- Published: August 2024
- Pages: 278
- Tables: 94
- Figures: 16
PFAS, otherwise known as ‘forever chemicals,’ are widespread in an array of everyday products. PFAS are a growing concern due to their environmental persistence and potential health risks. These manufactured chemicals are widespread and found in numerous everyday products like non-stick cookware, water repellents, stain-resistant fabrics, firefighting foams, and food packaging, where they are valued due to their high performance. There are more than 3000 types of PFAS commercially available on the world market today. However, regulatory restrictions on PFAS are gaining momentum. Notably, California (by 2025) and New York (by 2024) have taken the lead by implementing bans, and the European Union is actively pushing for a similar restriction. As a result, various alternatives to PFAS across different industries and applications are being developed in response to growing environmental concerns and regulatory pressures surrounding PFAS use.
This extensive market research report provides a thorough analysis of the global Per- and Polyfluoroalkyl Substances (PFAS) market and the fast growing alternatives sector. As environmental concerns and regulatory pressures mount, this report offers crucial insights into the shifting landscape of PFAS usage, alternatives development, and market dynamics across various industries. Report contents include:
Download table of contents (PDF)
1 EXECUTIVE SUMMARY 16
- 1.1 Introduction to PFAS 16
- 1.2 Definition and Overview of PFAS 17
- 1.2.1 Chemical Structure and Properties 18
- 1.2.2 Historical Development and Use 19
- 1.3 Types of PFAS 20
- 1.3.1 Non-polymeric PFAS 20
- 1.3.1.1 Long-Chain PFAS 20
- 1.3.1.2 Short-Chain PFAS 21
- 1.3.1.3 Other non-polymeric PFAS 23
- 1.3.2 Polymeric PFAS 24
- 1.3.2.1 Fluoropolymers (FPs) 24
- 1.3.2.2 Side-chain fluorinated polymers: 25
- 1.3.2.3 Perfluoropolyethers 25
- 1.3.1 Non-polymeric PFAS 20
- 1.4 Properties and Applications of PFAS 26
- 1.4.1 Water and Oil Repellency 26
- 1.4.2 Thermal and Chemical Stability 27
- 1.4.3 Surfactant Properties 27
- 1.4.4 Low Friction 28
- 1.4.5 Electrical Insulation 28
- 1.4.6 Film-Forming Abilities 29
- 1.4.7 Atmospheric Stability 29
- 1.5 Environmental and Health Concerns 29
- 1.5.1 Persistence in the Environment 30
- 1.5.2 Bioaccumulation 31
- 1.5.3 Toxicity and Health Effects 32
- 1.5.4 Environmental Contamination 33
- 1.6 PFAS Alternatives 34
- 1.7 Analytical techniques 36
- 1.8 Manufacturing/handling/import/export 38
- 1.9 Storage/disposal/treatment/purification 39
- 1.10 Water quality management 41
- 1.11 Alternative technologies and supply chains 43
2 GLOBAL REGULATORY LANDSCAPE 45
- 2.1 Impact of growing PFAS regulation 45
- 2.2 International Agreements 48
- 2.3 European Union Regulations 48
- 2.4 United States Regulations 49
- 2.4.1 Federal regulations 49
- 2.4.2 State-Level Regulations 51
- 2.5 Asian Regulations 53
- 2.5.1 Japan 53
- 2.5.1.1 Chemical Substances Control Law (CSCL) 53
- 2.5.1.2 Water Quality Standards 53
- 2.5.2 China 54
- 2.5.2.1 List of New Contaminants Under Priority Control 54
- 2.5.2.2 Catalog of Toxic Chemicals Under Severe Restrictions 54
- 2.5.2.3 New Pollutants Control Action Plan 55
