Global Per- and polyfluoroalkyl substances (PFAS) and PFAS Alternatives Market 2025-2035

0

cover

  • Published: August 2024
  • Pages: 278
  • Tables: 94
  • Figures: 16

 

PFAS, otherwise known as ‘forever chemicals,’ are widespread in an array of everyday products.  PFAS are a growing concern due to their environmental persistence and potential health risks. These manufactured chemicals are widespread and found in numerous everyday products like non-stick cookware, water repellents, stain-resistant fabrics, firefighting foams, and food packaging, where they are valued due to their high performance. There are more than 3000 types of PFAS commercially available on the world market today. However, regulatory restrictions on PFAS are gaining momentum. Notably, California (by 2025) and New York (by 2024) have taken the lead by implementing bans, and the European Union is actively pushing for a similar restriction. As a result, various alternatives to PFAS across different industries and applications are being developed in response to growing environmental concerns and regulatory pressures surrounding PFAS use.

This extensive market research report provides a thorough analysis of the global Per- and Polyfluoroalkyl Substances (PFAS) market and the fast growing alternatives sector. As environmental concerns and regulatory pressures mount, this report offers crucial insights into the shifting landscape of PFAS usage, alternatives development, and market dynamics across various industries. Report contents include:

  • Types of PFAS, chemical structure, properties, historical development, and types.
  • Environmental and health concerns associated with PFAS, including their persistence, bioaccumulation, toxicity, and widespread environmental contamination.
  • Comprehensive overview of the global regulatory landscape including international agreements, European Union regulations, United States policies, and Asian regulatory frameworks. 
  • PFAS usage in key sectors such as semiconductors, textiles and clothing, food packaging, paints and coatings, ion exchange membranes, energy, low-loss materials for 5G, cosmetics, firefighting foam, automotive, electronics, and medical devices. Each industry section provides an overview of PFAS applications, regulatory implications, and emerging alternatives.
  • PFAS alternatives including PFAS-free release agents, non-fluorinated surfactants and dispersants, PFAS-free water and oil-repellent materials, fluorine-free liquid-repellent surfaces, and PFAS-free colorless transparent polyimide.
  • Methods for PFAS degradation and elimination, with a focus on bio-friendly approaches such as phytoremediation, microbial degradation, enzyme-based degradation, and other green technologies. 
  • Market analysis and future outlook including a global PFAS market overview, regional market analysis, and market segmentation by industry.
  • Assessment of challenges and barriers to PFAS substitution, including technical performance gaps, cost considerations, and regulatory uncertainty. It offers future market projections, providing valuable insights for stakeholders across the PFAS and alternatives value chain.
  • Profiles of over 500 companies developing PFAS alternatives and PFAS degradation chemicals.

 

This report is an essential resource for:

  • Chemical manufacturers and suppliers
  • Environmental consultants and remediation specialists
  • Regulatory bodies and policymakers
  • Industry executives in sectors utilizing PFAS
  • Investors and financial analysts focusing on chemical and environmental markets
  • Research institutions and academics studying PFAS and alternatives
  • Sustainability professionals and environmental NGOs

 

 

Download table of contents (PDF)

1             EXECUTIVE SUMMARY            16

  • 1.1        Introduction to PFAS 16
  • 1.2        Definition and Overview of PFAS       17
    • 1.2.1    Chemical Structure and Properties 18
    • 1.2.2    Historical Development and Use      19
  • 1.3        Types of PFAS 20
    • 1.3.1    Non-polymeric PFAS 20
      • 1.3.1.1 Long-Chain PFAS        20
      • 1.3.1.2 Short-Chain PFAS       21
      • 1.3.1.3 Other non-polymeric PFAS   23
    • 1.3.2    Polymeric PFAS            24
      • 1.3.2.1 Fluoropolymers (FPs)               24
      • 1.3.2.2 Side-chain fluorinated polymers:     25
      • 1.3.2.3 Perfluoropolyethers   25
  • 1.4        Properties and Applications of PFAS              26
    • 1.4.1    Water and Oil Repellency       26
    • 1.4.2    Thermal and Chemical Stability        27
    • 1.4.3    Surfactant Properties               27
    • 1.4.4    Low Friction    28
    • 1.4.5    Electrical Insulation  28
    • 1.4.6    Film-Forming Abilities              29
    • 1.4.7    Atmospheric Stability               29
  • 1.5        Environmental and Health Concerns             29
    • 1.5.1    Persistence in the Environment         30
    • 1.5.2    Bioaccumulation        31
    • 1.5.3    Toxicity and Health Effects    32
    • 1.5.4    Environmental Contamination           33
  • 1.6        PFAS Alternatives        34
  • 1.7        Analytical techniques              36
  • 1.8        Manufacturing/handling/import/export       38
  • 1.9        Storage/disposal/treatment/purification     39
  • 1.10     Water quality management  41
  • 1.11     Alternative technologies and supply chains              43

