The Global Market for Advanced Li-ion and Beyond Lithium Batteries 2025-2035

0

cover

cover

  • Published: November 2025
  • Pages: 635
  • Tables: 165
  • Figures: 176

 

The lithium-ion battery market has experienced remarkable growth in recent years, driven by the increasing demand for energy storage solutions across various sectors, particularly in electric vehicles (EVs) and renewable energy applications. As the world transitions towards increasing sustainability, the need for advanced battery technologies that offer higher energy density, faster charging, improved safety, and longer lifespans has become increasingly crucial.

The current lithium-ion battery market is dominated by well-established players, such as Tesla, Panasonic, LG Chem, CATL, and BYD, who have made significant strides in improving the performance and cost-effectiveness of these batteries. However, the industry is also witnessing the emergence of innovative technologies that go beyond traditional lithium-ion chemistries, promising even greater advancements in energy storage capabilities. One of the most promising developments in the advanced battery market is the rise of lithium-metal anodes. Lithium-metal batteries have the potential to offer significantly higher energy densities compared to conventional lithium-ion batteries, thanks to the use of metallic lithium as the anode material. Companies like QuantumScape, SolidEnergy Systems, and Sila Nanotechnologies are at the forefront of this technology, focusing on developing solid-state electrolytes and novel anode designs to overcome the challenges associated with lithium-metal, such as dendrite formation and safety concerns.

Another area of intense research and development is lithium-sulfur (Li-S) batteries. Lithium-sulfur chemistry offers the promise of even higher energy densities, as well as the potential for lower cost due to the abundance and relatively low price of sulfur. Beyond lithium-based systems, the advanced battery market is also witnessing the emergence of alternative chemistries, such as sodium-ion (Na-ion) and zinc-ion batteries. These technologies can provide cost-effective and potentially safer alternatives to lithium-ion, particularly in applications where high energy density is not the primary concern, such as stationary energy storage and grid-scale applications. 

The future outlook for the advanced lithium-ion and beyond lithium battery market is both promising and complex. While lithium-ion batteries are expected to maintain their dominance in the near to medium term, the next decade will likely see a diversification of battery technologies to meet the increasingly diverse and demanding needs of the energy storage market. One key driver of this market evolution will be the continued push for higher energy density and faster charging capabilities, particularly in the EV sector. As consumers demand longer driving ranges and quicker recharge times, the race to develop the next generation of high-performance battery technologies will intensify. This, in turn, will spur further investments in research and development, as well as advancements in manufacturing processes and supply chain optimization. Geopolitical considerations will also play a significant role in the future of the advanced battery market. The increasing global competition for critical raw materials, such as lithium, cobalt, and nickel, has highlighted the need for diversified and resilient supply chains. This, coupled with the push for energy independence and national security concerns, will likely accelerate the development of battery technologies that rely on more abundant and locally available resources, such as sodium and zinc.

The Global Market for Advanced Li-ion and Beyond Lithium Batteries 2025-2035 provides an in-depth analysis of the rapidly evolving sector, offering invaluable insights for industry stakeholders, technology developers, and investors. With a focus on the key application areas of electric vehicles, grid storage, consumer electronics, and stationary batteries, the study delves deep into the latest technological advancements, market trends, and competitive landscape.

Report contents include:

  • Detailed analysis of the global market for advanced Li-ion batteries, including forecasts for major application segments such as electric vehicles, grid storage, and consumer electronics.
  • Comprehensive coverage of emerging battery technologies beyond lithium-ion, including lithium-metal, lithium-sulfur, sodium-ion, and solid-state batteries, with market sizing and growth projections.
  • Examination of the evolving battery material landscape, including advancements in anode (silicon, lithium titanate), cathode (high-nickel, lithium-rich), and electrolyte technologies.
  • Detailed profiles of over 360 companies active in the advanced battery ecosystem, covering their product offerings, technology roadmaps, and strategic partnerships. Companies profiled include 2D Fab AB, 24M Technologies, Inc., 3DOM Inc., 6K Energy, AC Biode, ACCURE, Addionics, Advano, Agora Energy Technologies, Aionics Inc., AirMembrane Corporation, Allegro Energy Pty. Ltd., Altairnano / Yinlong, Altris AB, Aluma Power, Altech Batteries Ltd., Ambri, Inc., AMO Greentech, Ampcera, Inc., Amprius, Inc., AMTE Power, Anaphite Limited, Anthro Energy, APB Corporation, Appear Inc., Ateios Systems, Atlas Materials, Australian Advanced Materials, Australian Vanadium Limited, Australia VRFB ESS Company (AVESS), Avanti Battery Company, AZUL Energy Co., Ltd, BAK Power Battery, BASF, BattGenie Inc., Basquevolt, Bedimensional S.p.A, Bemp Research Company, BenAn Energy Technology, BGT Materials Ltd., Big Pawer, Biwatt Power, Black Diamond Structures, LLC, Blackstone Resources, Blue Current, Inc., Blue Solutions, Blue Spark Technologies, Inc., Bodi, Inc., Brill Power, BrightVolt, Inc.,  Broadbit Batteries Oy, BTR New Energy Materials, Inc., BYD Company Limited, Cabot Corporation, California Lithium Battery, CAPCHEM, CarbonScape Ltd., CBAK Energy Technology, Inc., CCL Design, CEC Science & Technology Co., Ltd, CENS Materials, Contemporary Amperex Technology Co Ltd (CATL), CellCube, CellsX, CENS Materials Ltd., Central Glass Co., Ltd., CERQ, Ceylon Graphene Technologies (Pvt) Ltd, Cham Battery Technology, Chasm Advanced Materials, Inc., Chemix, Chengdu Baisige Technology Co., Ltd., China Sodium-ion Times, Citrine Informatics, Clarios, Clim8, CMBlu Energy AG, Connexx Systems Corp, Customcells, Cymbet, Dalian Rongke Power, DFD, Doctors (Tianjin) Energy Technology, Dotz Nano, Dreamweaver International, Eatron Technologies, Ecellix, Echion Technologies, EcoPro BM, ElecJet, Elestor, EcoPro BM, Elegus Technologies, Elisa IndustrIQ, E-Magy, Energy Storage Industries, Enerpoly AB, Enfucell Oy, Enevate, EnPower Greentech, Enovix, Ensurge Micropower ASA, E-Zinc, Eos Energy, Enzinc, Eonix Energy, ESS Tech, EthonAI, EVE Energy Co., Ltd, Exencell New Energy, Factorial Energy, Faradion Limited, Farasis Energy, FDK Corporation, Feon Energy, Inc., FinDream, FlexEnergy LLC, Flow Aluminum, Inc., Flux XII, Forge Nano, Inc., Forsee Power, Fraunhofer Institute for Electronic Nano Systems (ENAS), Front Edge Technology, Fuelium, Fuji Pigment Co., Ltd., Fujian Super Power New Energy, Fujitsu Laboratories Ltd., Ganfeng Lithium, Gelion Technologies Pty Ltd., Geyser Batteries Oy, GDI, General Motors (GM), Global Graphene Group, Gnanomat S.L., Gotion High Tech, GQenergy srl, Grafentek, Grafoid, Graphene Batteries AS, Graphene Manufacturing Group Pty Ltd, Great Power Energy, Green Energy Storage S.r.l. (GES), GRST, Guoke Tanmei New Materials, GUS Technology, Shenzhen Grepow Battery Co., Ltd. (Grepow), Group14 Technologies, Inc., Corporation Guangzhou Automobile New Energy (GAC), H2 Inc., Hansol Chemical, HE3DA Ltd., Hexalayer LLC, High Performance Battery Holding AG, HiNa Battery Technologies Limited, Hirose Paper Mfg Co., Ltd., Hitachi Zosen Corporation, Horizontal Na Energy, HPQ Nano Silicon Powders Inc., Hua Na New Materials, Hybrid Kinetic Group, HydraRedox Iberia S.L. and more.....
  • Exploration of innovative battery designs, such as flexible, transparent, and degradable batteries, and their potential applications.
  • In-depth analysis of the battery recycling industry, including the strengths and weaknesses of various recycling techniques.
  • Insights into the role of artificial intelligence and machine learning in accelerating battery innovation, from material discovery to manufacturing optimization.