- 2.5.3 Taiwan 55
- 2.5.3.1 Toxic and Chemical Substances of Concern Act 55
- 2.5.4 Australia and New Zealand 55
- 2.5.5 Canada 56
- 2.5.6 South Korea 56
- 2.5.1 Japan 53
- 2.6 Global Regulatory Trends and Outlook 57
3 INDUSTRY-SPECIFIC PFAS USAGE 58
- 3.1 Semiconductors 58
- 3.1.1 Importance of PFAS 58
- 3.1.2 Front-end processes 60
- 3.1.2.1 Lithography 60
- 3.1.2.2 Wet etching solutions 61
- 3.1.2.3 Chiller coolants for dry etchers 62
- 3.1.2.4 Piping and valves 62
- 3.1.3 Back-end processes 62
- 3.1.3.1 Interconnects and Packaging Materials 62
- 3.1.3.2 Molding materials 63
- 3.1.3.3 Die attach materials 63
- 3.1.3.4 Interlayer film for package substrates 63
- 3.1.3.5 Thermal management 64
- 3.1.4 Product life cycle and impact of PFAS 64
- 3.1.4.1 Manufacturing Stage (Raw Materials) 64
- 3.1.4.2 Usage Stage (Semiconductor Factory) 65
- 3.1.4.3 Disposal Stage 65
- 3.1.5 Environmental and Human Health Impacts 65
- 3.1.6 Regulatory Trends Related to Semiconductors 66
- 3.1.7 Exemptions 66
- 3.1.8 Future Regulatory Trends 67
- 3.1.9 Alternatives to PFAS 67
- 3.1.9.1 Alkyl Polyglucoside and Polyoxyethylene Surfactants 68
- 3.1.9.2 Non-PFAS Etching Solutions 68
- 3.1.9.3 PTFE-Free Sliding Materials 68
- 3.1.9.4 Metal oxide-based materials 68
- 3.1.9.5 Fluoropolymer Alternatives 68
- 3.1.9.6 Silicone-based Materials 69
- 3.1.9.7 Hydrocarbon-based Surfactants 69
- 3.1.9.8 Carbon Nanotubes and Graphene 70
- 3.1.9.9 Engineered Polymers 70
- 3.1.9.10 Supercritical CO2 Technology 71
- 3.1.9.11 Plasma Technologies 71
- 3.1.9.12 Sol-Gel Materials 72
- 3.1.9.13 Biodegradable Polymers 72
- 3.2 Textiles and Clothing 73
- 3.2.1 Overview 73
- 3.2.2 PFAS in Water-Repellent Materials 74
- 3.2.3 Stain-Resistant Treatments 74
- 3.2.4 Regulatory Impact on Water-Repellent Clothing 75
- 3.2.5 Industry Initiatives and Commitments 76
- 3.2.6 Alternatives to PFAS 77
- 3.2.6.1 Enhanced surface treatments 78
- 3.2.6.2 Non-fluorinated treatments 78
- 3.2.6.3 Biomimetic approaches 79
- 3.2.6.4 Nano-structured surfaces 79
- 3.2.6.5 Wax-based additives 80
- 3.2.6.6 Plasma treatments 80
- 3.2.6.7 Sol-gel coatings 81
- 3.2.6.8 Superhydrophobic coatings 82
- 3.2.6.9 Biodegradable Polymer Coatings 83
- 3.2.6.10 Graphene-based Coatings 83
- 3.2.6.11 Enzyme-based Treatments 83
- 3.2.6.12 Companies 84
- 3.3 Food Packaging 86
- 3.3.1 Sustainable packaging 86
- 3.3.1.1 PFAS in Grease-Resistant Packaging 86
- 3.3.1.2 Other applications 87
- 3.3.1.3 Regulatory Trends in Food Contact Materials 87
- 3.3.2 Alternatives to PFAS 88
- 3.3.2.1 Biobased materials 88
- 3.3.2.1.1 Polylactic Acid (PLA) 89
- 3.3.2.1.2 Polyhydroxyalkanoates (PHAs) 89
- 3.3.2.1.3 Cellulose-based materials 90
- 3.3.2.1.3.1 Nano-fibrillated cellulose (NFC) 91
- 3.3.2.1.3.2 Bacterial Nanocellulose (BNC) 92
- 3.3.2.1.4 Silicon-based Alternatives 93
- 3.3.2.1.5 Natural Waxes and Resins 94
- 3.3.2.1.6 Engineered Paper and Board 95
- 3.3.2.1.7 Nanocomposites 95
- 3.3.2.1.8 Plasma Treatments 96
- 3.3.2.1.9 Biodegradable Polymer Blends 97
- 3.3.2.1.10 Chemically Modified Natural Polymers 98
- 3.3.2.1.11 Molded Fiber 99
- 3.3.2.2 PFAS-free coatings for food packaging 100
- 3.3.2.2.1 Silicone-based Coatings: 100