 

2             GLOBAL REGULATORY LANDSCAPE               45

  • 2.1        Impact of growing PFAS regulation  45
  • 2.2        International Agreements      48
  • 2.3        European Union Regulations               48
  • 2.4        United States Regulations     49
    • 2.4.1    Federal regulations    49
    • 2.4.2    State-Level Regulations          51
  • 2.5        Asian Regulations       53
    • 2.5.1    Japan  53
      • 2.5.1.1 Chemical Substances Control Law (CSCL)               53
      • 2.5.1.2 Water Quality Standards        53
    • 2.5.2    China  54
      • 2.5.2.1 List of New Contaminants Under Priority Control  54
      • 2.5.2.2 Catalog of Toxic Chemicals Under Severe Restrictions     54
      • 2.5.2.3 New Pollutants Control Action Plan                55
    • 2.5.3    Taiwan 55
      • 2.5.3.1 Toxic and Chemical Substances of Concern Act    55
    • 2.5.4    Australia and New Zealand   55
    • 2.5.5    Canada             56
    • 2.5.6    South Korea    56
  • 2.6        Global Regulatory Trends and Outlook         57

 

3             INDUSTRY-SPECIFIC PFAS USAGE  58

  • 3.1        Semiconductors          58
    • 3.1.1    Importance of PFAS   58
    • 3.1.2    Front-end processes 60
      • 3.1.2.1 Lithography     60
      • 3.1.2.2 Wet etching solutions              61
      • 3.1.2.3 Chiller coolants for dry etchers          62
      • 3.1.2.4 Piping and valves         62
    • 3.1.3    Back-end processes 62
      • 3.1.3.1 Interconnects and Packaging Materials       62
      • 3.1.3.2 Molding materials       63
      • 3.1.3.3 Die attach materials  63
      • 3.1.3.4 Interlayer film for package substrates           63
      • 3.1.3.5 Thermal management             64
    • 3.1.4    Product life cycle and impact of PFAS           64
      • 3.1.4.1 Manufacturing Stage (Raw Materials)            64
      • 3.1.4.2 Usage Stage (Semiconductor Factory)         65
      • 3.1.4.3 Disposal Stage              65
    • 3.1.5    Environmental and Human Health Impacts              65
    • 3.1.6    Regulatory Trends Related to Semiconductors       66
    • 3.1.7    Exemptions     66
    • 3.1.8    Future Regulatory Trends       67
    • 3.1.9    Alternatives to PFAS  67
      • 3.1.9.1 Alkyl Polyglucoside and Polyoxyethylene Surfactants        68
      • 3.1.9.2 Non-PFAS Etching Solutions               68
      • 3.1.9.3 PTFE-Free Sliding Materials  68
      • 3.1.9.4 Metal oxide-based materials               68
      • 3.1.9.5 Fluoropolymer Alternatives   68
      • 3.1.9.6 Silicone-based Materials       69
      • 3.1.9.7 Hydrocarbon-based Surfactants      69
      • 3.1.9.8 Carbon Nanotubes and Graphene   70
      • 3.1.9.9 Engineered Polymers                70
      • 3.1.9.10            Supercritical CO2 Technology            71
      • 3.1.9.11            Plasma Technologies                71
      • 3.1.9.12            Sol-Gel Materials        72
      • 3.1.9.13            Biodegradable Polymers        72
  • 3.2        Textiles and Clothing 73
    • 3.2.1    Overview           73
    • 3.2.2    PFAS in Water-Repellent Materials  74
    • 3.2.3    Stain-Resistant Treatments  74
    • 3.2.4    Regulatory Impact on Water-Repellent Clothing    75
    • 3.2.5    Industry Initiatives and Commitments         76
    • 3.2.6    Alternatives to PFAS  77
      • 3.2.6.1 Enhanced surface treatments            78
      • 3.2.6.2 Non-fluorinated treatments 78
      • 3.2.6.3 Biomimetic approaches         79
