2.1.4     Production……………………………………………………………………………………………………………… 70

2.1.4.1       Multi-walled nanotube (MWNT) production……………………………………………………. 70

2.1.4.2       Single-walled nanotube (SWNT) production………………………………………………….. 71

2.1.5     Global demand for carbon nanotubes……………………………………………………………………. 73

2.1.5.1       Current products……………………………………………………………………………………………. 75

2.1.5.2       Future products……………………………………………………………………………………………… 76

2.1.6     Market drivers and trends………………………………………………………………………………………. 76

2.1.6.1       Electronics……………………………………………………………………………………………………… 76

2.1.6.2       Electric vehicles and lithium-ion batteries………………………………………………………. 77

2.1.7     Market and production challenges…………………………………………………………………………. 78

2.1.7.1       Safety issues…………………………………………………………………………………………………. 78

2.1.7.2       Dispersion……………………………………………………………………………………………………… 78

2.1.7.3       Synthesis and supply quality………………………………………………………………………….. 79

2.1.7.4       Cost……………………………………………………………………………………………………………….. 79

2.1.7.5       Competition from other materials…………………………………………………………………… 79

2.2    TWO-DIMENSIONAL (2D) MATERIALS………………………………………………………………………… 79

2.3    GRAPHENE…………………………………………………………………………………………………………………… 80

2.3.1     Products…………………………………………………………………………………………………………………. 81

2.3.2     Short-term opportunities…………………………………………………………………………………………. 81

2.3.3     Medium-term opportunities…………………………………………………………………………………….. 83

2.3.4     Remarkable properties…………………………………………………………………………………………… 84

2.3.5     Global funding and initiatives…………………………………………………………………………………. 84

2.3.5.1       Europe…………………………………………………………………………………………………………… 84

2.3.5.2       Asia……………………………………………………………………………………………………………….. 84

2.3.5.3       United States…………………………………………………………………………………………………. 85

2.3.6     Products and applications………………………………………………………………………………………. 86

2.3.7     Production……………………………………………………………………………………………………………… 87

2.3.8     Market drivers and trends………………………………………………………………………………………. 89

2.3.8.1       Production exceeds demand…………………………………………………………………………. 89

2.3.8.2       Market revenues remain small………………………………………………………………………. 90

2.3.8.3       Scalability and cost………………………………………………………………………………………… 91

2.3.8.4       Applications hitting the market……………………………………………………………………….. 92

2.3.8.5       Wait and see?……………………………………………………………………………………………….. 93

2.3.8.6       Asia and US lead the race……………………………………………………………………………… 93

2.3.8.7       Competition from other materials…………………………………………………………………… 94

2.3.9     Market and technical challenges……………………………………………………………………………. 95

2.3.9.1       Inconsistent supply quality…………………………………………………………………………….. 95

2.3.9.2       Functionalization and dispersion……………………………………………………………………. 95

2.3.9.3       Cost……………………………………………………………………………………………………………….. 96

2.3.9.4       Product integration………………………………………………………………………………………… 96

2.3.9.5       Regulation and standards……………………………………………………………………………… 96

2.3.9.6       Lack of a band gap………………………………………………………………………………………… 96

2.4    NANOCELLULOSE………………………………………………………………………………………………………… 97

2.4.1     Applications……………………………………………………………………………………………………………. 98

2.4.2     Production……………………………………………………………………………………………………………. 101

2.4.3     Market drivers………………………………………………………………………………………………………. 103

2.4.3.1       Sustainable materials…………………………………………………………………………………… 103

2.4.3.2       Improved products……………………………………………………………………………………….. 103

2.4.3.3       Unique properties………………………………………………………………………………………… 104

2.4.3.4       Recent improvements in production and product integration……………………….. 105

2.4.4     Market and technical challenges………………………………………………………………………….. 105

2.4.4.1       Characterization…………………………………………………………………………………………… 105

2.4.4.2       Production……………………………………………………………………………………………………. 105

2.4.4.3       Functionalization………………………………………………………………………………………….. 105

2.4.4.4       Moisture absorption and aggregation…………………………………………………………… 106

2.4.4.5       Scalability…………………………………………………………………………………………………….. 106

2.4.4.6       Lack of current products………………………………………………………………………………. 106

3       INTRODUCTION………………………………………………………………………………………………………………. 112

3.1    Properties of nanomaterials………………………………………………………………………………………….. 112

3.2    Categorization………………………………………………………………………………………………………………. 113

4       CARBON NANOTUBES………………………………………………………………………………………………….. 115

4.1    Multi-walled nanotubes (MWNT)………………………………………………………………………………….. 115

4.2    Single-wall carbon nanotubes (SWNT)………………………………………………………………………… 116

4.2.1     Single-chirality……………………………………………………………………………………………………… 118

4.3    Double-walled carbon nanotubes (DWNTs)…………………………………………………………………. 119

4.4    Few-walled carbon nanotubes (FWNTs)………………………………………………………………………. 120

4.5    Carbon Nanohorns (CNHs)………………………………………………………………………………………….. 120

4.6    Carbon Onions……………………………………………………………………………………………………………… 121

4.7    Fullerenes…………………………………………………………………………………………………………………….. 122

4.8    Boron Nitride nanotubes (BNNTs)………………………………………………………………………………… 123

4.9    Properties…………………………………………………………………………………………………………………….. 124

4.10      Applications of carbon nanotubes…………………………………………………………………………….. 125

4.10.1        High volume applications…………………………………………………………………………………. 125

4.10.2        Low volume applications………………………………………………………………………………….. 126

4.10.3        Novel applications……………………………………………………………………………………………. 126

5       GRAPHENE……………………………………………………………………………………………………………………… 127

5.1    History………………………………………………………………………………………………………………………….. 127

5.2    Forms of graphene……………………………………………………………………………………………………….. 128

5.3    Properties…………………………………………………………………………………………………………………….. 130

5.4    3D Graphene………………………………………………………………………………………………………………… 131

5.5    Graphene Quantum Dots……………………………………………………………………………………………… 131

5.5.1     Synthesis……………………………………………………………………………………………………………… 132

5.5.2     Applications………………………………………………………………………………………………………….. 133

5.5.3     Producers…………………………………………………………………………………………………………….. 134

6       OTHER 2D MATERIALS………………………………………………………………………………………………….. 135

6.1    Black phosphorus/Phosphorene…………………………………………………………………………………… 136

6.1.1     Properties…………………………………………………………………………………………………………….. 136

6.1.2     Applications………………………………………………………………………………………………………….. 138

6.2    C2N………………………………………………………………………………………………………………………………. 138

6.2.1     Properties…………………………………………………………………………………………………………….. 139

6.2.2     Applications………………………………………………………………………………………………………….. 140

6.3    Carbon nitride………………………………………………………………………………………………………………. 140

6.3.1     Properties…………………………………………………………………………………………………………….. 140

6.3.2     Applications………………………………………………………………………………………………………….. 141

6.4    Germanene………………………………………………………………………………………………………………….. 141

6.4.1     Properties…………………………………………………………………………………………………………….. 141

6.4.2     Applications………………………………………………………………………………………………………….. 142

6.5    Graphdiyne…………………………………………………………………………………………………………………… 142

6.5.1     Properties…………………………………………………………………………………………………………….. 143

6.5.2     Applications………………………………………………………………………………………………………….. 144

6.6    Graphane……………………………………………………………………………………………………………………… 144

6.6.1     Properties…………………………………………………………………………………………………………….. 145

6.6.2     Applications………………………………………………………………………………………………………….. 145

6.7    Hexagonal boron nitride……………………………………………………………………………………………….. 146

6.7.1     Properties…………………………………………………………………………………………………………….. 147

6.7.2     Applications………………………………………………………………………………………………………….. 148

6.7.3     Producers…………………………………………………………………………………………………………….. 148

6.8    Molybdenum disulfide (MoS2)………………………………………………………………………………………. 148

6.8.1     Properties…………………………………………………………………………………………………………….. 149

6.8.2     Applications………………………………………………………………………………………………………….. 150

6.9    Rhenium disulfide (ReS2) and diselenide (ReSe2)………………………………………………………. 152

6.9.1     Properties…………………………………………………………………………………………………………….. 153

6.9.2     Applications………………………………………………………………………………………………………….. 153

6.10      Silicene…………………………………………………………………………………………………………………….. 154

6.10.1        Properties………………………………………………………………………………………………………… 154

6.10.2        Applications……………………………………………………………………………………………………… 155

6.11      Stanene/tinene…………………………………………………………………………………………………………. 157

6.11.1        Properties………………………………………………………………………………………………………… 158

6.12      Applications……………………………………………………………………………………………………………… 159

6.13      Tungsten diselenide…………………………………………………………………………………………………. 159

6.13.1        Properties………………………………………………………………………………………………………… 160

6.13.2        Applications……………………………………………………………………………………………………… 160

7       NANOCELLULOSE…………………………………………………………………………………………………………. 160

7.1    What is nanocellulose?………………………………………………………………………………………………… 160

7.2    Types of nanocellulose…………………………………………………………………………………………………. 162

7.3    NanoFibrillar Cellulose (NFC)………………………………………………………………………………………. 165

7.3.1.1       Applications…………………………………………………………………………………………………. 165

7.3.1.2       Production methods…………………………………………………………………………………….. 166

7.3.2     NanoCrystalline Cellulose (NCC)…………………………………………………………………………. 168

7.3.2.1       Applications…………………………………………………………………………………………………. 169

7.3.3     Bacterial Cellulose (BCC)…………………………………………………………………………………….. 170

7.3.3.1       Applications…………………………………………………………………………………………………. 170

7.4    Synthesis of cellulose materials……………………………………………………………………………………. 171

7.4.1     Microcrystalline cellulose (MCC)………………………………………………………………………….. 171

7.4.2     Microfibrillated cellulose (MFC)……………………………………………………………………………. 172

7.4.3     Nanofibrillated cellulose (MFC)…………………………………………………………………………….. 172

7.4.4     Cellulose nanocrystals (CNC)………………………………………………………………………………. 173

7.4.5     Bacterial cellulose particles (CNC)……………………………………………………………………….. 174

7.5    Properties of nanocellulose………………………………………………………………………………………….. 174

7.6    Advantages of nanocellulose……………………………………………………………………………………….. 176

8       COMPARATIVE ANALYSIS OF GRAPHENE AND CARBON NANOTUBES………………… 177

8.1    Comparative properties………………………………………………………………………………………………… 178

8.2    Cost and production……………………………………………………………………………………………………… 179

8.3    Carbon nanotube-graphene hybrids…………………………………………………………………………….. 180

8.4    Competitive market analysis of carbon nanotubes and graphene………………………………… 181

9       CARBON NANOTUBE SYNTHESIS……………………………………………………………………………….. 183

9.1    Arc discharge synthesis……………………………………………………………………………………………….. 184

9.2    Chemical Vapor Deposition (CVD)……………………………………………………………………………….. 185

9.3    Plasma enhanced chemical vapor deposition (PECVD)……………………………………………….. 186

9.4    High-pressure carbon monoxide synthesis…………………………………………………………………… 187

9.4.1     High Pressure CO (HiPco)…………………………………………………………………………………… 187

9.4.2     CoMoCAT…………………………………………………………………………………………………………….. 187

9.5    Flame synthesis……………………………………………………………………………………………………………. 188

9.6    Laser ablation synthesis……………………………………………………………………………………………….. 189

9.7    Silane solution method…………………………………………………………………………………………………. 190

10     GRAPHENE SYNTHESIS………………………………………………………………………………………………… 191

10.1      Large area graphene films……………………………………………………………………………………….. 191

10.2      Graphene oxide flakes and graphene nanoplatelets………………………………………………… 192

10.3      Production methods…………………………………………………………………………………………………. 193

10.3.1        Production directly from natural graphite ore……………………………………………………. 195

10.3.2        Alternative starting materials……………………………………………………………………………. 195

10.3.3        Quality……………………………………………………………………………………………………………… 195

10.4      Synthesis and production by types of graphene………………………………………………………. 196

10.4.1        Graphene nanoplatelets (GNPs)……………………………………………………………………… 197

10.4.2        Graphene nanoribbons…………………………………………………………………………………….. 197

10.4.3        Large-area graphene films……………………………………………………………………………….. 198

10.4.4        Graphene oxide flakes (GO)……………………………………………………………………………. 199

10.5      Pros and cons of graphene production methods……………………………………………………… 200

10.5.1        Chemical Vapor Deposition (CVD)…………………………………………………………………… 201

10.5.2        Exfoliation method……………………………………………………………………………………………. 202

10.5.3        Epitaxial growth method…………………………………………………………………………………… 202

10.5.4        Wet chemistry method (liquid phase exfoliation)……………………………………………… 203

10.5.5        Micromechanical cleavage method………………………………………………………………….. 204

10.5.6        Green reduction of graphene oxide………………………………………………………………….. 204

10.5.7        Plasma…………………………………………………………………………………………………………….. 205

10.6      Recent synthesis methods……………………………………………………………………………………….. 205

10.6.1        Ben-Gurion University of the Negev (BGU) and University of Western Australia 205

10.6.2        Graphene Frontiers………………………………………………………………………………………….. 205

10.6.3        MIT and the University of Michigan………………………………………………………………….. 206

10.6.4        Oak Ridge National Laboratory/University of Texas/General Graphene………….. 207

10.6.5        University of Florida/Donghua University…………………………………………………………. 207

10.6.6        Ulsan National Institute of Science and Technology (UNIST) and Case Western Reserve University……………………………………………………………………………………………………………. 208

