Flexible, Stretchable and Printable Electronics, Conductive Films and Inks, Displays, Transistors, ICs, Memory Devices, Coatings and Photonics
Published May 2017| 400 pages | Table of contents
The electronics industry will witness significant change and growth in the next decade driven by:
- Scaling
- Growth of mobile wireless devices
- Huge growth in the Internet of Things (IoT)
- Data, logic and applications moving to the Cloud
- Ubiquitous electronics.
To meet these market demands, power and functionality needs to improve hugely, while being cost effective, driving demand for nanomaterials that will allow for novel architectures, new types of energy harvesting and sensor integration. As well as allowing for greater power, improved performance and bandwith, decreased size and cost, improved flexibility and better thermal management, the exploitation of nanomaterials allows for new device designs, new package architectures, new network architectures and new manufacturing processes. This will lead to greater device integration and density, and reduced time to market.
Semiconducting inorganic nanowires (NWs), carbon nanotubes, nanofibers, nanofibers, quantum dots, graphene and other 2D materials have been extensively explored in recent years as potential building blocks for nanoscale electronics, optoelectronics and photonics components, coatings and devices.
The report covers nanotechnology and nanomaterials related to the following markets and applications:
- Flexible, Stretchable and Printable Electronics
- Conductive Films and Inks
- Wearable health monitoring
- Electronic textiles
- HMI automotive displays
- Displays
- Transistors
- Integrated Circuits
- Other components
- Memory Devices
- Conductive and waterproof electronics coatings
- Photonics
To purchase by bank transfer or cheque contact info@futuremarketsinc.com to request an invoice.
TABLE OF CONTENTS
1 EXECUTIVE SUMMARY………………………………………………………………… 31
1.1 Scaling………………………………………………………………………………………………………………………. 31
1.2 Growth of mobile wireless devices……………………………………………………………………………. 31
1.3 Internet of things (IoT)………………………………………………………………………………………………… 32
1.4 Data, logic and applications moving to the Cloud…………………………………………………….. 33
1.5 Ubiquitous electronics……………………………………………………………………………………………….. 33
1.6 Growth in automotive interior electronics………………………………………………………………….. 34
1.7 Nanomaterials for new device design and architectures………………………………………….. 34
1.8 Carbon and 2D nanomaterials………………………………………………………………………………….. 35
1.9 Industrial collaborations…………………………………………………………………………………………….. 35
1.10 Nanotechnology and smart textile & wearable technology……………………………………….. 37
1.11 Growth in the wearable electronics market……………………………………………………………….. 41
1.11.1 Recent growth…………………………………………………………………………………………………… 41
1.11.2 Future growth…………………………………………………………………………………………………….. 41
1.11.3 Nanotechnology as a market driver………………………………………………………………….. 41
1.12 Growth in remote health monitoring and diagnostics………………………………………………… 42
1.13 From rigid to flexible and stretchable………………………………………………………………………… 43
2 RESEARCH METHODOLOGY………………………………………………………. 45
1.1 MARKET OPPORTUNITY ANALYSIS……………………………………………………………………….. 45
2.1 MARKET CHALLENGES RATING SYSTEM……………………………………………………………… 47
3 NANOMATERIALS………………………………………………………………………… 50
3.1 Properties of nanomaterials………………………………………………………………………………………. 50
3.2 Categorization…………………………………………………………………………………………………………… 51
4 NANOMATERIALS IN ELECTRONICS…………………………………………. 53
4.1 SINGLE-WALLED CARBON NANOTUBES………………………………………………………………. 53
4.1.1 Properties………………………………………………………………………………………………………………. 53
4.1.1.1 Single-chirality………………………………………………………………………………………………. 54
4.1.2 Applications in nanoelectronics…………………………………………………………………………….. 56
4.2 GRAPHENE………………………………………………………………………………………………………………. 59
4.2.1 Properties………………………………………………………………………………………………………………. 59
4.2.2 Applications in nanoelectronics…………………………………………………………………………….. 60
4.2.2.1 Electronic paper……………………………………………………………………………………………. 64
4.2.2.2 Wearable electronics…………………………………………………………………………………….. 65
4.2.2.3 Integrated circuits………………………………………………………………………………………….. 66
4.2.2.4 Transistors…………………………………………………………………………………………………….. 67
4.2.2.5 Graphene Radio Frequency (RF) circuits……………………………………………………… 68
4.2.2.6 Graphene spintronics……………………………………………………………………………………. 69
4.2.2.7 Memory devices……………………………………………………………………………………………. 69
4.3 NANOCELLULOSE…………………………………………………………………………………………………… 71
4.3.1 Properties………………………………………………………………………………………………………………. 71
4.3.2 Applications in nanoelectronics…………………………………………………………………………….. 72
4.3.3 Nanopaper…………………………………………………………………………………………………………….. 73
4.3.4 Flexible electronics……………………………………………………………………………………………….. 74
4.3.4.1 Paper memory………………………………………………………………………………………………. 76
4.3.5 Wearable electronics…………………………………………………………………………………………….. 77
4.3.6 Flexible energy storage…………………………………………………………………………………………. 77
4.3.7 Conductive inks…………………………………………………………………………………………………….. 78
4.4 NANOFIBERS……………………………………………………………………………………………………………. 79
4.4.1 Properties………………………………………………………………………………………………………………. 79
4.4.2 Applications in nanoelectronics…………………………………………………………………………….. 79
4.5 QUANTUM DOTS………………………………………………………………………………………………………. 80
4.5.1 Properties………………………………………………………………………………………………………………. 80
