- Published: December 2023
- Pages: 335
- Tables: 97
- Figures: 128
- Series: Electronics
MicroLED is a self-emitting display consisting of arrays of microscopic LEDs each forming a pixel. MicroLED commercial activity is picking up considerably. Apple has plans to invest>$2 billion establishing smartwatch display production with 8” MicroLED chip fab at ams-Osram. Epistar and AUO are building a 6” MicroLED foundry leveraging PlayNitride technology. AUO will also begin production of a smart watch display 1.39” in Q4 23. Jade Bird Display has commenced it's production line in Hefei, with the total capacity of 120 million 0.13” MicroLED panels. Several other companies have also set up pilot lines for production. and Samsung is planning to increase manufacturing of microLED TV in 2023. Companies including Raysolve, Hon Hai (Foxconn) and Mojo Vision have recently announced breakthroughs using quantum dots in micro-LED displays.
The Global Market for MicroLED Displays 2024-2034 is an in-depth 330+ page market report providing a comprehensive analysis of emerging Micro-LED display technologies and markets. It evaluates the current status and future outlook for these next-generation LED displays across applications in consumer electronics, automotive, augmented reality, transparent displays, digital signage, and more.
The report profiles over 80 leading companies developing MicroLED products including display manufacturers, LED chip/emitter companies, equipment suppliers and start-ups. It assesses their technology capabilities, product roadmaps, partnerships, and competitive positioning. Detailed technical analysis is provided on MicroLED manufacturing processes such as epitaxial growth, mass transfer techniques, assembly and interconnect technologies. The report compares performance metrics of Micro-LED displays including benefits/drawbacks versus LCD and OLED displays.
In-depth market analysis is provided on adoption trends, drivers and challenges across key industry verticals. Quantitative 10+ year market forecasts are included for MicroLED display shipments and revenues globally and segmented by product categories, regions and application markets. Overall this report is the most comprehensive source of strategic analysis on the MicroLED display technologies and associated market opportunities through 2034. It is a vital reference for display industry participants, investors, electronics OEMs, and technology companies seeking an in-depth understanding of these emerging displays.
Report contents include:
- Technology Introductions to MicroLED Displays
- Comparative Analysis of Mini-LED vs Micro-LED
- Manufacturing Processes for MicroLED Displays
- Chip Fabrication, Epitaxial Growth, Wafer Production
- Assembly, Hybrid Integration, Mass Transfer Techniques
- Defect Management, Repair and Optimization
- Colour Conversion Technologies for MicroLED
- Analysis of MicroLED Performance Metrics
- Assessment of Benefits and Drawbacks vs LCD and OLED
- Emerging Innovations: Flexible, Transparent, 3D Displays
- Adoption Roadmaps and Market Opportunities by Application:
- Consumer Electronics, Automotive Displays, Signage
- AR/VR Devices, Transparent Displays, Lighting, Medical
- Supply Chain Ecosystems for MicroLED Displays
- Company Profiles of 80+ MicroLED Developers. Companies profiled include AUO, eLux, Innolux, Jade Bird Display, LG Display, Mikro Mesa, Mojo Vision, PlayNitride, Porotech, Raysolve Technology, Q-Pixel, Samsung Electronics, Sitan Semiconductor International Co. Ltd., Tianma, and Sony.