10.6.7        Trinity College Dublin……………………………………………………………………………………….. 208

10.6.8        Sungkyunkwan University and Samsung Advanced Institute of Technology (SAIT)                   208

10.6.9        Korea Institute of Science and Technology (KIST), Chonbuk National University and KRICT       208

10.6.10      NanoXplore……………………………………………………………………………………………………… 208

10.6.11      Carbon Sciences Inc………………………………………………………………………………………… 208

10.6.12      California Institute of Technology…………………………………………………………………….. 209

10.6.13      Shanghai Institute of Microsystem and Information Technology………………………. 209

10.6.14      Oxford University……………………………………………………………………………………………… 209

10.6.15      University of Tokyo…………………………………………………………………………………………… 209

10.7      Synthesis methods by company………………………………………………………………………………. 211

10.8      NANOCELLULOSE SYNTHESIS…………………………………………………………………………….. 213

10.8.1        Production methods…………………………………………………………………………………………. 214

10.8.1.1     Nanofibrillated cellulose production methods………………………………………………. 216

10.8.1.2     Nanocrystalline celluose production methods……………………………………………… 216

11     CARBON NANOTUBES MARKET STRUCTURE…………………………………………………………… 217

12     GRAPHENE MARKET STRUCTURE………………………………………………………………………………. 219

13     NANOCELLULOSE MARKET STRUCTURE………………………………………………………………….. 222

14     REGULATIONS AND STANDARDS……………………………………………………………………………….. 229

14.1      Europe……………………………………………………………………………………………………………………… 229

14.1.1        REACH…………………………………………………………………………………………………………….. 229

14.1.2        Biocidal Products Regulation…………………………………………………………………………… 230

14.1.3        National nanomaterials registers……………………………………………………………………… 230

14.1.4        Cosmetics regulation……………………………………………………………………………………….. 231

14.1.5        Food safety………………………………………………………………………………………………………. 232

14.2      United States……………………………………………………………………………………………………………. 233

14.2.1        Toxic Substances Control Act (TSCA)……………………………………………………………… 233

14.3      Asia………………………………………………………………………………………………………………………….. 234

14.3.1        Japan……………………………………………………………………………………………………………….. 234

14.3.2        South Korea…………………………………………………………………………………………………….. 234

14.3.3        Taiwan……………………………………………………………………………………………………………… 234

14.3.4        Australia…………………………………………………………………………………………………………… 234

15     CARBON NANOTUBES PATENTS…………………………………………………………………………………. 236

16     GRAPHENE PATENTS……………………………………………………………………………………………………. 240

16.1      Fabrication processes………………………………………………………………………………………………. 240

16.2      Academia…………………………………………………………………………………………………………………. 240

16.3      Regional leaders………………………………………………………………………………………………………. 241

17     NANOCELLULOSE PATENTS………………………………………………………………………………………… 245

18     TECHNOLOGY READINESS LEVEL………………………………………………………………………………. 251

18.1      Carbon nanotubes……………………………………………………………………………………………………. 251

18.2      Graphene…………………………………………………………………………………………………………………. 253

18.3      Nanodiamonds…………………………………………………………………………………………………………. 254

18.4      Nanocellulose…………………………………………………………………………………………………………… 255

19     CARBON NANOTUBES END USER MARKET SEGMENT ANALYSIS…………………………. 257

19.1      Production volumes in metric tons, 2010-2025………………………………………………………… 257

19.2      Carbon nanotube producer production capacities……………………………………………………. 262

19.3      Regional demand for carbon nanotubes………………………………………………………………….. 264

19.3.1        Japan……………………………………………………………………………………………………………….. 266

19.3.2        China……………………………………………………………………………………………………………….. 267

19.4      Main carbon nanotubes producers…………………………………………………………………………… 268

19.4.1        SWNT production…………………………………………………………………………………………….. 269

19.4.1.1     OCSiAl…………………………………………………………………………………………………………. 269

19.4.1.2     FGV Cambridge Nanosystems…………………………………………………………………….. 269

19.4.1.3     Zeon Corporation…………………………………………………………………………………………. 269

19.5      Price of carbon nanotubes-MWNTs, SWNTs and FWNTs……………………………………….. 270

19.5.1        MWNTs……………………………………………………………………………………………………………. 270

19.5.2        SWNTs…………………………………………………………………………………………………………….. 271

19.6      APPLICATIONS……………………………………………………………………………………………………….. 272

 