 

 

 

1             RESEARCH METHODOLOGY              41

  • 1.1        Report scope 41
  • 1.2        Research methodology           41

 

2             INTRODUCTION          42

  • 2.1        The global market for advanced Li-ion batteries     42
    • 2.1.1    Electric vehicles           43
      • 2.1.1.1 Market overview           43
      • 2.1.1.2 Battery Electric Vehicles        44
      • 2.1.1.3 Electric buses, vans and trucks         45
        • 2.1.1.3.1           Electric medium and heavy duty trucks       45
        • 2.1.1.3.2           Electric light commercial vehicles (LCVs)  46
        • 2.1.1.3.3           Electric buses               46
        • 2.1.1.3.4           Micro EVs         47
      • 2.1.1.4 Electric off-road           48
        • 2.1.1.4.1           Construction vehicles              48
        • 2.1.1.4.2           Electric trains 50
        • 2.1.1.4.3           Electric boats 50
      • 2.1.1.5 Market demand and forecasts           52
    • 2.1.2    Grid storage    55
      • 2.1.2.1 Market overview           55
      • 2.1.2.2 Technologies  56
      • 2.1.2.3 Market demand and forecasts           57
    • 2.1.3    Consumer electronics             58
      • 2.1.3.1 Market overview           58
      • 2.1.3.2 Technologies  58
      • 2.1.3.3 Market demand and forecasts           59
    • 2.1.4    Stationary batteries   60
      • 2.1.4.1 Market overview           60
      • 2.1.4.2 Technologies  61
      • 2.1.4.3 Market demand and forecasts           62
    • 2.1.5    Market Forecasts        62
  • 2.2        Market drivers                64
  • 2.3        Battery market megatrends  66
  • 2.4        Advanced materials for batteries      69
  • 2.5        Motivation for battery development beyond lithium            69
  • 2.6        Battery chemistries   70

 

3             LI-ION BATTERIES       71

  • 3.1        Types of Lithium Batteries     74
  • 3.2        Anode materials          77
    • 3.2.1    Graphite            78
    • 3.2.2    Lithium Titanate           78
    • 3.2.3    Lithium Metal 79
    • 3.2.4    Silicon anodes              79
  • 3.3        SWOT analysis              79
  • 3.4        Trends in the Li-ion battery market  80
  • 3.5        Silicon anodes              81
    • 3.5.1    Benefits             82
    • 3.5.2    Silicon anode performance  83
    • 3.5.3    Development in li-ion batteries          85
      • 3.5.3.1 Manufacturing silicon              86
      • 3.5.3.2 Commercial production         87
      • 3.5.3.3 Costs  89
      • 3.5.3.4 Value chain     89
      • 3.5.3.5 Markets and applications      90
        • 3.5.3.5.1           EVs       91
        • 3.5.3.5.2           Consumer electronics             92
        • 3.5.3.5.3           Energy Storage              93
        • 3.5.3.5.4           Portable Power Tools 93
        • 3.5.3.5.5           Emergency Backup Power     94
      • 3.5.3.6 Future outlook              94
    • 3.5.4    Consumption 95
      • 3.5.4.1 By anode material type            95
      • 3.5.4.2 By end use market      96
    • 3.5.5    Alloy anode materials              97
    • 3.5.6    Silicon-carbon composites  97
    • 3.5.7    Silicon oxides and coatings  98
    • 3.5.8    Carbon nanotubes in Li-ion  98
    • 3.5.9    Graphene coatings for Li-ion               98
    • 3.5.10 Prices  99
    • 3.5.11 Companies     99
  • 3.6        Li-ion electrolytes        100
  • 3.7        Cathodes          101
    • 3.7.1    Materials           101
      • 3.7.1.1 High and Ultra-High nickel cathode materials         102
      • 3.7.1.2 Types   102
      • 3.7.1.3 Benefits             103
      • 3.7.1.4 Stability             103
      • 3.7.1.5 Single Crystal Cathodes         104
      • 3.7.1.6 Commercial activity  105
      • 3.7.1.7 Manufacturing              106
      • 3.7.1.8 High manganese content       106
      • 3.7.1.9 Li-Mn-rich cathodes  106
      • 3.7.1.10            LMR-NMC        107
      • 3.7.1.11            Lithium Cobalt Oxide(LiCoO2) — LCO          107
      • 3.7.1.12            Lithium Iron Phosphate(LiFePO4) — LFP     108
      • 3.7.1.13            Lithium Manganese Oxide (LiMn2O4) — LMO          109
      • 3.7.1.14            Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO2) — NMC 110
      • 3.7.1.15            Lithium Nickel Cobalt Aluminum Oxide (LiNiCoAlO2) — NCA       111
      • 3.7.1.16            Lithium manganese phosphate (LiMnP)      112
      • 3.7.1.17            Lithium manganese iron phosphate (LiMnFePO4 or LMFP)             112
      • 3.7.1.18            Lithium nickel manganese oxide (LNMO)    113
      • 3.7.1.19            Zero-Cobalt NMx         114
    • 3.7.2    Alternative Cathode Production        114
      • 3.7.2.1 Production/Synthesis               114
      • 3.7.2.2 Commercial development    115
      • 3.7.2.3 Recycling cathodes    117
    • 3.7.3    Comparison of key lithium-ion cathode materials 118
    • 3.7.4    Emerging cathode material synthesis methods      119
    • 3.7.5    Cathode coatings        119
  • 3.8        Binders and conductive additives    120
    • 3.8.1    Materials           120
  • 3.9        Separators       120
    • 3.9.1    Materials           120
  • 3.10     Platinum group metals            121
  • 3.11     Li-ion battery market players               121
  • 3.12     Li-ion recycling              122
    • 3.12.1 Comparison of recycling techniques              124
    • 3.12.2 Hydrometallurgy          125
      • 3.12.2.1            Method overview         125
        • 3.12.2.1.1        Solvent extraction       126
      • 3.12.2.2            SWOT analysis              127
    • 3.12.3 Pyrometallurgy              128
      • 3.12.3.1            Method overview         128
      • 3.12.3.2            SWOT analysis              129
    • 3.12.4 Direct recycling             129
      • 3.12.4.1            Method overview         129
        • 3.12.4.1.1        Electrolyte separation              131
        • 3.12.4.1.2        Separating cathode and anode materials   131
        • 3.12.4.1.3        Binder removal             131
        • 3.12.4.1.4        Relithiation      132
        • 3.12.4.1.5        Cathode recovery and rejuvenation                132
        • 3.12.4.1.6        Hydrometallurgical-direct hybrid recycling                133
      • 3.12.4.2            SWOT analysis              133
    • 3.12.5 Other methods             134
      • 3.12.5.1            Mechanochemical Pretreatment      134
      • 3.12.5.2            Electrochemical Method        134
      • 3.12.5.3            Ionic Liquids   135
    • 3.12.6 Recycling of Specific Components 135
      • 3.12.6.1            Anode (Graphite)         135
      • 3.12.6.2            Cathode            135
      • 3.12.6.3            Electrolyte        136
    • 3.12.7 Recycling of Beyond Li-ion Batteries               136
      • 3.12.7.1            Conventional vs Emerging Processes            136
  • 3.13     Global revenues           137

