Nuclear Small Modular Reactors (SMRs) Global Market 2025-2045

0

cover

  • Published: September 2024
  • Pages: 300
  • Tables: 64
  • Figures: 52

 

Nuclear Small Modular Reactors (SMRs) are emerging as potential game-changers in the global energy landscape, offering a compact and flexible alternative to traditional large-scale nuclear power plants. These innovative reactors, designed to produce up to 400 megawatts of electricity, are garnering significant attention due to their enhanced safety features, lower investment costs, and ability to be deployed in various settings. With over 80 commercial SMR designs currently under development worldwide, the market is witnessing rapid innovation led by established nuclear companies and supported by government initiatives in countries like the United States, United Kingdom, China, and Russia.

The growing interest in SMRs is driven by global efforts to decarbonize energy systems while maintaining reliable baseload power. Their compact size allows for integration into existing grid infrastructure, and their potential applications extend beyond electricity generation to include industrial process heat, hydrogen production, and powering data centers amidst the artificial intelligence boom. As countries increasingly adopt safe and sustainable energy sources, analysts expect SMRs to be commercialized within the next five to ten years, with several first-of-a-kind projects set to demonstrate their viability on a commercial scale.

Despite their promise, the SMR market faces challenges, including first-of-a-kind costs, regulatory hurdles, and the need for public acceptance. However, ongoing technological advancements, efforts to streamline licensing processes, and international cooperation are paving the way for SMRs to play a significant role in the clean energy transition. The success of SMRs will depend on continued research and development, cost reductions through standardization, robust supply chain development, and effective public engagement. As the global energy landscape continues to evolve, SMRs are positioned to become an integral part of the diverse and sustainable energy mix of the future, offering a flexible and low-carbon solution to meet growing energy demands.

The Nuclear SMR Global Market 2025-2045 provides an in-depth analysis of the rapidly evolving Small Modular Reactor (SMR) industry. This report offers valuable insights into market trends, technological advancements, and growth opportunities in the global nuclear SMR market over the next two decades. This report examines various types of SMR technologies, including Light Water Reactors (LWRs), High-Temperature Gas-Cooled Reactors (HTGRs), Fast Neutron Reactors (FNRs), and Molten Salt Reactors (MSRs).

Key highlights of the report include:

  • Market Overview and Forecasts: The report provides detailed market size estimates and projections from 2025 to 2045, segmented by reactor type, application, and geographical region. It offers a comprehensive analysis of market drivers, restraints, opportunities, and challenges shaping the industry's future.
  • Technology Analysis: An in-depth examination of current and emerging SMR technologies, including Light Water Reactors (LWRs), High-Temperature Gas-Cooled Reactors (HTGRs), Fast Neutron Reactors (FNRs), Molten Salt Reactors (MSRs), and microreactors. The report evaluates the strengths, weaknesses, opportunities, and threats (SWOT) for each technology.
  • Application Insights: The study explores various applications of SMR technology across multiple sectors, including:
    • Electricity Generation: Grid-connected power plants and load-following capabilities
    • Industrial Applications: Process heat for manufacturing, desalination, and hydrogen production
    • Remote and Off-Grid Power: Energy solutions for isolated communities and industrial sites
    • Marine Propulsion: Naval applications and potential for commercial shipping
  • Competitive Landscape: A comprehensive analysis of key players in the SMR market, including their reactor designs, market strategies, and recent developments. The report profiles leading companies and emerging startups shaping the industry's future. Companies profiled include ARC Clean Technology, Blue Capsule, Blykalla, BWX Technologies, China National Nuclear Corporation (CNNC), Deep Fission, EDF, GE Hitachi Nuclear Energy, General Atomics, Hexana, Holtec International, Kärnfull Next, Korea Atomic Energy Research Institute (KAERI), Last Energy, Moltex Energy, Naarea, Nano Nuclear Energy, Newcleo, NuScale Power, Oklo, Rolls-Royce SMR, Rosatom, Seaborg Technologies, Steady Energy, Stellaria, Terrestrial Energy, TerraPower, The Nuclear Company, Thorizon, Ultra Safe Nuclear Corporation, Westinghouse Electric Company, and X-Energy.
  • Future Outlook and Emerging Trends: Insights into technological advancements, potential disruptive technologies, and long-term market predictions extending to 2045 and beyond. The report identifies key growth areas and innovation hotspots in the SMR industry.
  • Regional Analysis: A detailed examination of SMR market dynamics across North America, Europe, Asia-Pacific, and other regions, highlighting regional adoption trends and growth opportunities.
  • Value Chain Analysis: An overview of the SMR industry value chain, from fuel suppliers to reactor manufacturers and end-users, providing a holistic view of the market ecosystem.
  • Regulatory Landscape: An examination of relevant regulations and standards affecting the development and deployment of SMRs across different regions and applications.