- 3.3.2.2.2 Bio-based Barrier Coatings 101
- 3.3.2.2.3 Nanocellulose Coatings 102
- 3.3.2.2.4 Superhydrophobic and Omniphobic Coatings 103
- 3.3.2.2.5 Clay-based Nanocomposite Coatings 103
- 3.3.2.2.6 Coated Papers 104
- 3.3.2.3 Companies 105
- 3.3.2.1 Biobased materials 88
- 3.3.1 Sustainable packaging 86
- 3.4 Paints and Coatings 108
- 3.4.1 Overview 108
- 3.4.2 Applications 108
- 3.4.3 Alternatives to PFAS 109
- 3.4.3.1 Silicon-Based Alternatives: 109
- 3.4.3.2 Hydrocarbon-Based Alternatives: 110
- 3.4.3.3 Nanomaterials 110
- 3.4.3.4 Plasma-Based Surface Treatments 111
- 3.4.3.5 Inorganic Alternatives 112
- 3.4.3.6 Bio-based Polymers: 112
- 3.4.3.7 Dendritic Polymers 113
- 3.4.3.8 Zwitterionic Polymers 113
- 3.4.3.9 Graphene-based Coatings 114
- 3.4.3.10 Hybrid Organic-Inorganic Coatings 114
- 3.4.3.11 Companies 114
- 3.5 Ion Exchange membranes 118
- 3.5.1 Overview 118
- 3.5.1.1 PFAS in Ion Exchange Membranes 119
- 3.5.2 Proton Exchange Membranes 119
- 3.5.2.1 Overview 119
- 3.5.2.2 Proton Exchange Membrane Electrolyzers (PEMELs) 122
- 3.5.2.3 Membrane Degradation 123
- 3.5.2.4 Nafion 124
- 3.5.2.5 Membrane electrode assembly (MEA) 126
- 3.5.3 Manufacturing PFSA Membranes 127
- 3.5.4 Enhancing PFSA Membranes 129
- 3.5.5 Commercial PFSA membranes 130
- 3.5.6 Catalyst Coated Membranes 131
- 3.5.6.1 Alternatives to PFAS 132
- 3.5.7 Membranes in Redox Flow Batteries 134
- 3.5.7.1 Alternative Materials for RFB Membranes 135
- 3.5.8 Alternatives to PFAS 137
- 3.5.8.1 Alternative Polymer Materials 137
- 3.5.8.2 Anion Exchange Membrane Technology (AEM) fuel cells 138
- 3.5.8.3 Nanocellulose 139
- 3.5.8.4 Boron-containing membranes 140
- 3.5.8.5 Hydrocarbon-based membranes 140
- 3.5.8.6 Metal-Organic Frameworks (MOFs) 141
- 3.5.8.6.1 MOF Composite Membranes 142
- 3.5.8.7 Graphene 143
- 3.5.8.8 Companies 144
- 3.5.1 Overview 118
- 3.6 Energy (excluding fuel cells) 145
- 3.6.1 Overview 145
- 3.6.2 Solar Panels 146
- 3.6.3 Wind Turbines 146
- 3.6.3.1 Blade Coatings 146
- 3.6.3.2 Lubricants and Greases 147
- 3.6.3.3 Electrical and Electronic Components 147
- 3.6.3.4 Seals and Gaskets 147
- 3.6.4 Lithium-Ion Batteries 148
- 3.6.4.1 Electrode Binders 148
- 3.6.4.2 Electrolyte Additives 149
- 3.6.4.3 Separator Coatings 149
- 3.6.4.4 Current Collector Coatings 149
- 3.6.4.5 Gaskets and Seals 149
- 3.6.4.6 Fluorinated Solvents in Electrode Manufacturing 149
- 3.6.4.7 Surface Treatments 150
- 3.6.5 Alternatives to PFAS 150
- 3.6.5.1 Solar 151
- 3.6.5.1.1 Ethylene Vinyl Acetate (EVA) Encapsulants 151
- 3.6.5.1.2 Polyolefin Encapsulants 152
- 3.6.5.1.3 Glass-Glass Module Design 152
- 3.6.5.1.4 Bio-based Backsheets 153
- 3.6.5.2 Wind Turbines 153
- 3.6.5.2.1 Silicone-Based Coatings 153
- 3.6.5.2.2 Nanocoatings 153
- 3.6.5.2.3 Thermal De-icing Systems 154
- 3.6.5.2.4 Polyurethane-Based Coatings 155
- 3.6.5.3 Lithium-Ion Batteries 156
- 3.6.5.3.1 Water-Soluble Binders 156
- 3.6.5.3.2 Polyacrylic Acid (PAA) Based Binders 156
- 3.6.5.3.3 Alginate-Based Binders 157
- 3.6.5.3.4 Ionic Liquid Electrolytes 158
- 3.6.5.4 Companies 159
- 3.6.5.1 Solar 151
- 3.7 Low-loss materials for 5G 160
- 3.7.1 Overview 160
- 3.7.1.1 Organic PCB materials for 5G 161
- 3.7.2 PTFE in 5G 162
- 3.7.2.1 Properties 162