 

4             LITHIUM-METAL BATTERIES 139

  • 4.1        Technology description           139
  • 4.2        Lithium-metal anodes             140
  • 4.3        Challenges      141
  • 4.4        Energy density               141
  • 4.5        Anode-less Cells         142
  • 4.6        Lithium-metal and solid-state batteries       142
  • 4.7        Applications   143
  • 4.8        SWOT analysis              144
  • 4.9        Product developers    145

 

5             LITHIUM-SULFUR BATTERIES              146

  • 5.1        Technology description           146
    • 5.1.1    Advantages     146
    • 5.1.2    Challenges      147
    • 5.1.3    Commercialization    147
  • 5.2        SWOT analysis              148
  • 5.3        Global revenues           149
  • 5.4        Product developers    151

 

6             LITHIUM TITANATE OXIDE AND NIOBATE BATTERIES           152

  • 6.1        Technology description           152
    • 6.1.1    Lithium titanate oxide              152
    • 6.1.2    Niobium titanium oxide (NTO)            152
      • 6.1.2.1 Niobium tungsten oxide          153
      • 6.1.2.2 Vanadium oxide anodes         154
  • 6.2        Global revenues           154
  • 6.3        Product developers    155

 

7             SODIUM-ION (NA-ION) BATTERIES 157

  • 7.1        Technology description           157
    • 7.1.1    Cathode materials     157
      • 7.1.1.1 Layered transition metal oxides        157
        • 7.1.1.1.1           Types   157
        • 7.1.1.1.2           Cycling performance 158
        • 7.1.1.1.3           Advantages and disadvantages        159
        • 7.1.1.1.4           Market prospects for LO SIB 159
      • 7.1.1.2 Polyanionic materials               159
        • 7.1.1.2.1           Advantages and disadvantages        160
        • 7.1.1.2.2           Types   160
        • 7.1.1.2.3           Market prospects for Poly SIB             161
      • 7.1.1.3 Prussian blue analogues (PBA)          161
        • 7.1.1.3.1           Types   162
        • 7.1.1.3.2           Advantages and disadvantages        162
        • 7.1.1.3.3           Market prospects for PBA-SIB             163
    • 7.1.2    Anode materials          163
      • 7.1.2.1 Hard carbons 164
      • 7.1.2.2 Carbon black 165
      • 7.1.2.3 Graphite            166
      • 7.1.2.4 Carbon nanotubes     169
      • 7.1.2.5 Graphene         170
      • 7.1.2.6 Alloying materials       171
      • 7.1.2.7 Sodium Titanates        172
      • 7.1.2.8 Sodium Metal 172
    • 7.1.3    Electrolytes     172
  • 7.2        Comparative analysis with other battery types        173
  • 7.3        Cost comparison with Li-ion                174
  • 7.4        Materials in sodium-ion battery cells             174
  • 7.5        SWOT analysis              177
  • 7.6        Global revenues           178
  • 7.7        Product developers    179
    • 7.7.1    Battery Manufacturers            179
    • 7.7.2    Large Corporations    180
    • 7.7.3    Automotive Companies          180
    • 7.7.4    Chemicals and Materials Firms         180

 

8             SODIUM-SULFUR BATTERIES             181

  • 8.1        Technology description           181
  • 8.2        Applications   182
  • 8.3        SWOT analysis              183

 

9             ALUMINIUM-ION BATTERIES               185

  • 9.1        Technology description           185
  • 9.2        SWOT analysis              186
  • 9.3        Commercialization    187
  • 9.4        Global revenues           188
  • 9.5        Product developers    188

 

10          ALL-SOLID STATE BATTERIES (ASSBs)           190

  • 10.1     Technology description           190
    • 10.1.1 Solid-state electrolytes            192
  • 10.2     Features and advantages      193
  • 10.3     Technical specifications         194
  • 10.4     Types   196
  • 10.5     Microbatteries               198
    • 10.5.1 Introduction    198
    • 10.5.2 Materials           199
    • 10.5.3 Applications   199
    • 10.5.4 3D designs      200
      • 10.5.4.1            3D printed batteries   200
  • 10.6     Bulk type solid-state batteries            200
  • 10.7     SWOT analysis              201
  • 10.8     Limitations      202
  • 10.9     Global revenues           203
  • 10.10  Product developers    205

 