 

This report is an essential resource for:

  • Nuclear technology developers and manufacturers
  • Utility companies and power plant operators
  • Government agencies and policymakers
  • Industrial companies seeking clean energy solutions
  • Investment firms and financial analysts
  • Market researchers and consultants
  • Environmental organizations and clean energy advocates

 

Key features of the report include:

  • Over 100 tables and figures providing clear, data-driven insights
  • Detailed company profiles of more than 30 key players in the SMR industry
  • Comprehensive market size and forecast data segmented by technology, application, and region
  • In-depth analysis of emerging technologies and their potential impact on the market
  • Expert commentary on market trends, challenges, and opportunities

 

The global nuclear SMR market is poised for significant growth, with increasing demand for clean, reliable, and flexible energy sources across various industries. This report provides a thorough understanding of the current market landscape, emerging technologies, and future growth prospects, making it an invaluable tool for decision-makers looking to capitalize on opportunities in the SMR sector.

By leveraging extensive primary and secondary research, including interviews with industry experts and analysis of proprietary data, The Nuclear SMR Global Market 2025-2045 offers unparalleled insights into this dynamic and rapidly evolving industry. Whether you're a technology provider, utility company, investor, or policymaker, this report will equip you with the knowledge and understanding needed to navigate the exciting future of small modular reactor technologies.

 

 

1             EXECUTIVE SUMMARY            15

  • 1.1        Market Overview          15
    • 1.1.1    The nuclear industry 16
    • 1.1.2    Renewed interest in nuclear energy                17
    • 1.1.3    Nuclear energy costs                18
    • 1.1.4    SMR benefits  19
    • 1.1.5    Decarbonization          20
  • 1.2        Market Forecast           21
  • 1.3        Technological Trends                22
  • 1.4        Regulatory Landscape             23

 

2             INTRODUCTION          25

  • 2.1        Definition and Characteristics of SMRs       25
  • 2.2        Established nuclear technologies    27
  • 2.3        History and Evolution of SMR Technology   29
  • 2.4        Advantages and Disadvantages of SMRs    32
  • 2.5        Comparison with Traditional Nuclear Reactors      34
  • 2.6        Current SMR reactor designs and projects 36
  • 2.7        Types of SMRs               37
    • 2.7.1    Light Water Reactors (LWRs)               39
      • 2.7.1.1 Pressurized Water Reactors (PWRs)               40
        • 2.7.1.1.1           Overview           40
        • 2.7.1.1.2           Key features    42
        • 2.7.1.1.3           Examples         43
      • 2.7.1.2 Pressurized Heavy Water Reactors (PHWRs)            45
        • 2.7.1.2.1           Overview           45
        • 2.7.1.2.2           Key features    46
        • 2.7.1.2.3           Examples         47
      • 2.7.1.3 Boiling Water Reactors (BWRs)          48
        • 2.7.1.3.1           Overview           48
        • 2.7.1.3.2           Key features    49
        • 2.7.1.3.3           Examples         50
    • 2.7.2    High-Temperature Gas-Cooled Reactors (HTGRs) 51
      • 2.7.2.1 Overview           51
      • 2.7.2.2 Key features    51
      • 2.7.2.3 Examples         53
    • 2.7.3    Fast Neutron Reactors (FNRs)            55
      • 2.7.3.1 Overview           55
      • 2.7.3.2 Key features    55
      • 2.7.3.3 Examples         56
    • 2.7.4    Molten Salt Reactors (MSRs)               58
      • 2.7.4.1 Overview           58
      • 2.7.4.2 Key features    59
      • 2.7.4.3 Examples         60
    • 2.7.5    Microreactors                61
      • 2.7.5.1 Overview           61
      • 2.7.5.2 Key features    61
      • 2.7.5.3 Examples         62
    • 2.7.6    Heat Pipe Reactors    64
      • 2.7.6.1 Overview           64
      • 2.7.6.2 Key features    64
      • 2.7.6.3 Examples         65
    • 2.7.7    Liquid Metal Cooled Reactors            67
      • 2.7.7.1 Overview           67
      • 2.7.7.2 Key features    67
      • 2.7.7.3 Examples         67
    • 2.7.8    Supercritical Water-Cooled Reactors (SCWRs)      70
      • 2.7.8.1 Overview           70
      • 2.7.8.2 Key features    70
    • 2.7.9    Pebble Bed Reactors 73
      • 2.7.9.1 Overview           73
      • 2.7.9.2 Key features    74
  • 2.8        Applications of SMRs               75
    • 2.8.1    Electricity Generation               79
    • 2.8.2    Process Heat for Industrial Applications     80
    • 2.8.3    Desalination   82
    • 2.8.4    Remote and Off-Grid Power 84
    • 2.8.5    Hydrogen and industrial gas production      86
    • 2.8.6    Space Applications   87
  • 2.9        Market challenges      89
  • 2.10     Safety of SMRs              90