4.5.2 Applications in nanoelectronics…………………………………………………………………………….. 82
4.5.2.1 Cadmium Selenide, Cadmium Sulfide and other materials………………………….. 82
4.5.2.2 Cadmium free quantum dots…………………………………………………………………………. 82
4.6 SILVER NANOWIRES……………………………………………………………………………………………….. 83
4.6.1 Properties………………………………………………………………………………………………………………. 83
4.6.2 Applications in nanoelectronics…………………………………………………………………………….. 83
4.7 OTHER NANOMATERIALS IN ELECTRONICS………………………………………………………… 85
4.7.1 Metal oxide nanoparticles……………………………………………………………………………………… 85
4.7.1.1 Properties and applications………………………………………………………………………….. 85
4.7.2 Graphene quantum dots……………………………………………………………………………………….. 87
4.7.2.1 Applications…………………………………………………………………………………………………… 90
4.7.3 Black phosphorus/Phosphorene…………………………………………………………………………… 91
4.7.3.1 Properties……………………………………………………………………………………………………… 92
4.7.3.2 Applications in electronics…………………………………………………………………………….. 93
4.7.4 C2N………………………………………………………………………………………………………………………… 94
4.7.4.1 Properties……………………………………………………………………………………………………… 94
4.7.4.2 Applications in electronics…………………………………………………………………………….. 95
4.7.5 Double-walled carbon nanotubes (DWNT)…………………………………………………………… 95
4.7.6 Fullerenes……………………………………………………………………………………………………………… 96
4.7.6.1 Properties……………………………………………………………………………………………………… 96
4.7.6.2 Applications in electronics…………………………………………………………………………….. 97
4.7.7 Germanene……………………………………………………………………………………………………………. 97
4.7.7.1 Properties……………………………………………………………………………………………………… 98
4.7.7.2 Applications in electronics…………………………………………………………………………….. 98
4.7.8 Graphdiyne……………………………………………………………………………………………………………. 98
4.7.8.1 Properties……………………………………………………………………………………………………… 99
4.7.8.2 Applications in electronics…………………………………………………………………………….. 99
4.7.9 Graphane………………………………………………………………………………………………………………. 99
4.7.9.1 Properties……………………………………………………………………………………………………. 100
4.7.9.2 Applications in electronics………………………………………………………………………….. 100
4.7.10 Hexagonal boron-nitride…………………………………………………………………………………. 101
4.7.10.1 Properties……………………………………………………………………………………………………. 101
4.7.10.2 Applications in electronics………………………………………………………………………….. 102
4.7.11 Molybdenum disulfide (MoS2)…………………………………………………………………………. 102
4.7.11.1 Properties……………………………………………………………………………………………………. 103
4.7.11.2 Applications in electronics………………………………………………………………………….. 103
4.7.12 Nanodiamonds……………………………………………………………………………………………….. 105
4.7.12.1 Properties……………………………………………………………………………………………………. 105
4.7.12.2 Applications in electronics………………………………………………………………………….. 106
4.7.13 Rhenium disulfide (ReS2) and diselenide (ReSe2)……………………………………….. 106
4.7.13.1 Properties……………………………………………………………………………………………………. 107
4.7.13.2 Applications in electronics………………………………………………………………………….. 107
4.7.14 Silicene……………………………………………………………………………………………………………. 108
4.7.14.1 Properties……………………………………………………………………………………………………. 108
4.7.14.2 Applications in electronics………………………………………………………………………….. 109
4.7.15 Stanene/tinene………………………………………………………………………………………………… 110
4.7.15.1 Properties……………………………………………………………………………………………………. 110
4.7.15.2 Applications in electronics………………………………………………………………………….. 111
4.7.16 Tungsten diselenide……………………………………………………………………………………….. 111
4.7.16.1 Properties……………………………………………………………………………………………………. 112
4.7.16.2 Applications in electronics………………………………………………………………………….. 112
5 TRANSPARENT CONDUCTIVE FILMS………………………………………. 113
5.1 MARKET DRIVERS…………………………………………………………………………………………………. 113
5.2 APPLICATIONS……………………………………………………………………………………………………….. 115
5.2.1 Transparent electrodes in flexible electronics…………………………………………………….. 116
5.2.1.1 Single-walled carbon nanotubes………………………………………………………………… 118
5.2.1.2 Double-walled carbon nanotubes………………………………………………………………. 119
5.2.1.3 Graphene……………………………………………………………………………………………………. 119
5.2.1.4 Silver nanowires…………………………………………………………………………………………. 121
5.2.1.5 Copper nanowires………………………………………………………………………………………. 122
5.3 GLOBAL MARKET SIZE AND OPPORTUNITY……………………………………………………….. 123
5.4 PRODUCT DEVELOPERS……………………………………………………………………………………… 130-143 (32 company profiles)
5.4.33 MARKET CHALLENGES………………………………………………………………………………… 143
5.4.33.1 Competing materials…………………………………………………………………………………… 143
5.4.33.2 Cost in comparison to ITO…………………………………………………………………………… 143
5.4.33.3 Fabricating SWNT devices………………………………………………………………………….. 144
5.4.33.4 Fabricating graphene devices…………………………………………………………………….. 144
5.4.33.5 Problems with transfer and growth……………………………………………………………… 144
5.4.33.6 Improving sheet resistance…………………………………………………………………………. 145
5.4.33.7 High surface roughness of silver nanowires………………………………………………. 146
5.4.33.8 Electrical properties…………………………………………………………………………………….. 146
5.4.33.9 Difficulties in display panel integration……………………………………………………….. 147
6 DISPLAYS-HDTV & MONITORS…………………………………………………. 148
6.1 MARKET DRIVERS…………………………………………………………………………………………………. 148
6.1.1 Improved performance with less power………………………………………………………………. 150
6.1.2 Lower cost compared to OLED……………………………………………………………………………. 150
6.2 APPLICATIONS……………………………………………………………………………………………………….. 151
6.2.1 LCDS vs. OLEDs vs. QD-LCDs…………………………………………………………………………… 151
6.2.2 QD-LCD TVs……………………………………………………………………………………………………….. 153
6.2.3 Integration into LCDs…………………………………………………………………………………………… 154