20     GRAPHENE END USER MARKET SEGMENT ANALYSIS……………………………………………. 273

20.1      Graphene production volumes 2010-2025……………………………………………………………….. 274

20.2      Graphene producers and production capacities………………………………………………………. 275

21     NANOCELLULOSE END USER MARKET SEGMENT ANALYSIS………………………………… 281

21.1      Production of nanocellulose……………………………………………………………………………………… 281

21.1.1        Microfibrillated cellulose…………………………………………………………………………………… 281

21.1.2        Cellulose nanofiber production………………………………………………………………………… 281

21.1.3        Cellulose nanocrystal production……………………………………………………………………… 282

21.1.4        Production volumes, by region…………………………………………………………………………. 283

21.1.5        Applications……………………………………………………………………………………………………… 284

21.1.6        Prices……………………………………………………………………………………………………………….. 287

22     ADHESIVES…………………………………………………………………………………………………………………….. 288

22.1      MARKET DRIVERS AND TRENDS…………………………………………………………………………. 289

22.1.1        Thermal management in high temperature electronics……………………………………. 289

22.1.2        Environmental sustainability…………………………………………………………………………….. 289

22.2      PROPERTIES AND APPLICATIONS………………………………………………………………………. 289

22.3      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 290

22.3.1        Total market size……………………………………………………………………………………………… 291

22.3.2        High impact nanomaterials opportunity…………………………………………………………………… 291

22.4      MARKET CHALLENGES…………………………………………………………………………………………. 291

22.5      APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 292

22.5.1        Carbon nanotubes……………………………………………………………………………………………. 292

22.5.2        Graphene…………………………………………………………………………………………………………. 293

23     AEROSPACE…………………………………………………………………………………………………………………… 293

23.1      MARKET DRIVERS AND TRENDS…………………………………………………………………………. 293

23.1.1        Safety………………………………………………………………………………………………………………. 294

23.1.2        Reduced fuel consumption and costs………………………………………………………………. 294

23.1.3        Increased durability………………………………………………………………………………………….. 294

23.1.4        Multi-functionality……………………………………………………………………………………………… 294

23.1.5        Need for new de-icing solutions……………………………………………………………………….. 295

23.1.6        Weight reduction………………………………………………………………………………………………. 295

23.1.7        Need for improved lightning protection materials…………………………………………….. 296

23.2      PROPERTIES AND APPLICATIONS………………………………………………………………………. 296

23.2.1        Composites……………………………………………………………………………………………………… 296

23.2.1.1     ESD protection…………………………………………………………………………………………….. 298

23.2.1.2     Conductive cables……………………………………………………………………………………….. 298

23.2.1.3     Anti-friction braking systems………………………………………………………………………… 298

23.2.2        Coatings…………………………………………………………………………………………………………… 298

23.2.2.1     Anti-icing……………………………………………………………………………………………………… 299

23.2.3        Sensors……………………………………………………………………………………………………………. 300

23.3      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 300

23.3.1        Total market size……………………………………………………………………………………………… 300

23.3.2        Carbon nanomaterials opportunity…………………………………………………………………… 301

23.4      MARKET CHALLENGES…………………………………………………………………………………………. 302

23.5      APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 303

23.5.1        Carbon nanotubes……………………………………………………………………………………………. 303

23.5.2        Graphene…………………………………………………………………………………………………………. 305

24     AUTOMOTIVE………………………………………………………………………………………………………………….. 306

24.1      MARKET DRIVER AND TRENDS……………………………………………………………………………. 306

24.1.1        Environmental regulations……………………………………………………………………………….. 307

24.1.2        Lightweighting………………………………………………………………………………………………….. 307

24.1.3        Increasing use of natural fiber composites………………………………………………………. 308

24.1.4        Safety………………………………………………………………………………………………………………. 309

24.1.5        Cost…………………………………………………………………………………………………………………. 309

24.1.6        Need for enhanced conductivity in fuel components………………………………………… 310

24.1.7        Increase in the use of touch-based automotive applications……………………………. 310

24.2      PROPERTIES AND APPLICATIONS………………………………………………………………………. 311

24.2.1        Composites……………………………………………………………………………………………………… 312

24.2.2        Thermally conductive additives………………………………………………………………………… 314

24.2.3        Vehicle mass reduction……………………………………………………………………………………. 314

24.2.4        Lithium-ion batteries in electric and hybrid vehicles…………………………………………. 314

24.2.5        Paints and coatings………………………………………………………………………………………….. 314

24.3      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 317

24.3.1        Composites……………………………………………………………………………………………………… 317

24.3.1.1     Total market size…………………………………………………………………………………………. 317

24.3.1.2     High impact nanomaterials opportunity………………………………………………………………. 318

24.3.2        Coatings…………………………………………………………………………………………………………… 318

24.3.2.1     Total market size…………………………………………………………………………………………. 318

24.3.2.2     High impact nanomaterials opportunity………………………………………………………………. 319

24.3.3        MARKET CHALLENGES…………………………………………………………………………………. 320

24.4      APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 321

24.4.1        Carbon nanotubes……………………………………………………………………………………………. 321

24.4.2        Graphene…………………………………………………………………………………………………………. 322

24.4.3        Nanocellulose………………………………………………………………………………………………….. 323

25     BIOMEDICAL & HEALTHCARE……………………………………………………………………………………… 324

25.1      MARKET DRIVERS AND TRENDS…………………………………………………………………………. 326

25.1.1        Improved drug delivery for cancer therapy………………………………………………………. 326

25.1.2        Shortcomings of chemotherapies…………………………………………………………………….. 326

25.1.3        Biocompatibility of medical implants………………………………………………………………… 326

25.1.4        Anti-biotic resistance………………………………………………………………………………………… 327

25.1.5        Growth in advanced woundcare market…………………………………………………………… 327

25.1.6        Growth in the wearable monitoring market………………………………………………………. 327

25.2      APPLICATIONS……………………………………………………………………………………………………….. 329

25.2.1        Cancer therapy………………………………………………………………………………………………… 329

25.2.1.1     Immunotherapy……………………………………………………………………………………………. 331

25.2.1.2     Thermal ablation………………………………………………………………………………………….. 331

25.2.1.3     Stem cell therapy…………………………………………………………………………………………. 331

25.2.1.4     Graphene oxide for therapy and drug delivery…………………………………………….. 331

25.2.1.5     Graphene nanosheets…………………………………………………………………………………. 332

25.2.1.6     Gene delivery………………………………………………………………………………………………. 332

25.2.1.7     Photodynamic Therapy………………………………………………………………………………… 332

25.2.2        Medical implants and devices………………………………………………………………………….. 332

25.2.3        Drug delivery……………………………………………………………………………………………………. 334

25.2.4        Wound dressings……………………………………………………………………………………………… 334

25.2.5        Biosensors……………………………………………………………………………………………………….. 335

25.2.5.1     FRET biosensors for DNA detection……………………………………………………………. 337

25.2.6        Medical imaging……………………………………………………………………………………………….. 337

25.2.7        Tissue engineering…………………………………………………………………………………………… 338

25.2.8        Dental………………………………………………………………………………………………………………. 338

25.2.9        Electrophysiology…………………………………………………………………………………………….. 338

25.2.10      Laterial flow immunosay labels………………………………………………………………………… 339

25.3      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 339

25.4      MARKET CHALLENGES…………………………………………………………………………………………. 342

25.4.1        Potential toxicity……………………………………………………………………………………………….. 342

25.4.2        Safety………………………………………………………………………………………………………………. 342

25.4.3        Dispersion………………………………………………………………………………………………………… 342

25.5      APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 343

25.5.1        Carbon nanotubes……………………………………………………………………………………………. 343

25.5.2        Graphene…………………………………………………………………………………………………………. 344

25.5.3        Nanocellulose………………………………………………………………………………………………….. 346

26     COATINGS………………………………………………………………………………………………………………………. 347

26.1      MARKET DRIVERS AND TRENDS…………………………………………………………………………. 347

26.1.1        New functionalities and improved properties……………………………………………………. 348

26.1.2        Need for more effective protection…………………………………………………………………… 350

26.1.3        Sustainability and regulation……………………………………………………………………………. 350

26.1.4        Cost of corrosion……………………………………………………………………………………………… 351

26.1.5        Need for improved hygiene……………………………………………………………………………… 352

26.1.6        Cost of weather-related damage……………………………………………………………………… 352

26.1.7        Increased demand for coatings for extreme environments………………………………. 353

26.1.8        Increased demand for abrasion and scratch resistant coatings……………………….. 353

26.1.9        Increased demand for UV-resistant coatings…………………………………………………… 353

26.1.10      Growth in superhydrophobic coatings market………………………………………………….. 353

26.2      PROPERTIES AND APPLICATIONS………………………………………………………………………. 354

26.2.1        Anti-static coatings…………………………………………………………………………………………… 357

26.2.2        Anti-corrosion coatings…………………………………………………………………………………….. 357

26.2.2.1     Marine………………………………………………………………………………………………………….. 359

26.2.2.2     Oil and gas…………………………………………………………………………………………………… 359

26.2.3        Anti-microbial…………………………………………………………………………………………………… 360

26.2.4        Anti-icing………………………………………………………………………………………………………….. 360

26.2.5        Barrier coatings………………………………………………………………………………………………… 361

26.2.6        Heat protection………………………………………………………………………………………………… 362

26.2.7        Anti-fouling……………………………………………………………………………………………………….. 363

26.2.8        Wear and abrasion resistance…………………………………………………………………………. 364

26.2.9        Smart windows………………………………………………………………………………………………… 366

26.2.10      Anti-counterfeiting films……………………………………………………………………………………. 366

26.2.11      Gas barriers……………………………………………………………………………………………………… 366

26.3      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 367

26.4      MARKET CHALLENGES…………………………………………………………………………………………. 374

26.4.1        High viscosity…………………………………………………………………………………………………… 374

26.4.2        Moisture sorption……………………………………………………………………………………………… 374

26.4.3        Durability………………………………………………………………………………………………………….. 375

26.4.4        Dispersion………………………………………………………………………………………………………… 375

26.4.5        Transparency…………………………………………………………………………………………………… 375

26.4.6        Production, scalability and cost………………………………………………………………………… 376

26.5      PRODUCT DEVELOPERS………………………………………………………………………………………. 376

26.5.1        Carbon nanotubes……………………………………………………………………………………………. 376

26.5.2        Graphene…………………………………………………………………………………………………………. 377

26.5.3        Nanocellulose………………………………………………………………………………………………….. 378

27     COMPOSITES………………………………………………………………………………………………………………….. 379

27.1      MARKET DRIVERS AND TRENDS…………………………………………………………………………. 379

27.1.1        Growing use of polymer composites………………………………………………………………… 379

27.1.2        Increased need for advanced, protective materials………………………………………….. 379

27.1.3        Improved performance over traditional composites…………………………………………. 379

27.1.4        Multi-functionality……………………………………………………………………………………………… 380

27.1.5        Growth in use in the wind energy market…………………………………………………………. 380

27.1.6        Need for new flame retardant materials…………………………………………………………… 381

27.1.7        Environmental impact of carbon fibers…………………………………………………………….. 381

27.1.8        Shortcomings of natural fiber composites and glass fiber reinforced composites 381

27.1.9        Growth in the bio-based packaging sector……………………………………………………….. 382

27.1.10      Growth in the barrier food packaging sector…………………………………………………….. 383

27.1.11      Shortcoming of packaging biopolymers……………………………………………………………. 385

27.1.12      Sustainable packaging solutions……………………………………………………………………… 385

27.1.13      Demand for packaging with enhanced functionality…………………………………………. 385

27.2      PROPERTIES AND APPLICATIONS………………………………………………………………………. 387

27.2.1        Polymer composites…………………………………………………………………………………………. 387

27.2.2        Barrier packaging…………………………………………………………………………………………….. 390

27.2.2.1     Anti-bacterial……………………………………………………………………………………………….. 391

27.2.2.2     Gas barrier…………………………………………………………………………………………………… 391

27.2.3        Electrostatic discharge (ESD) and electromagnetic interference (EMI) shielding 392

27.2.4        Wind turbines…………………………………………………………………………………………………… 393

27.2.5        Ballistic protection……………………………………………………………………………………………. 393

27.2.6        Cement additives……………………………………………………………………………………………… 394

27.2.7        Sporting goods…………………………………………………………………………………………………. 395

27.2.8        Wire and cable…………………………………………………………………………………………………. 395

27.2.9        Thermal management……………………………………………………………………………………… 395

27.2.10      Rubber and elastomers……………………………………………………………………………………. 396

27.3      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 397

27.3.1        Total market size……………………………………………………………………………………………… 397

27.3.2        High Impact nanomaterials opportunity……………………………………………………………. 397

27.4      MARKET CHALLENGES…………………………………………………………………………………………. 400

27.5      APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 402

27.5.1        Carbon nanotubes……………………………………………………………………………………………. 402

27.5.2        Graphene…………………………………………………………………………………………………………. 405

27.5.3        Nanocellulose………………………………………………………………………………………………….. 406

28     ELECTRONICS AND PHOTONICS…………………………………………………………………………………. 407

28.1      Carbon nanotubes in electronics……………………………………………………………………………… 407

28.2      Graphene and 2D materials in electronics……………………………………………………………….. 408

28.2.1        Properties………………………………………………………………………………………………………… 408

28.2.2        Applications……………………………………………………………………………………………………… 408

28.3      FLEXIBLE ELECTRONICS, CONDUCTIVE FILMS AND DISPLAYS………………………. 408

28.3.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 408

28.3.1.1     ITO replacement for flexible electronics………………………………………………………. 408

28.3.1.2     Growth in the wearable electronics market………………………………………………….. 410

28.3.1.3     Touch technology requirements…………………………………………………………………… 410

28.3.1.4     Need for improved barrier function………………………………………………………………. 411

28.3.1.5     Energy needs of wearable devices………………………………………………………………. 411

28.3.1.6     Increased power and performance of sensors with reduced cost………………… 411

28.3.1.7     Growth in the printed sensors market………………………………………………………….. 412

28.3.1.8     Growth in the home diagnostics and point of care market…………………………… 412

28.3.2        PROPERTIES AND APPLICATIONS………………………………………………………………. 412

28.3.2.1     Transparent electrodes in flexible electronics………………………………………………. 412

28.3.2.2     SWNTs………………………………………………………………………………………………………… 415

