Global Metamaterials Market 2025-2035

0

cover

cover

  • Published: September 2024
  • Pages: 221
  • Tables: 63
  • Figures: 72

 

Metamaterials and their two-dimensional equivalents (known as metasurfaces) are artificial structures which can flexibly manipulate the electromagnetic responses through the selection and optimization of the cellular architecture and the chemical composition. Due to their unique properties, metamaterials and metasurfaces have received much attention and been widely used in many fields, such as nanophotonics, energy harvesting, sensing and healthcare etc. Metamaterials’ precise shape, geometry, size, orientation, and arrangements allow them to manipulate electromagnetic or mechanical waves, such as light or sound, by blocking, enhancing, and bending the waves.

This comprehensive market report offers an in-depth analysis of the global metamaterials market from 2025 to 2035, providing essential insights for stakeholders across multiple industries. Metamaterials, engineered to possess properties not found in nature, are poised to revolutionize various sectors, from telecommunications to healthcare, automotive to aerospace.

Repot contents include:

  • Market Size and Growth Projections
    • Detailed forecasts of market value and volume from 2025 to 2035
    • Analysis of historical market trends and future growth drivers
    • Scenario-based projections accounting for various market factors
    • Regional Market Analysis
  • Technology Overview:
    • Comprehensive explanation of metamaterial types and their unique properties
    • Detailed analysis of manufacturing methods, including wet etching, roll-to-roll printing, and atomic layer deposition
    • Evaluation of technology readiness levels for different metamaterial applications
  • Application Sectors:
    • Acoustics: Sound insulation, vibration damping
    • Communications: 5G/6G networks, satellite communications, radomes
    • Automotive: Radar systems, LiDAR, autonomous vehicle sensors
    • Aerospace and Defense: Stealth technology, radar systems, optical sensors
    • Coatings and Films: Anti-reflective coatings, thermal management films
    • Photovoltaics: Solar cell efficiency enhancement, solar-thermal absorbers
    • Medical Imaging: MRI enhancement, non-invasive diagnostics
    • Consumer Electronics: Holographic displays, AR/VR devices, smartphone cameras
    • Composites: Lightweight, high-strength materials
  • Market Drivers and Challenges:
    • In-depth exploration of factors driving market growth
    • Analysis of technical, economic, and regulatory challenges
    • Strategies for overcoming market barriers
  • Investment Landscape:
    • Overview of funding trends in the metamaterials sector
    • Analysis of key investment areas and opportunities
    • Profiles of major investors and their investment strategies
  • Competitive Analysis:
    • Detailed profiles of key players in the metamaterials market. Companies profiled include 2Pi Optics, Acoustic Metamaterials Group Ltd., Alcan Systems, Anywaves, Armory Technologies, BlueHalo LLC, Breylon, DoCoMo, Droneshield Limited, Echodyne Inc., Edgehog Advanced Technologies, EM Infinity, Emrod, Evolv Technologies Inc., Face® Companies, Filled Void Materials (FVMat) Ltd., Fractal Antenna Systems Inc., Greenerwave, H-Chip Technology Group, HyMet Thermal Interfaces SIA, Imagia, Imuzak Co. Ltd., Kuang-Chi Technologies Co. Ltd., Kymeta Corporation, LATYS, Leadoptik Inc., Lumotive, Magic Shields Inc., Magment AG, META®, Metaboards Limited, Metafold 3D, Metahelios, Metalenz Inc., Metamagnetics Inc., MetaSeismic, MetaShield LLC, Metasonixx, Metavoxel Technologies, Metawave Corporation, Merford UK (Sonobex Ltd.), Morphotonics, Moxtek: Metasurface Foundry, Multiwave Imaging, Nanohmics Inc., Nature Architects, Neurophos LLC, NIL Technology, Nissan Motor Co. Ltd., NKT Photonics A/S, Notch Inc., OPT Industries, PARC, Phoebus Optoelectronics LLC, Phononic Vibes srl, Pinpoint Medical, Pixie Dust Technologies Inc., PlanOpSim, Pivotal Commware Inc., Plasmonics Inc., Protemics GmbH, Radi-Cool Inc., SMENA Catalysis AB, SoundBounce by Lios, Spectralics, Specom Oy, STMicroelectronics, Teraview Limited, Tianjin Shanhe Optoelectronics Technology Co. Ltd., Tunoptix Inc., Ultimetas, Vadient Optics.
    • Analysis of competitive strategies and market positioning
    • Identification of emerging startups and their innovative technologies
  • Regulatory Environment:
    • Comprehensive overview of global and regional regulations affecting metamaterials
    • Analysis of how regulatory changes may impact market growth
    • Forecast of potential future regulatory developments
  • Future Outlook and Emerging Applications:
    • Identification of new and potential applications for metamaterials
    • Long-term market opportunities and growth sectors
    • Analysis of how metamaterials may disrupt traditional industries
  • Sustainability and Environmental Impact:
    • Evaluation of the environmental implications of metamaterial production and use
    • Analysis of how metamaterials can contribute to sustainability goals
    • Overview of eco-friendly metamaterial innovations
  1.  