- 10-Year Market Forecasts for MicroLED Display Shipments and Revenues
- Analysis of Market Drivers, Trends, and Technology Challenges
- Regional Markets: North America, Asia-Pacific, Europe, ROW
1 REPORT AIMS AND OBJECTIVES 24
2 EXECUTIVE SUMMARY 25
- 2.1 The MiniLED market 25
- 2.2 The MicroLED market 25
- 2.3 The global display market 28
- 2.3.1 OLEDs 28
- 2.3.2 Quantum dots 29
- 2.3.3 Display technologies assessment 31
- 2.4 Benefits of MicroLEDs 33
- 2.5 Additive manufacturing for microLED micro-displays 34
- 2.6 MicroLEDs applications 34
- 2.7 Market and technology challenges 39
- 2.8 Industry developments 2020-2023 41
- 2.9 Recent microLED display innovations 47
- 2.10 Market activity in China 50
- 2.11 Global shipment forecasts for MicroLEDs to 2034 52
- 2.11.1 Units 52
- 2.11.2 Revenues 54
3 TECHNOLOGY INTRODUCTION 55
- 3.1 What are MicroLEDs? 55
- 3.2 MiniLED (mLED) vs MicroLED (µLED) 57
- 3.2.1 Display configurations 57
- 3.2.2 Development 58
- 3.2.2.1 Sony 59
- 3.2.3 Types 60
- 3.2.4 Production 61
- 3.2.4.1 Integration 61
- 3.2.4.2 Transfer technologies 62
- 3.2.5 Comparison to LCD, OLED AND QD 65
- 3.2.6 MicroLED display specifications 66
- 3.2.7 Advantages 67
- 3.2.7.1 Transparency 68
- 3.2.7.2 Borderless 69
- 3.2.7.3 Flexibility 70
- 3.2.8 Tiled microLED displays 71
- 3.2.9 Costs 71
- 3.2.9.1 Relationship between microLED cost and die size 72
4 MANUFACTURING 73
- 4.1 Epitaxy and Chip Processing 73
- 4.1.1 Materials 73
- 4.1.2 Substrates 75
- 4.1.2.1 Green gap 75
- 4.1.3 Wafer patterning 76
- 4.1.4 Metal organic chemical vapor deposition (MOCVD) 76
- 4.1.5 Epitaxial growth requirement 77
- 4.1.6 Molecular beam epitaxy (MBE) 78
- 4.1.7 Uniformity 78
- 4.2 Chip manufacturing 79
- 4.2.1 RGB microLED designs 80
- 4.2.2 Epi-film transfer 81
- 4.3 MicroLED Performances 81
- 4.3.1 Relationship between external quantum efficiency (EQE) and current density 82
- 4.3.2 Stability and thermal management 82
- 4.3.3 Size dependency 83
- 4.3.4 Surface recombination of carriers 84
- 4.3.5 Developing efficient high-performance RGB microLEDs 85
- 4.4 Transfer, Assembly and Integration Technologies 86
- 4.4.1 Monolithic integration 87
- 4.4.1.1 Overview 87
- 4.4.1.2 Companies 89
- 4.4.2 Heterogeneous Wafers 89
- 4.4.2.1 Array integration 89
- 4.4.2.2 Wafer bonding 91
- 4.4.2.3 Hybridization integration 91
- 4.4.2.4 Companies 93
- 4.4.3 Monolithic microLED arrays 93
- 4.4.4 GaN on Silicon 94
- 4.4.4.1 Overview 94
- 4.4.4.2 Types 95
- 4.4.4.2.1 GaN on sapphire 96
- 4.4.4.3 Challenges 97
- 4.4.4.4 Companies 98
- 4.4.5 Mass transfer 98
- 4.4.5.1 Chiplet Mass Transfer 102
- 4.4.5.2 Elastomer Stamp Transfer (Fine pick and place) 103
- 4.4.5.2.1 Overview 103
- 4.4.5.2.2 Controlling kinetic adhesion forces 105
- 4.4.5.2.3 Pixel pitch 105
- 4.4.5.2.4 Micro-transfer printing 106
- 4.4.5.2.5 Capillary-assisted transfer printing 107
- 4.4.5.2.6 Electrostatic array 107
- 4.4.5.2.7 Companies 107
- 4.4.5.3 Roll-to-Roll or Roll-to-Panel Imprinting 108
- 4.4.5.4 Laser enabled transfer 109
- 4.4.5.4.1 Overview 109
- 4.4.5.4.1.1 Selective transfer by selective bonding-debonding 111
- 4.4.5.4.2 Companies 111
- 4.4.5.4.1 Overview 109
- 4.4.5.5 Electrostatic Transfer 113
- 4.4.5.6 Micro-transfer 114
- 4.4.5.6.1 Overview 114
- 4.4.5.6.2 Micro-Pick-and-Place Transfer 115
- 4.4.5.6.3 Photo-Polymer Mass Transfer 115
- 4.4.5.6.4 Companies 115
- 4.4.5.7 Micro vacuum-based transfer 116
- 4.4.5.8 Adhesive Stamp 116
- 4.4.5.9 Self-Assembly 116
- 4.4.5.9.1 Overview 116
- 4.4.5.9.2 Fluidically Self-Assembled (FSA) technology 117
- 4.4.5.9.3 Magnetically-assisted assembly 118
- 4.4.5.9.4 Photoelectrochemically driven fluidic-assembly 119