28.3.2.3     Double-walled carbon nanotubes………………………………………………………………… 416

28.3.2.4     Graphene…………………………………………………………………………………………………….. 416

28.3.2.5     Electronic paper…………………………………………………………………………………………… 419

28.3.2.6     Wearable electronics…………………………………………………………………………………… 420

28.3.2.7     Flexible energy storage……………………………………………………………………………….. 425

28.3.2.8     Wearable sensors………………………………………………………………………………………… 426

28.3.2.9     Wearable gas sensors…………………………………………………………………………………. 427

28.3.2.10       Wearable strain sensors………………………………………………………………………….. 428

28.3.2.11       Wearable tactile sensors…………………………………………………………………………. 428

28.3.2.12       Wearable health monitoring…………………………………………………………………….. 428

28.3.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 433

28.3.3.1     Touch panel and ITO replacement………………………………………………………………. 433

28.3.3.2     Wearable electronics…………………………………………………………………………………… 441

28.3.3.3     Wearable health monitoring…………………………………………………………………………. 443

28.3.3.4     Wearable energy storage and harvesting devices……………………………………….. 445

28.3.4        CHALLENGES…………………………………………………………………………………………………. 449

28.3.4.1     Competing materials……………………………………………………………………………………. 449

28.3.4.2     Cost in comparison to ITO…………………………………………………………………………… 450

28.3.4.3     Fabricating SWNT devices………………………………………………………………………….. 450

28.3.4.4     Problems with transfer and growth………………………………………………………………. 450

28.3.4.5     Improving sheet resistance………………………………………………………………………….. 451

28.3.4.6     Difficulties in display panel integration…………………………………………………………. 452

28.3.4.7     Manufacturing……………………………………………………………………………………………… 452

28.3.4.8     Integration……………………………………………………………………………………………………. 453

28.3.4.9     Competing materials……………………………………………………………………………………. 453

28.3.5        APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 454

28.3.5.1     Carbon nanotubes……………………………………………………………………………………….. 454

28.3.5.2     Graphene…………………………………………………………………………………………………….. 456

28.3.5.3     Nanocellulose……………………………………………………………………………………… 457

28.4      CONDUCTIVE INKS………………………………………………………………………………………………… 458

28.4.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 458

28.4.1.1     Increased demand for printed electronics……………………………………………………. 458

28.4.1.2     Limitations of existing conductive inks…………………………………………………………. 458

28.4.1.3     Growth in the 3D printing market…………………………………………………………………. 459

28.4.1.4     Growth in the printed sensors market………………………………………………………….. 460

28.4.2        PROPERTIES AND APPLICATIONS………………………………………………………………. 460

28.4.2.1     Carbon nanotubes……………………………………………………………………………………….. 460

28.4.2.2     Graphene…………………………………………………………………………………………………….. 461

28.4.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 464

28.4.3.1     Total market size…………………………………………………………………………………………. 464

28.4.3.2     Carbon nanomaterials opportunity………………………………………………………………. 465

28.4.4        MARKET CHALLENGES…………………………………………………………………………………. 467

28.4.5        APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 468

28.4.5.1     Carbon nanotubes……………………………………………………………………………………….. 468

28.4.5.2     Graphene…………………………………………………………………………………………………….. 468

28.5      TRANSISTORS AND INTEGRATED CIRCUITS……………………………………………………… 470

28.5.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 470

28.5.1.1     Scaling…………………………………………………………………………………………………………. 470

28.5.1.2     Limitations of current materials……………………………………………………………………. 472

28.5.1.3     Limitations of copper as interconnect materials…………………………………………… 472

28.5.1.4     Need to improve bonding technology…………………………………………………………… 473

28.5.1.5     Need to improve thermal properties…………………………………………………………….. 473

28.5.2        PROPERTIES AND APPLICATIONS………………………………………………………………. 473

28.5.2.1     Carbon nanotubes……………………………………………………………………………………….. 474

28.5.2.2     Graphene…………………………………………………………………………………………………….. 477

28.5.2.3     Graphene Radio Frequency (RF) circuits…………………………………………………….. 477

28.5.2.4     Graphene spintronics…………………………………………………………………………………… 478

28.5.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 479

28.5.4        CHALLENGES…………………………………………………………………………………………………. 481

28.5.4.1     Device complexity………………………………………………………………………………………… 481

28.5.4.2     Competition from other materials…………………………………………………………………. 481

28.5.4.3     Lack of band gap…………………………………………………………………………………………. 481

28.5.4.4     Transfer and integration………………………………………………………………………………. 481

28.5.5        APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 483

28.5.5.1     Carbon nanotubes……………………………………………………………………………………….. 483

28.5.5.2     Graphene…………………………………………………………………………………………………….. 483

28.6      MEMORY DEVICES………………………………………………………………………………………………… 485

28.6.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 485

28.6.1.1     Density and voltage scaling…………………………………………………………………………. 485

28.6.1.2     Growth in the smartphone and tablet markets……………………………………………… 486

28.6.1.3     Growth in the flexible electronics market……………………………………………………… 486

28.6.2        PROPERTIES AND APPLICATIONS………………………………………………………………. 488

28.6.2.1     Carbon nanotubes……………………………………………………………………………………….. 489

28.6.2.2     Graphene…………………………………………………………………………………………………….. 492

28.6.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 493

28.6.3.1     Total market size…………………………………………………………………………………………. 493

28.6.4        APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 494

28.6.4.1     Carbon nanotubes……………………………………………………………………………………….. 494

28.6.4.2     Graphene…………………………………………………………………………………………………….. 495

28.7      PHOTONICS……………………………………………………………………………………………………………. 496

28.7.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 496

28.7.1.1     Increased bandwidth at reduced cost………………………………………………………….. 496

28.7.1.2     Increasing sensitivity of photodetectors……………………………………………………….. 496

28.7.2        PROPERTIES AND APPLICATIONS………………………………………………………………. 497

28.7.2.1     Si photonics versus graphene……………………………………………………………………… 498

28.7.2.2     Optical modulators………………………………………………………………………………………. 498

28.7.2.3     Photodetectors…………………………………………………………………………………………….. 499

28.7.2.4     Plasmonics………………………………………………………………………………………………….. 501

28.7.2.5     Fiber lasers………………………………………………………………………………………………….. 501

28.7.3        CHALLENGES…………………………………………………………………………………………………. 501

28.7.3.1     Need to design devices that harness graphene’s properties……………………….. 501

28.7.3.2     Problems with transfer…………………………………………………………………………………. 501

28.7.3.3     THz absorbance and nonlinearity………………………………………………………………… 502

28.7.3.4     Stability and sensitivity…………………………………………………………………………………. 502

28.7.4        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 502

28.7.4.1     Total market size…………………………………………………………………………………………. 502

28.7.4.2     Nanotechnology and nanomaterials opportunity………………………………………….. 502

28.7.5        MARKET CHALLENGES…………………………………………………………………………………. 503

28.7.6        APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 504

29     ENERGY STORAGE, CONVERSION AND EXPLORATION…………………………………………… 505

29.1      BATTERIES……………………………………………………………………………………………………………… 505

29.1.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 505

29.1.1.1     Growth in personal electronics, electric vehicles and smart grids markets….. 506

29.1.1.2     Reduce dependence on lithium……………………………………………………………………. 506

29.1.1.3     Shortcomings of existing battery and supercapacitor technology………………… 506

29.1.1.4     Reduced costs for widespread application…………………………………………………… 507

29.1.1.5     Power sources for flexible electronics………………………………………………………….. 508

29.1.2        PROPERTIES AND APPLICATIONS………………………………………………………………. 508

29.1.2.1     Li-ion batteries (LIB)…………………………………………………………………………………….. 508

29.1.2.2     Lithium-air batteries……………………………………………………………………………………… 509

29.1.2.3     Sodium-ion batteries……………………………………………………………………………………. 510

29.1.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 510

29.1.3.1     Total market size…………………………………………………………………………………………. 510

29.1.3.2     High impact nanomaterials opportunity………………………………………….. 510

29.1.4        CHALLENGES…………………………………………………………………………………………………. 511

29.1.5        APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 512

29.2      SUPERCAPACITORS……………………………………………………………………………………………… 518

29.2.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 518

29.2.1.1     Reducing costs……………………………………………………………………………………………. 518

29.2.1.2     Demand from portable electronics……………………………………………………………….. 518

29.2.1.3     Inefficiencies of standard battery technology……………………………………………….. 518

29.2.1.4     Problems with activated carbon…………………………………………………………………… 518

29.2.2        PROPERTIES AND APPLICATIONS………………………………………………………………. 518

29.2.2.1     Carbon nanotubes……………………………………………………………………………………….. 519

29.2.2.2     Graphene…………………………………………………………………………………………………….. 519

29.2.2.3     Graphene/CNT hybrids………………………………………………………………………………… 520

29.2.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 521

29.2.3.1     Total market size…………………………………………………………………………………………. 521

29.2.3.2     High impact nanomaterials opportunity………………………………………………………………. 521

29.2.4        CHALLENGES…………………………………………………………………………………………………. 522

29.2.4.1     Low energy storage capacity of graphene…………………………………………………… 522

29.2.5        APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 523

29.3      PHOTOVOLTAICS…………………………………………………………………………………………………… 524

29.3.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 524

29.3.1.1     Need for new materials and novel devices………………………………………………….. 524

29.3.1.2     Need for cost-effective solar energy for wider adoptions……………………………… 525

29.3.1.3     Varying environmental conditions require new coating technology……………… 525

29.3.2        PROPERTIES AND APPLICATIONS………………………………………………………………. 526

29.3.2.1     Solar cells……………………………………………………………………………………………………. 527

29.3.2.2     Solar coatings……………………………………………………………………………………………… 529

29.3.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 530

29.3.3.1     Total market size…………………………………………………………………………………………. 530

29.3.3.2     Carbon nanomaterials opportunity………………………………………………………………. 530

29.3.4        MARKET CHALLENGES…………………………………………………………………………………. 531

29.3.5        APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 532

29.4      FUEL CELLS AND HYDROGEN STORAGE…………………………………………………………… 533

29.4.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 533

29.4.1.1     Need for alternative energy sources……………………………………………………………. 533

29.4.1.2     Demand from transportation and portable and stationary power sectors…….. 534

29.4.1.3     Temperature problems with current fuel cell technology……………………………… 534

29.4.1.4     Reducing corrosion problems………………………………………………………………………. 534

29.4.1.5     Limitations of platinum…………………………………………………………………………………. 534

29.4.1.6     Reducing cost and increasing reliability of current fuel cell technology……….. 534

29.4.2        APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 535

29.4.3        PROPERTIES AND APPLICATIONS………………………………………………………………. 536

29.4.3.1     Fuel cells……………………………………………………………………………………………………… 537

29.4.3.2     Hydrogen storage………………………………………………………………………………………… 538

29.4.4        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 539

29.4.4.1     Total market size…………………………………………………………………………………………. 539

29.4.4.2     High impact nanomaterials opportunity………………………………………………………………. 539

29.4.5        CHALLENGES…………………………………………………………………………………………………. 539

29.5      LED LIGHTING AND UVC……………………………………………………………………………………….. 540

29.5.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 540

29.5.1.1     Need to develop low-cost lighting………………………………………………………………… 540

29.5.1.2     Environmental regulation……………………………………………………………………………… 540

29.5.1.3     Limited efficiency of phosphors in LEDs………………………………………………………. 541

29.5.1.4     Shortcomings with LED lighting technologies………………………………………………. 541

29.5.1.5     Improving flexibility………………………………………………………………………………………. 541

29.5.1.6     Improving performance and costs of UV-LEDs……………………………………………. 541

29.5.2        PROPERTIES AND APPLICATIONS………………………………………………………………. 542

29.5.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 542

29.5.3.1     Total market size…………………………………………………………………………………………. 542

29.5.3.2     High impact nanomaterials opportunity………………………………………………………………. 543

29.5.4        MARKET CHALLENGES…………………………………………………………………………………. 543

29.5.5        APPLICATION AND PRODUCT DEVELOPERS…………………………………………….. 544

29.6      OIL AND GAS EXPLORATION………………………………………………………………………………… 545

29.6.1        MARKET DRIVERS AND TRENDS…………………………………………………………………. 545

29.6.1.1     Need to reduce operating costs and improve operation efficiency………………. 545

29.6.1.2     Increased demands of drilling environments……………………………………………….. 545

29.6.1.3     Need for improved drilling fluids…………………………………………………………………… 546

29.6.1.4     Increased exploration in extreme environments…………………………………………… 547

29.6.1.5     Environmental and regulatory……………………………………………………………………… 547

29.6.2        PROPERTIES AND APPLICATIONS………………………………………………………………. 547

29.6.2.1     Sensing and reservoir management……………………………………………………………. 547

29.6.2.2     Coatings………………………………………………………………………………………………………. 549

29.6.2.3     Drilling fluids………………………………………………………………………………………………… 550

29.6.2.4     Sorbent materials………………………………………………………………………………………… 551

29.6.2.5     Separation…………………………………………………………………………………………………… 551

29.6.2.6     Extraction…………………………………………………………………………………………………………. 552

29.6.3        MARKET SIZE AND OPPORTUNITY……………………………………………………………… 552

29.6.3.1     Total market size…………………………………………………………………………………………. 552

29.6.3.2     High impact nanomaterials opportunity………………………………………….. 552

29.6.4        MARKET CHALLENGES…………………………………………………………………………………. 555

29.7      APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 556

29.7.1        Carbon nanotubes……………………………………………………………………………………………. 556

29.7.2        Graphene…………………………………………………………………………………………………………. 558

29.7.3        Nanocellulose………………………………………………………………………………………………….. 562

30     FILTRATION AND SEPARATION…………………………………………………………………………………… 563

30.1      MARKET DRIVERS AND TRENDS…………………………………………………………………………. 563

30.1.1        Water shortage and population growth…………………………………………………………….. 563

30.1.2        Need for improved and low cost membrane technology………………………………….. 564

30.1.3        Need for improved groundwater treatment technologies………………………………….. 564

30.1.4        Cost and efficiency…………………………………………………………………………………………… 565

30.1.5        Growth in the air filter market…………………………………………………………………………… 565

30.1.6        Need for environmentally, safe filters……………………………………………………………….. 565

30.2      PROPERTIES AND APPLICTIONS…………………………………………………………………………. 566