 

3             GLOBAL ENERGY LANDSCAPE AND THE ROLE OF SMRs 92

  • 3.1        Current Global Energy Mix    92
  • 3.2        Projected Energy Demand (2025-2045)       93
  • 3.3        Climate Change Mitigation and the Paris Agreement          95
  • 3.4        Nuclear Energy in the Context of Sustainable Development Goals           96
  • 3.5        SMRs as a Solution for Clean Energy Transition     97

 

4             TECHNOLOGY OVERVIEW    98

  • 4.1        Design Principles of SMRs    98
  • 4.2        Key Components and Systems          99
  • 4.3        Safety Features and Passive Safety Systems            101
  • 4.4        Cycle and Waste Management          102
  • 4.5        Advanced Manufacturing Techniques           103
  • 4.6        Modularization and Factory Fabrication      105
  • 4.7        Transportation and Site Assembly   106
  • 4.8        Grid Integration and Load Following Capabilities  107
  • 4.9        Emerging Technologies and Future Developments               108

 

5             REGULATORY FRAMEWORK AND LICENSING          110

  • 5.1        International Atomic Energy Agency (IAEA) Guidelines      110
  • 5.2        Nuclear Regulatory Commission (NRC) Approach to SMRs           111
  • 5.3        European Nuclear Safety Regulators Group (ENSREG) Perspective          112
  • 5.4        Regulatory Challenges and Harmonization Efforts               113
  • 5.5        Licensing Processes for SMRs            114
  • 5.6        Environmental Impact Assessment                115
  • 5.7        Public Acceptance and Stakeholder Engagement 116

 

6             MARKET ANAYSIS        119

  • 6.1        Global Market Size and Growth Projections (2025-2045) 120
  • 6.2        Market Segmentation               122
    • 6.2.1    By Reactor Type            122
    • 6.2.2    By Application               124
    • 6.2.3    By Region         126
  • 6.3        Market Drivers and Restraints            128
  • 6.4        SWOT Analysis             129
  • 6.5        Value Chain Analysis 130
  • 6.6        Cost Analysis and Economic Viability           132
  • 6.7        Financing Models and Investment Strategies           134
  • 6.8        Regional Market Analysis      135
    • 6.8.1    North America              136
      • 6.8.1.1 United States 136
      • 6.8.1.2 Canada             137
    • 6.8.2    Europe                138
      • 6.8.2.1 United Kingdom           138
      • 6.8.2.2 France 139
      • 6.8.2.3 Russia 140
    • 6.8.3    Other European Countries    141
    • 6.8.4    Asia-Pacific    143
      • 6.8.4.1 China  144
      • 6.8.4.2 Japan  145
      • 6.8.4.3 South Korea    146
      • 6.8.4.4 India    147
      • 6.8.4.5 Other Asia-Pacific Countries               148
    • 6.8.5    Middle East and Africa             148
    • 6.8.6    Latin America 149

 

7             COMPETITIVE LANDSCAPE  150

  • 7.1        Market players               150
  • 7.2        Competitive Strategies            152
  • 7.3        Recent market news 153
  • 7.4        New Product Developments and Innovations          157
  • 7.5        SMR private investment.        159

 

8             SMR DEPOLYMENT SCENARIOS       161

  • 8.1        First-of-a-Kind (FOAK) Projects          162
  • 8.2        Nth-of-a-Kind (NOAK) Projections   163
  • 8.3        Deployment Timelines and Milestones        164
  • 8.4        Capacity Additions Forecast (2025-2045)  165
  • 8.5        Market Penetration Analysis 167
  • 8.6        Replacement of Aging Nuclear Fleet              169
  • 8.7        Integration with Renewable Energy Systems             170

