Quantum Technologies: Investment Landscape and Global Market 2025-2045

0

cover

cover

  • Published: March 2025
  • Pages: 465
  • Tables: 105
  • Figures: 78

 

The quantum technology sector is experiencing unprecedented growth, propelled by substantial venture capital investments and robust government support. In 2024, global deal value in quantum computing surpassed $1 billion for the first time. Quantum Technologies: Investment Landscape and Global Market 2025-2045 provides an in-depth analysis of the rapidly evolving quantum technology sector, covering revolutionary developments across quantum computing, communications, sensing, and materials. As the world transitions from the first quantum revolution to the second, this report delivers crucial insights into market dynamics, investment trends, and technological roadmaps that will shape the next two decades of quantum innovation.

This detailed analysis tracks funding patterns across different technology segments, companies, and regions, highlighting North America's dominant position while noting significant developments in Asia and Europe's quantum ecosystems. Government initiatives worldwide are catalyzing market expansion through strategic funding programs that aim to secure technological sovereignty in this critical domain. Quantum computing stands at the forefront of this revolution, with competing architectures including superconducting qubits, trapped ions, silicon spin qubits, topological approaches, photonic systems, and neutral atom designs. The report provides comprehensive technical evaluations of each approach, including SWOT analyses, coherence times, and key market players developing these technologies. Beyond hardware, the thriving quantum software ecosystem is analyzed, including cloud-based Quantum Computing as a Service (QCaaS) platforms that are making quantum capabilities accessible to enterprises.

The market applications section explores how quantum technologies are transforming industries, from pharmaceutical drug discovery and chemical simulation to transportation optimization and financial modeling. The report identifies early adopters and potential breakthrough use cases, providing strategic intelligence for businesses looking to gain competitive advantages through quantum technologies.

Quantum communications represent another critical segment, with detailed coverage of Quantum Key Distribution (QKD), Quantum Random Number Generators (QRNG), and post-quantum cryptography solutions addressing the growing threat to current encryption methods. The development of quantum networks and the quantum internet receives special attention, examining infrastructure requirements, technical approaches, and global deployment initiatives. The quantum sensing market shows particular near-term promise, with the report analyzing advances in atomic clocks, quantum magnetometers, gravimeters, gyroscopes, and emerging applications in imaging, radar, and RF sensing. Each technology is evaluated for its disruptive potential across sectors including healthcare, defense, navigation, and resource exploration.

Looking further ahead, the report examines emerging technologies like quantum batteries and the specialized materials underpinning quantum systems, including superconductors, nanomaterials, and advanced photonics. The comprehensive global market analysis provides revenue forecasts from 2025 to 2045, segmented by technology type and geographic region, with particular attention to high-growth segments.

With nearly 300 detailed company profiles covering the entire quantum ecosystem from established tech giants to innovative startups, this report serves as an essential resource for investors, corporate strategists, government agencies, and technology developers navigating the quantum revolution. The analysis identifies key challenges to market adoption, including technical hurdles, standardization needs, and talent shortages, while providing a clear roadmap of opportunities as quantum technologies mature from research to commercial deployment.

Report Contents include:

  • Investment Landscape Analysis:
    • Total market investments from 2012-2025
    • Breakdown by technology, company, and region
    • Detailed analysis of North American, Asian, and European quantum markets
    • Global government initiatives and funding programs
  • Quantum Computing:
    • Comprehensive technology description and operating principles
    • Comparison between classical and quantum computing approaches
    • Detailed analysis of competing qubit technologies (superconducting, trapped ion, silicon spin, topological, photonic, neutral atom, diamond-defect)
    • Quantum software stack, algorithms, and cloud services
    • Industry applications in pharmaceuticals, chemicals, transportation, and financial services
  • Quantum Chemistry and AI:
    • Technology description and applications
    • Market challenges and opportunities
    • Key players and technology roadmap
  • Quantum Communications:
    • Quantum Random Number Generators (QRNG) - principles, applications, market players
    • Quantum Key Distribution (QKD) - protocols, security advantages, challenges
    • Post-quantum cryptography standardization and transition
    • Quantum networks infrastructure, trusted nodes, and global deployment initiatives
    • Quantum memory and internet development roadmap
  • Quantum Sensors:
    • Detailed analysis of atomic clocks, magnetic field sensors, gravimeters, gyroscopes
    • Quantum imaging, radar, chemical sensors, and RF field sensors
    • Application-specific adoption timelines across industries
    • Technology transition milestones and market opportunities
  • Quantum Batteries:
    • Technology principles, types, and potential applications
    • Market challenges and development roadmap
  • Materials for Quantum Technologies:
    • Superconductors, photonics, silicon photonics, and nanomaterials
    • Opportunities and technical requirements
  • Global Market Analysis:
    • Market map and ecosystem overview
    • Detailed investment funding analysis (VC, M&A, corporate, government)
    • Revenue forecasts from 2018-2045 for quantum computing, sensors, and QKD systems
  • Company Profiles:
    • Detailed profiles of nearly 300 companies across the quantum technology landscape
    • Analysis of startups, tech giants, and public-private partnerships. Companies profiled include A* Quantum, AbaQus, Absolut System, Adaptive Finance Technologies, Aegiq, Agnostiq GmbH, Algorithmiq Oy, Airbus, Alea Quantum, Alpine Quantum Technologies GmbH (AQT), Alice&Bob, Aliro Quantum, Anametric Inc., Anyon Systems Inc., Aqarios GmbH, Aquark Technologies, Archer Materials, Arclight Quantum, Arctic Instruments, Arqit Quantum Inc., ARQUE Systems GmbH, Artificial Brain, Artilux, Atlantic Quantum, Atom Computing, Atom Quantum Labs, Atomionics, Atos Quantum, Baidu Inc., BEIT, Bleximo, BlueQubit, Bohr Quantum Technology, Bosch Quantum Sensing, BosonQ Ps, C12 Quantum Electronics, Cambridge Quantum Computing (CQC), CAS Cold Atom, Cerca Magnetics, CEW Systems Canada Inc., Chipiron, Chiral Nano AG, Classiq Technologies, ColibriTD, Covesion, Crypta Labs Ltd., CryptoNext Security, Crystal Quantum Computing, D-Wave Systems, Dirac, Diraq, Delft Circuits, Delta g, Duality Quantum Photonics, EeroQ, eleQtron, Element Six, Elyah, Entropica Labs, Ephos, Equal1.labs, EuQlid, Groove Quantum, EvolutionQ, Exail Quantum Sensors, EYL, First Quantum Inc., Fujitsu, Genesis Quantum Technology, Good Chemistry, Google Quantum AI, g2-Zero, Haiqu, Hefei Wanzheng Quantum Technology Co. Ltd., High Q Technologies Inc., Horizon Quantum Computing, HQS Quantum Simulations, HRL, Huayi Quantum, IBM, Icarus Quantum, Icosa Computing, ID Quantique, InfinityQ, Infineon Technologies AG, Infleqtion, Intel, IonQ, ISARA Corporation, IQM Quantum Computers, JiJ, JoS QUANTUM GmbH, KEEQuant GmbH, KETS Quantum Security, Ki3 Photonics, Kipu Quantum, Kiutra GmbH, Kuano Limited, Kvantify, levelQuantum, Ligentec, LQUOM, Lux Quanta, M Squared Lasers, Mag4Health, Materials Nexus, Maybell Quantum Industries, memQ, Menlo Systems GmbH, Menten AI, Mesa Quantum, Microsoft, Miraex, Molecular Quantum Solutions, Montana Instruments, Multiverse Computing, Mycryofirm, Nanofiber Quantum Technologies, NEC Corporation, Neuranics, Next Generation Quantum, Nomad Atomics, Nord Quantique, Nordic Quantum Computing Group AS, NTT, Nu Quantum, NVision, 1Qbit, ORCA Computing, Orange Quantum Systems and many others representing the complete ecosystem from hardware manufacturers to software developers, component suppliers, and quantum service providers.

 

 

1             EXECUTIVE SUMMARY            22

  • 1.1        First and second quantum revolutions         23
  • 1.2        Current quantum technology market landscape   24
    • 1.2.1    Key developments      25
  • 1.3        Quantum Technologies Investment Landscape     26
    • 1.3.1    Total market investments 2012-2025            26
    • 1.3.2    By technology                29
    • 1.3.3    By company    30
    • 1.3.4    By region           34
      • 1.3.4.1 The Quantum Market in North America        36
      • 1.3.4.2 The Quantum Market in Asia               37
      • 1.3.4.3 The Quantum Market in Europe         39
  • 1.4        Global government initiatives and funding 41
  • 1.5        Market developments 2020-2025    43
  • 1.6        Challenges for quantum technologies adoption    52

 