- 3.7.2.2 PTFE-Based Laminates 163
- 3.7.2.3 Regulations 164
- 3.7.2.4 Commercial low-loss 165
- 3.7.3 Alternatives to PFAS 166
- 3.7.3.1 Liquid crystal polymers (LCP) 166
- 3.7.3.2 Poly(p-phenylene ether) (PPE) 167
- 3.7.3.3 Poly(p-phenylene oxide) (PPO) 167
- 3.7.3.4 Hydrocarbon-based laminates 168
- 3.7.3.5 Low Temperature Co-fired Ceramics (LTCC) 169
- 3.7.3.6 Glass Substrates 171
- 3.7.1 Overview 160
- 3.8 Cosmetics 173
- 3.8.1 Overview 173
- 3.8.2 Use in cosmetics 174
- 3.8.3 Alternatives to PFAS 174
- 3.8.3.1 Silicone-based Polymers 175
- 3.8.3.2 Plant-based Waxes and Oils 175
- 3.8.3.3 Naturally Derived Polymers 175
- 3.8.3.4 Silica-based Materials 176
- 3.8.3.5 Companies Developing PFAS Alternatives in Cosmetics 176
- 3.9 Firefighting Foam 178
- 3.9.1 Overview 178
- 3.9.2 Aqueous Film-Forming Foam (AFFF) 178
- 3.9.3 Environmental Contamination from AFFF Use 178
- 3.9.4 Regulatory Pressures and Phase-Out Initiatives 179
- 3.9.5 Alternatives to PFAS 180
- 3.9.5.1 Fluorine-Free Foams (F3) 180
- 3.9.5.2 Siloxane-Based Foams 181
- 3.9.5.3 Protein-Based Foams 181
- 3.9.5.4 Synthetic Detergent Foams (Syndet) 181
- 3.9.5.5 Compressed Air Foam Systems (CAFS) 181
- 3.10 Automotive 182
- 3.10.1 Overview 182
- 3.10.2 PFAS in Lubricants and Hydraulic Fluids 183
- 3.10.3 Use in Fuel Systems and Engine Components 184
- 3.10.4 Electric Vehicle 185
- 3.10.4.1 PFAS in Electric Vehicles 185
- 3.10.4.2 High-Voltage Cables 186
- 3.10.4.3 Refrigerants 187
- 3.10.4.3.1 Coolant Fluids in EVs 187
- 3.10.4.3.2 Refrigerants for EVs 188
- 3.10.4.3.3 Regulations 189
- 3.10.4.3.4 PFAS-free Refrigerants 189
- 3.10.4.4 Immersion Cooling for Li-ion Batteries 190
- 3.10.4.4.1 Overview 190
- 3.10.4.4.2 Single-phase Cooling 192
- 3.10.4.4.3 Two-phase Cooling 193
- 3.10.4.4.4 Companies 195
- 3.10.4.4.5 PFAS-based Coolants in Immersion Cooling for EVs 195
- 3.10.5 Alternatives to PFAS 197
- 3.10.5.1 Lubricants and Greases 198
- 3.10.5.2 Fuel System Components 199
- 3.10.5.3 Surface Treatments and Coatings 199
- 3.10.5.4 Gaskets and Seals 200
- 3.10.5.5 Hydraulic Fluids 201
- 3.10.5.6 Electrical and Electronic Components 202
- 3.10.5.7 Paint and Coatings 202
- 3.10.5.8 Windshield and Glass Treatments 203
- 3.11 Electronics 204
- 3.11.1 Overview 204
- 3.11.2 PFAS in Printed Circuit Boards 205
- 3.11.3 Cable and Wire Insulation 205
- 3.11.4 Regulatory Challenges for Electronics Manufacturers 206
- 3.11.5 Alternatives to PFAS 207
- 3.11.5.1 Wires and Cables 207
- 3.11.5.2 Coating 207
- 3.11.5.3 Electronic Components 208
- 3.11.5.4 Sealing and Lubricants 209
- 3.11.5.5 Cleaning 209
- 3.11.5.6 Companies 210
- 3.12 Medical Devices 214
- 3.12.1 Overview 214
- 3.12.2 PFAS in Implantable Devices 215
- 3.12.3 Diagnostic Equipment Applications 215
- 3.12.4 Balancing Safety and Performance in Regulations 216
- 3.12.5 Alternatives to PFAS 218
- 3.13 Green hydrogen 219
- 3.13.1 Electrolyzers 219
- 3.13.2 Alternatives to PFAS 219
- 3.13.3 Economic implications 220
4 PFAS ALTERNATIVES 221
- 4.1 PFAS-Free Release Agents 221
- 4.1.1 Silicone-Based Alternatives 221
- 4.1.2 Hydrocarbon-Based Solutions 222
- 4.1.3 Performance Comparisons 223
- 4.2 Non-Fluorinated Surfactants and Dispersants 224