30.2.1        Desalination and water filtration……………………………………………………………………….. 568

30.2.2        Gas separation………………………………………………………………………………………………… 570

30.2.3        Air filtration……………………………………………………………………………………………………….. 570

30.2.4        Virus filtration…………………………………………………………………………………………………… 571

30.3      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 572

30.4      MARKET CHALLENGES…………………………………………………………………………………………. 575

30.4.1.1     Uniform pore size and distribution……………………………………………………………….. 575

30.4.1.2     Cost……………………………………………………………………………………………………………… 575

30.5      APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 576

30.5.1        Carbon nanotubes……………………………………………………………………………………………. 576

30.5.2        Graphene…………………………………………………………………………………………………………. 577

30.5.3        Nanocellulose………………………………………………………………………………………………….. 578

31     LUBRICANTS………………………………………………………………………………………………………………….. 579

31.1      MARKET DRIVERS AND TRENDS…………………………………………………………………………. 579

31.1.1        Need for new additives that provide “more for less”…………………………………………. 579

31.1.2        Need for higher-performing lubricants for fuel efficiency………………………………….. 579

31.1.3        Environmental concerns…………………………………………………………………………………… 579

31.2      PROPERTIES AND APPLICATIONS………………………………………………………………………. 580

31.3      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 581

31.3.1        Total market size……………………………………………………………………………………………… 581

31.3.2        High impact nanomaterials opportunity…………………………………………………………………… 581

31.4      CHALLENGES…………………………………………………………………………………………………………. 582

31.5      APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 583

31.5.1        Carbon nanotubes……………………………………………………………………………………………. 583

31.5.2        Graphene…………………………………………………………………………………………………………. 583

32     SENSORS………………………………………………………………………………………………………………………… 584

32.1      MARKET DRIVERS AND TRENDS…………………………………………………………………………. 584

32.1.1        Increased power and performance with reduced cost……………………………………… 584

32.1.2        Enhanced sensitivity………………………………………………………………………………………… 584

32.1.3        Replacing silver electrodes………………………………………………………………………………. 585

32.1.4        Growth in the home diagnostics and point of care market……………………………….. 585

32.1.5        Improved thermal stability………………………………………………………………………………… 585

32.2      PROPERTIES AND APPLICATIONS………………………………………………………………………. 585

32.2.1        Gas sensors…………………………………………………………………………………………………….. 587

32.2.2        Strain sensors………………………………………………………………………………………………….. 588

32.2.3        Biosensors……………………………………………………………………………………………………….. 589

32.2.4        Food sensors…………………………………………………………………………………………………… 589

32.2.5        Infrared (IR) sensors………………………………………………………………………………………… 590

32.2.6        Optical sensors………………………………………………………………………………………………… 590

32.2.7        Pressure sensors…………………………………………………………………………………………….. 591

32.2.8        Humidity sensors……………………………………………………………………………………………… 591

32.2.9        Acoustic sensors……………………………………………………………………………………………… 592

32.2.10      Wireless sensors……………………………………………………………………………………………… 592

32.3      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 593

32.4      Challenges……………………………………………………………………………………………………………….. 594

32.5      APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 594

32.5.1        Carbon nanotubes……………………………………………………………………………………………. 595

32.5.2        Graphene…………………………………………………………………………………………………………. 596

33     TEXTILES  AND APPAREL…………………………………………………………………………………………….. 597

33.1      MARKET DRIVERS AND TRENDS…………………………………………………………………………. 597

33.1.1        Growth in the wearable electronics market………………………………………………………. 597

33.1.2        Growth in remote health monitoring and diagnostics……………………………………….. 598

33.1.3        Growth in the market for anti-microbial textiles………………………………………………… 599

33.1.4        Need to improve the properties of cloth or fabric materials………………………………. 599

33.1.5        Environmental and regulatory………………………………………………………………………….. 600

33.1.6        Reduction in size, appearance and cost of sensors…………………………………………. 601

33.1.7        Increasing demand for smart fitness clothing…………………………………………………… 601

33.1.8        Improved medical analysis………………………………………………………………………………. 601

33.1.9        Smart workwear for improved worker safety……………………………………………………. 602

33.2      PROPERTIES AND APPLICATONS……………………………………………………………………….. 602

33.2.1        Protective textiles…………………………………………………………………………………………….. 603

33.2.2        Electronic textiles…………………………………………………………………………………………….. 604

33.3      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 609

33.3.1.1     Protective textiles………………………………………………………………………………………… 609

33.3.1.2     Electronic textiles…………………………………………………………………………………………. 610

33.4      APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 615

33.4.1        Carbon nanotubes……………………………………………………………………………………………. 615

33.4.2        Graphene…………………………………………………………………………………………………………. 615

34     3D PRINTING…………………………………………………………………………………………………………………… 616

34.1      MARKET DRIVERS AND TRENDS…………………………………………………………………………. 616

34.1.1        Improved materials at lower cost……………………………………………………………………… 616

34.1.2        Limitations of current thermoplastics……………………………………………………………….. 616

34.2      PROPERTIES AND APPLICATIONS………………………………………………………………………. 616

34.3      MARKET SIZE AND OPPORTUNITY………………………………………………………………………. 618

34.4      CHALLENGES…………………………………………………………………………………………………………. 620

34.5      APPLICATION AND PRODUCT DEVELOPERS……………………………………………………… 621

34.5.1        Carbon nanotubes……………………………………………………………………………………………. 621

34.5.2        Graphene…………………………………………………………………………………………………………. 621

34.5.3        Nanocellulose………………………………………………………………………………………….. 622

35     PAPER & BOARD……………………………………………………………………………………………………………. 622

35.1      Market drivers and trends………………………………………………………………………………………… 622

35.1.1        Environmental………………………………………………………………………………………………….. 622

35.1.2        Need to develop innovative new products in the paper and board industry……… 623

35.2      Applications……………………………………………………………………………………………………………… 623

35.2.1.1     Paper packaging………………………………………………………………………………………….. 624

35.2.1.2     Paper coatings…………………………………………………………………………………………….. 625

35.2.1.3     Anti-microbials……………………………………………………………………………………………… 625

35.3      Market size………………………………………………………………………………………………………………. 625

35.4      Nanocellulose opportunity………………………………………………………………………………………… 627

35.5      Market challenges……………………………………………………………………………………………………. 627

35.6      Commercial activity………………………………………………………………………………………………….. 628

36     AEROGELS……………………………………………………………………………………………………………………… 630

36.1      Market drivers and trends………………………………………………………………………………………… 630

36.1.1        Energy efficiency……………………………………………………………………………………………… 630

36.1.2        Demand for environmentally-friendly, lightweight materials……………………………… 630

36.2      Market size………………………………………………………………………………………………………………. 630

36.3      Applications……………………………………………………………………………………………………………… 631

36.3.1        Thermal insulation……………………………………………………………………………………………. 631

36.3.2        Medical…………………………………………………………………………………………………………….. 631

36.3.3        Shape memory………………………………………………………………………………………………… 632

36.4      Product developers in aerogels………………………………………………………………………………… 632

37     RHEOLOGY MODIFIERS………………………………………………………………………………………………… 632

37.1      Applications……………………………………………………………………………………………………………… 632

37.1.1        Food………………………………………………………………………………………………………………… 634

37.1.2        Pharmaceuticals………………………………………………………………………………………………. 634

37.1.3        Cosmetics………………………………………………………………………………………………………… 634

37.2      Commercial activity………………………………………………………………………………………………….. 634

38     CARBON NANOTUBES PRODUCERS AND PRODUCT DEVELOPERS………………………. 636-753 (183 company profiles)

39     GRAPHENE PRODUCERS AND PRODUCT DEVELOPERS…………………………………………. 754-881 (187 company profiles)

40       NANOCELLULOSE COMPANY PROFILES……………………………………………………………………. 882

40.1    Producers and types of nanocellulose produced (NCF, NCC, BCC)……………………………. 882

40.2    Target markets for producers……………………………………………………………………………………….. 883

40.3    NANOFIBRILLAR CELLULOSE (NFC) PRODUCERS………………………………………………… 885

 

40.4    CELLULOSE NANOCRYSTAL (CNC) PRODUCERS………………………………………………….. 963

 

40.5    BACTERIAL CELLULOSE (BC) PRODUCERS……………………………………………………………. 977

 

40.6    OTHER PRODUCERS AND APPLICATION DEVELOPERS……………………………………….. 980

 

40     REFERENCES…………………………………………………………………………………………………………………. 992

 

TABLES

Table 1: Nanomaterials scorecard for carbon nanotubes……………………………………………………………. 64

Table 2: Market summary for carbon nanotubes-Selling grade particle diameter, usage, advantages, average price/ton, high volume applications, low volume applications and novel applications…………………………………………………………………………………………………………………………… 65

Table 3: Properties of CNTs and comparable materials……………………………………………………………… 67

Table 4: Annual production capacity of MWNT and SWNT producers……………………………………….. 69

Table 5: SWNT producers production capacities 2015……………………………………………………………….. 71

Table 6: Global production of carbon nanotubes, 2010-2025 in tons/year. Base year for projections is 2014………………………………………………………………………………………………………………………………….. 73

Table 7: Consumer products incorporating graphene…………………………………………………………………. 80

Table 8: Graphene target markets-Applications potential addressable market size……………………. 85

Table 9: Graphene producers annual production capacities………………………………………………………. 87

Table 10: Global production of graphene, 2010-2025 in tons/year. Base year for projections is 2014………………………………………………………………………………………………………………………………………………. 88

Table 11: Graphene types and cost per kg…………………………………………………………………………………. 91

Table 12: Markets and applications for nanocellulose………………………………………………………………… 98

Table 13: Nanocellulose production plants worldwide and production status…………………………… 101

Table 15: Market summary for nanocellulose-Selling grade particle diameter, usage, advantages, average price/ton, market estimates, global consumption, main current applications, future applications…………………………………………………………………………………………………………………………. 109

Table 16: Categorization of nanomaterials……………………………………………………………………………….. 112

Table 17: Comparison between single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes…………………………………………………………………………………………………………………………… 117

Table 18: Properties of carbon nanotubes………………………………………………………………………………… 123

Table 19: Properties of graphene……………………………………………………………………………………………… 129

Table 20: Graphene quantum dot producers……………………………………………………………………………. 133

Table 22: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2…………………………………………………………………………………………………………………………………………….. 136

Table 23: Markets and applications of phosphorene………………………………………………………………… 137

Table 24: Markets and applications of C2N………………………………………………………………………………. 139

Table 25: Markets and applications of hexagonal boron-nitride………………………………………………… 141

Table 26: Markets and applications of graphdiyne……………………………………………………………………. 143

Table 27: Markets and applications of graphane………………………………………………………………………. 144

Table 28: Markets and applications of hexagonal boron-nitride………………………………………………… 147

Table 29: Markets and applications of MoS2…………………………………………………………………………….. 149

Table 30: Markets and applications of Rhenium disulfide (ReS2) and diselenide (ReSe2)………. 152

Table 31: Markets and applications of silicene…………………………………………………………………………. 154

Table 32: Markets and applications of stanene/tinene……………………………………………………………… 158

Table 33: Markets and applications of tungsten diselenide………………………………………………………. 159

Table 34: Nanocellulose properties…………………………………………………………………………………………… 163

Table 35: Applications of nanofibrillar cellulose (NFC)……………………………………………………………… 164

Table 36: Production methods of NFC producers…………………………………………………………………….. 165

Table 37: Applications of nanocrystalline cellulose (NCC)………………………………………………………… 168

Table 38: Applications of bacterial cellulose (BC)…………………………………………………………………….. 169

Table 39: Microcrystalline cellulose (MCC) preparation methods, resulting materials and applications…………………………………………………………………………………………………………………………. 170

Table 40: Microfibrillated cellulose (MFC) preparation methods, resulting materials and applications…………………………………………………………………………………………………………………………………………….. 171

Table 41: Nanofibrillated cellulose (MFC) preparation methods, resulting materials and applications…………………………………………………………………………………………………………………………………………….. 171

Table 42: Cellulose nanocrystals (MFC) preparation methods, resulting materials and applications…………………………………………………………………………………………………………………………………………….. 172

Table 43: Cellulose nanocrystals (MFC) preparation methods, resulting materials and applications…………………………………………………………………………………………………………………………………………….. 173

Table 44: Properties and applications of nanocellulose……………………………………………………………. 174

Table 45: Comparative properties of carbon materials……………………………………………………………… 177

Table 46: Comparative properties of graphene with nanoclays and carbon nanotubes……………. 179

Table 47: Competitive analysis of Carbon nanotubes and graphene by application area and potential impact by 2025…………………………………………………………………………………………………….. 180

Table 48: SWNT synthesis methods…………………………………………………………………………………………. 183

Table 49: Large area graphene films-Markets, applications and current global market……………. 190

Table 50: Graphene oxide flakes/graphene nanoplatelets-Markets, applications and current global market…………………………………………………………………………………………………………………………………. 191

Table 51: Main production methods for graphene…………………………………………………………………….. 192

Table 52: Graphene synthesis methods, by company………………………………………………………………. 210

Table 53: Properties of cellulose nanofibrils relative to metallic and polymeric materials…………. 212

Table 54: Nanocellulose nanocrystal sources and scale………………………………………………………….. 213

Table 55: Nanofibrillated cellulose production methods……………………………………………………………. 215

Table 56: Cellulose nanocrystals (NCC) production methods…………………………………………………… 215

Table 57: Carbon nanotubes market structure………………………………………………………………………….. 216

Table 58: Graphene market structure……………………………………………………………………………………….. 218

Table 59: Nanocellulose market structure………………………………………………………………………………… 222

Table 60: Current and potential end users for nanocellulose, by market and company……………. 226

Table 61: Current and potential nanocellulose end users…………………………………………………………. 227

Table 62: National nanomaterials registries in Europe……………………………………………………………… 229

Table 63: Nanomaterials regulatory bodies in Australia……………………………………………………………. 234

Table 64: Top ten countries based on number of nanotechnology patents in USPTO 2014-2015. 236

Table 65: Published patent publications for graphene, 2004-2014…………………………………………… 240