2             QUANTUM COMPUTING        55

  • 2.1        What is quantum computing?            55
    • 2.1.1    Operating principle    56
    • 2.1.2    Classical vs quantum computing    58
    • 2.1.3    Quantum computing technology      60
      • 2.1.3.1 Quantum emulators  62
      • 2.1.3.2 Quantum inspired computing            63
      • 2.1.3.3 Quantum annealing computers        63
      • 2.1.3.4 Quantum simulators 63
      • 2.1.3.5 Digital quantum computers 63
      • 2.1.3.6 Continuous variables quantum computers               64
      • 2.1.3.7 Measurement Based Quantum Computing (MBQC)           64
      • 2.1.3.8 Topological quantum computing      64
      • 2.1.3.9 Quantum Accelerator               64
    • 2.1.4    Competition from other technologies           64
    • 2.1.5    Quantum algorithms 67
      • 2.1.5.1 Quantum Software Stack      68
      • 2.1.5.2 Quantum Machine Learning 69
      • 2.1.5.3 Quantum Simulation 69
      • 2.1.5.4 Quantum Optimization           70
      • 2.1.5.5 Quantum Cryptography          70
        • 2.1.5.5.1           Quantum Key Distribution (QKD)      70
        • 2.1.5.5.2           Post-Quantum Cryptography             71
    • 2.1.6    Hardware          71
      • 2.1.6.1 Qubit Technologies    73
        • 2.1.6.1.1           Superconducting Qubits        74
          • 2.1.6.1.1.1      Technology description           74
          • 2.1.6.1.1.2      Materials           75
          • 2.1.6.1.1.3      Market players               77
          • 2.1.6.1.1.4      Swot analysis 78
        • 2.1.6.1.2           Trapped Ion Qubits    79
          • 2.1.6.1.2.1      Technology description           79
          • 2.1.6.1.2.2      Materials           81
            • 2.1.6.1.2.2.1  Integrating optical components        81
            • 2.1.6.1.2.2.2  Incorporating high-quality mirrors and optical cavities      81
            • 2.1.6.1.2.2.3  Engineering the vacuum packaging and encapsulation     82
            • 2.1.6.1.2.2.4  Removal of waste heat            82
          • 2.1.6.1.2.3      Market players               83
          • 2.1.6.1.2.4      Swot analysis 83
        • 2.1.6.1.3           Silicon Spin Qubits    84
          • 2.1.6.1.3.1      Technology description           84
          • 2.1.6.1.3.2      Quantum dots               85
          • 2.1.6.1.3.3      Market players               87
          • 2.1.6.1.3.4      SWOT analysis              88
        • 2.1.6.1.4           Topological Qubits     89
          • 2.1.6.1.4.1      Technology description           89
            • 2.1.6.1.4.1.1  Cryogenic cooling       90
          • 2.1.6.1.4.2      Market players               90
          • 2.1.6.1.4.3      SWOT analysis              91
        • 2.1.6.1.5           Photonic Qubits           91
          • 2.1.6.1.5.1      Technology description           91
          • 2.1.6.1.5.2      Market players               94
          • 2.1.6.1.5.3      Swot analysis 95
        • 2.1.6.1.6           Neutral atom (cold atom) qubits       96
          • 2.1.6.1.6.1      Technology description           96
          • 2.1.6.1.6.2      Market players               98
          • 2.1.6.1.6.3      Swot analysis 98
        • 2.1.6.1.7           Diamond-defect qubits          99
          • 2.1.6.1.7.1      Technology description           99
          • 2.1.6.1.7.2      SWOT analysis              102
          • 2.1.6.1.7.3      Market players               103
        • 2.1.6.1.8           Quantum annealers  103
          • 2.1.6.1.8.1      Technology description           103
          • 2.1.6.1.8.2      SWOT analysis              105
          • 2.1.6.1.8.3      Market players               106
      • 2.1.6.2 Architectural Approaches     106
    • 2.1.7    Software            107
      • 2.1.7.1 Technology description           108
      • 2.1.7.2 Cloud-based services- QCaaS (Quantum Computing as a Service).        108
      • 2.1.7.3 Market players               109
  • 2.2        Market challenges      112
  • 2.3        SWOT analysis              113
  • 2.4        Quantum computing value chain     114
  • 2.5        Markets and applications for quantum computing               114
    • 2.5.1    Pharmaceuticals         115
      • 2.5.1.1 Market overview           115
        • 2.5.1.1.1           Drug discovery              115
        • 2.5.1.1.2           Diagnostics    116
        • 2.5.1.1.3           Molecular simulations            116
        • 2.5.1.1.4           Genomics        117
        • 2.5.1.1.5           Proteins and RNA folding       117
      • 2.5.1.2 Market players               117
    • 2.5.2    Chemicals       118
      • 2.5.2.1 Market overview           118
      • 2.5.2.2 Market players               119
    • 2.5.3    Transportation              119
      • 2.5.3.1 Market overview           119
      • 2.5.3.2 Market players               121
    • 2.5.4    Financial services       122
      • 2.5.4.1 Market overview           122
      • 2.5.4.2 Market players               123
  • 2.6        Opportunity analysis 125
  • 2.7        Technology roadmap 126

