Materials Informatics Global Market 2024-2035

0

  • Published: July 2024
  • Pages: 235
  • Tables: 15
  • Figures: 10

 

Large-scale digital transformation is occurring across a broad range of industries, fuelled by cheap computing power, proliferation of cloud-based database hosting infrastructure, ubiquitous data collection, and powerful artificial intelligence (AI). Materials and chemicals companies are also following digitalisation trends, and industry leaders have begun adopting systematic data-driven R&D practices to optimize materials and formulations through tuning of composition and processing conditions.

Materials informatics (MI), the application of data science, materials science, and AI to the materials and chemicals space, has enabled researchers to leverage complex, data-driven insights for the discovery of novel materials faster than ever before by reducing the number of experiments required during the materials development process by 50–70%. By leveraging the power of AI and data science, we can accelerate discovery, optimize processes, and develop materials with unprecedented precision and efficiency. The integration of MI with other emerging technologies, such as robotics for autonomous experimentation and quantum computing for advanced simulations, promises to further revolutionize the field. As these technologies mature, we can expect to see even more rapid advancements in materials discovery and development.

However, realizing the full potential of MI requires addressing significant challenges in data quality, algorithm development, and integration across different scales and disciplines.

The Materials Informatics Global Market 2024-2035 covers the global MI market from 2024 to 2035, offering in-depth insights into market trends, key players, technological advancements, and growth opportunities across various industries. Report contents include: 

  • Critical issues in materials science data, strategies for dealing with sparse data, and key technologies driving the MI revolution.
  • Market challenges, recent industry developments, leading market players.
  • Integration of artificial intelligence into materials science and engineering, presenting AI opportunities and algorithm advancements.
  • Comprehensive overview of MI approaches, including data mining, machine learning, high-throughput computation, and quantum computing. It examines
  • MI algorithms, automated feature selection, supervised learning models, and deep learning techniques.
  • Data infrastructure, databases, and the transition from traditional databases to big data in materials science.
  • MI applications across diverse fields including alloy design and optimization, drug discovery and development, battery materials, polymer informatics, nanomaterials, and many other areas.
  • Market players including market strategies, funding trends, corporate initiatives, and strategic collaborations.
  • Global initiatives and research activities driving MI advancement.
  • Detailed company profiles provide insights into the strategies, technologies, and market positioning of leading MI companies. These profiles cover a wide range of players, from established software companies, chemicals and materials corporations, to innovative startups specializing in MI solutions. Companies profiled. Companies profiled include Alchemy Cloud, Asahi Kasei, Citrine Informatics, Copernic Catalysts, Elix, Inc, Enthought, Exomatter GmbH, Exponential Technologies Ltd., FEHRMANN MaterialsX, Genie TechBio, Hitachi High-Tech, Innophore, Intellegens, Kebotix, Kyulux, Materials Zone, Matmerize, Mat3ra, Noble.AI, OntoChem GmbH, Phaseshift Technologies, Polymerize, Proterial, Ltd., Schrödinger, Sumitomo Chemical, TDK, Toray, Uncountable, Xinterra and Yokogawa Fluence Analytics. 
  • Market forecasts, projecting the global MI market size from 2023 to 2035.  Growth trends, market drivers, and potential barriers to adoption. 
  • Cost savings in materials R&D, accelerated time-to-market for new materials, job creation, and the impact on traditional materials industries.
  • Sustainability and environmental considerations highlighting MI's role in sustainable development, reducing the environmental impact of materials production, and supporting the circular economy. 
  • Future trends, including the integration of AI and robotics in materials labs, quantum machine learning, and materials informatics as a service (MIaaS).

 

This report is an essential resource for:

  • Materials scientists and researchers seeking to understand and leverage MI technologies
  • R&D managers in industries relying on advanced materials
  • Investors and venture capitalists interested in the MI market
  • Technology companies developing MI solutions
  • Policy makers and regulators involved in materials science and technology innovation
  • Academic institutions and research organizations focused on materials science and data-driven approaches

 

 

 