      • 3.2.6.4 Nano-structured surfaces    79
      • 3.2.6.5 Wax-based additives 80
      • 3.2.6.6 Plasma treatments     80
      • 3.2.6.7 Sol-gel coatings            81
      • 3.2.6.8 Superhydrophobic coatings 82
      • 3.2.6.9 Biodegradable Polymer Coatings     83
      • 3.2.6.10            Graphene-based Coatings    83
      • 3.2.6.11            Enzyme-based Treatments   83
      • 3.2.6.12            Companies     84
  • 3.3        Food Packaging           86
    • 3.3.1    Sustainable packaging            86
      • 3.3.1.1 PFAS in Grease-Resistant Packaging             86
      • 3.3.1.2 Other applications     87
      • 3.3.1.3 Regulatory Trends in Food Contact Materials           87
    • 3.3.2    Alternatives to PFAS  88
      • 3.3.2.1 Biobased materials    88
        • 3.3.2.1.1           Polylactic Acid (PLA) 89
        • 3.3.2.1.2           Polyhydroxyalkanoates (PHAs)          89
        • 3.3.2.1.3           Cellulose-based materials   90
          • 3.3.2.1.3.1      Nano-fibrillated cellulose (NFC)       91
          • 3.3.2.1.3.2      Bacterial Nanocellulose (BNC)          92
        • 3.3.2.1.4           Silicon-based Alternatives     93
        • 3.3.2.1.5           Natural Waxes and Resins    94
        • 3.3.2.1.6           Engineered Paper and Board               95
        • 3.3.2.1.7           Nanocomposites        95
        • 3.3.2.1.8           Plasma Treatments    96
        • 3.3.2.1.9           Biodegradable Polymer Blends          97
        • 3.3.2.1.10        Chemically Modified Natural Polymers        98
        • 3.3.2.1.11        Molded Fiber  99
      • 3.3.2.2 PFAS-free coatings for food packaging         100
        • 3.3.2.2.1           Silicone-based Coatings:       100
        • 3.3.2.2.2           Bio-based Barrier Coatings   101
        • 3.3.2.2.3           Nanocellulose Coatings         102
        • 3.3.2.2.4           Superhydrophobic and Omniphobic Coatings         103
        • 3.3.2.2.5           Clay-based Nanocomposite Coatings          103
        • 3.3.2.2.6           Coated Papers              104
      • 3.3.2.3 Companies     105
  • 3.4        Paints and Coatings  108
    • 3.4.1    Overview           108
    • 3.4.2    Applications   108
    • 3.4.3    Alternatives to PFAS  109
      • 3.4.3.1 Silicon-Based Alternatives:   109
      • 3.4.3.2 Hydrocarbon-Based Alternatives:    110
      • 3.4.3.3 Nanomaterials              110
      • 3.4.3.4 Plasma-Based Surface Treatments 111
      • 3.4.3.5 Inorganic Alternatives               112
      • 3.4.3.6 Bio-based Polymers: 112
      • 3.4.3.7 Dendritic Polymers    113
      • 3.4.3.8 Zwitterionic Polymers               113
      • 3.4.3.9 Graphene-based Coatings    114
      • 3.4.3.10            Hybrid Organic-Inorganic Coatings 114
      • 3.4.3.11            Companies     114
  • 3.5        Ion Exchange membranes     118
    • 3.5.1    Overview           118
      • 3.5.1.1 PFAS in Ion Exchange Membranes   119
    • 3.5.2    Proton Exchange Membranes             119
      • 3.5.2.1 Overview           119
      • 3.5.2.2 Proton Exchange Membrane Electrolyzers (PEMELs)          122
      • 3.5.2.3 Membrane Degradation          123
      • 3.5.2.4 Nafion 124
      • 3.5.2.5 Membrane electrode assembly (MEA)          126
    • 3.5.3    Manufacturing PFSA Membranes     127
    • 3.5.4    Enhancing PFSA Membranes              129
    • 3.5.5    Commercial PFSA membranes         130
    • 3.5.6    Catalyst Coated Membranes              131