 

3             QUANTUM CHEMISTRY AND ARTIFICAL INTELLIGENCE (AI)          127

  • 3.1        Technology description           127
  • 3.2        Applications   127
  • 3.3        SWOT analysis              128
  • 3.4        Market challenges      129
  • 3.5        Market players               129
  • 3.6        Opportunity analysis 131
  • 3.7        Technology roadmap 132

 

4             QUANTUM COMMUNICATIONS        133

  • 4.1        Technology description           133
  • 4.2        Types   133
  • 4.3        Applications   134
  • 4.4        Quantum Random Numbers Generators (QRNG) 134
    • 4.4.1    Overview           134
    • 4.4.2    Applications   136
      • 4.4.2.1 Encryption for Data Centers 137
      • 4.4.2.2 Consumer Electronics             137
      • 4.4.2.3 Automotive/Connected Vehicle         138
      • 4.4.2.4 Gambling and Gaming            139
      • 4.4.2.5 Monte Carlo Simulations       140
    • 4.4.3    Advantages     141
    • 4.4.4    Principle of Operation of Optical QRNG Technology            142
    • 4.4.5    Non-optical approaches to QRNG technology        144
    • 4.4.6    SWOT Analysis             144
  • 4.5        Quantum Key Distribution (QKD)      145
    • 4.5.1    Overview           145
    • 4.5.2    Asymmetric and Symmetric Keys     145
    • 4.5.3    Principle behind QKD               147
    • 4.5.4    Why is QKD More Secure Than Other Key Exchange Mechanisms?           148
    • 4.5.5    Discrete Variable vs. Continuous Variable QKD Protocols               149
    • 4.5.6    Key Players      150
    • 4.5.7    Challenges      151
    • 4.5.8    SWOT Analysis             153
  • 4.6        Post-quantum cryptography (PQC) 154
    • 4.6.1    Overview           154
    • 4.6.2    Security systems integration               154
    • 4.6.3    PQC standardization 154
    • 4.6.4    Transitioning cryptographic systems to PQC            155
    • 4.6.5    Market players               156
    • 4.6.6    SWOT Analysis             158
  • 4.7        Quantum homomorphic cryptography         159
  • 4.8        Quantum Teleportation           159
  • 4.9        Quantum Networks   160
    • 4.9.1    Overview           160
    • 4.9.2    Advantages     160
    • 4.9.3    Role of Trusted Nodes and Trusted Relays  160
    • 4.9.4    Entanglement Swapping and Optical Switches      161
    • 4.9.5    Multiplexing quantum signals with classical channels in the O-band      162
      • 4.9.5.1 Wavelength-division multiplexing (WDM) and time-division multiplexing (TDM)              162
    • 4.9.6    Twin-Field Quantum Key Distribution (TF-QKD)      162
    • 4.9.7    Enabling global-scale quantum communication   163
    • 4.9.8    Advanced optical fibers and interconnects               164
    • 4.9.9    Photodetectors in quantum networks           165
      • 4.9.9.1 Avalanche photodetectors (APDs)   165
      • 4.9.9.2 Single-photon avalanche diodes (SPADs)   166
      • 4.9.9.3 Silicon Photomultipliers (SiPMs)      166
    • 4.9.10 Cryostats          167
      • 4.9.10.1            Cryostat architectures             168
    • 4.9.11 Infrastructure requirements 171
    • 4.9.12 Global activity               173
      • 4.9.12.1            China  173
      • 4.9.12.2            Europe                173
      • 4.9.12.3            The Netherlands          174
      • 4.9.12.4            The United Kingdom  174
      • 4.9.12.5            US         175
      • 4.9.12.6            Japan  176
    • 4.9.13 SWOT analysis              176
  • 4.10     Quantum Memory      177
  • 4.11     Quantum Internet       177
  • 4.12     Market challenges      178
  • 4.13     Market players               178
  • 4.14     Opportunity analysis 182
  • 4.15     Technology roadmap 183

 