6.2.3.1 On-edge (edge optic)………………………………………………………………………………….. 156
6.2.3.2 On-surface (film)………………………………………………………………………………………….. 157
6.2.3.3 On-chip……………………………………………………………………………………………………….. 158
6.2.4 Quantum rods……………………………………………………………………………………………………… 159
6.2.5 Quantum converters with red phosphors…………………………………………………………….. 160
6.3 GLOBAL MARKET SIZE AND OPPORTUNITY……………………………………………………….. 164
6.4 PRODUCT DEVELOPERS……………………………………………………………………………………… 165-171 (13 company profiles)
7 WEARABLE SENSORS AND ELECTRONIC TEXTILES…………… 173
7.1 MARKET DRIVERS…………………………………………………………………………………………………. 173
7.1.1 Growth in the wearable electronics market…………………………………………………………. 173
7.1.2 ITO replacement for flexible electronics………………………………………………………………. 174
7.1.3 Energy needs of wearable devices…………………………………………………………………….. 175
7.1.4 Increased power and performance of sensors with reduced cost………………………. 175
7.1.5 Growth in the printed sensors market………………………………………………………………….. 175
7.1.6 Growth in the home diagnostics and point of care market………………………………….. 175
7.2 APPLICATIONS……………………………………………………………………………………………………….. 176
7.2.1 Wearable electronics…………………………………………………………………………………………… 176
7.2.1.1 Current state of the art…………………………………………………………………………………. 176
7.2.1.2 Nanotechnology solutions………………………………………………………………………….. 178
7.2.1.3 Conductive inks…………………………………………………………………………………………… 187
7.2.2 Wearable sensors……………………………………………………………………………………………….. 191
7.2.2.1 Current stage of the art……………………………………………………………………………….. 191
7.2.2.2 Nanotechnology solutions………………………………………………………………………….. 194
7.2.2.3 Wearable gas sensors………………………………………………………………………………… 197
7.2.2.4 Wearable strain sensors……………………………………………………………………………… 197
7.2.2.5 Wearable tactile sensors…………………………………………………………………………….. 198
7.3 GLOBAL MARKET SIZE AND OPPORTUNITY……………………………………………………….. 198
7.4 PRODUCT DEVELOPERS……………………………………………………………………………………… 203-213 (28 company profiles)
8 MEDICAL AND HEALTHCARE WEARABLES………………………….. 214
8.1 MARKET DRIVERS…………………………………………………………………………………………………. 214
8.1.1 Universal to individualized medicine………………………………………………………………….. 214
8.1.2 Growth in the wearable monitoring market…………………………………………………………. 214
8.1.3 Need for new materials for continuous health monitoring and adaptability………… 215
8.2 APPLICATIONS……………………………………………………………………………………………………….. 216
8.2.1 Current state of the art…………………………………………………………………………………………. 216
8.2.2 Nanotechnology solutions…………………………………………………………………………………… 219
8.2.2.1 Flexible/stretchable health monitors…………………………………………………………… 220
8.2.2.2 Patch-type skin sensors………………………………………………………………………………. 221
8.3 GLOBAL MARKET SIZE AND OPPORTUNITY……………………………………………………….. 223
8.4 PRODUCT DEVELOPERS……………………………………………………………………………………… 226- 228 (6 company profiles)
9 SMART CLOTHING AND APPAREL INCLUDING SPORTSWEAR 229
9.1 MARKET DRIVERS…………………………………………………………………………………………………. 229
9.1.1 Reduction in size, appearance and cost of sensors……………………………………………. 229
9.1.2 Increasing demand for smart fitness clothing……………………………………………………… 229
9.1.3 Improved medical analysis………………………………………………………………………………….. 230
9.1.4 Smart workwear for improved worker safety……………………………………………………….. 230
9.2 APPLICATIONS……………………………………………………………………………………………………….. 230
9.2.1 Current state of the art…………………………………………………………………………………………. 230
9.2.2 Nanotechnology solutions…………………………………………………………………………………… 232
9.3 GLOBAL MARKET SIZE AND OPPORTUNITY……………………………………………………….. 234
9.4 PRODUCT DEVELOPERS……………………………………………………………………………………… 237-240 (8 company profiles)
10 WEARABLE ENERGY STORAGE AND HARVESTING DEVICES 241
10.1 MARKET DRIVERS…………………………………………………………………………………………………. 242
10.1.1 Inadequacies of current battery technology for wearables……………………………… 242
10.1.2 Need for flexible power sources……………………………………………………………………… 242
10.1.3 Energy harvesting for “disappearables”………………………………………………………….. 243
10.2 APPLICATIONS……………………………………………………………………………………………………….. 243
10.2.1 Current state of the art…………………………………………………………………………………….. 243
10.2.2 Nanotechnology solutions………………………………………………………………………………. 246
10.2.2.1 Flexible and stretchable batteries……………………………………………………………….. 246
10.2.2.2 Flexible and stretchable supercapacitors…………………………………………………… 247
10.2.2.3 Solar energy harvesting textiles………………………………………………………………….. 249
10.3 GLOBAL MARKET SIZE AND OPPORTUNITY……………………………………………………….. 251
10.4 PRODUCT DEVELOPERS……………………………………………………………………………………… 256-258 (6 company profiles)
11 CONDUCTIVE INKS…………………………………………………………………….. 259
11.1 MARKET DRIVERS AND TRENDS…………………………………………………………………………. 259
11.2 APPLICATIONS……………………………………………………………………………………………………….. 261
11.3 GLOBAL MARKET SIZE AND OPPORTUNITY……………………………………………………….. 263
11.4 MARKET CHALLENGES…………………………………………………………………………………………. 266
11.5 PRODUCT DEVELOPERS……………………………………………………………………………………… 267-278 (26 company profiles)
12 TRANSISTORS, INTEGRATED CIRCUITS AND OTHER COMPONENTS 279
12.1 MARKET DRIVERS AND TRENDS…………………………………………………………………………. 279
12.2 APPLICATIONS……………………………………………………………………………………………………….. 281
12.2.1 Nanowires……………………………………………………………………………………………………….. 283
12.2.2 Carbon nanotubes………………………………………………………………………………………….. 285
12.2.3 Graphene………………………………………………………………………………………………………… 289
12.2.3.1 Integrated circuits………………………………………………………………………………………… 289
