The Global Advanced Plastics Recycling Market 2025-2040

0

cover

cover

  • Published: February 2024
  • Pages: 370
  • Tables: 65
  • Figures: 54

 

Current projections indicate that plastic production will double by 2050, accompanied by a corresponding doubling of plastic-related emissions by 2060, with a projected tripling of annual plastic waste volume by 2060. This presents a major challenge in sustainable waste management. Despite growing environmental awareness and improved waste management infrastructure, global plastic recycling rates have stagnated at approximately 8%. While certain nations have achieved notable success – South Korea, Germany, and several other European countries report recycling rates exceeding 50% – these regional achievements, though commendable, cannot offset the global challenge. Moreover, the limitations of traditional mechanical recycling technology further constrain global recycling capabilities.

Mechanical recycling, while energy-efficient and widely deployed, exhibits significant limitations in its application scope. The process demonstrates effectiveness primarily with PET and HDPE but struggles with other plastic types. PVC and PP undergo degradation during mechanical recycling, while LDPE frequently causes equipment damage. A critical drawback of mechanical recycling lies in its inability to remove contaminants such as inks, dyes, and additives, resulting in lower-quality recyclate with limited market applications and reduced commercial value.

The emergence of advanced recycling technologies – encompassing various physicochemical processes for monomer and polymer extraction – promised to address these fundamental limitations of mechanical recycling. The past five years have witnessed rapid market growth in this sector, with varying degrees of success in addressing mechanical recycling's technical constraints. Among the first commercialized advanced recycling technologies, pyrolysis and depolymerization have established distinct niches. Pyrolysis has demonstrated particular efficacy in converting mixed plastic waste into fuels, while depolymerization has achieved market leadership in PET recycling. However, neither technology has fully delivered on the comprehensive solution initially envisioned. The latest innovation in advanced recycling, solvent dissolution, shows promise in exceeding both technologies in terms of scope (polymer compatibility) and efficiency (output quality).

The Global Advanced Plastics Recycling Market 2025-2040 examines the current state of advanced plastics recycling technologies, analyzing their relative strengths, limitations, and potential to address the escalating global plastics crisis. Through detailed market analysis and technical evaluation, we assess whether these technologies can fulfill their promise of revolutionizing plastic waste management and supporting the transition toward a more sustainable circular economy. The report provides comprehensive insights into the rapidly evolving advanced recycling industry. This detailed analysis covers market trends, technological innovations, competitive landscape, and growth opportunities across the entire advanced plastics recycling value chain.

Key Report Highlights:

  • In-depth analysis of market size and growth projections (2025-2040)
  • Detailed assessment of key technologies: pyrolysis, depolymerization, solvent-based purification, and emerging solutions
  • Regional market analysis covering North America, Europe, Asia-Pacific, Latin America, and Middle East & Africa
  • Comprehensive evaluation of recycling technologies for different plastic types (PET, PE, PP, PS, and others)
  • Analysis of end-user industries including packaging, automotive, electronics, textiles, and construction
  • Detailed competitive landscape and strategic positioning of major market players. Companies profiled include Aduro Clean Technologies, Advanced Plastic Purification International (APPI), Aeternal Upcycling, Agilyx, Alpha Recyclage Composites, Alterra Energy, Ambercycle, Anellotech, Anhui Oursun Resource Technology, APChemi, APK AG, Aquafil, ARCUS Greencycling, Arkema, Axens SA, BASF, Bcircular, BioBTX, Biofabrik Technologies, Blest (Microengineer), Blue Cycle, BlueAlp Technology, Borealis AG, Boston Materials, Braven Environmental, Breaking, Brightmark, Cadel Deinking, Carbios, Carboliq, Carbon Fiber Recycling, Cassandra Oil, Chevron Phillips Chemical, Chian Tianying, CIRC, Clariter, Clean Energy Enterprises, Clean Planet Energy, Corsair Group International, Covestro, CreaCycle, CuRe Technology, Cyclic Materials, Cyclize, DeepTech Recycling, DePoly SA, Dow Chemical Company, DyeRecycle, Eastman Chemical Company, Eco Fuel Technology, Ecopek, Ecoplasteam, Eeden, Emery Oleochemicals, Encina Development Group, Enerkem, Enval, Environmental Solutions (Asia), Epoch Biodesign, Equipolymers, Evonik Industries, Evrnu, Extracthive, ExxonMobil, Fairmat, FRE Technologies, Freepoint Eco-Systems, Fulcrum BioEnergy, Futerro, Fych Technologies, Garbo, GreenMantra Technologies, Greyparrot, Gr3n SA, Handerek Technologies, Hanwha Solutions, Honeywell, Hyundai Chemical, InEnTec, INEOS Styrolution, Indaver, Infinited Fiber Company, Ioncell, Ioniqa Technologies, Itero Technologies, Jeplan, JFE Chemical Corporation, Kaneka Corporation, Khepra, Klean Industries, Lanzatech, Licella, Loop Industries, LOTTE Chemical, Lummus Technology, LyondellBasell Industries, MacroCycle, Metaspectral, Mint Innovation, Microwave Chemical, Mitsubishi Chemical, MolyWorks Materials, Mote, Mura Technology, Nanya Plastics Corporation, NatureWorks, Neste Oyj, New Hope Energy, Nexus Circular, Next Generation Group (NGR), Novoloop and many more.