- 4.4.5.9.5 Electrophoretic fluidic-assembly 119
- 4.4.5.9.6 Surface energy fluidic-assembly 120
- 4.4.5.9.7 Shape-based self-assembly 120
- 4.4.5.9.8 Companies 120
- 4.4.5.10 All-In-One Transfer 121
- 4.4.5.10.1 Overview 121
- 4.4.5.10.2 Heterogeneous Wafers in All-in-One Integration 122
- 4.4.5.10.2.1 Optoelectronic Array Integration 122
- 4.4.5.10.2.2 Wafer Bonding Process and Hybridization 123
- 4.4.5.10.3 Companies 123
- 4.4.6 Nanowires 124
- 4.4.6.1 Overview 124
- 4.4.6.1.1 Nanowire Growth on Silicon 124
- 4.4.6.1.2 Native EL RGB nanowires 125
- 4.4.6.1.3 3D Integration 125
- 4.4.6.1 Overview 124
- 4.4.7 Bonding and interconnection 127
- 4.4.7.1 Overview 127
- 4.4.7.2 Types of bonding 127
- 4.4.7.3 Microtube Interconnections 128
- 4.4.1 Monolithic integration 87
5 DEFECT MANAGEMENT 129
- 5.1 Overview 129
- 5.2 Defect types 129
- 5.3 Redundancy techniques 130
- 5.4 Repair 130
- 5.4.1 Techniques 130
- 5.4.2 Laser micro trimming 131
6 COLOUR CONVERSION 132
- 6.1 Comparison of technologies 133
- 6.2 Full colour conversion 133
- 6.3 UV LED 135
- 6.4 Colour filters 136
- 6.5 Stacked RGB MicroLEDs 136
- 6.5.1 Companies 137
- 6.6 Three panel microLED projectors 137
- 6.7 Phosphor Colour Conversion 138
- 6.7.1 Overview 138
- 6.7.1.1 Red-emitting phosphor materials 139
- 6.7.1.2 Thermal stability 141
- 6.7.1.3 Narrow-band green phosphors 142
- 6.7.1.4 High performance organic phosphors 142
- 6.7.2 Challenges 143
- 6.7.3 Companies 143
- 6.7.1 Overview 138
- 6.8 Quantum dots colour conversion 144
- 6.8.1 Mode of operation 145
- 6.8.2 Cadmium QDs 147
- 6.8.3 Cadmium-free QDs 147
- 6.8.4 Perovskite quantum dots 147
- 6.8.5 Graphene quantum dots 151
- 6.8.6 Phosphors and quantum dots 153
- 6.8.7 Quantum dots in microLED displays 154
- 6.8.7.1 Technology overview 154
- 6.8.7.2 QD-based display types 155
- 6.8.7.3 Quantum dot colour conversion (QDCC) technology for microLEDs 156
- 6.8.7.4 Efficiency drop and red shift in quantum dot emission for displays 157
- 6.8.7.5 High blue absorptive quantum dot materials for display 157
- 6.8.7.6 QD display pixel patterning techniques 158
- 6.8.7.6.1 Inkjet printing 159
- 6.8.7.6.2 Photoresists 159
- 6.8.7.6.3 Aerosol Jet Printing 160
- 6.8.8 Challenges 160
- 6.8.9 Companies 160
- 6.9 Quantum wells 161
- 6.10 Improving image quality 161
7 LIGHT MANAGEMENT 164
- 7.1 Overview 164
- 7.2 Light capture methods 165
- 7.3 Micro-catadioptric optical array 166
- 7.4 Additive manufacturing (AM) for engineered directional emission profiles 167
8 BACKPLANES AND DRIVING 168
- 8.1 Overview 168
- 8.2 Technologies and materials 169
- 8.2.1 TFT materials 169
- 8.2.2 OLED Pixel Driving 169
- 8.2.3 TFT Backplane 170
- 8.2.4 Passive and active matrix addressing 170
- 8.2.4.1 Passive Matrix Addressing 170
- 8.2.4.2 Passive Driving Structure 171
- 8.2.4.3 Active Matrix Addressing 171
- 8.2.4.4 Pulse width modulation (PWM) 174
- 8.2.4.5 Driving voltage considerations for microLEDs 175
- 8.2.5 RGB Driving Schemes for MicroLED Displays 176
- 8.2.6 Active Matrix MicroLED Displays with LTPS Backplanes 176
9 CONSUMER ELECTRONIC DISPLAYS 178
- 9.1 Market map 178
- 9.2 Market adoption roadmap 178
- 9.3 Large flat panel displays and TVs 179
- 9.3.1 Samsung 180
- 9.3.1.1 Wall display 180
- 9.3.1.2 Neo QLED TV range 181
- 9.3.1.3 MicroLED CX TV line-up 182
- 9.3.2 LG 183
- 9.3.2.1 MAGNIT MicroLED TV 183
- 9.3.3 TCL CSOT 184
- 9.3.1 Samsung 180
- 9.4 Smartwatches and wearables 184
- 9.4.1 Apple’s planned microLED smartwatch 186
- 9.4.2 Samsung 186
- 9.5 Smartphones 186
- 9.6 Laptops, monitors and tablets 187
- 9.7 Foldable and stretchable displays 188
- 9.7.1 The global foldable display market 191
- 9.7.2 Applications 192