Table 66: Leading graphene patentees…………………………………………………………………………………….. 241

Table 67: Industrial graphene patents in 2014………………………………………………………………………….. 242

Table 68: Published patent publications for nanocellulose, 1997-2013…………………………………….. 244

Table 69: Nanocellulose patents as of May 2015……………………………………………………………………… 245

Table 70: Research publications on nanocellulose materials and composites, 1996-2013………. 245

Table 71: Nanocellulose patents by organisation……………………………………………………………………… 246

Table 72: Nanocellulose patents by organisation, 2014……………………………………………………………. 247

Table 73: Main patent assignees for NCC, as of May 2015……………………………………………………… 248

Table 74: Main patent assignees for NFC, as of May 2015………………………………………………………. 248

Table 75: Main patent assignees for BCC, as of May 2015………………………………………………………. 248

Table 76: Production volumes of carbon nanotubes (tons), 2010-2025……………………………………. 257

Table 77: Annual production capacity of MWNT producers………………………………………………………. 261

Table 78: SWNT producers production capacities 2015…………………………………………………………… 262

Table 79: Example carbon nanotubes prices……………………………………………………………………………. 270

Table 80: Markets, benefits and applications of Carbon Nanotubes…………………………………………. 271

Table 81: Potential market penetration and volume estimates (tons) for graphene in key applications…………………………………………………………………………………………………………………………. 273

Table 82: Global production of graphene, 2010-2025 in tons/year. Base year for projections is 2014…………………………………………………………………………………………………………………………………………….. 274

Table 83: Graphene producers and production capacity  (Current and projected), prices and target markets……………………………………………………………………………………………………………………………….. 275

Table 86: Production capacities of CNF producers per annum in tons, current and planned……. 281

Table 87: Production capacities of CNC producers per annum in tons, current and planned…… 283

Table 88: Markets and applications for nanocellulose………………………………………………………………. 284

Table 89: Product/price/application matrix of nanocellulose producers…………………………………….. 287

Table 90: Graphene properties relevant to application in adhesives………………………………………… 290

Table 91: Applications in adhesives, by carbon nanomaterials type and benefits thereof………… 290

Table 92: Carbon nanomaterials in the adhesives market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………. 291

Table 93: Market challenges rating for nanotechnology and nanomaterials in the adhesives market…………………………………………………………………………………………………………………………………………….. 292

Table 94: Carbon nanotubes product and application developers in the adhesives industry……. 292

Table 95:  Graphene product and application developers in the adhesives industry………………… 293

Table 96: Applications in aerospace composites, by carbon nanomaterials type and benefits thereof………………………………………………………………………………………………………………………………… 297

Table 97: Applications in aerospace coatings, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………………………………….. 299

Table 98: Carbon nanomaterials in the aerospace market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………. 301

Table 99: Market challenges rating for high impact nanomaterials in the aerospace market……. 302

Table 100: Carbon nanotubes product and application developers in the aerospace industry…. 303

Table 101: Graphene product and application developers in the aerospace industry………………. 305

Table 102: Applications of natural fiber composites in vehicles by manufacturers……………………. 309

Table 103: Applications in automotive composites, by carbon nanomaterials type and benefits thereof………………………………………………………………………………………………………………………………… 313

Table 104: Nanocoatings applied in the automotive industry……………………………………………………. 315

Table 105: Application markets, competing materials, high impact nanomaterials advantages and current market size in the automotive sector………………………………………………………………………. 318

Table 106: Carbon nanomaterials in the automotive market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………. 319

Table 107: Market opportunity assessment for nanocellulose in the automotive industry………… 319

Table 108: Applications and commercilization challenges in the automotive market for high impact nanomaterials……………………………………………………………………………………………………………………… 320

Table 109: Market challenges rating for high impact nanomaterials in the automotive market…. 321

Table 110: Carbon nanotubes product and application developers in the automotive industry… 321

Table 111: Graphene product and application developers in the automotive industry……………… 322

Table 112: Companies developing Nanocellulose products in the automotive industry, applications targeted and stage of commercialization…………………………………………………………………………….. 323

Table 113: CNTs in life sciences and biomedicine……………………………………………………………………. 328

Table 114: Graphene properties relevant to application in biomedicine and healthcare…………… 328

Table 115: Nanotechnology and nanomaterials opportunity in the drug formulation and delivery market-applications, stage of commercialization and estimated economic impact……………… 340

Table 116: Nanotechnology and nanomaterials opportunity in medical implants and devices market-applications, stage of commercialization and estimated economic impact…………………………. 341

Table 117: Nanotechnology and nanomaterials opportunity in the wound care market-applications, stage of commercialization and estimated economic impact………………………………………………. 341

Table 118: Carbon nanotubes product and application developers in the medical and healthcare industry……………………………………………………………………………………………………………………………….. 343

Table 119: Graphene product and application developers in the biomedical and healthcare industry…………………………………………………………………………………………………………………………………………….. 344

Table 120: Nanocellulose product developers in medical and healthcare applications…………….. 346

Table 121: Properties of nanocoatings……………………………………………………………………………………… 348

Table 122: Graphene properties relevant to application in coatings…………………………………………. 356

Table 123: Markets for nanocoatings……………………………………………………………………………………….. 368

Table 124: Carbon nanotubes in the coatings market-applications, stage of commercialization and addressable market size…………………………………………………………………………………………………….. 371

Table 125: Graphene and 2D materials in the coatings market-applications, stage of commercialization and estimated economic impact……………………………………………………………. 371

Table 126: Market assessment for nanocellulose in coatings and films……………………………………. 372

Table 127: Application markets, competing materials, nanocellulose advantages and current market size in coatings and films……………………………………………………………………………………………………. 373

Table 128: Market opportunity assessment for nanocellulose in coatings and films…………………. 374

Table 129: Carbon nanotubes product and application developers in the coatings industry…….. 376

Table 130: Graphene product and application developers in the coatings industry………………….. 377

Table 131: Companies developing NFC products in paper coatings and non-packaging coating products, applications targeted and stage of commercialization…………………………………………. 378

Table 132: Examples of antimicrobial immobilization into cellulose nanofibers………………………… 386

Table 133: Graphene properties relevant to application in polymer composites……………………….. 388

Table 134: Applications in polymer composites, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………………………………….. 388

Table 135: Equivalent cost of nanocellulose and competitive materials in polymer composites.. 389

Table 136: Applications of nanocellulose in polymer composites by cellulose type………………….. 390

Table 137: Oxygen permeability of nanocellulose films compared to those made form commercially available petroleum based materials and other polymers…………………………………………………… 392

Table 138: Applications in ESD and EMI shielding composites, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………… 392

Table 139: Applications in thermal management composites, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………… 395

Table 140: Applications in rubber and elastomers, by carbon nanomaterials type and benefits thereof………………………………………………………………………………………………………………………………… 396

Table 141: Potential addressable market size for carbon nanomaterials composites in tons…… 397

Table 142: Carbon nanomaterials in the composites market-applications, stage of commercialization and estimated economic impact……………………………………………………………. 397

Table 143: Market assessment for nanocellulose in polymer composites………………………………… 398

Table 144: Market opportunity assessment for nanocellulose in polymer composites……………… 398

Table 145: Limitations of nanocellulose in the development of polymer nanocomposites………… 399

Table 146: Market challenges rating for high impact nanomaterials in the composites market… 401

Table 148: Carbon nanotubes product and application developers in the composites industry… 402

Table 149: Graphene product and application developers in the composites industry……………… 405

Table 150: Companies developing nanocellulose products in bio packaging, applications targeted and stage of commercialization………………………………………………………………………………………….. 406

Table 151: Comparison of ITO replacements…………………………………………………………………………… 409

Table 152: Properties of SWNTs and graphene relevant to flexible electronics……………………….. 414

Table 153: Comparative cost of TCF materials…………………………………………………………………………. 415

Table 154: Graphene properties relevant to application in sensors………………………………………….. 427

Table 155: Applications in flexible and stretchable health monitors, by nanomaterials type and benefits thereof…………………………………………………………………………………………………………………… 430

Table 156: Applications in patch-type skin sensors, by nanomaterials type and benefits thereof. 433

Table 157: Application markets, competing materials, nanomaterials  advantages and current market size in flexible substrates………………………………………………………………………………………… 439

Table 158: Market assessment for nanocellulose in the flexible and printed electronics sector.. 439

Table 159: Market opportunity assessment for Nanocellulose in flexible electronics………………… 440

Table 160: Global market for wearables, 2014-2021, units and US$……………………………………….. 441

Table 161: Potential addressable market for smart textiles and wearables in medical and healthcare…………………………………………………………………………………………………………………………… 443

Table 162: Potential addressable market for thin film, flexible and printed batteries………………… 445

Table 163: Market assessment for the nanotechnology in the wearable energy storage (printed and flexible battery) market……………………………………………………………………………………………………….. 448

Table 164: Market assessment for the nanotechnology in the wearable energy harvesting market…………………………………………………………………………………………………………………………………………….. 449

Table 165: Market challenges rating for high impact nanomaterials in the flexible electronics, conductive films and displays market…………………………………………………………………………………. 453

Table 166: Carbon nanotubes product and application developers in transparent conductive films and displays……………………………………………………………………………………………………………………….. 454

Table 167: Graphene product and application developers in in flexible electronics, flexible conductive films and displays……………………………………………………………………………………………… 456

Table 168: Companies developing Nanocellulose products in paper electronics, applications targeted and stage of commercialization…………………………………………………………………………….. 457

Table 169: Comparative properties of conductive inks……………………………………………………………… 459

Table 170: Applications in conductive inks by nanomaterials type and benefits thereof…………… 463

Table 171: Opportunities for nanomaterials in printed electronics…………………………………………….. 466

Table 172: Nanomaterials in the conductive inks market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………. 466

Table 173: Market challenges rating for nanotechnology and nanomaterials in the conductive inks market…………………………………………………………………………………………………………………………………. 467

Table 174: Carbon nanotubes product and application developers in conductive inks…………….. 468

Table 175: Graphene product and application developers in conductive inks………………………….. 468

Table 176: Comparison of Cu, CNTs and graphene as interconnect materials………………………… 473

Table 177: Applications in transistors, integrated circuits and other components, by carbon nanomaterials type and benefits thereof…………………………………………………………………………….. 473

Table 178: Carbon nanomaterials in the transistors, integrated circuits and other components market-applications, stage of commercialization and estimated economic impact……………… 480

Table 179: Market challenges rating for nanotechnology and nanomaterials in the transistors, integrated circuits and other components market……………………………………………………………….. 482

Table 180: Carbon nanotubes product and application developers in integrated circuits, transistors and other components………………………………………………………………………………………………………… 483

Table 181: Graphene product and application developers in transistors and integrated circuits. 483

Table 182: Nanotechnology and nanomaterials in the memory devices market-applications, stage of commercialization and estimated economic impact……………………………………………………………. 494

Table 183: Carbon nanotubes product and application developers in memory devices……………. 494

Table 184: Graphene product and application developers in memory devices…………………………. 495

Table 185: Applications in photonics, by nanomaterials type and benefits thereof…………………… 497

Table 186: Graphene properties relevant to application in optical modulators………………………….. 499

Table 187: Nanotechnology and nanomaterials in the photonics market-applications, stage of commercialization and estimated economic impact……………………………………………………………. 502

Table 188: Market challenges rating for nanotechnology and nanomaterials in the photonics market…………………………………………………………………………………………………………………………………………….. 504

Table 189: Graphene product and application developers in photonics……………………………………. 504

Table 190: Applications in LIB, by carbon nanomaterials type and benefits thereof…………………. 509

Table 191: Applications in lithium-air batteries, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………………………………….. 509

Table 192: Applications in sodium-ion batteries, by nanomaterials type and benefits thereof….. 510

Table 193: Carbon nanomaterials opportunity in the batteries market-applications, stage of commercialization and estimated economic impact……………………………………………………………. 511

Table 194: Market challenges in batteries………………………………………………………………………………… 511

Table 195: Market challenges rating for nanotechnology and nanomaterials in the batteries market…………………………………………………………………………………………………………………………………………….. 512

Table 196: Carbon nanomaterials application and product developers in batteries………………….. 513