 

 

1             CLASSIFICATION OF RECYCLING TECHNOLOGIES             17

 

2             RESEARCH METHODOLOGY              19

 

3             INTRODUCTION          19

  • 3.1        Global production of plastics             20
  • 3.2        The importance of plastic      20
  • 3.3        Issues with plastics use          21
  • 3.4        Bio-based or renewable plastics      21
    • 3.4.1    Drop-in bio-based plastics   21
    • 3.4.2    Novel bio-based plastics       22
  • 3.5        Biodegradable and compostable plastics  23
    • 3.5.1    Biodegradability          23
    • 3.5.2    Compostability            24
  • 3.6        Plastic pollution           24
  • 3.7        Policy and regulations              25
  • 3.8        The circular economy               26
  • 3.9        Plastic recycling           27
    • 3.9.1    Mechanical recycling                30
      • 3.9.1.1 Closed-loop mechanical recycling  30
      • 3.9.1.2 Open-loop mechanical recycling      30
      • 3.9.1.3 Polymer types, use, and recovery     31
    • 3.9.2    Advanced recycling (molecular recycling, chemical recycling)     31
      • 3.9.2.1 Main streams of plastic waste            32
      • 3.9.2.2 Comparison of mechanical and advanced chemical recycling    32
  • 3.10     Life cycle assessment             33

 

4             THE ADVANCED PLASTICS RECYCLING MARKET  34

  • 4.1        Market drivers and trends      34
    • 4.1.1    Growing Environmental Concerns   35
    • 4.1.2    Stringent Regulatory Policies              36
    • 4.1.3    Corporate Sustainability Initiatives 38
    • 4.1.4    Technological Advancements             39
    • 4.1.5    Circular Economy Adoption 41
  • 4.2        Market Challenges and Restraints   42
    • 4.2.1    High Initial Investment Costs              42
    • 4.2.2    Technical Challenges               43
    • 4.2.3    Infrastructure Limitations     44
    • 4.2.4    Technological Barriers             45
    • 4.2.5    Supply Chain Complexities  46
    • 4.2.6    Cost Competitiveness             47
  • 4.3        Industry news, funding and developments 2020-2025      47
  • 4.4        Capacities       56
  • 4.5        Global polymer demand 2022-2040, segmented by recycling technology            58
    • 4.5.1    PE          58
    • 4.5.2    PP          59
    • 4.5.3    PET       61
    • 4.5.4    PS          62
    • 4.5.5    Nylon   63
    • 4.5.6    Others 64
  • 4.6        Global polymer demand 2022-2040, segmented by recycling technology, by region     66
    • 4.6.1    Europe                66
    • 4.6.2    North America              67
    • 4.6.3    South America              68
    • 4.6.4    Asia      70
    • 4.6.5    Oceania            71
    • 4.6.6    Africa   72
  • 4.7        Chemically recycled plastic products           74
  • 4.8        Market map    76
  • 4.9        Value chain     77
  • 4.10     Life Cycle Assessments (LCA) of advanced plastics recycling processes             78
    • 4.10.1 PE          78
    • 4.10.2 PP          79
    • 4.10.3 PET       79
  • 4.11     Recycled plastic yield and cost         79
    • 4.11.1 Plastic yield of each chemical recycling technologies        79
    • 4.11.2 Prices  80
  • 4.12     Market challenges      80