This report is an invaluable resource for:

  • C-suite executives in technology and manufacturing companies
  • Investment firms and financial analysts
  • R&D professionals in materials science and engineering
  • Government agencies and policymakers
  • Academic researchers in related fields
  • Strategic consultants and market analysts

 

By providing a comprehensive, forward-looking analysis of the global metamaterials market from 2025 to 2035, this report equips stakeholders with the knowledge needed to navigate this rapidly evolving field. It offers insights into market trends, growth opportunities, and potential challenges, enabling informed decision-making and strategic planning.

 

Download table of contents (PDF)

1             EXECUTIVE SUMMARY            18

  • 1.1        Historical metamaterials market      18
  • 1.2        Recent growth               19
  • 1.3        Current commercial landscape        19
  • 1.4        Global market revenues, current and forecast        20
    • 1.4.1    By type                21
    • 1.4.2    By end-use market     22
  • 1.5        Regional analysis        24
  • 1.6        Market opportunity assessment       25
  • 1.7        Investment funding in metamaterials            28
  • 1.8        Market and technology challenges  29
  • 1.9        Industry developments 2020-2024 30

 

2             METAMATERIALS OVERVIEW               32

  • 2.1        What are metamaterials?      32
  • 2.2        Types   34
  • 2.3        Metasurfaces 35
    • 2.3.1    Meta-Lens        35
    • 2.3.2    Metasurface holograms         36
    • 2.3.3    Flexible metasurfaces             37
    • 2.3.4    Reconfigurable intelligent surfaces (RIS)    37
  • 2.4        Manufacturing methods         39
    • 2.4.1    Wet etching     39
    • 2.4.2    Dry phase patterning 40
    • 2.4.3    Roll-to-roll (R2R) printing       40
    • 2.4.4    Wafer-scale nanoimprint lithography            41
    • 2.4.5    E-beam lithography and atomic layer deposition (ALD      42
    • 2.4.6    Laser ablation               42
    • 2.4.7    Deep ultraviolet (DUV) photolithography    42
    • 2.4.8    RF metamaterials manufacturing    43
    • 2.4.9    Optical metamaterials manufacturing         45
  • 2.5        Passive vs active metamaterials       47

 

3             OPTICAL METAMATERIALS    48

  • 3.1        Overview           48
  • 3.2        Commercial examples            49
  • 3.3        LiDAR Beam Steering                49
    • 3.3.1    Overview           49
    • 3.3.2    Types   49
    • 3.3.3    Advantages of Metamaterial LiDAR 50
    • 3.3.4    Liquid crystals              50
    • 3.3.5    Commerical examples            51
  • 3.4        Photonic metamaterials         53
  • 3.5        Optical filters and antireflective coatings    54
    • 3.5.1    Overview           54
    • 3.5.2    Electromagnetic (EM) filters 55
    • 3.5.3    Types   55
    • 3.5.4    ARCs   56
    • 3.5.5    Applications of Metamaterial anti-reflection coatings        57
  • 3.6        Tunable metamaterials           60
  • 3.7        Frequency selective surface (FSS) based metamaterials 60
  • 3.8        Plasmonic metamaterials     61
  • 3.9        Invisibility cloaks         61
  • 3.10     Perfect absorbers       62
  • 3.11     Optical nanocircuits 62
  • 3.12     Metamaterial lenses (Metalenses)  63
    • 3.12.1 Overview           63
    • 3.12.2 Light manipulation     64
    • 3.12.3 Applications   64
  • 3.13     Holograms      66
  • 3.14     Materials selection     66
  • 3.15     Applications   68

 