12.2.3.2 Transistors…………………………………………………………………………………………………… 290
12.2.3.3 Graphene Radio Frequency (RF) circuits…………………………………………………… 291
12.2.3.4 Graphene spintronics………………………………………………………………………………….. 292
12.3 GLOBAL MARKET SIZE AND OPPORTUNITY……………………………………………………….. 294
12.4 MARKET CHALLENGES…………………………………………………………………………………………. 298
12.4.1 Device complexity…………………………………………………………………………………………… 298
12.4.2 Competition from other materials……………………………………………………………………. 299
12.4.3 Lack of band gap…………………………………………………………………………………………….. 299
12.4.4 Transfer and integration………………………………………………………………………………….. 300
12.5 PRODUCT DEVELOPERS……………………………………………………………………………………… 301-310 (20 company profiles)
13 MEMORY DEVICES……………………………………………………………………… 311
13.1 MARKET DRIVERS…………………………………………………………………………………………………. 311
13.2 APPLICATIONS……………………………………………………………………………………………………….. 313
13.2.1 Carbon nanotubes………………………………………………………………………………………….. 314
13.2.2 Graphene and other 2D materials…………………………………………………………………… 319
13.2.2.1 Properties……………………………………………………………………………………………………. 319
13.2.2.2 ReRAM memory………………………………………………………………………………………….. 319
13.2.2.3 Magnetic nanoparticles………………………………………………………………………………. 322
13.3 GLOBAL MARKET SIZE AND OPPORTUNITY……………………………………………………….. 322
13.4 MARKET CHALLENGES…………………………………………………………………………………………. 324
13.5 PRODUCT DEVELOPERS……………………………………………………………………………………… 325-329 (10 company profiles)
14 ELECTRONICS COATINGS………………………………………………………… 331
14.1 MARKET DRIVERS…………………………………………………………………………………………………. 331
14.1.1 Demand for multi-functional, active coatings………………………………………………….. 331
14.1.2 Waterproofing and permeability……………………………………………………………………… 333
14.1.3 Improved aesthetics and reduced maintenance…………………………………………….. 334
14.1.4 Proliferation of touch panels……………………………………………………………………………. 335
14.1.5 Need for efficient moisture and oxygen protection in flexible and organic electronics 335
14.1.6 Electronics packaging…………………………………………………………………………………….. 335
14.1.7 Growth in the optical and optoelectronic devices market……………………………….. 335
14.1.8 Improved performance and cost over traditional AR coatings………………………… 336
14.1.9 Growth in the solar energy market………………………………………………………………….. 336
14.2 APPLICATIONS……………………………………………………………………………………………………….. 337
14.2.1 Waterproof nanocoatings………………………………………………………………………………… 339
14.2.1.1 Barrier films…………………………………………………………………………………………………. 339
14.2.1.2 Hydrophobic coatings…………………………………………………………………………………. 340
14.2.2 Anti-fingerprint nanocoatings………………………………………………………………………….. 341
14.2.3 Anti-reflection nanocoatings……………………………………………………………………………. 342
14.3 GLOBAL MARKET SIZE AND OPPORTUNITY……………………………………………………….. 344
14.3.1 Anti-fingerprint nanocoatings………………………………………………………………………….. 344
14.3.2 Anti-reflective nanocoatings……………………………………………………………………………. 344
14.3.3 Waterproof nanocoatings………………………………………………………………………………… 345
14.4 MARKET CHALLENGES…………………………………………………………………………………………. 348
14.4.1 Durability…………………………………………………………………………………………………………. 348
14.4.2 Dispersion……………………………………………………………………………………………………….. 348
14.4.3 Cost…………………………………………………………………………………………………………………. 349
14.5 PRODUCT DEVELOPERS……………………………………………………………………………………… 349-359 (22 company profiles)
15 PHOTONICS…………………………………………………………………………………. 360
15.1 MARKET DRIVERS AND TRENDS…………………………………………………………………………. 360
15.2 APPLICATIONS……………………………………………………………………………………………………….. 360
15.2.1 Si photonics versus graphene………………………………………………………………………… 361
15.2.2 Optical modulators………………………………………………………………………………………….. 362
15.2.3 Photodetectors………………………………………………………………………………………………… 363
15.2.4 Saturable absorbers……………………………………………………………………………………….. 365
15.2.5 Plasmonics……………………………………………………………………………………………………… 365
15.2.6 Fiber lasers……………………………………………………………………………………………………… 365
15.2.6.1 Graphene and 2D materials……………………………………………………………………….. 366
15.2.6.2 Quantum dots……………………………………………………………………………………………… 366
15.2.7 GLOBAL MARKET SIZE AND OPPORTUNITY……………………………………………….. 366
15.3 MARKET CHALLENGES…………………………………………………………………………………………. 367
15.3.1 Need to design devices that harness graphene’s properties…………………………. 367
15.3.2 Problems with transfer…………………………………………………………………………………….. 368
15.3.3 THz absorbance and nonlinearity…………………………………………………………………… 368
15.3.4 Stability and sensitivity……………………………………………………………………………………. 368
15.4 PRODUCT DEVELOPERS……………………………………………………………………………………… 369-373 (11 company profiles)
16 REFERENCES……………………………………………………………………………… 374
TABLES
Table 1: Semiconductor Components of IoT Devices………………………………………………………………… 32
Table 2: Nanoelectronics in next generation information processing……………………………………….. 34
Table 3: Nanoelectronics industrial collaborations and target markets…………………………………….. 36
Table 4: Types of smart textiles………………………………………………………………………………………………….. 37
Table 5: Smart textile products…………………………………………………………………………………………………… 38
Table 6: Evolution of wearable devices, 2011-2016………………………………………………………………….. 39
Table 7: Categorization of nanomaterials………………………………………………………………………………….. 51
Table 8: Comparison between single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes. 55
Table 9: Properties of CNTs and comparable materials……………………………………………………………. 55
Table 10: Electronics sub-markets, benefits and applications of Carbon Nanotubes……………….. 57