1             EXECUTIVE SUMMARY            

  • 1.1        What is Materials Informatics?           10
  • 1.2        Issues with Materials Science Data 11
  • 1.3        Dealing with little or sparse data      12
  • 1.4        Key Technologies Driving Materials Informatics      12
  • 1.5        Importance in Modern Materials Science and Engineering             14
  • 1.6        Market Challenges and Restraints   16
  • 1.7        Recent Industry Developments         17
  • 1.8        Market Players               19
  • 1.9        Future Markets Outlook and Opportunities               21
    • 1.9.1    Integration of AI and Robotics in Materials Labs     22
    • 1.9.2    Quantum Machine Learning for Materials Discovery           23
    • 1.9.3    Blockchain for Materials Data Management             24
    • 1.9.4    Edge Computing in Materials Informatics   24
    • 1.9.5    Augmented and Virtual Reality in Materials Design              26
    • 1.9.6    Neuromorphic Computing for Materials Modeling                26
    • 1.9.7    Materials Informatics as a Service (MIaaS) 28
    • 1.9.8    Integration with Internet of Things (IoT)         28
    • 1.9.9    Green Technology and Circular Economy Applications     28
  • 1.10     MI Roadmap  28
  • 1.11     Economic Impact Analysis   30
    • 1.11.1 Cost Savings in Materials R&D           30
    • 1.11.2 Accelerated Time-to-Market for New Materials       31
    • 1.11.3 Job Creation and Skill Development               32
    • 1.11.4 Impact on Traditional Materials Industries 33
  • 1.12     Sustainability and Environmental    34
    • 1.12.1 Role of Materials Informatics in Sustainable Development             34
    • 1.12.2 Reducing Environmental Impact of Materials Production 36
    • 1.12.3 Design for Recyclability and Circular Economy      37
    • 1.12.4 Bio-inspired Materials Discovery      37
  • 1.13     Global Market Forecasts        38

 

2             INTRODUCTION          

  • 2.1        Advent of the data science era           41
  • 2.2        Background to the emergence of MI               42
  • 2.3        Motivation for Materials Informatics Development               43
    • 2.3.1    Accelerating Discovery            43
    • 2.3.2    Cost Reduction            44
    • 2.3.3    Addressing Global Challenges           45
    • 2.3.4    Maximizing Data Value            46
    • 2.3.5    Handling Complexity 47
    • 2.3.6    Enabling Targeted Design      48
    • 2.3.7    Improving Reproducibility      49
    • 2.3.8    Integrating Multidisciplinary Knowledge      50
    • 2.3.9    Supporting Sustainability      51
    • 2.3.10 Competitive Advantage          52
  • 2.4        Integration of Artificial Intelligence (AI) into materials science and engineering                53
    • 2.4.1    AI Opportunities          54
  • 2.5        Problems with Materials Science Data         55
  • 2.6        Algorithm Advancements      56
  • 2.7        Materials Informatics Categories      58
  • 2.8        Trend towards data-driven approaches in science and engineering          59
    • 2.8.1    Bioinformatics              59
    • 2.8.2    Cheminformatics        61
    • 2.8.3    Geoinformatics            62
    • 2.8.4    Health Informatics     63
    • 2.8.5    Environmental Informatics   64
    • 2.8.6    Astroinformatics         65
    • 2.8.7    Neuroinformatics        65
    • 2.8.8    Engineering Informatics          66
    • 2.8.9    Energy Informatics     67
    • 2.8.10 Quantum Informatics               67
  • 2.9        Challenges      69
  • 2.10     Advantages of Machine Learning      70

 

3             TECHNOLOGY ANALYSIS       

  • 3.1        Overview           82
  • 3.2        Technology approaches         89
    • 3.2.1    Data Mining    89
    • 3.2.2    Machine Learning and AI        90
    • 3.2.3    High-Throughput Computation          91
    • 3.2.4    Data Infrastructure     92
    • 3.2.5    Visualization Tools      93
    • 3.2.6    Reinforcement Learning         94
    • 3.2.7    Natural Language Processing             95
    • 3.2.8    Automated Experimentation                96
    • 3.2.9    Workflow Management           96
    • 3.2.10 Quantum Computing               98
    • 3.2.11 QSAR and QSPR          98
  • 3.3        MI algorithms 100
    • 3.3.1    Types of MI Algorithms            100
    • 3.3.2    Automated feature selection               103
    • 3.3.3    Supervised learning models 104
      • 3.3.3.1 Supervised Learning Algorithms       105
      • 3.3.3.2 Unsupervised Learning Algorithms 106
    • 3.3.4    Bayesian optimization             107
    • 3.3.5    Genetic algorithms    108
    • 3.3.6    Generative vs discriminative algorithms      109
    • 3.3.7    Deep learning 110
    • 3.3.8    Large Language Models (LLMs) and Materials R&D              112
  • 3.4        Data infrastructure     113
  • 3.5        Databases       115
  • 3.6        Databases to big data              115
    • 3.6.1    Rapid data generation and collection            116
    • 3.6.2    Integrated use of materials databases          117
    • 3.6.3    Data reliability               118
  • 3.7        Small data strategies in materials informatics        119
    • 3.7.1    Utilizing data correlations      120
    • 3.7.2    Selecting descriptors based on theory and experience      121
  • 3.8        MI with Physical Experiments and Characterization            122
    • 3.8.1    High-Throughput Experimentation (HTE)     122
    • 3.8.2    In-situ and Operando Characterization        124
    • 3.8.3    Advanced Imaging and Spectroscopy            126
  • 3.9        Computational Materials Science    128
    • 3.9.1    Integrated Computational Materials Engineering (ICME)  129
    • 3.9.2    Quantum Computing               131
  • 3.10     Autonomous Experimentation and Labs     134
  • 3.11     Multi-modal Data Integration              138
  • 3.12     Inverse Problems in Materials Characterization     139
  • 3.13     Data-driven Experimental Design    140
  • 3.14     Automated Data Analysis and Interpretation            141
  • 3.15     Robotics and Automation in Materials Research   142