      • 3.5.6.1 Alternatives to PFAS  132
    • 3.5.7    Membranes in Redox Flow Batteries               134
      • 3.5.7.1 Alternative Materials for RFB Membranes   135
    • 3.5.8    Alternatives to PFAS  137
      • 3.5.8.1 Alternative Polymer Materials             137
      • 3.5.8.2 Anion Exchange Membrane Technology (AEM) fuel cells   138
      • 3.5.8.3 Nanocellulose               139
      • 3.5.8.4 Boron-containing membranes           140
      • 3.5.8.5 Hydrocarbon-based membranes     140
      • 3.5.8.6 Metal-Organic Frameworks (MOFs) 141
        • 3.5.8.6.1           MOF Composite Membranes              142
      • 3.5.8.7 Graphene         143
      • 3.5.8.8 Companies     144
  • 3.6        Energy (excluding fuel cells) 145
    • 3.6.1    Overview           145
    • 3.6.2    Solar Panels   146
    • 3.6.3    Wind Turbines               146
      • 3.6.3.1 Blade Coatings             146
      • 3.6.3.2 Lubricants and Greases         147
      • 3.6.3.3 Electrical and Electronic Components         147
      • 3.6.3.4 Seals and Gaskets      147
    • 3.6.4    Lithium-Ion Batteries                148
      • 3.6.4.1 Electrode Binders       148
      • 3.6.4.2 Electrolyte Additives 149
      • 3.6.4.3 Separator Coatings    149
      • 3.6.4.4 Current Collector Coatings   149
      • 3.6.4.5 Gaskets and Seals      149
      • 3.6.4.6 Fluorinated Solvents in Electrode Manufacturing 149
      • 3.6.4.7 Surface Treatments   150
    • 3.6.5    Alternatives to PFAS  150
      • 3.6.5.1 Solar    151
        • 3.6.5.1.1           Ethylene Vinyl Acetate (EVA) Encapsulants               151
        • 3.6.5.1.2           Polyolefin Encapsulants        152
        • 3.6.5.1.3           Glass-Glass Module Design 152
        • 3.6.5.1.4           Bio-based Backsheets            153
      • 3.6.5.2 Wind Turbines               153
        • 3.6.5.2.1           Silicone-Based Coatings        153
        • 3.6.5.2.2           Nanocoatings 153
        • 3.6.5.2.3           Thermal De-icing Systems    154
        • 3.6.5.2.4           Polyurethane-Based Coatings            155
      • 3.6.5.3 Lithium-Ion Batteries                156
        • 3.6.5.3.1           Water-Soluble Binders             156
        • 3.6.5.3.2           Polyacrylic Acid (PAA) Based Binders            156
        • 3.6.5.3.3           Alginate-Based Binders          157
        • 3.6.5.3.4           Ionic Liquid Electrolytes          158
      • 3.6.5.4 Companies     159
  • 3.7        Low-loss materials for 5G      160
    • 3.7.1    Overview           160
      • 3.7.1.1 Organic PCB materials for 5G             161
    • 3.7.2    PTFE in 5G        162
      • 3.7.2.1 Properties         162
      • 3.7.2.2 PTFE-Based Laminates           163
      • 3.7.2.3 Regulations     164
      • 3.7.2.4 Commercial low-loss               165
    • 3.7.3    Alternatives to PFAS  166
      • 3.7.3.1 Liquid crystal polymers (LCP)             166
      • 3.7.3.2 Poly(p-phenylene ether) (PPE)            167
      • 3.7.3.3 Poly(p-phenylene oxide) (PPO)           167
      • 3.7.3.4 Hydrocarbon-based laminates          168
      • 3.7.3.5 Low Temperature Co-fired Ceramics (LTCC)             169
      • 3.7.3.6 Glass Substrates         171
  • 3.8        Cosmetics       173
    • 3.8.1    Overview           173
    • 3.8.2    Use in cosmetics         174
    • 3.8.3    Alternatives to PFAS  174
      • 3.8.3.1 Silicone-based Polymers       175