Table 197: Comparative properties of graphene supercapacitors and lithium-ion batteries……… 520

Table 198: Properties of carbon materials in high-performance supercapacitors……………………… 520

Table 199: Carbon nanomaterials in the supercapacitors market-applications, stage of commercialization and estimated economic impact……………………………………………………………. 521

Table 200: Carbon nanomaterials application developers in supercapacitors………………………….. 523

Table 201: Applications in solar, by carbon nanomaterials type and benefits thereof………………. 527

Table 202: Applications in solar coatings, by carbon nanomaterials type and benefits thereof… 529

Table 203: Nanotechnology and nanomaterials in the solar market-applications, stage of commercialization and estimated economic impact……………………………………………………………. 531

Table 204: Market challenges for nanomaterials in solar………………………………………………………….. 532

Table 205: Market challenges rating for nanotechnology and nanomaterials in the solar market. 532

Table 206: Carbon nanomaterials application developers in solar……………………………………………. 532

Table 207: Carbon nanonomaterials application and product developers in fuel cells and hydrogen storage……………………………………………………………………………………………………………………………….. 535

Table 208: Applications in fuel cells, by carbon nanomaterials type and benefits thereof………… 537

Table 209: Applications hydrogen storage, by carbon nanomaterials type and benefits thereof. 538

Table 210: Carbon nanomaterials in the fuel cells and hydrogen storage market-applications, stage of commercialization and estimated economic impact………………………………………………………… 539

Table 211: Applications in lighting, by carbon nanomaterials type and benefits thereof…………… 542

Table 212: Carbon nanomaterials in the lighting and UVC market-applications, stage of commercialization and estimated economic impact……………………………………………………………. 543

Table 213: Market challenges rating for nanotechnology and nanomaterials in the lighting and UVC market…………………………………………………………………………………………………………………………………. 544

Table 214: Carbon nanomaterials application developers in lighting………………………………………… 544

Table 215: Applications in sensing and reservoir management, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………… 548

Table 216: Applications in oil & gas exploration coatings, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………… 549

Table 217: Applications in oil & gas exploration drilling fluids, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………… 550

Table 218: Applications in oil & gas exploration sorbent materials, by carbon nanomaterials type and benefits thereof……………………………………………………………………………………………………………. 551

Table 219: Applications in separation, by carbon anomaterials type and benefits thereof………… 551

Table 220: Carbon nanomaterials in the oil and gas market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………. 553

Table 221: Application markets, competing materials, NFC advantages and current market size in oil and gas………………………………………………………………………………………………………………………….. 553

Table 222: Market assessment for nanocellulose in oil and gas………………………………………………. 554

Table 223: Nanocellulose in the oil and gas market-applications, stage of commercialization and estimated economic impact………………………………………………………………………………………………… 554

Table 224: Market challenges rating for high-impact nanomaterials  in the oil and gas exploration market…………………………………………………………………………………………………………………………………. 555

Table 225: Carbon nanotubes product and application developers in the energy industry……….. 556

Table 226: Graphene product and application developers in the energy industry…………………….. 558

Table 227: Nanocellulose product developers in oil and gas exploration………………………………….. 562

Table 228: Types of filtration…………………………………………………………………………………………………….. 566

Table 229: Applications in desalination and water filtration, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………… 569

Table 230: Applications in gas separation, by nanomaterials type and benefits thereof…………… 570

Table 231: Application markets, competing materials and current market size in filtration……….. 573

Table 232: Graphene and 2D materials in the filtration and separation market-applications, stage of commercialization and estimated economic impact……………………………………………………………. 573

Table 233: Market assessment for nanocellulose in filtration……………………………………………………. 574

Table 234: Market opportunity assessment for nanocellulose in the filtration industry……………… 574

Table 235: Market challenges rating for nanotechnology and nanomaterials in the filtration and environmental remediation market……………………………………………………………………………………… 575

Table 236: Carbon nanotubes product and application developers in the filtration industry……… 576

Table 237: Graphene product and application developers in the filtration industry…………………… 577

Table 238: Companies developing NFC products in filtration, applications targeted and stage of commercialization……………………………………………………………………………………………………………….. 578

Table 239: Applications in lubricants, by carbon nanomaterials type and benefits thereof……….. 580

Table 240: Applications of carbon nanomaterials in lubricants…………………………………………………. 581

Table 241: Nanotechnology and nanomaterials in lubricants market-applications, stage of commercialization and estimated economic impact……………………………………………………………. 582

Table 242: Market challenges rating for nanotechnology and nanomaterials in the lubricants market…………………………………………………………………………………………………………………………………………….. 582

Table 243: Carbon nanotubes product and application developers in the lubricants industry…… 583

Table 244:  Graphene product and application developers in the lubricants industry……………….. 583

Table 245: Graphene properties relevant to application in sensors………………………………………….. 586

Table 246: Applications in strain sensors, by carbon nanomaterials type and benefits thereof… 587

Table 247: Applications in strain sensors, by carbon nanomaterials type and benefits thereof… 588

Table 248: Applications in biosensors, by nanomaterials type and benefits thereof…………………. 589

Table 249: Applications in food sensors, by carbon nanomaterials type and benefits thereof….. 589

Table 250: Applications in infrared (IR) sensors, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………………………………….. 590

Table 251: Applications in optical sensors, by carbon nanomaterials type and benefits thereof. 590

Table 252: Applications in pressure sensors, by carbon nanomaterials type and benefits thereof…………………………………………………………………………………………………………………………………………….. 591

Table 253: Applications in humidity sensors, by carbon nanomaterials type and benefits thereof. 591

Table 254: Applications in acoustic sensors, by carbon nanomaterials type and benefits thereof. 592

Table 255: Applications in wireless sensors, by carbon nanomaterials type and benefits thereof. 592

Table 256: Carbon nanomaterials in the sensors market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………. 593

Table 257: Market challenges rating for nanotechnology and nanomaterials in the sensors market…………………………………………………………………………………………………………………………………………….. 594

Table 258: Carbon nanotubes product and application developers in the sensors industry……… 595

Table 259: Graphene product and application developers in the sensors industry…………………… 596

Table 260: Desirable functional properties for the textiles industry afforded by the use of high impact nanomaterials………………………………………………………………………………………………………….. 602

Table 261: Applications in textiles, by carbon nanomaterials type and benefits thereof……………. 604

Table 262: Nanocoatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications…………………………………………………………………………………………………….. 605

Table 263: Global market for smart clothing and apparel, 2014-2021, units and revenues (US$). 610

Table 264: Market assessment for the nanotechnology in the smart clothing and apparel market…………………………………………………………………………………………………………………………………………….. 613

Table 265: Carbon nanomaterials in the textiles market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………. 613

Table 266: Market opportunity assessment for nanocellulose in paper and board…………………… 613

Table 267: Potential volume estimates (tons) and penetration of nanocellulose into textiles……. 614

Table 268: Market assessment for nanocellulose in textiles…………………………………………………….. 614

Table 269: Carbon nanotubes product and application developers in the textiles industry………. 615

Table 270:  Graphene product and application developers in the textiles industry…………………… 615

Table 271: Graphene properties relevant to application in 3D printing……………………………………… 617

Table 272: Carbon nanomaterials in the 3D printing market-applications, stage of commercialization and estimated economic impact…………………………………………………………………………………………. 618

Table 273: Application markets, competing materials, nanocellulose advantages and current market size in 3D printing……………………………………………………………………………………………………………….. 618

Table 274: Market assessment for nanocellulose in 3D printing……………………………………………….. 619

Table 275: Market opportunity assessment for nanocellulose in 3D printing…………………………….. 619

Table 276: Market challenges rating for nanotechnology and nanomaterials in the textiles and apparel market……………………………………………………………………………………………………………………. 620

Table 277: Carbon nanotubes product and application developers in the 3D printing industry… 621

Table 278: Graphene product and application developers in the 3D printing industry………………. 621

Table 279: Companies developing nanocellulose 3D printing products,…………………………………… 622

Table 280: Nanocellulose applications timeline in the paper and board markets……………………… 623

Table 281: Global packaging market, billions US$……………………………………………………………………. 626

Table 282: Market opportunity assessment for nanocellulose in paper and board…………………… 627

Table 283: Market challenges rating for nanocellulose in the paper and board market……………. 628

Table 284: Companies developing nanocellulose products in paper and board, applications targeted and stage of commercialization…………………………………………………………………………….. 628

Table 285: Nanocellulose applications timeline in the aerogels market……………………………………. 631

Table 286: Product developers in aerogels………………………………………………………………………………. 632

Table 287: Nanocellulose applications timeline in the rheology modifiers market…………………….. 632

Table 288: Commercial activity in nanocellulose rheology modifiers………………………………………… 634

Table 289: CNT producers and companies they supply/licence to…………………………………………… 637

Table 290: Graphene producers and types produced………………………………………………………………. 754

Table 291: Graphene industrial collaborations and target markets…………………………………………… 756

Table 292: Nanocellulose producers and types of nanocellulose produced……………………………… 882

Table 293: Target market, by nanocellulose producer……………………………………………………………… 883

 

 

FIGURES

Figure 1: Molecular structures of SWNT and MWNT………………………………………………………………….. 68

Figure 2: Production capacities for SWNTs in kilograms, 2005-2014…………………………………………. 73

Figure 3: Demand for graphene, by market, 2015………………………………………………………………………. 82

Figure 4: Demand for graphene, by market, 2015………………………………………………………………………. 83

Figure 5: Global government funding for graphene in millions USD……………………………………………. 85

Figure 6: Global market for graphene 2010-2025 in tons/year……………………………………………………. 90

Figure 7: Global consumption of graphene 2015, by region……………………………………………………….. 94

Figure 8: Scale of cellulose materials…………………………………………………………………………………………. 97

Figure 9: Cellulose nanofiber transparent sheet……………………………………………………………………….. 104

Figure 10: CNF transparent sheet…………………………………………………………………………………………….. 107

Figure 11: Running shoes incorporating cellulose nanofibers…………………………………………………… 108

Figure 12: Ballpoint pen incorporating cellulose nanofibers……………………………………………………… 109

Figure 13: CNF wet powder……………………………………………………………………………………………………… 110

Figure 14: Schematic of single-walled carbon nanotube…………………………………………………………… 117

Figure 15: Double-walled carbon nanotube bundle cross-section micrograph and model………… 119

Figure 16: Schematic representation of carbon nanohorns………………………………………………………. 120

Figure 17: TEM image of carbon onion…………………………………………………………………………………….. 121

Figure 18: Fullerene schematic………………………………………………………………………………………………… 123

Figure 19: Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red……………………………………………………………………………………………………………………….. 124

Figure 20: Graphene layer structure schematic………………………………………………………………………… 127

Figure 21: Graphite and graphene……………………………………………………………………………………………. 128

Figure 22: Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene. ……………………………………………………………………………………………………………………………………………. 129

Figure 23: Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1–4)………………… 132

Figure 24: Graphene quantum dots………………………………………………………………………………………….. 134

Figure 25: Black phosphorus structure……………………………………………………………………………………… 140

Figure 26: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal………………………………………………………………………………………………………………………….. 143

Figure 27: Schematic of germanene…………………………………………………………………………………………. 145

Figure 28: Graphdiyne structure……………………………………………………………………………………………….. 147

Figure 29: Schematic of Graphane crystal………………………………………………………………………………… 149

Figure 30: Structure of hexagonal boron nitride………………………………………………………………………… 151

Figure 31: Structure of 2D molybdenum disulfide…………………………………………………………………….. 153

Figure 32: Atomic force microscopy image of a representative MoS2 thin-film transistor…………. 154

Figure 33: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge……………………………………………………………………………… 156

Figure 34: Schematic of a monolayer of rhenium disulphide…………………………………………………….. 157

Figure 35: Silicene structure……………………………………………………………………………………………………… 158

Figure 36: Monolayer silicene on a silver (111) substrate…………………………………………………………. 159

Figure 37: Silicene transistor…………………………………………………………………………………………………….. 161

Figure 38: Crystal structure for stanene……………………………………………………………………………………. 162

Figure 39: Atomic structure model for the 2D stanene on Bi2Te3(111)……………………………………. 162