 

9             SUPPLY CHAIN ANALYSIS      172

  • 9.1        Raw Materials and Component Suppliers  173
  • 9.2        Manufacturing and Assembly             174
  • 9.3        Transportation and Logistics               175
  • 9.4        Installation and Commissioning      176
  • 9.5        Operation and Maintenance                177
  • 9.6        Decommissioning and Waste Management             178
  • 9.7        Supply Chain Risks and Mitigation Strategies           179

 

10          ECONOMIC IMPACT ANALYSIS           180

  • 10.1     Job Creation and Skill Development               180
  • 10.2     Local and National Economic Benefits        181
  • 10.3     Impact on Energy Prices         182
  • 10.4     Comparison with Other Clean Energy Technologies            183

 

11          ENVIRONMENTAL AND SOCIAL IMPACT      186

  • 11.1     Carbon Emissions Reduction Potential        186
  • 11.2     Land Use and Siting Considerations              187
  • 11.3     Water Usage and Thermal Pollution               188
  • 11.4     Radioactive Waste Management      189
  • 11.5     Public Health and Safety        191
  • 11.6     Social Acceptance and Community Engagement 192

 

12          POLICY AND GOVERNMENT INITIATIVES    194

  • 12.1     National Nuclear Energy Policies     195
  • 12.2     SMR-Specific Support Programs      197
  • 12.3     Research and Development Funding             198
  • 12.4     International Cooperation and Technology Transfer            200
  • 12.5     Export Control and Non-Proliferation Measures     202

 

13          CHALLENGES AND OPPORTUNITIES             204

  • 13.1     Technical Challenges               204
    • 13.1.1 Design Certification and Licensing  205
    • 13.1.2 Fuel Development and Supply           206
    • 13.1.3 Component Manufacturing and Quality Assurance             206
    • 13.1.4 Grid Integration and Load Following               208
  • 13.2     Economic Challenges              209
    • 13.2.1 Capital Costs and Financing               209
    • 13.2.2 Economies of Scale   210
    • 13.2.3 Market Competition from Other Energy Sources    212
  • 13.3     Regulatory Challenges            213
    • 13.3.1 Harmonization of International Standards 213
    • 13.3.2 Site Licensing and Environmental Approvals            214
    • 13.3.3 Liability and Insurance Issues            215
  • 13.4     Social and Political Challenges         216
    • 13.4.1 Public Perception and Acceptance  218
    • 13.4.2 Nuclear Proliferation Concerns         218
    • 13.4.3 Waste Management and Long-Term Storage             218
  • 13.5     Opportunities 220
    • 13.5.1 Decarbonization of Energy Systems               220
    • 13.5.2 Energy Security and Independence 221
    • 13.5.3 Industrial Applications and Process Heat   221
    • 13.5.4 Remote and Off-Grid Power Solutions          222
    • 13.5.5 Nuclear-Renewable Hybrid Energy Systems             223

 

14          FUTURE OUTLOOK AND SCENARIOS            224

  • 14.1     Technology Roadmap (2025-2045) 225
  • 14.2     Market Evolution Scenarios  226
    • 14.2.1 Conservative Scenario            227
    • 14.2.2 Base Case Scenario  228
    • 14.2.3 Optimistic Scenario  229
  • 14.3     Long-Term Market Projections (Beyond 2045)         230
  • 14.4     Potential Disruptive Technologies    232
  • 14.5     Global Energy Mix Scenarios with SMR Integration               233

 

15          CASE STUDIES              234

 

16          INVESTMENT ANALYSIS           239

  • 16.1     Return on Investment (ROI) Projections       239
  • 16.2     Risk Assessment and Mitigation Strategies                240
  • 16.3     Comparative Analysis with Other Energy Investments       242
  • 16.4     Public-Private Partnership Models  243

 

17          RECOMMENDATIONS             244

  • 17.1     For Policymakers and Regulators     244
  • 17.2     For Industry Stakeholders and Manufacturers        245
  • 17.3     For Utility Companies and Energy Providers              246
  • 17.4     For Investors and Financial Institutions       247
  • 17.5     For Research and Academic Institutions    248

 

18          COMPANY PROFILES                249 (32 company profiles)

 

19          APPENDICES  284

  • 19.1     List of Abbreviations  284
  • 19.2     Research Methodology           285
  • 19.3     Glossary of Terms       286