Table 11: Properties of graphene………………………………………………………………………………………………. 59
Table 12: Electronics sub-markets, benefits and applications of graphene………………………………. 61
Table 13: Comparison of ITO replacements………………………………………………………………………………. 64
Table 14: Comparative properties of silicon and graphene transistors……………………………………… 67
Table 15: Properties of flexible electronics‐cellulose nanofiber film (nanopaper)…………………….. 72
Table 16: Properties of flexible electronics cellulose nanofiber films………………………………………… 73
Table 17: Applications of nanowires in electronics……………………………………………………………………. 84
Table 18: Electronics markets and applications nanowires………………………………………………………. 85
Table 19: Metal oxide nanoparticles in electronics-properties and applications………………………. 85
Table 20: Comparison of graphene QDs and semiconductor QDs……………………………………………. 88
Table 21: Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2. 93
Table 22: Markets, benefits and applications of fullerenes in electronics………………………………….. 97
Table 23: Market assessment for the nanotechnology in the transparent conductive films market. 113
Table 24: Market drivers for use of SWNTs in transparent conductive films……………………………. 113
Table 25: Comparison of ITO replacements…………………………………………………………………………….. 115
Table 26: Properties of SWNTs and graphene relevant to flexible electronics……………………….. 118
Table 27: Comparative cost of TCF materials………………………………………………………………………….. 118
Table 28: Market size for nanotechnology in conductive films………………………………………………… 123
Table 29: Market opportunity assessment for nanotechnology in conductive films…………………. 129
Table 30: Market challenges rating for nanotechnology and nanomaterials in transparent conductive films market. 147
Table 31: Market assessment for the nanotechnology in the displays market………………………… 148
Table 32: Impact of market drivers for quantum dots in the LCD TVs/Displays market……………. 150
Table 33: Advantages and disadvantages of LCDs, OLEDs and QDs……………………………………. 151
Table 34: Approaches for integrating QDs into displays………………………………………………………….. 155
Table 35: Commercially available quantum dot display products…………………………………………… 163
Table 36: Market assessment for the nanotechnology in the wearable sensors and electronics textiles market. 173
Table 37: Wearable electronics devices and stage of development……………………………………….. 177
Table 38: Applications in wearable electronics, by nanomaterials type and benefits thereof…. 179
Table 39: Applications in conductive inks by nanomaterials type and benefits thereof…………… 188
Table 40: Graphene properties relevant to application in sensors………………………………………….. 196
Table 41: Global market for wearables, 2014-2021, units and US$………………………………………… 198
Table 42: Market opportunity assessment for nanotechnology in wearable sensors and electronic textiles. 201
Table 43: Market assessment for the nanotechnology in the medical and healthcare wearables market. 214
Table 44: Wearable medical device products and stage of development……………………………….. 217
Table 45: Applications in flexible and stretchable health monitors, by nanomaterials type and benefits thereof. 220
Table 46: Applications in patch-type skin sensors, by nanomaterials type and benefits thereof. 223
Table 47: Potential addressable market for smart textiles and wearables in medical and healthcare. 223
Table 48: Market opportunity assessment for nanotechnology in medical wearables……………. 224
Table 49: Market assessment for the nanotechnology in the smart clothing and apparel market. 229
Table 50: Currently available technologies for smart textiles………………………………………………….. 231
Table 51: Smart clothing and apparel and stage of development…………………………………………… 231
Table 52: Desirable functional properties for the textiles industry afforded by the use of nanomaterials. 233
Table 53: Global market for smart clothing and apparel, 2014-2021, units and revenues (US$). 234
Table 54: Market opportunity assessment for nanotechnology in smart clothing……………………. 237
Table 55: Market assessment for the nanotechnology in the wearable energy storage (printed and flexible battery) market. 241
Table 56: Market assessment for the nanotechnology in the wearable energy harvesting market. 241
Table 57: Wearable energy and energy harvesting devices and stage of development………… 245
Table 58: Applications in flexible and stretchable batteries, by nanomaterials type and benefits thereof. 246
Table 59: Applications in flexible and stretchable supercapacitors, by nanomaterials type and benefits thereof. 249
Table 60: Applications in energy harvesting textiles, by nanomaterials type and benefits thereof. 251
Table 61: Potential addressable market for thin film, flexible and printed batteries………………… 251
Table 62: Market challenges rating for nanotechnology and nanomaterials in the wearable energy storage and harvesting market…………………………………………………………………………………………………………………………………………….. 256
Table 63: Market assessment for the nanotechnology in the conductive inks market…………….. 259
Table 64: Market drivers for use of nanotechnology in conductive inks………………………………….. 259
Table 65: Comparative properties of conductive inks……………………………………………………………… 260
Table 66: Applications in conductive inks by nanomaterials type and benefits thereof…………… 262