4             RADIO FREQUENCY (RF) METAMATERIALS 70

  • 4.1        Overview           70
  • 4.2        Key characteristics    70
  • 4.3        Reconfigurable Intelligent Surfaces (RIS)    71
    • 4.3.1    Overview           71
    • 4.3.2    Key features    71
    • 4.3.3    Frequencies    72
    • 4.3.4    Transparent Antennas             74
    • 4.3.5    Comparison with Other Smart Electromagnetic (EM) Devices      74
  • 4.4        Radar  74
    • 4.4.1    Overview           74
    • 4.4.2    Advantages     75
    • 4.4.3    Antennas          77
    • 4.4.4    Metamaterial beamforming 78
  • 4.5        EMI shielding 79
    • 4.5.1    Overview           79
    • 4.5.2    Double negative (DNG) metamaterials         80
    • 4.5.3    Single negative metamaterials           80
    • 4.5.4    Electromagnetic bandgap metamaterials (EBG)    80
    • 4.5.5    Bi-isotropic and bianisotropic metamaterials          81
    • 4.5.6    Chiral metamaterials                81
  • 4.5.7    Applications   82
  • 4.6        MRI Enhancement      83
    • 4.6.1    Overview           83
    • 4.6.2    Applications   83
  • 4.7        Non-Invasive Glucose Monitoring    83
    • 4.7.1    Overview           83
    • 4.7.2    Advantages     84
    • 4.7.3    Commercial examples            84
  • 4.8        Frequency selective surfaces             84
  • 4.9        Tunable RF metamaterials    85
  • 4.10     Absorbers         85
  • 4.11     Luneburg lens                85
  • 4.12     RF filters            86
  • 4.13     Applications   86

 

5             TERAHERTZ METAMATERIALS             88

  • 5.1        THz metasurfaces      88
  • 5.2        Quantum metamaterials       89
  • 5.3        Graphene metamaterials       89
  • 5.4        Flexible/wearable THz metamaterials           90
  • 5.5        THz modulators            91
  • 5.6        THz switches  91
  • 5.7        THz absorbers               91
  • 5.8        THz antennas 91
  • 5.9        THz imaging components      91

 

6             ACOUSTIC METAMTERIALS  93

  • 6.1        Sonic crystals                93
  • 6.2        Acoustic metasurfaces           93
  • 6.3        Locally resonant materials   93
  • 6.4        Acoustic cloaks           94
  • 6.5        Hyperlenses    94
  • 6.6        Sonic one-way sheets              94
  • 6.7        Acoustic diodes           94
  • 6.8        Acoustic absorbers   95
  • 6.9        Applications   95

 

7             TUNABLE METAMATERIALS  96

  • 7.1        Tunable electromagnetic metamaterials    96
  • 7.2        Tunable THz metamaterials 96
  • 7.3        Tunable acoustic metamaterials      97
  • 7.4        Tunable optical metamaterials          97
  • 7.5        Applications   98
  • 7.6        Nonlinear metamaterials       98
  • 7.7        Self-Transforming Metamaterials     99
  • 7.8        Topological Metamaterials   100
  • 7.9        Materials used with metamaterials 100

 