11          FLEXIBLE BATTERIES 207

  • 11.1     Technology description           207
  • 11.2     Technical specifications         208
    • 11.2.1 Approaches to flexibility         208
  • 11.3     Flexible electronics    212
  • 11.4     Flexible materials        213
  • 11.5     Flexible and wearable Metal-sulfur batteries            214
  • 11.6     Flexible and wearable Metal-air batteries   215
  • 11.7     Flexible Lithium-ion Batteries             215
    • 11.7.1 Types of Flexible/stretchable LIBs    218
      • 11.7.1.1            Flexible planar LiBs   218
      • 11.7.1.2            Flexible Fiber LiBs       219
      • 11.7.1.3            Flexible micro-LiBs    219
      • 11.7.1.4            Stretchable lithium-ion batteries      221
      • 11.7.1.5            Origami and kirigami lithium-ion batteries  222
  • 11.8     Flexible Li/S batteries                223
    • 11.8.1 Components  224
    • 11.8.2 Carbon nanomaterials            224
  • 11.9     Flexible lithium-manganese dioxide (Li–MnO2) batteries 225
  • 11.10  Flexible zinc-based batteries               225
    • 11.10.1              Components  226
      • 11.10.1.1         Anodes              226
      • 11.10.1.2         Cathodes          226
    • 11.10.2              Challenges      226
    • 11.10.3              Flexible zinc-manganese dioxide (Zn–Mn) batteries             227
    • 11.10.4              Flexible silver–zinc (Ag–Zn) batteries              228
    • 11.10.5              Flexible Zn–Air batteries          229
    • 11.10.6              Flexible zinc-vanadium batteries      230
  • 11.11  Fiber-shaped batteries             230
    • 11.11.1              Carbon nanotubes     230
    • 11.11.2              Types   231
    • 11.11.3              Applications   232
    • 11.11.4              Challenges      232
  • 11.12  Energy harvesting combined with wearable energy storage devices         232
  • 11.13  SWOT analysis              235
  • 11.14  Global revenues           236
  • 11.15  Product developers    237
  •  

12          TRANSPARENT BATTERIES    240

  • 12.1     Technology description           240
  • 12.2     Components  241
  • 12.3     SWOT analysis              242
  • 12.4     Market outlook             243

 

13          DEGRADABLE BATTERIES      244

  • 13.1     Technology description           244
  • 13.2     Components  245
  • 13.3     SWOT analysis              246
  • 13.4     Market outlook             247
  • 13.5     Product developers    247

 

14          PRINTED BATTERIES 248

  • 14.1     Technical specifications         248
  • 14.2     Components  249
  • 14.3     Design 250
  • 14.4     Key features    251
  • 14.5     Printable current collectors  251
  • 14.6     Printable electrodes  252
  • 14.7     Materials           252
  • 14.8     Applications   253
  • 14.9     Printing techniques    253
  • 14.10  Lithium-ion (LIB) printed batteries    255
  • 14.11  Zinc-based printed batteries                256
  • 14.12  3D Printed batteries   259
    • 14.12.1              3D Printing techniques for battery manufacturing 260
    • 14.12.2              Materials for 3D printed batteries     261
      • 14.12.2.1         Electrode materials   261
      • 14.12.2.2         Electrolyte Materials 262
  • 14.13  SWOT analysis              262
  • 14.14  Global revenues           263
  • 14.15  Product developers    265

 

15          REDOX FLOW BATTERIES      267

  • 15.1     Technology description           267
  • 15.2     Types   269
    • 15.2.1 Vanadium redox flow batteries (VRFB)          270
      • 15.2.1.1            Technology description           270
      • 15.2.1.2            SWOT analysis              272
      • 15.2.1.3            Market players               273
    • 15.2.2 Zinc-bromine flow batteries (ZnBr)  274
      • 15.2.2.1            Technology description           274
      • 15.2.2.2            SWOT analysis              276
      • 15.2.2.3            Market players               277
    • 15.2.3 Polysulfide bromine flow batteries (PSB)     278
      • 15.2.3.1            Technology description           278
      • 15.2.3.2            SWOT analysis              279
    • 15.2.4 Iron-chromium flow batteries (ICB) 280
      • 15.2.4.1            Technology description           280
      • 15.2.4.2            SWOT analysis              281
      • 15.2.4.3            Market players               282
    • 15.2.5 All-Iron flow batteries                282
      • 15.2.5.1            Technology description           282
      • 15.2.5.2            SWOT analysis              284
      • 15.2.5.3            Market players               285
    • 15.2.6 Zinc-iron (Zn-Fe) flow batteries          285
      • 15.2.6.1            Technology description           285
      • 15.2.6.2            SWOT analysis              286
      • 15.2.6.3            Market players               287
    • 15.2.7 Hydrogen-bromine (H-Br) flow batteries      288
      • 15.2.7.1            Technology description           288
      • 15.2.7.2            SWOT analysis              290
      • 15.2.7.3            Market players               291
    • 15.2.8 Hydrogen-Manganese (H-Mn) flow batteries             291
      • 15.2.8.1            Technology description           291
      • 15.2.8.2            SWOT analysis              292
      • 15.2.8.3            Market players               293
    • 15.2.9 Organic flow batteries              293
      • 15.2.9.1            Technology description           293
      • 15.2.9.2            SWOT analysis              296
      • 15.2.9.3            Market players               297
    • 15.2.10              Emerging Flow-Batteries         297
      • 15.2.10.1         Semi-Solid Redox Flow Batteries      297
      • 15.2.10.2         Solar Redox Flow Batteries   297
      • 15.2.10.3         Air-Breathing Sulfur Flow Batteries  298
      • 15.2.10.4         Metal–CO2 Batteries 298
    • 15.2.11              Hybrid Flow Batteries               299
      • 15.2.11.1         Zinc-Cerium Hybrid Flow Batteries  299
        • 15.2.11.1.1     Technology description           299
      • 15.2.11.2         Zinc-Polyiodide Flow Batteries           300
        • 15.2.11.2.1     Technology description           300
      • 15.2.11.3         Zinc-Nickel Hybrid Flow Batteries    301
        • 15.2.11.3.1     Technology description           301
      • 15.2.11.4         Zinc-Bromine Hybrid Flow Batteries               302
        • 15.2.11.4.1     Technology description           302
      • 15.2.11.5         Vanadium-Polyhalide Flow Batteries              303
        • 15.2.11.5.1     Technology description           303
  • 15.3     Markets for redox flow batteries         304
  • 15.4     Global revenues           307

 

16          ZN-BASED BATTERIES              309

  • 16.1     Technology description           309
    • 16.1.1 Zinc-Air batteries         309
    • 16.1.2 Zinc-ion batteries        310
    • 16.1.3 Zinc-bromide 311
  • 16.2     Market outlook             311
  • 16.3     Product developers    312

 