Figure 40: Schematic of tungsten diselenide……………………………………………………………………………. 164

Figure 41: Schematic diagram of partial molecular structure of cellulose chain with numbering for carbon atoms and n= number of cellobiose repeating unit…………………………………………………. 165

Figure 42: Scale of cellulose materials……………………………………………………………………………………… 166

Figure 43: Types of nanocellulose……………………………………………………………………………………………. 167

Figure 44: Relationship between different kinds of nanocelluloses…………………………………………… 168

Figure 45: TEM image of cellulose nanocrystals………………………………………………………………………. 173

Figure 46: Graphene can be rolled up into a carbon nanotube, wrapped into a fullerene, and stacked into graphite…………………………………………………………………………………………………………… 182

Figure 47: Schematic representation of methods used for carbon nanotube synthesis (a) Arc discharge (b) Chemical vapor deposition (c) Laser ablation (d) hydrocarbon flames………….. 187

Figure 48: Arc discharge process for CNTs………………………………………………………………………………. 189

Figure 49: Schematic of thermal-CVD method…………………………………………………………………………. 190

Figure 50: Schematic of plasma-CVD method………………………………………………………………………….. 191

Figure 51: CoMoCAT® process………………………………………………………………………………………………… 192

Figure 52: Schematic for flame synthesis of carbon nanotubes (a) premixed flame (b) counter-flow diffusion flame (c) co-flow diffusion flame (d) inverse diffusion flame…………………………………. 193

Figure 53: Schematic of laser ablation synthesis……………………………………………………………………… 194

Figure 54: Graphene synthesis methods………………………………………………………………………………….. 198

Figure 55: TEM micrographs of: A) HR-CNFs; B) GANF® HR-CNF, it can be observed its high graphitic structure; C) Unraveled ribbon from the HR-CNF; D) Detail of the ribbon; E) Scheme of the structure of the HR-CNFs; F) Large single graphene oxide sheets derived from GANF.. 199

Figure 56: Graphene nanoribbons grown on germanium…………………………………………………………. 202

Figure 57: Methods of synthesizing high-quality graphene……………………………………………………….. 204

Figure 58: Roll-to-roll graphene production process…………………………………………………………………. 210

Figure 59: Schematic of roll-to-roll manufacturing process……………………………………………………….. 211

Figure 60: Microwave irradiation of graphite to produce single-layer graphene………………………… 214

Figure 61: Main steps involved in the preparation of NCC………………………………………………………… 219

Figure 62: Schematic of typical commercialization route for graphene producer……………………… 223

Figure 63: Schematic of typical commercialization route for nanocellulose producer……………….. 226

Figure 64: Volume of industry demand for nanocellulose by nanocellulose producer sales……… 230

Figure 65: Nanotechnology patent applications, 1991-2015…………………………………………………….. 240

Figure 66: Share of nanotechnology related patent applications since 1972, by country………….. 241

Figure 67: CNT patents filed 2000-2014…………………………………………………………………………………… 242

Figure 68: Patent distribution of CNT application areas to 2014………………………………………………. 243

Figure 69: Published patent publications for graphene, 2004-2014………………………………………….. 246

Figure 70:  Nanocellulose patents by field of application, 2013………………………………………………… 251

Figure 71: Technology Readiness Level (TRL) for Carbon Nanotubes…………………………………….. 257

Figure 72: Technology Readiness Level (TRL) for graphene……………………………………………………. 258

Figure 73: Technology Readiness Level (TRL) for nanodiamonds…………………………………………… 259

Figure 74: Technology Readiness Level (TRL) for nanocellulose…………………………………………….. 260

Figure 75: Production volumes of carbon nanotubes (tons), 2010-2025…………………………………… 263

Figure 76: Production capacities for SWNTs in kilograms, 2005-2014……………………………………… 264

Figure 77: Demand for carbon nanotubes, by market………………………………………………………………. 265

Figure 78: Production volumes of Carbon Nanotubes 2015, by region…………………………………….. 268

Figure 79: Regional demand for CNTs utilized in batteries………………………………………………………. 269

Figure 80: Regional demand for CNTs utilized in Polymer reinforcement…………………………………. 270

Figure 81: Global market for graphene 2010-2025 in tons/year……………………………………………….. 280

Figure 82: Demand for nanodiamonds, by market……………………………………………………………………. 286

Figure 83: Production volumes of nanodiamonds, 2010-2025………………………………………………….. 288

Figure 84: Production volumes of nanodiamonds 2015, by region…………………………………………… 289

Figure 85: Production volumes of nanocellulose 2015, by region…………………………………………….. 293

Figure 86: Nanomaterials-based automotive components………………………………………………………… 319

Figure 87: The Tesla S’s touchscreen interface……………………………………………………………………….. 320

Figure 88: Graphene Frontiers’ Six™ chemical sensors consists of a field effect transistor (FET) with a graphene channel. Receptor molecules, such as DNA, are attached directly to the graphene channel……………………………………………………………………………………………………………….. 345

Figure 89: Graphene-Oxide based chip prototypes for biopsy-free early cancer diagnosis………. 346

Figure 90: Heat transfer coating developed at MIT…………………………………………………………………… 364

Figure 91: Water permeation through a brick without (left) and with (right) “graphene paint” coating…………………………………………………………………………………………………………………………………………….. 371

Figure 92: Four layers of graphene oxide coatings on polycarbonate………………………………………. 374

Figure 93: Global Paints and Coatings Market, share by end user market……………………………….. 376

Figure 94: Example process for producing NFC packaging film……………………………………………….. 395

Figure 95: Graphene-enabled bendable smartphone……………………………………………………………….. 422

Figure 96: 3D printed carbon nanotube sensor………………………………………………………………………… 423

Figure 97: Graphene electrochromic devices. Top left: Exploded-view illustration of the graphene electrochromic device. The device is formed by attaching two graphene-coated PVC substrates face-to-face and filling the gap with a liquid ionic electrolyte………………………………………………. 426

Figure 98: Flexible transistor sheet…………………………………………………………………………………………… 427

Figure 99: Foldable graphene E-paper…………………………………………………………………………………….. 429

Figure 100: LEDs shining on circuitry imprinted on a 5x5cm sheet of CNF………………………………. 430

Figure 101: NFC computer chip………………………………………………………………………………………………… 431

Figure 102: NFC translucent diffuser schematic……………………………………………………………………….. 432

Figure 103: Panasonic CTN stretchable Resin Film…………………………………………………………………. 433

Figure 104: Nanocellulose photoluminescent paper…………………………………………………………………. 434

Figure 105: LEDs shining on circuitry imprinted on a 5x5cm sheet of CNF………………………………. 435

Figure 106: Wearable gas sensor…………………………………………………………………………………………….. 437

Figure 107: Flexible, lightweight temperature sensor……………………………………………………………….. 438

Figure 108: Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs………………………………………………………………………………………………………………………………… 440

Figure 109: Graphene medical patch……………………………………………………………………………………….. 441

Figure 110: Global touch panel market ($ million), 2011-2018…………………………………………………. 443

Figure 111: Capacitive touch panel market forecast by layer structure  (Ksqm)……………………….. 444

Figure 112: Global transparent conductive film market forecast (million $)………………………………. 445

Figure 113: Global transparent conductive film market forecast by materials type, 2015, %……. 446

Figure 114: Global transparent conductive film market forecast by materials type, 2020, %……. 447

Figure 115: Global market revenues for smart wearable devices 2014-2021, in US$………………. 450

Figure 116: Global market revenues for nanotech-enabled smart wearable devices 2014-2021 in US$, conservative estimate………………………………………………………………………………………………… 451

Figure 117: Global market revenues for nanotech-enabled smart wearable devices 2014-2021 in US$, optimistic estimate……………………………………………………………………………………………………… 452

Figure 118: Potential addressable market for nanotech-enabled medical smart textiles and wearables…………………………………………………………………………………………………………………………… 453

Figure 119: Demand for thin film, flexible and printed batteries 2015, by market……………………… 455

Figure 120: Demand for thin film, flexible and printed batteries 2025, by market……………………… 456

Figure 121: Potential addressable market for nanotech-enabled thin film, flexible or printed batteries……………………………………………………………………………………………………………………………… 457

Figure 122: Schematic of the wet roll-to-roll graphene transfer from copper foils to polymeric substrates…………………………………………………………………………………………………………………………… 460

Figure 123: The transmittance of glass/ITO, glass/ITO/four organic layers, and glass/ITO/four organic layers/4-layer graphene…………………………………………………………………………………………. 461

Figure 124: Nanotube inks………………………………………………………………………………………………………… 470

Figure 125: Graphene printed antenna…………………………………………………………………………………….. 470

Figure 126: BGT Materials graphene ink product……………………………………………………………………… 471

Figure 127: Global market for conductive inks and pastes in printed electronics……………………… 474

Figure 128: Transistor architecture trend chart…………………………………………………………………………. 480

Figure 129: Schematic cross-section of a graphene based transistor (GBT, left) and a graphene field-effect transistor (GFET, right)……………………………………………………………………………………… 480

Figure 130: CMOS Technology Roadmap………………………………………………………………………………… 481

Figure 131: Figure 38: Thin film transistor incorporating CNTs…………………………………………………. 484

Figure 132: Graphene IC in wafer tester…………………………………………………………………………………… 486

Figure 133: Schematic cross-section of a graphene based transistor (GBT, left) and a graphene field-effect transistor (GFET, right)……………………………………………………………………………………… 487

Figure 134: Emerging logic devices………………………………………………………………………………………….. 489

Figure 135: Stretchable CNT memory and logic devices for wearable electronics……………………. 496

Figure 136: Graphene oxide-based RRAm device on a flexible substrate………………………………… 496

Figure 137: Emerging memory devices…………………………………………………………………………………….. 497

Figure 138: Carbon nanotubes NRAM chip………………………………………………………………………………. 498

Figure 139: Schematic of NRAM cell………………………………………………………………………………………… 500

Figure 140: Layered structure of tantalum oxide, multilayer graphene and platinum used for resistive random access memory (RRAM)………………………………………………………………………….. 501

Figure 141: A schematic diagram for the mechanism of the resistive switching in metal/GO/Pt.. 502

Figure 142: Hybrid graphene phototransistors………………………………………………………………………….. 509

Figure 143: Wearable health monitor incorporating graphene photodetectors…………………………. 509

Figure 144: Energy densities and specific energy of rechargeable batteries……………………………. 516

Figure 145: Zapgo supercapacitor phone charger……………………………………………………………………. 531

Figure 146: Suntech/TCNT nanotube frame module………………………………………………………………… 535

Figure 147: Nanocellulose sponge developed by EMPA for potential applications in oil recovery. 558

Figure 148: Perforene graphene filter……………………………………………………………………………………….. 577

Figure 149: Nanocellulose virus filter paper……………………………………………………………………………… 581

Figure 150: Global market revenues for smart clothing and apparel 2014-2021, in US$………….. 620

Figure 151: Global market revenues for nanotech-enabled smart clothing and apparel 2014-2021, in US$, conservative estimate…………………………………………………………………………………………….. 621

Figure 152: Global market revenues for nanotech-enabled smart clothing and apparel 2014-2021, in US$, optimistic estimate………………………………………………………………………………………………….. 621

Figure 153: 3D Printed tweezers incorporating Carbon Nanotube Filament…………………………….. 626

Figure 154: Paper and board global demand……………………………………………………………………………. 636

Figure 155: Asahi Kasei CNF fabric sheet………………………………………………………………………………… 906

Figure 156: Properties of Asahi Kasei cellulose nanofiber nonwoven fabric…………………………….. 907

Figure 157: CNF transparent film……………………………………………………………………………………………… 943

Figure 158: CNF wet powder……………………………………………………………………………………………………. 944

Figure 159: Flexible electronic substrate made from CNF………………………………………………………… 970

Figure 160: Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film……………. 975

Figure 161: CNC produced at Tech Futures’ pilot plant; cloudy suspension (1 wt.%), gel-like (10 wt.%), flake-like crystals, and very fine powder. Product advantages include:……………………. 984

Figure 162: NCCTM Process……………………………………………………………………………………………………. 985

Figure 163: Plantrose process………………………………………………………………………………………………….. 991