- 4.2.1 Bio-Based Surfactants 225
- 4.2.2 Silicon-Based Surfactants 226
- 4.2.3 Hydrocarbon-Based Surfactants 227
- 4.3 PFAS-Free Water and Oil-Repellent Materials 228
- 4.3.1 Dendrimers and Hyperbranched Polymers 228
- 4.3.2 PFA-Free Durable Water Repellent (DWR) Coatings 228
- 4.3.3 Silicone-Based Repellents 229
- 4.3.4 Nano-Structured Surfaces 230
- 4.4 Fluorine-Free Liquid-Repellent Surfaces 232
- 4.4.1 Superhydrophobic Coatings 232
- 4.4.2 Omniphobic Surfaces 233
- 4.4.3 Slippery Liquid-Infused Porous Surfaces (SLIPS) 234
- 4.5 PFAS-Free Colorless Transparent Polyimide 235
- 4.5.1 Novel Polymer Structures 235
- 4.5.2 Applications in Flexible Electronics 236
5 PFAS DEGRADATION AND ELIMINATION 238
- 5.1 Current methods for PFAS degradation and elimination 238
- 5.2 Bio-friendly methods 239
- 5.2.1 Phytoremediation 239
- 5.2.2 Microbial Degradation 240
- 5.2.3 Enzyme-Based Degradation 240
- 5.2.4 Mycoremediation 241
- 5.2.5 Biochar Adsorption 241
- 5.2.6 Green Oxidation Methods 242
- 5.2.7 Bio-based Adsorbents 244
- 5.2.8 Algae-Based Systems 244
- 5.3 Companies 245
6 MARKET ANALYSIS AND FUTURE OUTLOOK 248
- 6.1 Current Market Size and Segmentation 248
- 6.1.1 Global PFAS Market Overview 248
- 6.1.2 Regional Market Analysis 249
- 6.1.2.1 North America 249
- 6.1.2.2 Europe 249
- 6.1.2.3 Asia-Pacific 250
- 6.1.2.4 Latin America 250
- 6.1.2.5 Middle East and Africa 250
- 6.1.3 Market Segmentation by Industry 251
- 6.1.3.1 Textiles and Apparel 251
- 6.1.3.2 Food Packaging 252
- 6.1.3.3 Firefighting Foams 252
- 6.1.3.4 Electronics & semiconductors 252
- 6.1.3.5 Automotive 252
- 6.1.3.6 Aerospace 253
- 6.1.3.7 Construction 253
- 6.1.3.8 Others 253
- 6.2 Impact of Regulations on Market Dynamics 254
- 6.2.1 Shift from Long-Chain to Short-Chain PFAS 254
- 6.2.2 Growth in PFAS-Free Alternatives Market 255
- 6.2.3 Regional Market Shifts Due to Regulatory Differences 257
- 6.3 Emerging Trends and Opportunities 258
- 6.3.1 Green Chemistry Innovations 258
- 6.3.2 Circular Economy Approaches 259
- 6.3.3 Digital Technologies for PFAS Management 260
- 6.4 Challenges and Barriers to PFAS Substitution 262
- 6.4.1 Technical Performance Gaps 262
- 6.4.2 Cost Considerations 263
- 6.4.3 Regulatory Uncertainty 265
- 6.5 Future Market Projections 266
- 6.5.1 Short-Term Outlook (1-3 Years) 266
- 6.5.2 Medium-Term Projections (3-5 Years) 268
- 6.5.3 Long-Term Scenarios (5-10 Years) 269
7 RESEARCH METHODOLOGY 273
8 REFERENCES 274
List of Tables
- Table 1. Established applications of PFAS. 16
- Table 2. PFAS chemicals segmented by non-polymers vs polymers. 16
- Table 3. Non-polymeric PFAS. 17
- Table 4. Chemical structure and physiochemical properties of various perfluorinated surfactants. 18
- Table 5. Examples of long-chain PFAS-Applications, Regulatory Status and Environmental and Health Effects. 20
- Table 6. Examples of short-chain PFAS. 21
- Table 7. Other non-polymeric PFAS. 23
- Table 8. Examples of fluoropolymers. 24
- Table 9. Examples of side-chain fluorinated polymers. 25
- Table 10. Applications of PFAs. 26
- Table 11. PFAS surfactant properties. 28
- Table 12. List of PFAS alternatives. 34
- Table 13. Common PFAS and their regulation. 45
- Table 14. International PFAS regulations. 48