17          AI BATTERY TECHNOLOGY   313

  • 17.1     Overview           313
  • 17.2     Applications   313
    • 17.2.1 Machine Learning       314
      • 17.2.1.1            Overview           314
    • 17.2.2 Material Informatics  315
      • 17.2.2.1            Overview           315
      • 17.2.2.2            Companies     317
    • 17.2.3 Cell Testing      319
      • 17.2.3.1            Overview           319
      • 17.2.3.2            Companies     320
    • 17.2.4 Cell Assembly and Manufacturing  322
      • 17.2.4.1            Overview           322
      • 17.2.4.2            Companies     324
    • 17.2.5 Battery Analytics         325
      • 17.2.5.1            Overview           325
      • 17.2.5.2            Companies     327
    • 17.2.6 Second Life Assessment       328
      • 17.2.6.1            Overview           328
      • 17.2.6.2            Companies     329

 

18          PRINTED SUPERCAPACITORS            330

  • 18.1     Overview           330
  • 18.2     Printing methods         330
  • 18.3     Electrode materials   331
  • 18.4     Electrolytes     332

 

19          COMPANY PROFILES                337 (363 company profiles)

 

20          REFERENCES 611

 

List of Tables

  • Table 1. Battery chemistries used in electric buses.            47
  • Table 2. Micro EV types            47
  • Table 3. Battery Sizes for Different Vehicle Types.  49
  • Table 4. Competing technologies for batteries in electric boats. 51
  • Table 5. Electric bus, truck and van battery forecast (GWh), 2018-2035.              53
  • Table 6. Competing technologies for batteries in grid storage.     56
  • Table 7. Competing technologies for batteries in consumer electronics                58
  • Table 8. Competing technologies for sodium-ion batteries in grid storage.          61
  • Table 9. Total Addressable Markets (GWh) for Advanced Li-ion and Beyond Li-ion Batteries.   62
  • Table 10. BEV Car Cathode Forecast (GWh).            62
  • Table 11. EV Cathode Forecast (GWh) (Including buses, trucks, vans).  62
  • Table 12. BEV Anode Forecast (GWh).           63
  • Table 13. EV Anode Forecast (GWh) (Including buses, trucks, vans).       63
  • Table 14.Consumer Devices Anode Forecast.         63
  • Table 15.Advanced Anode Forecast (GWh)                64
  • Table 16. Market drivers for use of advanced materials and technologies in batteries. 64
  • Table 17. Battery market megatrends.           66
  • Table 18. Advanced materials for batteries.               69
  • Table 19. Commercial Li-ion battery cell composition.     71
  • Table 20.  Lithium-ion (Li-ion) battery supply chain.            74
  • Table 21. Types of lithium battery.    75
  • Table 22. Comparison of Li-ion battery anode materials. 77
  • Table 23. Trends in the Li-ion battery market.           80
  • Table 24. Si-anode performance summary.              83
  • Table 25. Manufacturing methods for nano-silicon anodes.          86
  • Table 26. Market Players' Production Capacites.   87
  • Table 27. Strategic Partnerships and Agreements.                88
  • Table 28. Markets and applications for silicon anodes.     91
  • Table 29. Anode material consumption by type (tonnes). 95
  • Table 30. Anode material consumption by end use market (tonnes).       96
  • Table 31. Anode materials prices, current and forecasted 9USD/kg).      99
  • Table 32. Silicon-anode companies.              99
  • Table 33. Li-ion battery cathode materials.                101
  • Table 34. Key technology trends shaping lithium-ion battery cathode development.    102
  • Table 35. Benefits of High and Ultra-High Nickel NMC.      103
  • Table 36. High-nickel Products Table.            105
  • Table 37. Properties of Lithium Cobalt Oxide) as a cathode material for lithium-ion batteries.               108
  • Table 38. Properties of lithium iron phosphate (LiFePO4 or LFP) as a cathode material for lithium-ion batteries.          109
  • Table 39. Properties of Lithium Manganese Oxide cathode material.       110
  • Table 40. Properties of Lithium Nickel Manganese Cobalt Oxide (NMC).               111
  • Table 41. Properties of Lithium Nickel Cobalt Aluminum Oxide   111
  • Table 42. Alternative Cathode Production Routes.               114
  • Table 43. Alternative cathode synthesis routes.     115
  • Table 44. Alternative Cathode Production Companies.     116
  • Table 45. Recycled cathode materials facilities and capactites. 118
  • Table 46. Comparison table of key lithium-ion cathode materials              118
  • Table 47. Li-ion battery Binder and conductive additive materials.            120
  • Table 48. Li-ion battery Separator materials.            121
  • Table 49. Li-ion battery market players.        121
  • Table 50. Typical lithium-ion battery recycling process flow.         123
  • Table 51. Main feedstock streams that can be recycled for lithium-ion batteries.            123
  • Table 52. Comparison of LIB recycling methods.   124
  • Table 53. Comparison of conventional and emerging processes for recycling beyond lithium-ion batteries.          137
  • Table 54. Global revenues for Li-ion batteries, 2018-2035, by market (Billions USD).    137
  • Table 55. Applications for Li-metal batteries.           143
  • Table 56. Li-metal battery developers            145
  • Table 57. Comparison of the theoretical energy densities of lithium-sulfur batteries versus other common battery types.           147
  • Table 58. Global revenues for Lithium-sulfur, 2018-2035, by market (Billions USD).      149
  • Table 59. Lithium-sulphur battery product developers.     151
  • Table 60. Global revenues for Lithium titanate and niobate batteries, 2018-2035, by market (Billions USD).  154
  • Table 61. Product developers in Lithium titanate and niobate batteries.                155
  • Table 62. Comparison of cathode materials.            157
  • Table 63.  Layered transition metal oxide cathode materials for sodium-ion batteries. 158
  • Table 64. General cycling performance characteristics of common layered transition metal oxide cathode materials.     158
  • Table 65. Polyanionic materials for sodium-ion battery cathodes.             159
  • Table 66. Comparative analysis of different polyanionic materials.           160
  • Table 67.  Common types of Prussian Blue Analogue materials used as cathodes or anodes in sodium-ion batteries.  162
  • Table 68. Comparison of Na-ion battery anode materials.              163
  • Table 69. Hard Carbon producers for sodium-ion battery anodes.            164
  • Table 70. Comparison of carbon materials in sodium-ion battery anodes.          165
  • Table 71. Comparison between Natural and Synthetic Graphite.               167
  • Table 72. Properties of graphene, properties of competing materials, applications thereof.     170
  • Table 73. Comparison of carbon based anodes.    171
  • Table 74.  Alloying materials used in sodium-ion batteries.             172
  • Table 75. Na-ion electrolyte formulations. 173
  • Table 76. Pros and cons compared to other battery types.              173
  • Table 77. Cost comparison with Li-ion batteries.   174
  • Table 78. Key materials in sodium-ion battery cells.            175
  • Table 79. Global revenues for sodium-ion batteries, 2018-2035, by market (Billions USD).      178