 

20          REFERENCES 289

 

List of Tables

  • Table 1. Generations of nuclear technologies.        16
  • Table 2. Technological trends in Nuclear Small Modular Reactors (SMR).            22
  • Table 3. Regulatory landscape for Nuclear Small Modular Reactors (SMR).        23
  • Table 4. Designs by generation.         27
  • Table 5. Established nuclear technologies.               27
  • Table 6. Advantages and Disadvantages of SMRs. 32
  • Table 7. Comparison with Traditional Nuclear Reactors.  34
  • Table 8. Comparison of SMR Types: LWRs, HTGRs, FNRs, and MSRs.     38
  • Table 9. Applications of SMRs.           75
  • Table 10. SMR Applications and Their Market Share, 2025-2045.               76
  • Table 11. Global Energy Mix Projections, 2025-2045.         92
  • Table 12. Key Components and Systems.   99
  • Table 13. Key Safety Features of SMRs.        101
  • Table 14. Advanced Manufacturing Techniques.    103
  • Table 15. Emerging Technologies and Future Developments in SMRs.    108
  • Table 16. Global SMR Market Size and Growth Rate, 2025-2045 120
  • Table 17. SMR Market Size by Reactor Type, 2025-2045.  122
  • Table 18. SMR Market Size by Application, 2025-2045.     124
  • Table 19. SMR Market Size by Region, 2025-2045. 126
  • Table 20. Cost Breakdown of SMR Construction and Operation. 132
  • Table 21. Financing Models for SMR Projects.          134
  • Table 22. Projected SMR Capacity Additions by Region, 2025-2045.       135
  • Table 23. Main SMR market players.               150
  • Table 24. Nuclear Small Modular Reactor (SMR) Market News 2022-2024.         153
  • Table 25. SMR private investment.   159
  • Table 26. Major SMR Projects and Their Status, 2025.       161
  • Table 27. SMR Deployment Scenarios: FOAK vs. NOAK.    161
  • Table 28. SMR Deployment Timeline, 2025-2045. 164
  • Table 29. SMR Supply Chain Components and Key Players.           172
  • Table 30. Job Creation in SMR Industry by Sector. 180
  • Table 31. Comparison with Other Clean Energy Technologies.     183
  • Table 32. Comparison of Carbon Emissions: SMRs vs. Other Energy Sources.  186
  • Table 33. Land Use Comparison: SMRs vs. Traditional Nuclear Plants.  187
  • Table 34. Water Usage Comparison: SMRs vs. Traditional Nuclear Plants.           188
  • Table 35. Government Funding for SMR Research and Development by Country.           194
  • Table 36. Government Initiatives Supporting SMR Development by Country.     194
  • Table 37. National Nuclear Energy Policies.              195
  • Table 38. SMR-Specific Support Programs.               197
  • Table 39. R&D Funding Allocation for SMR Technologies. 198
  • Table 40. International Cooperation Networks in SMR Development.      200
  • Table 41. Export Control and Non-Proliferation Measures.              202
  • Table 42. Technical Challenges in SMR Development and Deployment. 204
  • Table 43. Economic Challenges in SMR Commercialization.         209
  • Table 44. Market Competition: SMRs vs. Other Clean Energy Technologies.       212
  • Table 45. Regulatory Challenges for SMR Adoption.            213
  • Table 46. Regulatory Harmonization Efforts for SMRs Globally.   213
  • Table 47. Liability and Insurance Models for SMR Operations.     215
  • Table 48. Social and Political Challenges for SMR Implementation.          216
  • Table 49. Non-Proliferation Measures for SMR Technology.             218
  • Table 50. Waste Management Strategies for SMRs.             219
  • Table 51. Decarbonization Potential of SMRs in Energy Systems.               220
  • Table 52. SMR Applications in Industrial Process Heat.     221
  • Table 53. Off-Grid and Remote Power Solutions Using SMRs.      222
  • Table 54. SMR Market Evolution Scenarios, 2025-2045.   226
  • Table 55. Long-Term Market Projections for SMRs (Beyond 2045).             230
  • Table 56. Potential Disruptive Technologies in Nuclear Energy.    232
  • Table 57. Global Energy Mix Scenarios with SMR Integration, 2045.         233
  • Table 58. ROI Projections for SMR Investments, 2025-2045.         239
  • Table 59. Comparative ROI: SMRs vs. Other Energy Investments.              239
  • Table 60. Risk Assessment and Mitigation Strategies.        240
  • Table 61. SMR Supply Chain Risk Mitigation Strategies.    241
  • Table 62. Comparative Analysis with Other Energy Investments. 242
  • Table 63. Public-Private Partnership Models for SMR Projects.     243
  • Table 64. Stakeholder Engagement Model for SMR Projects.         245