5             QUANTUM SENSORS               185

  • 5.1        Technology description           185
    • 5.1.1    Quantum Sensing Principles               186
    • 5.1.2    SWOT analysis              189
    • 5.1.3    Atomic Clocks               190
      • 5.1.3.1 High frequency oscillators    191
        • 5.1.3.1.1           Emerging oscillators  191
      • 5.1.3.2 Caesium atoms            191
      • 5.1.3.3 Self-calibration             191
      • 5.1.3.4 Optical atomic clocks              192
        • 5.1.3.4.1           Chip-scale optical clocks      193
      • 5.1.3.5 Companies     194
      • 5.1.3.6 SWOT analysis              194
    • 5.1.4    Quantum Magnetic Field Sensors    195
      • 5.1.4.1 Introduction    196
      • 5.1.4.2 Motivation for use       196
      • 5.1.4.3 Market opportunity    198
      • 5.1.4.4 Superconducting Quantum Interference Devices (Squids)             198
        • 5.1.4.4.1           Applications   198
        • 5.1.4.4.2           Key players      200
        • 5.1.4.4.3           SWOT analysis              201
      • 5.1.4.5 Optically Pumped Magnetometers (OPMs)               201
        • 5.1.4.5.1           Applications   202
        • 5.1.4.5.2           Key players      202
        • 5.1.4.5.3           SWOT analysis              203
      • 5.1.4.6 Tunneling Magneto Resistance Sensors (TMRs)     204
        • 5.1.4.6.1           Applications   205
        • 5.1.4.6.2           Key players      205
        • 5.1.4.6.3           SWOT analysis              206
      • 5.1.4.7 Nitrogen Vacancy Centers (N-V Centers)     207
        • 5.1.4.7.1           Applications   207
        • 5.1.4.7.2           Key players      208
        • 5.1.4.7.3           SWOT analysis              208
    • 5.1.5    Quantum Gravimeters             209
      • 5.1.5.1 Technology description           209
      • 5.1.5.2 Applications   210
      • 5.1.5.3 Key players      213
      • 5.1.5.4 SWOT analysis              213
    • 5.1.6    Quantum Gyroscopes              214
      • 5.1.6.1 Technology description           214
        • 5.1.6.1.1           Inertial Measurement Units (IMUs) 215
        • 5.1.6.1.2           Atomic quantum gyroscopes              216
      • 5.1.6.2 Applications   216
      • 5.1.6.3 Key players      218
      • 5.1.6.4 SWOT analysis              218
    • 5.1.7    Quantum Image Sensors       219
      • 5.1.7.1 Technology description           219
      • 5.1.7.2 Applications   220
      • 5.1.7.3 SWOT analysis              221
      • 5.1.7.4 Key players      222
    • 5.1.8    Quantum Radar           223
      • 5.1.8.1 Technology description           223
      • 5.1.8.2 Applications   225
    • 5.1.9    Quantum Chemical Sensors               226
      • 5.1.9.1 Technology overview 226
      • 5.1.9.2 Commercial activities              226
    • 5.1.10 Quantum Radio Frequency Field Sensors  227
      • 5.1.10.1            Overview           227
      • 5.1.10.2            Rydberg Atom Based Electric Field Sensors and Radio Receivers              231
        • 5.1.10.2.1        Principles         231
        • 5.1.10.2.2        Commercialization    232
      • 5.1.10.3            Nitrogen-Vacancy Centre Diamond Electric Field Sensors and Radio Receivers              233
        • 5.1.10.3.1        Principles         233
        • 5.1.10.3.2        Applications   234
      • 5.1.10.4            Market 236
    • 5.1.11 Quantum NEM and MEMs     242
      • 5.1.11.1            Technology description           242
  • 5.2        Market and technology challenges  243
  • 5.3        Opportunity analysis 245
  • 5.4        Technology roadmap 246

 

6             QUANTUM BATTERIES             247

  • 6.1        Technology description           247
  • 6.2        Types   248
  • 6.3        Applications   249
  • 6.4        SWOT analysis              249
  • 6.5        Market challenges      250
  • 6.6        Market players               250
  • 6.7        Opportunity analysis 251
  • 6.8        Technology roadmap 252

 

7             MATERIALS FOR QUANTUM TECHNOLOGIES          254

  • 7.1        Superconductors        254
    • 7.1.1    Overview           254
    • 7.1.2    Types and Properties 255
    • 7.1.3    Opportunities 255
  • 7.2        Photonics, Silicon Photonics and Optical Components   256
    • 7.2.1    Overview           256
    • 7.2.2    Types and Properties 256
    • 7.2.3    Opportunities 257
  • 7.3        Nanomaterials              257
    • 7.3.1    Overview           257
    • 7.3.2    Types and Properties 258
    • 7.3.3    Opportunities 258

 

8             GLOBAL MARKET ANALYSIS  260

  • 8.1        Market map    260
  • 8.2        Key industry players   261
    • 8.2.1    Start-ups           262
    • 8.2.2    Tech Giants     262
    • 8.2.3    National Initiatives     263
  • 8.3        Investment funding    263
    • 8.3.1    Venture Capital            264
    • 8.3.2    M&A     265
    • 8.3.3    Corporate Investment              266
    • 8.3.4    Government Funding                266
  • 8.4        Global market revenues 2018-2045               267
    • 8.4.1    Quantum computing 267
    • 8.4.2    Quantum Sensors      269
    • 8.4.3    QKD systems 272