- Table 15. European Union Regulations. 49
- Table 16. United States Regulations. 51
- Table 17. PFAS Regulations in Asia-Pacific Countries. 56
- Table 18. Identified uses of PFAS in semiconductors. 58
- Table 19. Alternatives to PFAS in Semiconductors. 67
- Table 20. Key properties of PFAS in water-repellent materials. 74
- Table 21. Initiatives by outdoor clothing companies to phase out PFCs. 76
- Table 22. Comparative analysis of Alternatives to PFAS for textiles. 77
- Table 23. Companies developing PFAS alternatives for textiles. 84
- Table 24. Applications of PFAS in Food Packaging. 86
- Table 25. Regulation related to PFAS in food contact materials. 87
- Table 26. Applications of cellulose nanofibers (CNF). 91
- Table 27. Companies developing PFAS alternatives for food packaging. 105
- Table 28. Applications and purpose of PFAS in paints and coatings. 108
- Table 29. Companies developing PFAS alternatives for paints and coatings. 114
- Table 30. Applications of Ion Exchange Membranes. 118
- Table 31. Key aspects of PEMELs. 122
- Table 32. Membrane Degradation Processes Overview. 123
- Table 33. PFSA Membranes & Key Players. 123
- Table 34. Competing Membrane Materials. 124
- Table 35. Comparative analysis of membrane properties. 125
- Table 36. Processes for manufacturing of perfluorosulfonic acid (PFSA) membranes. 128
- Table 37. PFSA Resin Suppliers. 131
- Table 38. CCM Production Technologies. 132
- Table 39. Comparison of Coating Processes. 132
- Table 40. Alternatives to PFAS in catalyst coated membranes. 132
- Table 41. Key Properties and Considerations for RFB Membranes. 134
- Table 42. PFSA Membrane Manufacturers for RFBs. 135
- Table 43. Alternative Materials for RFB Membranes 136
- Table 44. Alternative Polymer Materials for Ion Exchange Membranes. 137
- Table 45. Hydrocarbon Membranes for PEM Fuel Cells. 141
- Table 46. Companies developing PFA alternatives for fuel cell membranes. 144
- Table 47. Identified uses of PFASs in the energy sector. 145
- Table 48. Alternatives to PFAS in Energy by Market (Excluding Fuel Cells). 150
- Table 94: Anti-icing and de-icing nanocoatings product and application developers. 154
- Table 49. Companies developing alternatives to PFAS in energy (excluding fuel cells). 159
- Table 50. Commercial low-loss organic laminates-key properties at 10 GHz. 161
- Table 51. Key Properties of PTFE to Consider for 5G Applications. 162
- Table 52. Applications of PTFE in 5G in a table 162
- Table 53. Challenges in PTFE-based laminates in 5G. 163
- Table 54. Key regulations affecting PFAS use in low-loss materials. 164
- Table 55. Commercial low-loss materials suitable for 5G applications. 165
- Table 56. Key low-loss materials suppliers. 165
- Table 57. Alternatives to PFAS for low-loss applications in 5G 166
- Table 58. Benchmarking LTCC materials suitable for 5G applications. 170
- Table 59. Benchmarking of various glass substrates suitable for 5G applications. 171
- Table 60. Applications of PFAS in cosmetics. 174
- Table 61. Alternatives to PFAS for various functions in cosmetics. 174
- Table 62. Companies developing PFAS alternatives in cosmetics. 176
- Table 63. Applications of PFAS in Automotive Industry. 183