Table 67: Opportunities for nanomaterials in printed electronics…………………………………………….. 265
Table 68: Market opportunity assessment for nanotechnology in conductive inks………………….. 266
Table 69: Market challenges rating for nanotechnology and nanomaterials in the conductive inks market. 267
Table 70: Market assessment for the nanotechnology in the transistors, integrated circuits and other components market. 279
Table 71: Market drivers for use of nanomaterials in transistors, integrated circuits and other components. 279
Table 72: Applications in transistors, integrated circuits and other components, by nanomaterials type and benefits thereof. 281
Table 73: Types of nanowires in semiconductor devices………………………………………………………… 283
Table 74: Applications of semiconductor nanowires……………………………………………………………….. 284
Table 75: Applications and benefits of SWNTs in transistors, integrated circuits and other components. 287
Table 76: Comparative properties of silicon and graphene transistors…………………………………… 291
Table 77: Applications and benefits of graphene in transistors, integrated circuits and other components. 292
Table 78: Market size for nanotechnology in transistors, integrated circuits and other components. 295
Table 79: Market opportunity assessment for graphene in transistors, integrated circuits and other components. 297
Table 80: Market challenges rating for nanotechnology and nanomaterials in the transistors, integrated circuits and other components market……………………………………………………………………………………………………………. 301
Table 81: Market assessment for the nanotechnology in the memory devices market……………. 311
Table 82: Market drivers for use of nanotechnology in memory devices…………………………………. 311
Table 83: Applications in memory devices, by nanomaterials type and benefits thereof………… 313
Table 84: Market size for nanotechnology in memory devices………………………………………………… 322
Table 85: Market opportunity assessment for nanotechnology in memory devices………………… 324
Table 86: Applications and commercialization challenges for nanotechnology in the memory devices market. 324
Table 87: Market challenges rating for nanotechnology and nanomaterials in the memory devices market. 325
Table 88: Market assessment for the nanotechnology in the electronics coatings market……… 331
Table 89: Properties of nanocoatings………………………………………………………………………………………. 332
Table 90: Nanocoatings applied in the consumer electronics industry…………………………………… 338
Table 91: Anti-reflective nanocoatings-Markets and applications…………………………………………… 343
Table 92: Market opportunity for anti-reflection nanocoatings…………………………………………………. 345
Table 93: Market opportunity assessment for nanotechnology in electronics coatings…………… 346
Table 94: Market challenges rating for nanotechnology and nanomaterials in the electronics coatings market. 349
Table 95: Market drivers for use of nanotechnology in photonics……………………………………………. 360
Table 96: Applications in photonics, by nanomaterials type and benefits thereof…………………… 360
Table 97: Graphene properties relevant to application in optical modulators…………………………. 362
Table 98: Market size for nanotechnology in photonics…………………………………………………………… 366
Table 99: Nanotechnology and nanomaterials in the photonics market-applications, stage of commercialization and estimated economic impact………………………………………………………………………………………………………………… 367
Table 100: Market challenges rating for nanotechnology in the photonics market…………………. 368
FIGURES
Figure 1: Evolution of electronics……………………………………………………………………………………………….. 39
Figure 2: Wearable health monitor incorporating graphene photodetectors…………………………….. 43
Figure 3: Polyera Wove Band…………………………………………………………………………………………………….. 44
Figure 4: Schematic of single-walled carbon nanotube…………………………………………………………….. 53
Figure 5: Graphene layer structure schematic…………………………………………………………………………… 60
Figure 6: Flexible graphene touch screen…………………………………………………………………………………. 61
Figure 7: Flexible organic light emitting diode (OLED) using graphene electrode……………………. 63
Figure 8: Foldable graphene E-paper……………………………………………………………………………………….. 65
Figure 9: Graphene IC in wafer tester………………………………………………………………………………………… 66
Figure 10: A monolayer WS2-based flexible transistor array…………………………………………………….. 67
Figure 11: Schematic cross-section of a graphene based transistor (GBT, left) and a graphene field-effect transistor (GFET, right)………………………………………………………………………………………………………………………………………………. 68
Figure 12: Graphene oxide-based RRAm device on a flexible substrate………………………………….. 69
Figure 13: Layered structure of tantalum oxide, multilayer graphene and platinum used for resistive random access memory (RRAM)………………………………………………………………………………………………………………………………… 70
Figure 14: A schematic diagram for the mechanism of the resistive switching in metal/GO/Pt….. 71
Figure 15: Cellulose nanofiber films…………………………………………………………………………………………. 72
Figure 16: Foldable nanopaper…………………………………………………………………………………………………. 73
Figure 17: Foldable nanopaper antenna…………………………………………………………………………………… 74
Figure 18: LEDs shining on circuitry imprinted on a 5x5cm sheet of CNF…………………………………. 75
Figure 19: NFC computer chip…………………………………………………………………………………………………… 75
Figure 20: NFC translucent diffuser schematic………………………………………………………………………….. 76
Figure 21: Paper memory (ReRAM)…………………………………………………………………………………………… 77