 

List of Figures

  • Figure 1. SMR Market Growth Trajectory, 2025-2045.         21
  • Figure 2. Schematic of Small Modular Reactor (SMR) operation. 26
  • Figure 3. Linglong One.            36
  • Figure 4. CAREM reactor.       43
  • Figure 5. Westinghouse Nuclear AP300™ Small Modular Reactor               44
  • Figure 6. Advanced CANDU Reactor (ACR-300) schematic.           47
  • Figure 7. GE Hitachi's BWRX-300.    50
  • Figure 8. The nuclear island of HTR-PM Demo.        53
  • Figure 9. U-Battery schematic.           53
  • Figure 10. TerraPower's Natrium.      56
  • Figure 11. Russian BREST-OD-300. 57
  • Figure 12. Terrestrial Energy's IMSR.               60
  • Figure 13. Moltex Energy's SSR.         60
  • Figure 14. Westinghouse's eVinci .   62
  • Figure 15. Ultra Safe Nuclear Corporation's MMR. 62
  • Figure 16. Leadcold SEALER.              68
  • Figure 17. GE Hitachi PRISM.              68
  • Figure 18. SCWR schematic.               70
  • Figure 19. SMR Applications and Their Market Share, 2025-2045.             77
  • Figure 20. Projected Energy Demand (2025-2045).              94
  • Figure 21. SMR Licensing Process Timeline.             114
  • Figure 22. Global SMR Market Size and Growth Rate, 2025-2045.             121
  • Figure 23. SMR Market Size by Reactor Type, 2025-2045. 122
  • Figure 24. SMR Market Size by Application, 2025-2045.   124
  • Figure 25. SMR Market Size by Region, 2025-2045.              126
  • Figure 26. SWOT Analysis of the SMR Market.          129
  • Figure 27. Nuclear SMR Value Chain.            130
  • Figure 28. Global SMR Capacity Forecast, 2025-2045.     166
  • Figure 29. SMR Market Penetration in Different Energy Sectors.   167
  • Figure 30. Carbon Emissions Reduction Potential of SMRs, 2025-2045.               186
  • Figure 31. SMR Fuel Cycle Diagram.              206
  • Figure 32. Modular Construction Process for SMRs.           207
  • Figure 33.  Power plant with small modular reactors.         208
  • Figure 34. Cost Reduction Curve for SMR Manufacturing.              209
  • Figure 35. Economies of Scale in SMR Production.              210
  • Figure 36. SMR Waste Management Lifecycle.        219
  • Figure 37. Nuclear-Renewable Hybrid Energy System Configurations.   223
  • Figure 38. Technical Readiness Levels of Different SMR Technologies.   224
  • Figure 39. Technology Roadmap (2025-2045).        225
  • Figure 40. NuScale Power VOYGR™ SMR Power Plant Design.       234
  • Figure 41. Rolls-Royce UK SMR Program Timeline.               235
  • Figure 42. China's HTR-PM Demonstration Project Layout.             235
  • Figure 43. Russia's Floating Nuclear Power Plant Schematic.        236
  • Figure 44. Canadian SMR Action Plan Implementation Roadmap.            236
  • Figure 45. Risk Assessment Matrix for SMR Investments. 247
  • Figure 46. ARC-100 sodium-cooled fast reactor.    249
  • Figure 47. ACP100 SMR.         253
  • Figure 48. Deep Fission pressurised water reactor schematic.     254
  • Figure 49. NUWARD SMR design.     255
  • Figure 50. A rendering image of NuScale Power's SMR plant.        269
  • Figure 51. Oklo Aurora Powerhouse reactor.             271
  • Figure 52. Multiple LDR-50 unit plant.           275

 

 

Nuclear Small Modular Reactors (SMRs) Global Market 2025-2045
Nuclear Small Modular Reactors (SMRs) Global Market 2025-2045
PDF download/by email.

Nuclear Small Modular Reactors (SMRs) Global Market 2025-2045
Nuclear Small Modular Reactors (SMRs) Global Market 2025-2045
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com