 

9             COMPANY PROFILES                274 (289 company profiles)

 

10          RESEARCH METHODOLOGY              454

 

11          TERMS AND DEFINITIONS     455

 

12          REFERENCES 458

 

List of Tables

  • Table 1. First and second quantum revolutions.     22
  • Table 2. Quantum Technology Funding 2022-2025, by company.               30
  • Table 3. Global government initiatives in quantum technologies.               41
  • Table 4. Quantum technologies market developments 2020-2025.         42
  • Table 5. Challenges for quantum technologies adoption. 51
  • Table 6.  Applications for quantum computing        56
  • Table 7. Comparison of classical versus quantum computing.    58
  • Table 8. Key quantum mechanical phenomena utilized in quantum computing.             59
  • Table 9. Types of quantum computers.         59
  • Table 10. Comparative analysis of quantum computing with classical computing, quantum-inspired computing, and neuromorphic computing.              64
  • Table 11. Different computing paradigms beyond conventional CMOS. 65
  • Table 12. Applications of quantum algorithms.      67
  • Table 13. QML approaches. 68
  • Table 14. Coherence times for different qubit implementations. 72
  • Table 15. Superconducting qubit market players.  76
  • Table 16. Initialization, manipulation and readout for trapped ion quantum computers.            79
  • Table 17. Ion trap market players.     82
  • Table 18.  Initialization, manipulation, and readout methods for silicon-spin qubits.   86
  • Table 19. Silicon spin qubits market players.            86
  • Table 20. Initialization, manipulation and readout of topological qubits.              88
  • Table 21. Topological qubits market players.            89
  • Table 22. Pros and cons of photon qubits. 91
  • Table 23. Comparison of photon polarization and squeezed states.         91
  • Table 24. Initialization, manipulation and readout of photonic platform quantum computers.               92
  • Table 25. Photonic qubit market players.     93
  • Table 26. Initialization, manipulation and readout for neutral-atom quantum computers.        96
  • Table 27. Pros and cons of cold atoms quantum computers and simulators      97
  • Table 28. Neural atom qubit market players.             97
  • Table 29. Initialization, manipulation and readout of Diamond-Defect Spin-Based Computing.           99
  • Table 30.  Key materials for developing diamond-defect spin-based quantum computers.      100
  • Table 31. Diamond-defect qubits market players. 102
  • Table 32. Pros and cons of quantum annealers.    103
  • Table 33. Quantum annealers market players.        105
  • Table 34. Quantum computing software market players. 108
  • Table 35. Market challenges in quantum computing.         111
  • Table 36. Quantum computing value chain.             113
  • Table 37. Markets and applications for quantum computing.       114
  • Table 38. Market players in quantum technologies for pharmaceuticals.             117
  • Table 39. Market players in quantum computing for chemicals.  118
  • Table 40. Automotive applications of quantum computing,           119
  • Table 41. Market players in quantum computing for transportation.         121
  • Table 42. Market players in quantum computing for financial services   122
  • Table 43. Market opportunities in quantum computing.   124
  • Table 44. Applications in quantum chemistry and artificial intelligence (AI).      126
  • Table 45. Market challenges in quantum chemistry and Artificial Intelligence (AI).         128
  • Table 46. Market players in quantum chemistry and AI.    128
  • Table 43. Market opportunities in quantum chemistry and AI.      130
  • Table 47. Main types of quantum communications.            132
  • Table 48. Applications in quantum communications.        133
  • Table 49. QRNG applications.            135
  • Table 50. Key Players Developing QRNG Products.               140
  • Table 51. Optical QRNG by company.           142
  • Table 52. Market players in post-quantum cryptography. 155
  • Table 53. Market challenges in quantum communications.           177