      • 3.8.3.2 Plant-based Waxes and Oils 175
      • 3.8.3.3 Naturally Derived Polymers  175
      • 3.8.3.4 Silica-based Materials             176
      • 3.8.3.5 Companies Developing PFAS Alternatives in Cosmetics  176
  • 3.9        Firefighting Foam        178
    • 3.9.1    Overview           178
    • 3.9.2    Aqueous Film-Forming Foam (AFFF)              178
    • 3.9.3    Environmental Contamination from AFFF Use        178
    • 3.9.4    Regulatory Pressures and Phase-Out Initiatives     179
    • 3.9.5    Alternatives to PFAS  180
      • 3.9.5.1 Fluorine-Free Foams (F3)      180
      • 3.9.5.2 Siloxane-Based Foams           181
      • 3.9.5.3 Protein-Based Foams              181
      • 3.9.5.4 Synthetic Detergent Foams (Syndet)              181
      • 3.9.5.5 Compressed Air Foam Systems (CAFS)        181
  • 3.10     Automotive      182
    • 3.10.1 Overview           182
    • 3.10.2 PFAS in Lubricants and Hydraulic Fluids     183
    • 3.10.3 Use in Fuel Systems and Engine Components        184
    • 3.10.4 Electric Vehicle             185
      • 3.10.4.1            PFAS in Electric Vehicles        185
      • 3.10.4.2            High-Voltage Cables 186
      • 3.10.4.3            Refrigerants    187
        • 3.10.4.3.1        Coolant Fluids in EVs               187
        • 3.10.4.3.2        Refrigerants for EVs   188
        • 3.10.4.3.3        Regulations     189
        • 3.10.4.3.4        PFAS-free Refrigerants            189
      • 3.10.4.4            Immersion Cooling for Li-ion Batteries          190
        • 3.10.4.4.1        Overview           190
        • 3.10.4.4.2        Single-phase Cooling               192
        • 3.10.4.4.3        Two-phase Cooling    193
        • 3.10.4.4.4        Companies     195
        • 3.10.4.4.5        PFAS-based Coolants in Immersion Cooling for EVs           195
    • 3.10.5 Alternatives to PFAS  197
      • 3.10.5.1            Lubricants and Greases         198
      • 3.10.5.2            Fuel System Components     199
      • 3.10.5.3            Surface Treatments and Coatings    199
      • 3.10.5.4            Gaskets and Seals      200
      • 3.10.5.5            Hydraulic Fluids           201
      • 3.10.5.6            Electrical and Electronic Components         202
      • 3.10.5.7            Paint and Coatings     202
      • 3.10.5.8            Windshield and Glass Treatments   203
  • 3.11     Electronics      204
    • 3.11.1 Overview           204
    • 3.11.2 PFAS in Printed Circuit Boards           205
    • 3.11.3 Cable and Wire Insulation     205
    • 3.11.4 Regulatory Challenges for Electronics Manufacturers       206
    • 3.11.5 Alternatives to PFAS  207
      • 3.11.5.1            Wires and Cables        207
      • 3.11.5.2            Coating              207
      • 3.11.5.3            Electronic Components         208
      • 3.11.5.4            Sealing and Lubricants           209
      • 3.11.5.5            Cleaning           209
      • 3.11.5.6            Companies     210
  • 3.12     Medical Devices           214
    • 3.12.1 Overview           214
    • 3.12.2 PFAS in Implantable Devices               215
    • 3.12.3 Diagnostic Equipment Applications               215
    • 3.12.4 Balancing Safety and Performance in Regulations               216
    • 3.12.5 Alternatives to PFAS  218
  • 3.13     Green hydrogen            219
    • 3.13.1 Electrolyzers   219
    • 3.13.2 Alternatives to PFAS  219
    • 3.13.3 Economic implications           220