  • Table 80. Product developers in aluminium-ion batteries.               188
  • Table 81. Types of solid-state electrolytes. 192
  • Table 82. Market segmentation and status for solid-state batteries.         192
  • Table 83. Solid Electrolyte Material Comparison. 193
  • Table 84.  Typical process chains for manufacturing key components and assembly of solid-state batteries.          193
  • Table 85. Comparison between liquid and solid-state batteries. 198
  • Table 86. Limitations of solid-state thin film batteries.       202
  • Table 87. Global revenues for All-Solid State Batteries, 2018-2035, by market (Billions USD). 203
  • Table 88. Solid-state thin-film battery market players.       205
  • Table 89. Flexible battery applications and technical requirements.        208
  • Table 90. Comparison of Flexible and Traditional Lithium-Ion Batteries  209
  • Table 91. Material Choices for Flexible Battery Components.       210
  • Table 92. Flexible Li-ion battery prototypes.              216
  • Table 93. Thin film vs bulk solid-state batteries.     218
  • Table 94. Summary of fiber-shaped lithium-ion batteries.               220
  • Table 95. Types of fiber-shaped batteries.   231
  • Table 96. Global revenues for flexible batteries, 2018-2035, by market (Billions USD). 236
  • Table 97. Product developers in flexible batteries.                237
  • Table 98. Components of transparent batteries.    241
  • Table 99. Components of degradable batteries.     245
  • Table 100. Product developers in degradable batteries.    247
  • Table 101. Main components and properties of different printed battery types.               249
  • Table 102. Applications of printed batteries and their physical and electrochemical requirements.  253
  • Table 103. 2D and 3D printing techniques. 254
  • Table 104. Printing techniques applied to printed batteries.           255
  • Table 105. Main components and corresponding electrochemical values of lithium-ion printed batteries.          255
  • Table 106. Printing technique, main components and corresponding electrochemical values of printed batteries based on Zn–MnO2 and other battery types.       257
  • Table 107. Main 3D Printing techniques for battery manufacturing.         260
  • Table 108. Electrode Materials for 3D Printed Batteries.   261
  • Table 109. Global revenues for printed batteries, 2018-2035, by market (Billions USD).             263
  • Table 110. Product developers in printed batteries.             265
  • Table 111. Advantages and disadvantages of redox flow batteries.            268
  • Table 112. Comparison of different battery types. 269
  • Table 113. Summary of main flow battery types.    269
  • Table 114. Vanadium redox flow batteries (VRFB)-key features, advantages, limitations, performance, components and applications.          271
  • Table 115. Market players in Vanadium redox flow batteries (VRFB).        273
  • Table 116. Zinc-bromine (ZnBr) flow batteries-key features, advantages, limitations, performance, components and applications.          275
  • Table 117. Market players in Zinc-Bromine Flow Batteries (ZnBr).              277
  • Table 118. Polysulfide bromine flow batteries (PSB)-key features, advantages, limitations, performance, components and applications.          278
  • Table 119. Iron-chromium (ICB) flow batteries-key features, advantages, limitations, performance, components and applications.          280
  • Table 120. Market players in Iron-chromium (ICB) flow batteries.               282
  • Table 121. All-Iron flow batteries-key features, advantages, limitations, performance, components and applications.  283
  • Table 122. Market players in All-iron Flow Batteries.            285
  • Table 123. Zinc-iron (Zn-Fe) flow batteries-key features, advantages, limitations, performance, components and applications.          286
  • Table 124. Market players in Zinc-iron (Zn-Fe) Flow Batteries.       287
  • Table 125. Hydrogen-bromine (H-Br) flow batteries-key features, advantages, limitations, performance, components and applications.          289
  • Table 126. Market players in Hydrogen-bromine (H-Br) flow batteries.    291
  • Table 127. Hydrogen-Manganese (H-Mn) flow batteries-key features, advantages, limitations, performance, components and applications.         291
  • Table 128. Market players in Hydrogen-Manganese (H-Mn) Flow Batteries.         293
  • Table 129. Materials in Organic Redox Flow Batteries (ORFB).     293
  • Table 130. Key Active species for ORFBs     294
  • Table 131. Organic flow batteries-key features, advantages, limitations, performance, components and applications.  294
  • Table 132. Market players in Organic Redox Flow Batteries (ORFB).         297
  • Table 133. Zinc-Cerium Hybrid flow batteries-key features, advantages, limitations, performance, components and applications.          299
  • Table 134. Zinc-Polyiodide Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications.          300
  • Table 135. Zinc-Nickel Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications.          301
  • Table 136. Zinc-Bromine Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications.          302
  • Table 137. Vanadium-Polyhalide Hybrid Flow batteries-key features, advantages, limitations, performance, components and applications.         303
  • Table 138. Redox flow battery value chain. 304
  • Table 139. Global revenues for redox flow batteries, 2018-2035, by type (millions USD).           307
  • Table 140. ZN-based battery product developers. 312
  • Table 141. Application of Artificial Intelligence (AI) in battery technology.             313
  • Table 142. Machine learning approaches.  314
  • Table 143. Types of Neural Networks.            315
  • Table 144. Companies in materials informatics for batteries.        318
  • Table 145. Data Forms for Cell Modelling.  319
  • Table 146. Algorithmic Approaches for Different Testing Modes. 320
  • Table 147. Companies in AI for cell testing for batteries.   321
  • Table 148.Algorithmic Approaches in Manufacturing and Cell Assembly:            322
  • Table 149. AI-based battery manufacturing players.            325
  • Table 150. Companies in AI for battery diagnostics and management.  328
  • Table 151. Algorithmic Approaches and Data Inputs/Outputs.    329
  • Table 152. Companies in AI for second-life battery assessment 329
  • Table 153. Methods for printing supercapacitors. 330
  • Table 154. Electrode Materials for printed supercapacitors.          331
  • Table 155. Electrolytes for printed supercapacitors.           333
  • Table 156. Main properties and components of printed supercapacitors.            333
  • Table 157. 3DOM separator. 340
  • Table 158. CATL sodium-ion battery characteristics.          385
  • Table 159. CHAM sodium-ion battery characteristics.       391
  • Table 160. Chasm SWCNT products.             391
  • Table 161. Faradion sodium-ion battery characteristics.  423
  • Table 162. HiNa Battery sodium-ion battery characteristics.         454
  • Table 163. Battery performance test specifications of J. Flex batteries.  475
  • Table 164. LiNa Energy battery characteristics.      493
  • Table 165. Natrium Energy battery characteristics.              512

 