- 9.7.2.1 Foldable TVs 192
- 9.7.2.2 Stretchable 12" microLED touch displays 192
- 9.7.2.3 Product developers 193
10 BIOTECH AND MEDICAL 194
- 10.1 The global medical display market 194
- 10.2 Applications 194
- 10.2.1 Implantable Devices 194
- 10.2.2 Lab-on-a-Chip 195
- 10.2.3 Endoscopy 195
- 10.2.4 Surgical Displays 196
- 10.2.5 Phototherapy 196
- 10.2.6 Biosensing 197
- 10.2.7 Brain Machine Interfaces 198
- 10.3 Product developers 198
11 AUTOMOTIVE 199
- 11.1 Global automotive displays market 199
- 11.2 Applications 200
- 11.2.1 Cabin Displays 203
- 11.2.2 Head-up displays (HUD) 204
- 11.2.3 Exterior Signaling and Lighting 205
- 11.3 Product developers 206
12 VIRTUAL REALITY (VR), AUGMENTED REALITY (AR) AND MIXED REALITY (MR) 208
- 12.1 Global market for virtual reality (VR), augmented reality (AR), and mixed reality (MR) 208
- 12.2 Applications 209
- 12.2.1 AR/VR Smart glasses and head-mounted displays (HMDs) 209
- 12.2.2 MicroLED contact lenses 211
- 12.3 Products developers 212
13 TRANSPARENT DISPLAYS 216
- 13.1 Global transparent displays market 216
- 13.2 Applications 216
- 13.2.1 Smart Windows 218
- 13.2.2 Display Glass Overlays 218
- 13.3 Product developers 220
14 SUPPLY CHAINS 221
15 COMPANY PROFILES 223 (83 company profiles)
16 REFERENCES 323
List of Tables
- Table 1. Announced MicroLED fabs. 27
- Table 2. Summary of display technologies. 31
- Table 3. Advantages of AM microLED micro-displays. 34
- Table 4. MicroLED applications. 34
- Table 5. Market and technology challenges for microLEDs. 40
- Table 6. MicroLED industry developments 2020-2023. 41
- Table 7. MicroLED product announcements at CES 2021. 47
- Table 8. MicroLED product announcements at CES 2022 and Display Week 2022. 47
- Table 9. MicroLED product announcements at CES 2023 and Display Week 2023. 49
- Table 10. MicroLED activity in China. 51
- Table 11. Global MicroLED display market (thousands of units) 2020-2034. 52
- Table 12. LED size definitions. 55
- Table 13. Comparison between miniLED and microLED. 58
- Table 14. Comparison to conventional LEDs. 59
- Table 15. Types of MicroLED. 60
- Table 16. Summary of monolithic integration, monolithic hybrid integration (flip-chip/wafer bonding), and mass transfer technologies. 61
- Table 17. Summary of different mass transfer technologies. 63
- Table 18. MicroLED Comparison to LCD, OLED and QD. 65
- Table 19. Schematic comparison to LCD and OLED. 66
- Table 20. Commercially available MicroLED products and specifications. 66
- Table 21. Comparison of MicroLED with other display technologies. 67
- Table 22. MicroLED-based display advantages and disadvantages. 67
- Table 23. Materials for commercial LED chips. 74
- Table 24. Bandgap vs lattice constant for common III-V semiconductors used in LEDs. 75
- Table 25. Advantages and disadvantages of MOCVD. 77
- Table 26. Typical RGB microLED designs. 80
- Table 27. Size dependence of key parameters in microLEDs 83
- Table 28. Transfer, assembly and integration technologies. 87
- Table 29. Companies utilizing monolithic integration for MicroLEDs. 89
- Table 30. Advantages and disadvantages of heterogeneous wafers. 92
- Table 31. Key players in heterogeneous wafers. 93
- Table 32. Fabricating monolithic micro-displays. 93
- Table 33. GaN-on-Si applications. 95
- Table 34. Different epitaxial growth methods for GaN-on-Silicon. 95
- Table 35. Comparison of GaN growth on sapphire vs silicon substrates. 96
- Table 36. Cost comparison of sapphire versus silicon substrates for GaN epitaxy 97
- Table 37. Challenges of GaN-on-Silicon epitaxy and mitigation strategies. 97
- Table 38. Companies utilizing GaN microLEDs on silicon. 98
- Table 39. Mass transfer methods, by company. 99