 

4             PFAS ALTERNATIVES 221

  • 4.1        PFAS-Free Release Agents    221
    • 4.1.1    Silicone-Based Alternatives  221
    • 4.1.2    Hydrocarbon-Based Solutions           222
    • 4.1.3    Performance Comparisons  223
  • 4.2        Non-Fluorinated Surfactants and Dispersants       224
    • 4.2.1    Bio-Based Surfactants            225
    • 4.2.2    Silicon-Based Surfactants    226
    • 4.2.3    Hydrocarbon-Based Surfactants      227
  • 4.3        PFAS-Free Water and Oil-Repellent Materials          228
    • 4.3.1    Dendrimers and Hyperbranched Polymers                228
    • 4.3.2    PFA-Free Durable Water Repellent (DWR) Coatings             228
    • 4.3.3    Silicone-Based Repellents    229
    • 4.3.4    Nano-Structured Surfaces    230
  • 4.4        Fluorine-Free Liquid-Repellent Surfaces     232
    • 4.4.1    Superhydrophobic Coatings 232
    • 4.4.2    Omniphobic Surfaces              233
    • 4.4.3    Slippery Liquid-Infused Porous Surfaces (SLIPS)   234
  • 4.5        PFAS-Free Colorless Transparent Polyimide             235
    • 4.5.1    Novel Polymer Structures      235
    • 4.5.2    Applications in Flexible Electronics 236

 

5             PFAS DEGRADATION AND ELIMINATION     238

  • 5.1        Current methods for PFAS degradation and elimination   238
  • 5.2        Bio-friendly methods                239
    • 5.2.1    Phytoremediation       239
    • 5.2.2    Microbial Degradation             240
    • 5.2.3    Enzyme-Based Degradation 240
    • 5.2.4    Mycoremediation        241
    • 5.2.5    Biochar Adsorption    241
    • 5.2.6    Green Oxidation Methods     242
    • 5.2.7    Bio-based Adsorbents             244
    • 5.2.8    Algae-Based Systems              244
  • 5.3        Companies     245

 

6             MARKET ANALYSIS AND FUTURE OUTLOOK             248

  • 6.1        Current Market Size and Segmentation        248
    • 6.1.1    Global PFAS Market Overview            248
    • 6.1.2    Regional Market Analysis      249
      • 6.1.2.1 North America              249
      • 6.1.2.2 Europe                249
      • 6.1.2.3 Asia-Pacific    250
      • 6.1.2.4 Latin America 250
      • 6.1.2.5 Middle East and Africa             250
    • 6.1.3    Market Segmentation by Industry    251
      • 6.1.3.1 Textiles and Apparel  251
      • 6.1.3.2 Food Packaging           252
      • 6.1.3.3 Firefighting Foams      252
      • 6.1.3.4 Electronics & semiconductors           252
      • 6.1.3.5 Automotive      252
      • 6.1.3.6 Aerospace        253
      • 6.1.3.7 Construction  253
      • 6.1.3.8 Others 253
  • 6.2        Impact of Regulations on Market Dynamics             254
    • 6.2.1    Shift from Long-Chain to Short-Chain PFAS              254
    • 6.2.2    Growth in PFAS-Free Alternatives Market    255
    • 6.2.3    Regional Market Shifts Due to Regulatory Differences       257
  • 6.3        Emerging Trends and Opportunities               258
    • 6.3.1    Green Chemistry Innovations             258
    • 6.3.2    Circular Economy Approaches          259
    • 6.3.3    Digital Technologies for PFAS Management              260
  • 6.4        Challenges and Barriers to PFAS Substitution         262
    • 6.4.1    Technical Performance Gaps              262
    • 6.4.2    Cost Considerations 263
    • 6.4.3    Regulatory Uncertainty            265
  • 6.5        Future Market Projections     266
    • 6.5.1    Short-Term Outlook (1-3 Years)          266
    • 6.5.2    Medium-Term Projections (3-5 Years)            268
    • 6.5.3    Long-Term Scenarios (5-10 Years)    269

 

7             RESEARCH METHODOLOGY              273

 

8             REFERENCES 274

 