8             MARKETS AND APPLICATIONS FOR METAMATERIALS        102

  • 8.1        Competitive landscape          102
  • 8.2        Readiness levels of metamaterial technologies     102
  • 8.3        SWOT analysis              103
  • 8.4        Future market outlook             104
  • 8.5        ACOUSTICS    106
    • 8.5.1    Market drivers and trends      106
    • 8.5.2    Applications   107
    • 8.5.2.1 Sound insulation         107
    • 8.5.2.2 Vibration dampers      109
    • 8.5.3    Global revenues           110
  • 8.6        COMMUNICATIONS  111
    • 8.6.1    Market drivers and trends      111
    • 8.6.2    Applications   111
      • 8.6.2.1 Wireless Networks     111
        • 8.6.2.1.1           Reconfigurable antennas      112
        • 8.6.2.1.2           Wireless sensing         112
        • 8.6.2.1.3           Wi-Fi/Bluetooth            113
        • 8.6.2.1.4           Transparent conductive films             115
        • 8.6.2.1.5           5G and 6G Metasurfaces for Wireless Communications  116
      • 8.6.2.2 Radomes          117
      • 8.6.2.3 Fiber Optic Communications             119
      • 8.6.2.4 Satellite Communications    119
      • 8.6.2.5 Thermal management             119
    • 8.6.3    Global revenues           120
  • 8.7        AUTOMOTIVE 121
    • 8.7.1    Market drivers and trends      121
    • 8.7.2    Applications   122
      • 8.7.2.1 Radar and sensors     122
        • 8.7.2.1.1           LiDAR  123
        • 8.7.2.1.2           Beamforming 124
      • 8.7.2.2 Anti-reflective plastics            126
    • 8.7.3    Global revenues 2020-2035 127
  • 8.8        AEROSPACE, DEFENCE & SECURITY             128
    • 8.8.1    Market drivers and trends      128
    • 8.8.2    Applications   129
      • 8.8.2.1 Stealth technology     129
      • 8.8.2.2 Radar  130
      • 8.8.2.3 Optical sensors            131
      • 8.8.2.4 Security screening      132
      • 8.8.2.5 Composites    133
      • 8.8.2.6 Windscreen films        134
      • 8.8.2.7 Protective eyewear for pilots               134
      • 8.8.2.8 EMI and RFI shielding               134
      • 8.8.2.9 Thermal management             135
    • 8.8.3    Global revenues 2020-2035 135
  • 8.9        COATINGS AND FILMS            136
    • 8.9.1    Market drivers and trends      136
    • 8.9.2    Applications   137
      • 8.9.2.1 Cooling films  137
      • 8.9.2.2 Anti-reflection surfaces          138
      • 8.9.2.3 Optical solar reflection coatings       138
    • 8.9.3    Global revenues 2020-2035 139
  • 8.10     PHOTOVOLTAICS         140
    • 8.10.1 Market drivers and trends      140
    • 8.10.2 Applications   140
      • 8.10.2.1            Solar-thermal absorber           140
      • 8.10.2.2            Coatings            141
    • 8.10.3 Global revenues 2020-2035 142
  • 8.11     MEDICAL IMAGING    143
    • 8.11.1 Market drivers and trends      143
    • 8.11.2 Applications   143
      • 8.11.2.1            MRI imaging   143
      • 8.11.2.2            Non-invasive glucose monitoring     144
    • 8.11.3 Global revenues           145
  • 8.12     CONSUMER ELECTRONICS & DISPLAYS     146
    • 8.12.1 Market drivers and trends      146
    • 8.12.2 Applications   146
      • 8.12.2.1            Holographic displays                146
      • 8.12.2.2            Metalenses in smartphones 146
      • 8.12.2.3            AR/VR  147
      • 8.12.2.4            Multiview displays      147
      • 8.12.2.5            Stretchable displays 148
      • 8.12.2.6            Soft materials                149
      • 8.12.2.7            Anti-reflection (AR) coatings                151
    • 8.12.3 Global revenues           151
  • 8.13     COMPOSITES 152
    • 8.13.1 Market drivers and trends      152
    • 8.13.2 Applications   153

 