List of Figures

  • Figure 1. Annual sales of battery electric vehicles and plug-in hybrid electric vehicles.              43
  • Figure 2. Electric car Li-ion demand forecast (GWh), 2018-2035.              52
  • Figure 3. EV Li-ion battery market (US$B), 2018-2035.      53
  • Figure 4. Electric bus, truck and van battery forecast (GWh), 2018-2035.            54
  • Figure 5. Micro EV Li-ion demand forecast (GWh).                55
  • Figure 6. Lithium-ion battery grid storage demand forecast (GWh), 2018-2035.              57
  • Figure 7. Sodium-ion grid storage units.      58
  • Figure 8. Salt-E Dog mobile battery.                60
  • Figure 9. I.Power Nest - Residential Energy Storage System Solution.     61
  • Figure 10. Costs of batteries to 2030.            68
  • Figure 11. Lithium Cell Design.          72
  • Figure 12. Functioning of a lithium-ion battery.       72
  • Figure 13. Li-ion battery cell pack.   73
  • Figure 14. Li-ion electric vehicle (EV) battery.           76
  • Figure 15. SWOT analysis: Li-ion batteries. 80
  • Figure 16. Silicon anode value chain.            82
  • Figure 17. Market development timeline.    88
  • Figure 18. Silicon Anode Commercialization Timeline.      89
  • Figure 19. Silicon anode value chain.            90
  • Figure 20. Anode material consumption by type (tonnes).              95
  • Figure 21. Anode material consumption by end user market (tonnes).   96
  • Figure 22. Ultra-high Nickel Cathode Commercialization Timeline.          106
  • Figure 23. Li-cobalt structure.             108
  • Figure 24.  Li-manganese structure.               110
  • Figure 25. Typical direct, pyrometallurgical, and hydrometallurgical recycling methods for recovery of Li-ion battery active materials. 122
  • Figure 26. Flow chart of recycling processes of lithium-ion batteries (LIBs).       125
  • Figure 27. Hydrometallurgical recycling flow sheet.             126
  • Figure 28. SWOT analysis for Hydrometallurgy Li-ion Battery Recycling.                127
  • Figure 29. Umicore recycling flow diagram.              128
  • Figure 30. SWOT analysis for Pyrometallurgy Li-ion Battery Recycling.   129
  • Figure 31. Schematic of direct recycling process. 130
  • Figure 32. SWOT analysis for Direct Li-ion Battery Recycling.        134
  • Figure 33. Global revenues for Li-ion batteries, 2018-2035, by market (Billions USD).  138
  • Figure 34. Schematic diagram of a Li-metal battery.            139
  • Figure 35. SWOT analysis: Lithium-metal batteries.             145
  • Figure 36. Schematic diagram of Lithium–sulfur battery.  146
  • Figure 37. SWOT analysis: Lithium-sulfur batteries.             149
  • Figure 38. Global revenues for Lithium-sulfur, 2018-2035, by market (Billions USD).    150
  • Figure 39. Global revenues for Lithium titanate and niobate batteries, 2018-2035, by market (Billions USD).  155
  • Figure 40. Schematic of Prussian blue analogues (PBA).  161
  • Figure 41. Comparison of SEM micrographs of sphere-shaped natural graphite (NG; after several processing steps) and synthetic graphite (SG).       166
  • Figure 42. Overview of graphite production, processing and applications.          168
  • Figure 43. Schematic diagram of a multi-walled carbon nanotube (MWCNT).   169
  • Figure 44. Schematic diagram of a Na-ion battery.               176
  • Figure 45. SWOT analysis: Sodium-ion batteries.  178
  • Figure 46. Global revenues for sodium-ion batteries, 2018-2035, by market (Billions USD).    179
  • Figure 47.  Schematic of a Na–S battery.      181
  • Figure 48. SWOT analysis: Sodium-sulfur batteries.            184
  • Figure 49. Saturnose battery chemistry.      185
  • Figure 50. SWOT analysis: Aluminium-ion batteries.           187
  • Figure 51. Global revenues for aluminium-ion batteries, 2018-2035, by market (Billions USD).             188
  • Figure 52. Schematic illustration of all-solid-state lithium battery.            191
  • Figure 53. ULTRALIFE thin film battery.          191
  • Figure 54. Examples of applications of thin film batteries.               195
  • Figure 55. Capacities and voltage windows of various cathode and anode materials. 196
  • Figure 56. Traditional lithium-ion battery (left), solid state battery (right).             197
  • Figure 57. Bulk type compared to thin film type SSB.          201
  • Figure 58. SWOT analysis: All-solid state batteries.              202
  • Figure 59. Global revenues for All-Solid State Batteries, 2018-2035, by market (Billions USD).              205
  • Figure 60. Ragone plots of diverse batteries and the commonly used electronics powered by flexible batteries.          208
  • Figure 61. Various architectures for flexible and stretchable electrochemical energy storage.              211
  • Figure 62. Types of flexible batteries.             212
  • Figure 63. Flexible batteries on the market.               213
  • Figure 64. Materials and design structures in flexible lithium ion batteries.         216
  • Figure 65. Flexible/stretchable LIBs with different structures.       218
  • Figure 66. a–c) Schematic illustration of coaxial (a), twisted (b), and stretchable (c) LIBs.        221
  • Figure 67. a) Schematic illustration of the fabrication of the superstretchy LIB based on an MWCNT/LMO composite fiber and an MWCNT/LTO composite fiber. b,c) Photograph (b) and the schematic illustration (c) of a stretchable fiber-shaped battery under stretching conditions. d) Schematic illustration of the spring-like stretchable LIB. e) SEM images of a fiberat different strains. f) Evolution of specific capacitance with strain. d–f)                222
  • Figure 68. Origami disposable battery.          223
  • Figure 69. Zn–MnO2 batteries produced by Brightvolt.       225
  • Figure 70. Charge storage mechanism of alkaline Zn-based batteries and zinc-ion batteries. 227
  • Figure 71. Zn–MnO2 batteries produced by Blue Spark.    228
  • Figure 72. Ag–Zn batteries produced by Imprint Energy.    229
  • Figure 73.  Wearable self-powered devices.              234
  • Figure 74. SWOT analysis: Flexible  batteries.          236
  • Figure 75. Global revenues for flexible batteries, 2018-2035, by market (Billions USD).              237
  • Figure 76. Transparent batteries.       240
  • Figure 77. SWOT analysis: Transparent batteries.  243
  • Figure 78. Degradable batteries.       244
  • Figure 79. SWOT analysis: Degradable batteries.   247
  • Figure 80. Various applications of printed paper batteries.             248
  • Figure 81.Schematic representation of the main components of a battery.         249