- Table 40. Comparison of various mass transfer technologies. 100
- Table 41. Factors affecting transfer yield for microLED mass assembly. 103
- Table 42. Advantages and disadvantages of Elastomeric stamp for microLED mass transfer. 104
- Table 43. Companies utilizing elastomeric stamp transfer. 108
- Table 44. Laser beam requirement. 111
- Table 45. Companies utilizing laser-enabled transfer technology. 111
- Table 46. Companies developing micro-transfer printing technologies. 115
- Table 47. Types of self-assembly technologies. 116
- Table 48. Companies utilizing self-assembly. 120
- Table 49. Advantages and disadvantages of all-in-one CMOS driving technique. 122
- Table 50. Companies utilizing All-in-one transfer. 123
- Table 51. Comparison between 2D and 3D microLEDs. 125
- Table 52. Classification of key microLED bonding and interconnection techniques. 127
- Table 53. Types of bonding. 128
- Table 54. Strategies for full colour realization. 132
- Table 55. Comparison of colour conversion technologies for microLED displays. 133
- Table 56. Companies developing stacked RGB microLEDs. 137
- Table 57. Phosphor materials used for LED colour conversion. 138
- Table 58. Requirements for phosphors in LEDs. 139
- Table 59. Standard and emerging red-emitting phosphors. 140
- Table 60. Challenges with phosphor colour conversion. 143
- Table 61. Companies developing phosphors for MicroLEDs. 143
- Table 62. Comparative properties of conventional QDs and Perovskite QDs. 148
- Table 63. Properties of perovskite QLEDs comparative to OLED and QLED. 149
- Table 64. Perovskite-based QD producers. 149
- Table 65. Comparison between carbon quantum dots and graphene quantum dots. 151
- Table 66. Comparison of graphene QDs and semiconductor QDs. 152
- Table 67. Graphene quantum dots producers. 152
- Table 68. QDs vs phosphors. 154
- Table 69. QD-based display types. 155
- Table 70. Quantum dot (QD) patterning techniques. 158
- Table 71. Pros and cons of ink-jet printing for manufacturing displays. 159
- Table 72. Challenges with QD colour conversion. 160
- Table 73. Companies utilizing quantum dots in MicroLEDs. 160
- Table 74. Methods to capture light output. 165
- Table 75. Backplane and driving options for MicroLED displays. 168
- Table 76. Comparison between PM and AM addressing. 172
- Table 77. PAM vs PWM. 174
- Table 78. . Driving vs. EQE. 175
- Table 79. Comparison of LED TV technologies. 179
- Table 80. Samsung Neo QLED TV range. 182
- Table 81. LG mini QNED range 183
- Table 82. Flexible, stretchable and foldable MicroLED products. 193
- Table 83. Medical display MicroLED products. 198
- Table 84. Automotive display & backlight architectures 199
- Table 85. Applications of MicroLED in automotive. 201
- Table 86. Automotive display MicroLED products. 206
- Table 87. Comparison of AR Display Light Engines. 209
- Table 88. MicroLED based smart glass products. 212
- Table 89. MicroLED transparent displays. 216
- Table 90. Companies developing MicroLED transparent displays. 220
- Table 91. MicroLED supply chain. 221
- Table 93. LG mini QNED range 268
- Table 94. Samsung Neo QLED TV range. 296
- Table 95. San’an Mini and MicroLED Production annual target. 297
- Table 96. NPQDTM vs Traditional QD based MicroLEDs. 299
- Table 97. TCL MiniLED product range. 309
List of Figures
- Figure 1. Blue GaN MicroLED arrays with 3um pixel pitch use polychromatic quantum dot integration to achieve full colour AR displays. 26
- Figure 2: QLED TV from Samsung. 30
- Figure 3. QD display products. 30
- Figure 4. The progress of display technology, from LCD to MicroLED. 32
- Figure 5. Head-up displays (HUD). 35