 

4             APPLICATIONS OF MATERIALS INFORMATICS        

  • 4.1        Alloy Design and Optimization           144
    • 4.1.1    High-Entropy Alloy Design     145
    • 4.1.2    Aluminum and titanium alloys           145
    • 4.1.3    Metallic glass alloys  146
    • 4.1.4    Nickel-base superalloys         147
  • 4.2        Drug Discovery and Development    148
    • 4.2.1    AI-Driven Drug Design              149
  • 4.3        Intermetallics 150
  • 4.4        Organometallics         151
  • 4.5        Organic Electronics   152
  • 4.6        Coatings            154
  • 4.7        Catalysts          155
  • 4.8        Ionic liquids    157
  • 4.9        Battery Materials         158
    • 4.9.1    Lithium-ion batteries 158
    • 4.9.2    Accelerated Battery Material Discovery       159
  • 4.10     High-density Heat Storage Materials              160
  • 4.11     Hydrogen-based Superconductors 161
  • 4.12     Polymer Informatics  162
    • 4.12.1 Optimizing Additive Manufacturing Materials          163
    • 4.12.2 Sustainable Polymer Development 164
  • 4.13     Rubber processing     166
  • 4.14     Nanomaterials              167
  • 4.15     2D materials   169
  • 4.16     Metamaterials               170
  • 4.17     Lubricants       171
  • 4.18     Thermoelectric Materials       172
  • 4.19     Photovoltaics 174
  • 4.20     Construction Materials           176
  • 4.21     Biomaterials   177

 

5             MARKET PLAYERS      

  • 5.1        Main Players   178
  • 5.2        Funding             180
  • 5.3        Market Strategies        182
  • 5.4        MI Consortia  184
  • 5.5        Corporate Initiatives in MI      185
  • 5.6        Strategic Collaborations and Agreements  186
  • 5.7        Global Initiatives          188
  • 5.8        Research Centre and Academic Activity      190

 

6             COMPANY PROFILES (35 company profiles)               

 

7             RESEARCH METHODOLOGY              227

 

8             REFERENCES 228

 

List of Tables

  • Table 1. Issues with materials science data.             11
  • Table 2. Key Technologies Driving Materials Informatics. 12
  • Table 3. Market Challenges and Restraint in Materials Informatics.          16
  • Table 4. Materials informatics industry developments 2022-2024.           17
  • Table 5. Market players in materials informatics-comparative analysis. 20
  • Table 6. Global materials informatics market size 2023-2035 (Millions USD).   38
  • Table 7. Key areas of algorithm advancements in materials informatics                56
  • Table 8. Main categories within Materials Informatics.      58
  • Table 9. Key challenges for MI in materials-by type.             69
  • Table 10. Types of MI Algorithms.     100
  • Table 11. Generative vs discriminative algorithms.              109
  • Table 12. Types of neural network.   110
  • Table 13. Materials informatics investment funding.           180
  • Table 14. Corporate Initiatives in MI.              185
  • Table 15. MI Strategic Collaborations and Agreements.    186

 

List of Figures

  • Figure 1. Comparison of Conventional Materials Development and Materials Informatics.      10
  • Figure 2. Materials Informatics (MI) Roadmap.       29
  • Figure 3. Global materials informatics market size 2023-2035 (Millions USD). 40
  • Figure 4. Incorporating Machine Learning into Established Bioinformatics Frameworks.           60
  • Figure 5. Example of CI Utilization.  61
  • Figure 6. Molecular design methodology based on QSPR/QSAR.               99
  • Figure 7. Overview of the ICME process integration and optimization workflow.              129
  • Figure 8. Chemputer. 135
  • Figure 9. Citrine Platform Overview.                196
  • Figure 10. Hitachi High-Tech Chemicals Informatics and Materials Informatics proof of concept.       204

 

 

Materials Informatics Global Market 2024-2035
Materials Informatics Global Market 2024-2035
PDF download.

Materials Informatics Global Market 2024-2035
Materials Informatics Global Market 2024-2035
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.