Figure 22: Nanocellulose photoluminescent paper…………………………………………………………………… 78
Figure 23: Quantum dot……………………………………………………………………………………………………………… 80
Figure 24: The light-blue curve represents a typical spectrum from a conventional white-LED LCD TV. With quantum dots, the spectrum is tunable to any colours of red, green, and blue, and each Color is limited to a narrow band. 81
Figure 25: Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1–4)………………………………………………………………………….. 89
Figure 26: Green-fluorescing graphene quantum dots……………………………………………………………… 90
Figure 27: Graphene quantum dots…………………………………………………………………………………………… 91
Figure 28: Black phosphorus structure………………………………………………………………………………………. 92
Figure 29: Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal. 94
Figure 30: Double-walled carbon………………………………………………………………………………………………. 96
Figure 31: Fullerene schematic………………………………………………………………………………………………….. 96
Figure 32: Schematic of germanene………………………………………………………………………………………….. 97
Figure 33: Graphdiyne structure………………………………………………………………………………………………… 99
Figure 34: Schematic of Graphane crystal……………………………………………………………………………….. 100
Figure 35: Structure of hexagonal boron nitride………………………………………………………………………. 101
Figure 36: Structure of 2D molybdenum disulfide……………………………………………………………………. 102
Figure 37: Atomic force microscopy image of a representative MoS2 thin-film transistor……….. 103
Figure 38: Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge………………………………………………………………………………………………………………………………… 105
Figure 39: Schematic of a monolayer of rhenium disulphide…………………………………………………… 107
Figure 40: Silicene structure…………………………………………………………………………………………………….. 108
Figure 41: Monolayer silicene on a silver (111) substrate……………………………………………………….. 109
Figure 42: Silicene transistor……………………………………………………………………………………………………. 110
Figure 43: Crystal structure for stanene…………………………………………………………………………………… 110
Figure 44: Atomic structure model for the 2D stanene on Bi2Te3(111)…………………………………… 111
Figure 45: Schematic of tungsten diselenide…………………………………………………………………………… 112
Figure 46: Graphene-enabled bendable smartphone…………………………………………………………….. 116
Figure 47: 3D printed carbon nanotube sensor……………………………………………………………………….. 117
Figure 48: Graphene electrochromic devices. Top left: Exploded-view illustration of the graphene electrochromic device. The device is formed by attaching two graphene-coated PVC substrates face-to-face and filling the gap with a liquid ionic electrolyte…………………………………………………………………………………………………………………………… 120
Figure 49: Flexible mobile phones with graphene transparent conductive film………………………. 121
Figure 50: Bending durability of Ag nanowires………………………………………………………………………… 122
Figure 51: Global touch panel market ($ million), 2011-2018…………………………………………………. 124
Figure 52: Capacitive touch panel market forecast by layer structure (Ksqm)…………………………. 125
Figure 53: Global transparent conductive film market forecast by materials type, 2012-2020, millions $. 126
Figure 54: Global transparent conductive film market forecast for nanomaterials, 2015-2027 (million $). 127
Figure 55: Global transparent conductive film market forecast by materials type, 2015, %…….. 128
Figure 56: Global transparent conductive film market forecast by materials type, 2020, %…….. 128
Figure 57: Global transparent conductive film market forecast by materials type, 2027, %…….. 129
Figure 58: Schematic of the wet roll-to-roll graphene transfer from copper foils to polymeric substrates. 145
Figure 59: The transmittance of glass/ITO, glass/ITO/four organic layers, and glass/ITO/four organic layers/4-layer graphene. 146
Figure 60: Samsung QD-LCD TVs, UHD range………………………………………………………………………. 149
Figure 61: Samsung QLED TV range………………………………………………………………………………………. 149
Figure 62: Quantum dot LED backlighting schematic……………………………………………………………… 154
Figure 63: Methods for integrating QDs into LCD System. (a) On-chip (b) On-edge. (c) On-surface. 156
Figure 64: On-edge configuration……………………………………………………………………………………………. 157
Figure 65: QD-film integration into a standard LCD display…………………………………………………….. 157
Figure 66: QD display market by type 2016., %……………………………………………………………………….. 158
Figure 67: QD display market by type 2027., %……………………………………………………………………….. 159
Figure 68: LCD using Quantum rods (right) versus a standard LCD……………………………………….. 160
Figure 69: Quantum phosphor schematic in LED TV backlight……………………………………………….. 161
Figure 70: Samsung CF791 QD monitor………………………………………………………………………………….. 161
Figure 71: Acer Z271UV Quantum Dot monitor……………………………………………………………………….. 162
Figure 72: QD-TV unit sales, 2015-2027…………………………………………………………………………………. 164
Figure 73: QD Monitor Unit sales, 2015-2027…………………………………………………………………………. 165
Figure 74: Covestro wearables………………………………………………………………………………………………… 178
Figure 75: Panasonic CTN stretchable Resin Film………………………………………………………………….. 179
Figure 76: Bending durability of Ag nanowires………………………………………………………………………… 184
Figure 77: NFC computer chip…………………………………………………………………………………………………. 185
Figure 78: NFC translucent diffuser schematic………………………………………………………………………… 186
Figure 79: Graphene printed antenna……………………………………………………………………………………… 189
Figure 80: BGT Materials graphene ink product………………………………………………………………………. 191
Figure 81: Softceptor sensor……………………………………………………………………………………………………. 192