- Figure 6. Public advertising displays. 36
- Figure 7. Wearable biomedical devices. 37
- Figure 8. Pico-projectors. 39
- Figure 9. Mojo Vision's 300-mm GaN-on-silicon blue LED wafer for microLED displays. 50
- Figure 10. Global MicroLED display market (thousands of units) 2020-2034. 53
- Figure 11. Global MicroLED display market 2020-2034, by market (Million USD). 54
- Figure 12. MicroLED display panel structure. 56
- Figure 13. Display system configurations. 57
- Figure 14. MicroLED schematic. 59
- Figure 15. Pixels per inch roadmap of µ-LED displays from 2007 to 2019. 60
- Figure 16. Mass transfer for µLED chips. 62
- Figure 17. Schematic diagram of mass transfer technologies. 64
- Figure 18. Lextar 10.6 inch transparent MicroLED display. 69
- Figure 19. Transition to borderless design. 70
- Figure 20. Process for LED Manufacturing. 79
- Figure 21. Main application scenarios of microLED display and their characteristic display area and pixel density. 86
- Figure 22. Conventional process used to fabricate microLED microdisplay devices. 90
- Figure 23. Process flow of Silicon Display of Sharp. 90
- Figure 24. JDB monolithic hybrid integration microLED chip fabrication process. 92
- Figure 25. Monolithic microLED array. 94
- Figure 26. Schematics of a elastomer stamping, b electrostatic/electromagnetic transfer, c laser-assisted transfer and d fluid self-assembly. 101
- Figure 27. Transfer process flow. 104
- Figure 28. XCeleprint Automated micro-transfer printing machinery. 106
- Figure 29. Schematics of Roll-based mass transfer. 109
- Figure 30. Schematic of laser-induced forward transfer technology. 110
- Figure 31. Schematic of fluid self-assembly technology. 117
- Figure 32. Fabrication of microLED chip array. 118
- Figure 33. Schematic of colour conversion technology. 134
- Figure 34. Process flow of a full-colour micro display. 135
- Figure 35. GE inkjet-printed red phosphors. 141
- Figure 36. Toray's organic colour conversion film. 143
- Figure 37. Quantum dot schematic. 144
- Figure 38. Quantum dot size and colour. 145
- Figure 39. (a) Emission colour and wavelength of QDs corresponding to their sizes (b) InP QDs; (c) InP/ZnSe/ZnS core-shell QDs. 146
- Figure 40. A pQLED device structure. 148
- Figure 41. Perovskite quantum dots under UV light. 149
- Figure 42. Market map for MicroLED displays. 178
- Figure 43. Market adoption roadmap for microLED displays. 179
- Figure 44. Samsung Wall display system. 181
- Figure 45. Samsung Neo QLED 8K. 182
- Figure 46. Samsung Electronics 89-inch microLED TV. 183
- Figure 47. MAGNIT MicroLED TV. 184
- Figure 48. MicroLED wearable display prototype. 185
- Figure 49. APHAEA Watch. 185
- Figure 50. AUO's 13.5-inch transparent RGB microLED display. 188
- Figure 51. AU Optonics Flexible MicroLED Display. 189
- Figure 52. Schematic of the TALT technique for wafer-level MicroLED transferring. 190
- Figure 53. 55” flexible AM panel. 191
- Figure 54. Foldable 4K C SEED M1. 192
- Figure 55. Stretchable 12" microLED touch displays. 193
- Figure 56. MicroLEDs for medical applications 198
- Figure 57. 2023 Cadillac Lyriq EV incorporating miniLED display. 200
- Figure 58. MicroLED automotive display. 201
- Figure 59. Issues in current commercial automotive HUD. 204
- Figure 60. Rear lamp utilizing flexible MicroLEDs. 206
- Figure 61. LAWK ONE. 210
- Figure 62. JioGlass. 210
- Figure 63. Mojo Vision smart contact lens with an embedded MicroLED display. 212
- Figure 64. Cellid AR glasses, Exploded version. 212
- Figure 65. Air Glass. 213
- Figure 66. Panasonic MeganeX. 213
- Figure 67. Thunderbird Smart Glasses Pioneer Edition. 213
- Figure 68. RayNeo X2. 214
- Figure 69. tooz technologies smart glasses. 214