  • Figure 82. Schematic of a printed battery in a sandwich cell architecture, where the anode and cathode of the battery are stacked together. 250
  • Figure 83. Manufacturing Processes for Conventional Batteries (I), 3D Microbatteries (II), and 3D-Printed Batteries (III). 259
  • Figure 84. SWOT analysis: Printed batteries.             263
  • Figure 85. Global revenues for printed batteries, 2018-2035, by market (Billions USD).              264
  • Figure 86. Scheme of a redox flow battery. 268
  • Figure 87. Vanadium Redox Flow Battery schematic.          271
  • Figure 88. SWOT analysis: Vanadium redox flow batteries (VRFB)              273
  • Figure 89. Schematic of zinc bromine flow battery energy storage system.         275
  • Figure 90. SWOT analysis: Zinc-Bromine Flow Batteries (ZnBr).   277
  • Figure 91. SWOT analysis: Iron-chromium (ICB) flow batteries.   280
  • Figure 92. SWOT analysis: Iron-chromium (ICB) flow batteries.   282
  • Figure 93.  Schematic of All-Iron Redox Flow Batteries.     283
  • Figure 94. SWOT analysis: All-iron Flow Batteries. 285
  • Figure 95. SWOT analysis: Zinc-iron (Zn-Fe) flow batteries.             287
  • Figure 96. Schematic of Hydrogen-bromine flow battery. 289
  • Figure 97. SWOT analysis: Hydrogen-bromine (H-Br) flow batteries.         290
  • Figure 98. SWOT analysis: Hydrogen-Manganese (H-Mn) flow batteries.               293
  • Figure 99. SWOT analysis: Organic redox flow batteries (ORFBs) batteries.         296
  • Figure 100. Schematic of zinc-polyiodide redox flow battery (ZIB).            300
  • Figure 101. Redox flow batteries applications roadmap.  307
  • Figure 102. Global revenues for redox flow batteries, 2018-2035, by type (millions USD).         308
  • Figure 103. Main printing methods for supercapacitors.  330
  • Figure 104. 24M battery.         338
  • Figure 105. 3DOM battery.     340
  • Figure 106. AC biode prototype.        342
  • Figure 107. Schematic diagram of liquid metal battery operation.             352
  • Figure 108. Ampcera’s all-ceramic dense solid-state electrolyte separator sheets (25 um thickness, 50mm x 100mm size, flexible and defect free, room temperature ionic conductivity ~1 mA/cm).         354
  • Figure 109. Amprius battery products.          355
  • Figure 110. All-polymer battery schematic.               358
  • Figure 111. All Polymer Battery Module.      359
  • Figure 112. Resin current collector. 359
  • Figure 113. Ateios thin-film, printed battery.             361
  • Figure 114. The structure of aluminum-sulfur battery from Avanti Battery.           364
  • Figure 115. Containerized NAS® batteries. 366
  • Figure 116. 3D printed lithium-ion battery. 372
  • Figure 117. Blue Solution module.   374
  • Figure 118. TempTraq wearable patch.          375
  • Figure 119. Schematic of a fluidized bed reactor which is able to scale up the generation of SWNTs using the CoMoCAT process.              392
  • Figure 120. Carhartt X-1 Smart Heated Vest.            397
  • Figure 121. Cymbet EnerChip™          401
  • Figure 122. Rongke Power 400 MWh VRFB. 402
  • Figure 123. E-magy nano sponge structure.              409
  • Figure 124. Enerpoly zinc-ion battery.            411
  • Figure 125. SoftBattery®.        412
  • Figure 126. ASSB All-Solid-State Battery by EGI 300 Wh/kg.           414
  • Figure 127. Roll-to-roll equipment working with ultrathin steel substrate.            415
  • Figure 128. 40 Ah battery cell.             422
  • Figure 129. FDK Corp battery.             425
  • Figure 130. 2D paper batteries.          433
  • Figure 131. 3D Custom Format paper batteries.     433
  • Figure 132. Fuji carbon nanotube products.             434
  • Figure 133. Gelion Endure battery.   436
  • Figure 134. Gelion GEN3 lithium sulfur batteries.  437
  • Figure 135. Grepow flexible battery.                448
  • Figure 136. HPB solid-state battery.                453
  • Figure 137. HiNa Battery pack for EV.            455
  • Figure 138. JAC demo EV powered by a HiNa Na-ion battery.        455
  • Figure 139. Nanofiber Nonwoven Fabrics from Hirose.      456
  • Figure 140. Hitachi Zosen solid-state battery.          457
  • Figure 141. Ilika solid-state batteries.            462
  • Figure 142. TAeTTOOz printable battery materials.               465
  • Figure 143. Ionic Materials battery cell.        470
  • Figure 144. Schematic of Ion Storage Systems solid-state battery structure.     472
  • Figure 145. ITEN micro batteries.      474
  • Figure 146. Kite Rise’s A-sample sodium-ion battery module.      481
  • Figure 147. LiBEST flexible battery.  487
  • Figure 148. Li-FUN sodium-ion battery cells.            490
  • Figure 149. LiNa Energy battery.        492
  • Figure 150. 3D solid-state thin-film battery technology.    495
  • Figure 151. Lyten batteries.   498
  • Figure 152. Cellulomix production process.              501
  • Figure 153. Nanobase versus conventional products.        501
  • Figure 154. Nanotech Energy battery.            511
  • Figure 155. Hybrid battery powered electrical motorbike concept.           514
  • Figure 156. NBD battery.         515
  • Figure 157. Schematic illustration of three-chamber system for SWCNH production. 516
  • Figure 158. TEM images of carbon nanobrush.       517
  • Figure 159. EnerCerachip.     521
  • Figure 160. Cambrian battery.            534
  • Figure 161. Printed battery.   538
  • Figure 162. Prieto Foam-Based 3D Battery.               539
  • Figure 163. Printed Energy flexible battery. 541
  • Figure 164. ProLogium solid-state battery. 544
  • Figure 165. QingTao solid-state batteries.   545
  • Figure 166. Schematic of the quinone flow battery.              547
  • Figure 167. Sakuú Corporation 3Ah Lithium Metal Solid-state Battery.   553
  • Figure 168. Salgenx S3000 seawater flow battery. 554
  • Figure 169. Samsung SDI's sixth-generation prismatic batteries.                556
  • Figure 170. SES Apollo batteries.      561
  • Figure 171. Sionic Energy battery cell.           568
  • Figure 172. Solid Power battery pouch cell.               571
  • Figure 173. Stora Enso lignin battery materials.      573
  • Figure 174.TeraWatt Technology solid-state battery             583
  • Figure 175. Zeta Energy 20 Ah cell.  608
  • Figure 176. Zoolnasm batteries.        609

 

 

The Global Market for Advanced Li-ion and Beyond Lithium Batteries 2025-2035
The Global Market for Advanced Li-ion and Beyond Lithium Batteries 2025-2035
PDF download/by email.

The Global Market for Advanced Li-ion and Beyond Lithium Batteries 2025-2035
The Global Market for Advanced Li-ion and Beyond Lithium Batteries 2025-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com