Figure 82: BeBop Media Arm Controller………………………………………………………………………………….. 193
Figure 83: LG Innotek flexible textile pressure sensor…………………………………………………………….. 193
Figure 84: <hitoe> nanofiber conductive shirt original design(top) and current design (bottom). 194
Figure 85: Garment-based printable electrodes………………………………………………………………………. 195
Figure 86: Wearable gas sensor……………………………………………………………………………………………… 197
Figure 87: Global market revenues for smart wearable devices 2014-2021, in US$………………. 199
Figure 88: Global market revenues for nanotech-enabled smart wearable devices 2014-2027 in US$, conservative estimate. 200
Figure 89: Global market revenues for nanotech-enabled smart wearable devices 2014-2027 in US$, optimistic estimate. 200
Figure 90: TempTraQ wearable wireless thermometer……………………………………………………………. 215
Figure 91: Graphene-based E-skin patch………………………………………………………………………………… 216
Figure 92: Flexible, lightweight temperature sensor………………………………………………………………… 217
Figure 93: Smart e-skin system comprising health-monitoring sensors, displays, and ultra flexible PLEDs. 222
Figure 94: Graphene medical patch………………………………………………………………………………………… 222
Figure 95: Addressable market for nanotech-enabled medical wearables…………………………….. 225
Figure 96: Global market revenues for smart clothing and apparel 2014-2021, in US$…………. 235
Figure 97: Global market revenues for nanotech-enabled smart clothing and apparel 2014-2027, in US$, conservative estimate…………………………………………………………………………………………………………………………………………….. 236
Figure 98: Global market revenues for nanotech-enabled smart clothing and apparel 2014-2027, in US$, optimistic estimate. 237
Figure 99: Energy harvesting textile………………………………………………………………………………………… 243
Figure 100: StretchSense Energy Harvesting Kit…………………………………………………………………….. 244
Figure 101: LG Chem Heaxagonal battery………………………………………………………………………………. 245
Figure 102: Energy densities and specific energy of rechargeable batteries………………………….. 248
Figure 103: Stretchable graphene supercapacitor………………………………………………………………….. 248
Figure 104: Schematic illustration of the fabrication concept for textile-based dye-sensitized solar cells (DSSCs) made by sewing textile electrodes onto cloth or paper…………………………………………………………………………………. 250
Figure 105: Demand for thin film, flexible and printed batteries 2015, by market……………………. 253
Figure 106: Demand for thin film, flexible and printed batteries 2027, by market……………………. 254
Figure 107: Potential addressable market for nanotech-enabled thin film, flexible or printed batteries. 255
Figure 108: Global market for conductive inks and pastes in printed electronics……………………. 264
Figure 109: Emerging logic devices………………………………………………………………………………………… 283
Figure 110: Emerging logic devices………………………………………………………………………………………… 286
Figure 111: Thin film transistor incorporating CNTs………………………………………………………………… 286
Figure 112: Graphene IC in wafer tester………………………………………………………………………………….. 289
Figure 113: A monolayer WS2-based flexible transistor array………………………………………………… 290
Figure 114: Schematic cross-section of a graphene based transistor (GBT, left) and a graphene field-effect transistor (GFET, right)…………………………………………………………………………………………………………………………………………….. 292
Figure 115: Potential addressable market for nanotechnology in transistors and integrated circuits. 296
Figure 116: Potential addressable market for nanotechnology in transistors and integrated circuits. 298
Figure 117: Carbon nanotubes NRAM chip…………………………………………………………………………….. 315
Figure 118: Stretchable SWCNT memory and logic devices for wearable electronics……………. 316
Figure 119: Schematic of NRAM cell……………………………………………………………………………………….. 318
Figure 120: A schematic diagram for the mechanism of the resistive switching in metal/GO/Pt. 320
Figure 121: Graphene oxide-based RRAm device on a flexible substrate……………………………… 321
Figure 122: Layered structure of tantalum oxide, multilayer graphene and platinum used for resistive random access memory (RRAM)………………………………………………………………………………………………………………………………. 321
Figure 123: Phone coated in WaterBlock submerged in water tank………………………………………… 334
Figure 124: Demo solar panels coated with nanocoatings……………………………………………………… 337
Figure 125: Schematic of barrier nanoparticles deposited on flexible substrates………………….. 340
Figure 126: Schematic of anti-fingerprint nanocoatings………………………………………………………….. 341
Figure 127: Toray anti-fingerprint film (left) and an existing lipophilic film (right)…………………….. 342
Figure 128: Schematic of AR coating utilizing nanoporous coating………………………………………… 343
Figure 129: Schematic of KhepriCoat®. Image credit: DSM……………………………………………………. 344
Figure 130: Nanocoating submerged in water………………………………………………………………………… 346
Figure 131: Potential addressable market for nanocoatings in electronics…………………………….. 347
Figure 132: Revenues for nanocoatings in electronics, 2010-2027, US$, conservative and optimistic estimates. 348
Figure 133: Hybrid graphene phototransistors………………………………………………………………………… 364
Figure 134: Wearable health monitor incorporating graphene photodetectors………………………. 364
Figure 135: Flexible PEN coated with graphene and a QD thin film (20nm) is highly visibly transparent and photosensitive. 365
Figure 136: Schematic of QD laser device………………………………………………………………………………. 366