9             COMPANY PROFILES                154

  • 9.1        2Pi Optics        154
  • 9.2        Acoustic Metamaterials Group Ltd. 154
  • 9.3        Alphacore, Inc.             155
  • 9.4        Armory Technologies 156
  • 9.5        Anywaves         156
  • 9.6        BlueHalo LLC 157
  • 9.7        Breylon               158
  • 9.8        DoCoMo           159
  • 9.9        Droneshield Limited  160
  • 9.10     Echodyne, Inc.              161
  • 9.11     Edgehog Advanced Technologies     163
  • 9.12     Emrod 164
  • 9.13     Evolv Technologies, Inc.          166
  • 9.14     EM Infinity        167
  • 9.15     Face® Companies      168
  • 9.16     Filled Void Materials (FVMat) Ltd.     169
  • 9.17     Fractal Antenna Systems, Inc.            169
  • 9.18     Greenerwave  171
  • 9.19     H-Chip Technology Group     172
  • 9.20     HyMet Thermal Interfaces SIA            172
  • 9.21     Imagia 173
  • 9.22     Imuzak Co., Ltd.           174
  • 9.23     Kuang-Chi Technologies Co. Ltd.      174
  • 9.24     Kymeta Corporation  175
  • 9.25     LATYS  177
  • 9.26     Leadoptik, Inc.              178
  • 9.27     Lumotive           178
  • 9.28     Magic Shields, Inc.     180
  • 9.29     Magment AG   181
  • 9.30     Metaboards Limited  182
  • 9.31     Metafold 3D    183
  • 9.32     Metahelios      183
  • 9.33     Metalenz, Inc.                184
  • 9.34     Metamagnetics, Inc. 185
  • 9.35     META® 186
  • 9.36     MetaSeismic  188
  • 9.37     MetaShield LLC            188
  • 9.38     Metasonixx      189
  • 9.39     Metavoxel Technologies          190
  • 9.40     Metawave Corporation            190
  • 9.41     Morphotonics                192
  • 9.42     Moxtek               193
  • 9.43     Multiwave Imaging     193
  • 9.44     Nanohmics Inc.            194
  • 9.45     Nature Architects        194
  • 9.46     Neurophos LLC            195
  • 9.47     NIL Technology             196
  • 9.48     Nissan Motor Co., Ltd.             196
  • 9.49     NKT Photonics A/S      197
  • 9.50     Notch, Inc.       198
  • 9.51     OPT Industries              198
  • 9.52     PARC   199
  • 9.53     Phoebus Optoelectronics LLC           199
  • 9.54     Phomera Metamaterials Inc.               200
  • 9.55     Phononic Vibes srl      200
  • 9.56     Pixie Dust Technologies, Inc.               201
  • 9.57     PlanOpSim      202
  • 9.58     Pinpoint Medical          202
  • 9.59     Pivotal Commware, Inc.         203
  • 9.60     Plasmonics, Inc.          204
  • 9.61     Protemics GmbH         204
  • 9.62     Radi-Cool, Inc.             205
  • 9.63     SMENA Catalysis AB 206
  • 9.64     Merford UK (Sonobex Ltd.)    206
  • 9.65     SoundBounce by Lios              207
  • 9.66     Spectralics      207
  • 9.67     Specom Oy     208
  • 9.68     STMicroelectronics    209
  • 9.69     Teraview Limited          210
  • 9.70     Tianjin Shanhe Optoelectronics Technology Co. Ltd.          210
  • 9.71     Tunoptix, Inc. 210
  • 9.72     Ultimetas         211
  • 9.73     Vadient Optics              211
  •  

10          RESEARCH METHODOLOGY              213

  • 10.1     Report scope 213
  • 10.2     Research methodology           213

11          REFERENCES 214

 