- Table 64. Application of PFAS in Electric Vehicles. 186
- Table 65.Suppliers of PFAS-free Coolants and Refrigerants for EVs. 190
- Table 66.Immersion Fluids for EVs 191
- Table 67. Immersion Cooling Fluids Requirements. 192
- Table 68. Single-phase vs two-phase cooling. 194
- Table 69. Companies producing Immersion Fluids for EVs. 195
- Table 70. Alternatives to PFAS in the automotive sector. 197
- Table 71. Use of PFAS in the electronics sector. 204
- Table 72. Companies developing alternatives to PFAS in electronics & semiconductors. 210
- Table 73. Applications of PFAS in Medical Devices. 214
- Table 74. Alternatives to PFAS in medical devices. 218
- Table 75. Readiness level of PFAS alternatives. 221
- Table 76. Comparing PFAS-free alternatives to traditional PFAS-containing release agents. 223
- Table 77.Novel PFAS-free CTPI structures. 236
- Table 78. Applications of PFAS-free CTPIs in flexible electronics. 236
- Table 79. Current methods for PFAS elimination . 238
- Table 80. Companies developing processes for PFA degradation and elimination. 245
- Table 81. Global PFAS Market Projection (2023-2035), Billions USD. 248
- Table 82. Regional PFAS Market Projection (2023-2035), Billions USD. 250
- Table 83. PFAS Market Segmentation by Industry (2023-2035), Billions USD. 253
- Table 84. Year Long-Chain PFAS andShort-Chain PFAS Market Share 255
- Table 85.PFAS-Free Alternatives Market Size from 2020 to 2035, (Billions USD). 256
- Table 86. Regional Market Data (2023) for PFAS and trends. 257
- Table 87. Market Opportunities for PFAS alternatives. 259
- Table 88. Circular Economy Initiatives and Potential Impact. 260
- Table 89. Digital Technology Applications and Market Potential. 261
- Table 90. Performance Comparison Table. 262
- Table 91. Cost Comparison Table-PFAS and PFAS alternatives. 264
- Table 92. Market Size 2023-2026 (USD Billions). 267
- Table 93. Market size 2026-2030 (USD Billions). 268
- Table 94. Long-Term Market Projections (2035). 270
List of Figures
- Figure 1. Types of PFAS. 20
- Figure 2. Structure of PFAS-based polymer finishes. 23
- Figure 3. Water and Oil Repellent Textile Coating. 27
- Figure 4. Main PFAS exposure route. 30
- Figure 5. Main sources of perfluorinated compounds (PFC) and general pathways that these compounds may take toward human exposure. 31
- Figure 6. Main sources of perfluorinated compounds (PFC) and general pathways that these compounds may take toward human exposure. 33
- Figure 7. Photolithography process in semiconductor manufacturing. 59
- Figure 8. PFAS containing Chemicals by Technology Node. 60
- Figure 9. The photoresist application process in photolithography. 61
- Figure 10: Contact angle on superhydrophobic coated surface. 82
- Figure 11. PEMFC Working Principle. 120
- Figure 12. Schematic representation of a Membrane Electrode Assembly (MEA). 127
- Figure 13. Slippery Liquid-Infused Porous Surfaces (SLIPS). 235
- Figure 14. Aclarity’s Octa system. 243
- Figure 15. Global PFAS Market Projection (2023-2035), Billions USD. 249
- Figure 16. Regional PFAS Market Projection (2023-2035), Billions USD. 251
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer.
To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.