List of Tables

  • Table 1. Established applications of PFAS. 16
  • Table 2. PFAS chemicals segmented by non-polymers vs polymers.        16
  • Table 3. Non-polymeric PFAS.            17
  • Table 4. Chemical structure and physiochemical properties of various perfluorinated surfactants.  18
  • Table 5. Examples of long-chain PFAS-Applications, Regulatory Status and Environmental and Health Effects.              20
  • Table 6. Examples of short-chain PFAS.       21
  • Table 7. Other non-polymeric PFAS.               23
  • Table 8. Examples of fluoropolymers.           24
  • Table 9. Examples of side-chain fluorinated polymers.     25
  • Table 10. Applications of PFAs.          26
  • Table 11. PFAS surfactant properties.            28
  • Table 12. List of PFAS alternatives.  34
  • Table 13. Common PFAS and their regulation.         45
  • Table 14. International PFAS regulations.    48
  • Table 15. European Union Regulations.       49
  • Table 16. United States Regulations.             51
  • Table 17. PFAS Regulations in Asia-Pacific Countries.       56
  • Table 18. Identified uses of PFAS in semiconductors.        58
  • Table 19. Alternatives to PFAS in Semiconductors.               67
  • Table 20. Key properties of PFAS in water-repellent materials.     74
  • Table 21. Initiatives by outdoor clothing companies to phase out PFCs.                76
  • Table 22. Comparative analysis of Alternatives to PFAS for textiles.          77
  • Table 23. Companies developing PFAS alternatives for textiles.  84
  • Table 24. Applications of PFAS in Food Packaging.              86
  • Table 25. Regulation related to PFAS in food contact materials.  87
  • Table 26. Applications of cellulose nanofibers (CNF).        91
  • Table 27. Companies developing PFAS alternatives for food packaging.               105
  • Table 28. Applications and purpose of PFAS in paints and coatings.        108
  • Table 29. Companies developing PFAS alternatives for paints and coatings.      114
  • Table 30. Applications of Ion Exchange Membranes.          118
  • Table 31. Key aspects of PEMELs.    122
  • Table 32. Membrane Degradation Processes Overview.    123
  • Table 33. PFSA Membranes & Key Players. 123
  • Table 34. Competing Membrane Materials.               124
  • Table 35. Comparative analysis of membrane properties.               125
  • Table 36. Processes for manufacturing of  perfluorosulfonic acid (PFSA) membranes.               128
  • Table 37. PFSA Resin Suppliers.        131
  • Table 38. CCM Production Technologies.    132
  • Table 39. Comparison of Coating Processes.           132
  • Table 40. Alternatives to PFAS in catalyst coated membranes.    132
  • Table 41. Key Properties and Considerations for RFB Membranes.           134
  • Table 42. PFSA Membrane Manufacturers for RFBs.            135
  • Table 43. Alternative Materials for RFB Membranes             136
  • Table 44. Alternative Polymer Materials for Ion Exchange Membranes.  137
  • Table 45. Hydrocarbon Membranes for PEM Fuel Cells.    141
  • Table 46. Companies developing PFA alternatives for fuel cell membranes.      144
  • Table 47. Identified uses of PFASs in the energy sector.    145
  • Table 48. Alternatives to PFAS in Energy by Market (Excluding Fuel Cells).           150
  • Table 94: Anti-icing and de-icing nanocoatings product and application developers.   154
  • Table 49. Companies developing alternatives to PFAS in energy (excluding fuel cells).                159
  • Table 50. Commercial low-loss organic laminates-key properties at 10 GHz.    161
  • Table 51. Key Properties of PTFE to Consider for 5G Applications.             162
  • Table 52. Applications of PTFE in 5G in a table         162
  • Table 53. Challenges in PTFE-based laminates in 5G.        163
  • Table 54. Key regulations affecting PFAS use in low-loss materials.          164
  • Table 55. Commercial low-loss materials suitable for 5G applications. 165
  • Table 56. Key low-loss materials suppliers.               165
  • Table 57. Alternatives to PFAS for low-loss applications in 5G      166
  • Table 58. Benchmarking LTCC materials suitable for 5G applications.   170
  • Table 59. Benchmarking of various glass substrates suitable for 5G applications.         171
  • Table 60. Applications of PFAS in cosmetics.           174
  • Table 61. Alternatives to PFAS for various functions in cosmetics.            174
  • Table 62. Companies developing PFAS alternatives in cosmetics.             176
  • Table 63. Applications of PFAS in Automotive Industry.     183
  • Table 64. Application of PFAS in Electric Vehicles.                186
  • Table 65.Suppliers of PFAS-free Coolants and Refrigerants for EVs.         190
  • Table 66.Immersion Fluids for EVs   191
  • Table 67. Immersion Cooling Fluids Requirements.             192
  • Table 68. Single-phase vs two-phase cooling.         194
  • Table 69. Companies producing Immersion Fluids for EVs.            195
  • Table 70. Alternatives to PFAS in the automotive sector.   197
  • Table 71. Use of PFAS in the electronics sector.     204
  • Table 72. Companies developing alternatives to PFAS in electronics & semiconductors.          210
  • Table 73. Applications of PFAS in Medical Devices.              214
  • Table 74. Alternatives to PFAS in medical devices.               218
  • Table 75. Readiness level of PFAS alternatives.       221
  • Table 76. Comparing PFAS-free alternatives to traditional PFAS-containing release agents.   223
  • Table 77.Novel PFAS-free CTPI structures. 236
  • Table 78. Applications of PFAS-free CTPIs in flexible electronics.               236
  • Table 79. Current methods for PFAS elimination . 238
  • Table 80. Companies developing processes for PFA degradation and elimination.         245
  • Table 81. Global PFAS Market Projection (2023-2035), Billions USD.       248
  • Table 82. Regional PFAS Market Projection (2023-2035), Billions USD.  250
  • Table 83. PFAS Market Segmentation by Industry (2023-2035), Billions USD.    253
  • Table 84. Year Long-Chain PFAS andShort-Chain PFAS Market Share      255
  • Table 85.PFAS-Free Alternatives Market Size from 2020 to 2035, (Billions USD).             256
  • Table 86. Regional Market Data (2023) for PFAS and trends.          257
  • Table 87. Market Opportunities for PFAS alternatives.        259
  • Table 88. Circular Economy Initiatives and Potential Impact.        260
  • Table 89. Digital Technology Applications and Market Potential. 261
  • Table 90. Performance Comparison Table. 262
  • Table 91. Cost Comparison Table-PFAS and PFAS alternatives.   264
  • Table 92. Market Size 2023-2026 (USD Billions).   267
  • Table 93. Market size 2026-2030 (USD Billions).    268
  • Table 94. Long-Term Market Projections (2035).    270