List of Tables

  • Table 1. Global revenues for metamaterials, by type, 2020-2035 (Millions USD).            21
  • Table 2. Global revenues for metamaterials, by market, 2020-2035 (Millions USD).      22
  • Table 3. Global revenues for metamaterials, by region, 2020-2035 (Millions USD).        24
  • Table 4. Market opportunity assessment matrix for metamaterials and metasurfaces applications. 27
  • Table 5. Investment funding in metamaterials and metasurfaces companies.  29
  • Table 6. Market and technology challenges in metamaterials and metasurfaces.          29
  • Table 7. Metamaterials industry developments 2020-2023.          30
  • Table 8. Examples of metamaterials.             32
  • Table 9. Metamaterial landscape by wavelength.   34
  • Table 10. Comparison of types of metamaterials-frequency ranges, key characteristics, and applications.  35
  • Table 11. Benchmarking of Reconfigurable Intelligent Surfaces (RIS) types.       38
  • Table 12. Comparison of metamaterials manufacturing methods.           39
  • Table 13. Passive vs active metamaterials. 47
  • Table 14. Optical metamaterials: Applications and companies. 49
  • Table 15. Comparison of metasurface beam-steering LiDAR with other types. 52
  • Table 16. Applications of metalenses.          64
  • Table 17. Transparency ranges of various materials commonly used in or considered for optical metamaterials.             66
  • Table 18. Materials for optical metamaterial applications.             67
  • Table 19. Optical Metamaterial Applications.          68
  • Table 20. Current and potential market impact for optical metamaterials.          69
  • Table 21. RIS Commerical Examples.            71
  • Table 22. RIS operation phases.        72
  • Table 23. RIS Hardware.          72
  • Table 24. RIS functionalities.               72
  • Table 25. Challenges for fully functionalized RIS environments.  73
  • Table 26. RIS vs Other Smart Electromagnetic (EM) Devices.        74
  • Table 27. Metamaterials in radar: Advantages and limitations.    75
  • Table 28. Suitable materials for RF metamaterials by application.            76
  • Table 29. Benchmark of substrate material properties for antenna substrate.   77
  • Table 30. Operational frequency ranges by application.    77
  • Table 31. Comparing metamaterial beamforming radars against other types.   79
  • Table 32. Functionalities of metamaterials in EMI shielding.         79
  • Table 33. Opportunities for metamaterials in EMI shielding.          82
  • Table 34. Applications of metamaterials in MRI.    83
  • Table 35. Applications and players in radio frequency metamaterials.   86
  • Table 36. Applications of acoustic metamaterials.               95
  • Table 37. Types of tunable terahertz (THz) metamaterials and their tuning mechanisms.          96
  • Table 38. Tunable acoustic metamaterials and their tuning mechanisms.          97
  • Table 39.  Types of tunable optical metamaterials and their tuning mechanisms.          97
  • Table 40. Markets and applications for tunable metamaterials.  98
  • Table 41. Types of self-transforming metamaterials and their transformation mechanisms.   99
  • Table 42.  Key materials used with different types of metamaterials.       101
  • Table 43. Technology Readiness Level (TRL) of various metamaterial technologies.      102
  • Table 44. Metamaterials in sound insulation-market drivers and trends.               106
  • Table 45. Global revenues for metamaterials in acoustics, 2020-2035 (Millions USD). 110
  • Table 46: Metamaterials in electronics and communications-market drivers and trends.         111
  • Table 47. Unmet need, metamaterial solution and markets.         114
  • Table 48. Global revenues for metamaterials in communications, 2020-2035 (Millions USD).               121
  • Table 49. Metamaterials in the automotive sector-market drivers and trends.   121
  • Table 50. Global revenues for metamaterials in automotive, 2020-2035 (Millions USD).            127
  • Table 51. Metamaterials in aerospace, defence and security-market drivers and trends.          128
  • Table 52. Global revenues for metamaterials in aerospace, defence & security, 2020-2035 (Millions USD).  136
  • Table 53. Metamaterials in coatings and films-market drivers and trends.           136
  • Table 54. Applications of metamaterials in coatings and thin films.         137
  • Table 55. Global revenues for metamaterials in coatings and films, 2020-2035 (Millions USD).            139
  • Table 56: Metamaterials in photovoltaics-market drivers and trends.      140
  • Table 57. Global revenues for metamaterials in photovoltaics, 2020-2035 (Millions USD).      142
  • Table 58: Metamaterials in medical imaging-drivers and trends. 143
  • Table 59. Global revenues for metamaterials in medical imaging, 2020-2035 (Millions USD). 145
  • Table 60: Metamaterials in consumer electronics and displays-drivers and trends.      146
  • Table 61. Global revenues for metamaterials in consumer electronics, 2020-2035 (Millions USD).   152
  • Table 62: Metamaterials in composites-drivers and trends.           152
  • Table 63.Metamaterials in Composites - Applications       153

 