  • Table 54. Market players in quantum communications.   177
  • Table 43. Market opportunities in quantum communications.     182
  • Table 55.  Comparison between classical and quantum sensors.             184
  • Table 56. Applications in quantum sensors.             185
  • Table 57. Technology approaches for enabling quantum sensing               186
  • Table 58. Value proposition for quantum sensors. 187
  • Table 59. Key challenges and limitations of quartz crystal clocks vs. atomic clocks.    189
  • Table 60.  New modalities being researched to improve the fractional uncertainty of atomic clocks. 191
  • Table 61. Companies developing high-precision quantum time measurement 193
  • Table 62. Key players in atomic clocks.        194
  • Table 63. Comparative analysis of key performance parameters and metrics of magnetic field sensors.                195
  • Table 64. Types of magnetic field sensors. 196
  • Table 65. Market opportunity for different types of quantum magnetic field sensors.   197
  • Table 66. Applications of SQUIDs.   197
  • Table 67. Market opportunities for SQUIDs (Superconducting Quantum Interference Devices).           199
  • Table 68. Key players in SQUIDs.      199
  • Table 69. Applications of optically pumped magnetometers (OPMs).     201
  • Table 70. Key players in Optically Pumped Magnetometers (OPMs).        201
  • Table 71. Applications for TMR (Tunneling Magnetoresistance) sensors.               204
  • Table 72. Market players in TMR (Tunneling Magnetoresistance) sensors.            204
  • Table 73. Applications of N-V center magnetic field centers           206
  • Table 74. Key players in N-V center magnetic field sensors.           207
  • Table 75. Applications of quantum gravimeters      209
  • Table 76. Comparative table between quantum gravity sensing and some other technologies commonly used for underground mapping.       210
  • Table 77. Key players in quantum gravimeters.        212
  • Table 78. Comparison of quantum gyroscopes with MEMs gyroscopes and optical gyroscopes.         214
  • Table 79. Markets and applications for quantum gyroscopes.      216
  • Table 80. Key players in quantum gyroscopes.        217
  • Table 81. Types of quantum image sensors and their key features/.          218
  • Table 82. Applications of quantum image sensors.              219
  • Table 83. Key players in quantum image sensors. 221
  • Table 84. Comparison of quantum radar versus conventional radar and lidar technologies.   223
  • Table 85. Applications of quantum radar.   224
  • Table 86. Value Proposition of Quantum RF Sensors           226
  • Table 87. Types of Quantum RF Sensors      228
  • Table 88. Markets for Quantum RF Sensors               235
  • Table 89. Technology Transition Milestones.             239
  • Table 90. Application-Specific Adoption Timeline 240
  • Table 91. Market and technology challenges in quantum sensing.            242
  • Table 43. Market opportunities in quantum sensors.          244
  • Table 92. Comparison between quantum batteries and other conventional battery types.       246
  • Table 93. Types of quantum batteries.           247
  • Table 94. Applications of quantum batteries.           248
  • Table 95. Market challenges in quantum batteries.              249
  • Table 96. Market players in quantum batteries.       250
  • Table 43. Market opportunities in quantum batteries.        251
  • Table 97. Materials in Quantum Technology.             253
  • Table 98. Superconductors in quantum technology.           254
  • Table 99. Photonics, silicon photonics and optics in quantum technology.         255
  • Table 100. Nanomaterials in quantum technology.              257
  • Table 101. Quantum technologies investment funding.    263
  • Table 102. Top funded quantum technology companies. 264
  • Table 103. Global market for quantum computing-Hardware, Software & Services, 2023-2045 (billions USD).  267
  • Table 104. Markets for quantum sensors, by types, 2018-2045 (Millions USD). 269
  • Table 105. Markets for QKD systems, 2018-2045 (Millions USD).               271