- Figure 70. Vuzix MicroLED micro display Smart Glasses. 215
- Figure 71. Leopard demo glasses by WaveOptics. 215
- Figure 72. Different transparent displays and transmittance limitations. 217
- Figure 73. 7.56" high transparency & frameless MicroLED display. 219
- Figure 74. 17.3-inch transparent microLED AI display in a Taiwan Ferry. 219
- Figure 75. WireLED in 12” Silicon Wafer. 224
- Figure 76. Typical GaN-on-Si LED structure. 225
- Figure 77. 300 mm GaN-on-silicon epiwafer. 226
- Figure 78. MicroLED chiplet architecture. 227
- Figure 79. Concept Apple Vr Ar Mixed Reality Headset. 228
- Figure 80. 1.39-inch full-circle MicroLED display 229
- Figure 81. 9.4" flexible MicroLED display. 230
- Figure 82. BOE MiniLED display TV. 232
- Figure 83. BOE MiniLED automotive display. 233
- Figure 84. Image obtained on a blue active-matrix WVGA (wide video graphics array) micro display. 235
- Figure 85. Fabrication of the 10-µm pixel pitch LED array on sapphire. 235
- Figure 86. A 200-mm wafer with CMOS active matrices for GaN 873 × 500-pixel micro display at 10-µm pitch. 236
- Figure 87. IntelliPix™ design for 0.26″ 1080p MicroLED display. 238
- Figure 88. C Seed 165-inch M1 MicroLED TV. 240
- Figure 89. N1 folding MicroLED TV. 240
- Figure 90. C Seed outdoor TV. 241
- Figure 91. Focally Universe AR glasses. 245
- Figure 92. Flexible MicroLED. 253
- Figure 93. Jade Bird Display micro displays. 256
- Figure 94. JBD's 0.13-inch panel. 257
- Figure 95. 0.22” Monolithic full colour MicroLED panel and inset shows a conceptual monolithic polychrome projector with a waveguide. 257
- Figure 96. Prototype MicroLED display. 259
- Figure 97. APHAEA MicroLED watch. 260
- Figure 98. KONKA 59" tiled microLED TV prototype screen. 260
- Figure 99. Lextar 2021 microLED and mini LED products. 266
- Figure 100. LSAB009 MicroLED display. 268
- Figure 101. LG MAGNIT 4K 136-inch TV. 269
- Figure 102. 12" 100 PPI full-colour stretchable microLED display. 270
- Figure 103. Schematic of Micro Nitride chip architecture. 274
- Figure 104. Nationstar Mini LED IMD Package P0.5mm. 278
- Figure 105. 9.4" flexible MicroLED display. 281
- Figure 106. 7.56-inch transparent MicroLED display. 282
- Figure 107. PixeLED Matrix Modular MicroLED Display in 132-inch. 282
- Figure 108. Dashboard - 11.6-inch 24:9 Automotive MicroLED Display. 283
- Figure 109. Center Console - 9.38-inch Transparent MicroLED Display. 283
- Figure 110. 48 x 36 Passive Matrix MicroLED display. 285
- Figure 111. MicroLED micro display based on a native red InGaN LED. 286
- Figure 112. MicroLED stretchable display. 293
- Figure 113. The Wall. 294
- Figure 114. Samsung Neo QLED 8K. 295
- Figure 115. NPQD™ Technology for MicroLEDs. 298
- Figure 116. Wicop technology. 301
- Figure 117. B-Series and C-Series displays. 305
- Figure 118. A micro-display with a stacked-RGB pixel array, where each pixel is an RGB-emitting stacked MicroLED device (left). The micro-display showing a video of fireworks at night, demonstrating the full-colour capability (right). N.B. Areas around the display/ 307
- Figure 119. TCL MiniLED TV schematic. 308
- Figure 120. TCL 8K MiniLED TV. 309
- Figure 121. The Cinema Wall MicroLED display. 310
- Figure 122. Photo-polymer mass transfer process. 311
- Figure 123. 7.56” Transparent Display. 313
- Figure 124. 7.56" Flexible MicroLED. 314
- Figure 125. 5.04" seamless splicing MicroLED. 314
- Figure 126. 7.56" Transparent MicroLED. 315
- Figure 127. VueReal Flipchip MicroLED (30x15 um2). 319
- Figure 128. Vuzix uLED display engine. 320
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer.
To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.