 

List of Figures

  • Figure 1. Types of PFAS.          20
  • Figure 2. Structure of PFAS-based polymer finishes.          23
  • Figure 3. Water and Oil Repellent Textile Coating. 27
  • Figure 4. Main PFAS exposure route.              30
  • Figure 5. Main sources of perfluorinated compounds (PFC) and general pathways that these compounds may take toward human exposure.    31
  • Figure 6. Main sources of perfluorinated compounds (PFC) and general pathways that these compounds may take toward human exposure.    33
  • Figure 7.  Photolithography process in semiconductor manufacturing. 59
  • Figure 8. PFAS containing Chemicals by Technology Node.            60
  • Figure 9. The photoresist application process in photolithography.          61
  • Figure 10: Contact angle on superhydrophobic coated surface. 82
  • Figure 11. PEMFC Working Principle.             120
  • Figure 12. Schematic representation of a Membrane Electrode Assembly (MEA).          127
  • Figure 13. Slippery Liquid-Infused Porous Surfaces (SLIPS).          235
  • Figure 14. Aclarity’s Octa system.    243
  • Figure 15. Global PFAS Market Projection (2023-2035), Billions USD.     249
  • Figure 16. Regional PFAS Market Projection (2023-2035), Billions USD. 251

 

 

Global Per- and polyfluoroalkyl substances (PFAS) and PFAS Alternatives Market 2025-2035
Global Per- and polyfluoroalkyl substances (PFAS) and PFAS Alternatives Market 2025-2035
PDF download/by email.

Global Per- and polyfluoroalkyl substances (PFAS) and PFAS Alternatives Market 2025-2035
Global Per- and polyfluoroalkyl substances (PFAS) and PFAS Alternatives Market 2025-2035
PDF and Print Edition (including delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.