 

List of Figures

  • Figure 1. Quantum computing development timeline.       23
  • Figure 2.Quantum Technology investments 2012-2025 (millions USD), total.    25
  • Figure 3. Quantum Technology investments 2012-2025 (millions USD), by technology.              27
  • Figure 4. Quantum Technology investments 2012-2025 (millions USD), by region.         33
  • Figure 5.  National quantum initiatives and funding.           40
  • Figure 6. Quantum computing architectures.           54
  • Figure 7. An early design of an IBM 7-qubit chip based on superconducting technology.           55
  • Figure 8. Various 2D to 3D chips integration techniques into chiplets.    57
  • Figure 9. IBM Q System One quantum computer.  60
  • Figure 10. Unconventional computing approaches.            65
  • Figure 11. 53-qubit Sycamore processor.   67
  • Figure 12. Interior of IBM quantum computing system. The quantum chip is located in the small dark square at center bottom.       70
  • Figure 13. Superconducting quantum computer.  73
  • Figure 14. Superconducting quantum computer schematic.         74
  • Figure 15.  Components and materials used in a superconducting qubit.            75
  • Figure 16. SWOT analysis for superconducting quantum computers:.    77
  • Figure 17. Ion-trap quantum computer.       77
  • Figure 18. Various ways to trap ions                78
  • Figure 19.  Universal Quantum’s shuttling ion architecture in their Penning traps.          79
  • Figure 20. SWOT analysis for trapped-ion quantum computing. 82
  • Figure 21. CMOS silicon spin qubit.                83
  • Figure 22. Silicon quantum dot qubits.         84
  • Figure 23. SWOT analysis for silicon spin quantum computers.  87
  • Figure 24. SWOT analysis for topological qubits     89
  • Figure 25 . SWOT analysis for photonic quantum computers.       94
  • Figure 26. Neutral atoms (green dots) arranged in various configurations            94
  • Figure 27. SWOT analysis for neutral-atom quantum computers.              97
  • Figure 28. NV center components.  98
  • Figure 29. SWOT analysis for diamond-defect quantum computers.       100
  • Figure 30. D-Wave quantum annealer.          103
  • Figure 31. SWOT analysis for quantum annealers.               104
  • Figure 32. Quantum software development platforms.     105
  • Figure 33. SWOT analysis for quantum computing.             112
  • Figure 34. Technology roadmap for quantum computing 2025-2045.     124
  • Figure 35. SWOT analysis for quantum chemistry and AI. 127
  • Figure 34. Technology roadmap for quantum chemistry and AI 2025-2045.        130
  • Figure 36. IDQ quantum number generators.           133
  • Figure 37. SWOT Analysis of Quantum Random Number Generator Technology.             143
  • Figure 38. SWOT Analysis of Quantum Key Distribution Technology.        151
  • Figure 39. SWOT Analysis: Post Quantum Cryptography (PQC).  157
  • Figure 40. SWOT analysis for networks.       175
  • Figure 34. Technology roadmap for quantum communications 2025-2045.       182
  • Figure 41. Q.ANT quantum particle sensor.               187
  • Figure 42. SWOT analysis for quantum sensors market.   188
  • Figure 43. NIST's compact optical clock.    191
  • Figure 44. SWOT analysis for atomic clocks.            193
  • Figure 45.Principle of SQUID magnetometer.           197
  • Figure 46. SWOT analysis for SQUIDS.          199
  • Figure 47. SWOT analysis for OPMs 202
  • Figure 48. Tunneling magnetoresistance mechanism and TMR ratio formats.   202
  • Figure 49. SWOT analysis for TMR (Tunneling Magnetoresistance) sensors.        205
  • Figure 50. SWOT analysis for N-V Center Magnetic Field Sensors.             207
  • Figure 51. Quantum Gravimeter.       208
  • Figure 52. SWOT analysis for Quantum Gravimeters.          212
  • Figure 53. SWOT analysis for Quantum Gyroscopes.          217
  • Figure 54. SWOT analysis for Quantum image sensing.    220
  • Figure 55. Principle of quantum radar.          222
  • Figure 56. Illustration of a quantum radar prototype.          222
  • Figure 57. Quantum RF Sensors Market Roadmap (2023-2045). 238
  • Figure 34. Technology roadmap for quantum sensors 2025-2045.            244
  • Figure 58. Schematic of the flow of energy (blue) from a source to a battery made up of multiple cells. (left)     246
  • Figure 59. SWOT analysis for quantum batteries.  248
  • Figure 34. Technology roadmap for quantum batteries 2025-2045.          251
  • Figure 60. Market map for quantum technologies industry.            259
  • Figure 61. Tech Giants quantum technologies activities. 260
  • Figure 62. Quantum Technology investment by sector, 2023.       261
  • Figure 63.  Quantum computing public and industry funding to mid-2023, millions USD.         265
  • Figure 64. Global market for quantum computing-Hardware, Software & Services, 2023-2045 (billions USD).  267
  • Figure 65. Markets for quantum sensors, by types, 2018-2045 (Millions USD). 269
  • Figure 66. Markets for QKD systems, 2018-2045 (Millions USD). 271
  • Figure 67. Archer-EPFL spin-resonance circuit.      282
  • Figure 68.  IBM Q System One quantum computer.              319
  • Figure 69. ColdQuanta Quantum Core (left), Physics Station (middle) and the atoms control chip (right).                323
  • Figure 70.  Intel Tunnel Falls 12-qubit chip.                324
  • Figure 71. IonQ's ion trap       325
  • Figure 72. 20-qubit quantum computer.      327
  • Figure 73. Maybell Big Fridge.              337
  • Figure 74. PsiQuantum’s modularized quantum computing system networks. 366
  • Figure 75. SemiQ first chip prototype.           428
  • Figure 76. SpinMagIC quantum sensor.       434
  • Figure 77. Toshiba QKD Development Timeline.     440
  • Figure 78. Toshiba Quantum Key Distribution technology.               441

 

 

Quantum Technologies: Investment Landscape and Global Market 2025-2045
Quantum Technologies: Investment Landscape and Global Market 2025-2045
PDF download.

Quantum Technologies: Investment Landscape and Global Market 2025-2045
Quantum Technologies: Investment Landscape and Global Market 2025-2045
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com