List of Figures

  • Figure 1. Classification of metamaterials based on functionalities.         18
  • Figure 2. Global revenues for metamaterials, by type, 2020-2035 (Millions USD).          22
  • Figure 3. Global revenues for metamaterials, by market, 2020-2035 (Millions USD).    24
  • Figure 4. Global revenues for metamaterials, by region, 2020-2035 (Millions USD).      25
  • Figure 5. Metamaterials example structures.           32
  • Figure 6. Metamaterial schematic versus conventional materials.            33
  • Figure 7. Scanning electron microscope (SEM) images of several metalens antenna forms.   36
  • Figure 8. Transparent and flexible metamaterial film developed by Sekishi Chemical. 37
  • Figure 9. The most common designs for photonic MMs: (a) SRRs, (b) wood pile structures, (c) colloidal crystals, and (d) inverse opals.          54
  • Figure 10. Invisibility cloak.  62
  • Figure 11. Metamaterial antenna.    77
  • Figure 12. Electromagnetic metamaterial. 80
  • Figure 13. Schematic of Electromagnetic Band Gap (EBG) structure.      81
  • Figure 14. Schematic of chiral metamaterials.        82
  • Figure 15. Terahertz metamaterials.               88
  • Figure 16.  Schematic of the quantum plasmonic metamaterial.               89
  • Figure 17. Properties and applications of graphene metamaterials.         90
  • Figure 18. Nonlinear metamaterials- 400-nm thick nonlinear mirror that reflects frequency-doubled output using input light intensity as small as that of a laser pointer.         99
  • Figure 19. SWOT analysis: metamaterials market.                103
  • Figure 20. Prototype metamaterial device used in acoustic sound insulation.  107
  • Figure 21. Metamaterials installed in HVAC sound insulation the Hotel Madera Hong Kong.   108
  • Figure 22. Robotic metamaterial device for seismic-induced vibration mitigation.        109
  • Figure 23. Global revenues for metamaterials in acoustics, 2020-2035 (Millions USD).             110
  • Figure 24. Wireless charging technology prototype.             114
  • Figure 25. Flat-panel satellite antenna (top) and antenna mounted on a vehicle (bottom).       115
  • Figure 26. META Transparent Window Film.               117
  • Figure 27. Radi-cool metamaterial film.      120
  • Figure 28. Global revenues for metamaterials in communications, 2020-2035 (Millions USD).             120
  • Figure 29. Metamaterials in automotive applications.       122
  • Figure 30. Lumotive advanced beam steering concept.    125
  • Figure 31. Echodyne metamaterial radar mounted on automobile.          126
  • Figure 32. Anti-reflective metamaterials plastic.   127
  • Figure 33. Global revenues for metamaterials in automotive, 2020-2035 (Millions USD).          127
  • Figure 34. Metamaterials invisibility cloak for microwave frequencies.   129
  • Figure 35. Metamaterials radar antenna.    131
  • Figure 36. Metamaterials radar array.            131
  • Figure 37. Evolv Edge visitor screening solution.    133
  • Figure 38.  Lightweight metamaterial microlattice.               133
  • Figure 39. metaAIR eyewear.                134
  • Figure 40. Global revenues for metamaterials in aerospace, defence & security, 2020-2035 (Millions USD).  135
  • Figure 41. Schematic of dry-cooling technology.   138
  • Figure 42. Global revenues for metamaterials in coatings and films, 2020-2035 (Millions USD).          139
  • Figure 43. Metamaterial solar coating.          141
  • Figure 44. Global revenues for metamaterials in photovoltaics, 2020-2035 (Millions USD).    142
  • Figure 45. A patient in MRI scan modified by metasurface.             144
  • Figure 46. Global revenues for metamaterials in medical imaging, 2020-2035 (Millions USD).              145
  • Figure 47. Stretchable hologram.     148
  • Figure 48. Design concepts of soft mechanical metamaterials with large negative swelling ratios and tunable stress-strain curves.              150
  • Figure 49. Global revenues for metamaterials in consumer electronics, 2020-2035 (Millions USD).  151
  • Figure 50. Anywaves antenna products. CubeSat S-band antenna, CubeSat X-band antenna and UAV cellular antenna.         157
  • Figure 51. Brelyon monitor.  159
  • Figure 52. DoCoMo transmissive metasurface.      160
  • Figure 53. RadarZero.               161
  • Figure 54. Schematic of MESA System.        162
  • Figure 55. EchoGuard Radar System.            163
  • Figure 56. Edgehog Advanced Technologies Omnidirectional anti-reflective coating.   164
  • Figure 57. Emrod architecture. 1. A transmitting antenna. 2. A relay that is essentially lossless, doesn’t require any power, and acts as a lens refocusing the beam extending the travel range. 3. A rectenna that receives and rectifies the beam back to electricity. Metamaterials allow converting wireless energy back into electricity efficiently.          165
  • Figure 58. Commercial application of Emrod technology.               166
  • Figure 59. Evolv Edge screening system.     167
  • Figure 60. FM/R technology. 170
  • Figure 61. Metablade antenna.          171
  • Figure 62. MTenna flat panel antenna.          175
  • Figure 63. Kymeta u8 antenna installed on a vehicle.          176
  • Figure 64. LIDAR system for autonomous vehicles.              179
  • Figure 65. Light-control metasurface beam-steering chips.           180
  • Figure 66. Metamaterials film.            181
  • Figure 67. Metaboard wireless charger.        182
  • Figure 68. Orion dot pattern projector.          184
  • Figure 69. A 12-inch wafer made using standard semiconductor processes contains thousands of metasurface optics.  185
  • Figure 70. metaAIR.   187
  • Figure 71. Nissan acoustic metamaterial.  197
  • Figure 72. Metamaterial structure used to control thermal emission.     204

 

 

Global Metamaterials Market 2025-2035
Global Metamaterials Market 2025-2035
PDF download/by email.

Global Metamaterials Market 2025-2035
Global Metamaterials Market 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com