 

5             ADVANCED PLASTICS RECYCLING TECHNOLOGIES         81

  • 5.1        Applications   82
  • 5.2        Pyrolysis            82
    • 5.2.1    Non-catalytic 83
    • 5.2.2    Catalytic            84
      • 5.2.2.1 Polystyrene pyrolysis 86
      • 5.2.2.2 Pyrolysis for production of bio fuel  86
      • 5.2.2.3 Used tires pyrolysis   90
        • 5.2.2.3.1           Conversion to biofuel               91
      • 5.2.2.4 Co-pyrolysis of biomass and plastic wastes             92
    • 5.2.3    SWOT analysis              92
    • 5.2.4    Companies and capacities  93
  • 5.3        Gasification    95
    • 5.3.1    Technology overview 95
      • 5.3.1.1 Syngas conversion to methanol        96
      • 5.3.1.2 Biomass gasification and syngas fermentation       99
      • 5.3.1.3 Biomass gasification and syngas thermochemical conversion    100
    • 5.3.2    SWOT analysis              100
    • 5.3.3    Companies and capacities (current and planned)                101
  • 5.4        Dissolution     102
    • 5.4.1    Technology overview 102
    • 5.4.2    SWOT analysis              103
    • 5.4.3    Companies and capacities (current and planned)                104
  • 5.5        Depolymerisation       105
    • 5.5.1    Hydrolysis        107
      • 5.5.1.1 Technology overview 107
      • 5.5.1.2 SWOT analysis              108
  • 5.5.2    Enzymolysis   109
    • 5.5.2.1 Technology overview 109
    • 5.5.2.2 SWOT analysis              110
  • 5.5.3    Methanolysis 111
    • 5.5.3.1 Technology overview 111
    • 5.5.3.2 SWOT analysis              112
  • 5.5.4    Glycolysis         113
    • 5.5.4.1 Technology overview 113
    • 5.5.4.2 SWOT analysis              114
  • 5.5.5    Aminolysis      115
    • 5.5.5.1 Technology overview 115
    • 5.5.5.2 SWOT analysis              116
  • 5.5.6    Companies and capacities (current and planned)                116
  • 5.6        Other advanced chemical recycling technologies 117
    • 5.6.1    Hydrothermal cracking           117
    • 5.6.2    Pyrolysis with in-line reforming          118
    • 5.6.3    Microwave-assisted pyrolysis             119
    • 5.6.4    Plasma pyrolysis         119
    • 5.6.5    Plasma gasification   120
    • 5.6.6    Supercritical fluids     120
    • 5.6.7    Carbon fiber recycling              121
      • 5.6.7.1 Processes        122
      • 5.6.7.2 Companies     124
  • 5.7        Advanced recycling of thermoset materials              124
    • 5.7.1    Thermal recycling        125
      • 5.7.1.1 Energy Recovery Combustion            125
      • 5.7.1.2 Anaerobic Digestion 126
      • 5.7.1.3 Pyrolysis Processing 126
      • 5.7.1.4 Microwave Pyrolysis  127
    • 5.7.2    Solvolysis         128
    • 5.7.3    Catalyzed Glycolysis 129
    • 5.7.4    Alcoholysis and Hydrolysis   129
    • 5.7.5    Ionic liquids    130
    • 5.7.6    Supercritical fluids     131
    • 5.7.7    Plasma              132
    • 5.7.8    Companies     133
  • 5.8        Comparison with Traditional Recycling Methods   134
    • 5.8.1    Mechanical Recycling Limitations   135
    • 5.8.2    Energy Efficiency Comparison           135
    • 5.8.3    Quality of Output Comparison          136
    • 5.8.4    Cost Analysis 137
  • 5.9        Environmental Impact Assessment                138
    • 5.9.1    Carbon Footprint Analysis    138
    • 5.9.2    Energy Consumption Assessment  140
    • 5.9.3    Waste Reduction Potential   141
    • 5.9.4    Sustainability Metrics               143
  • 5.10     5.5. Emerging Technologies  144
    • 5.10.1 AI and Machine Learning Applications          144
      • 5.10.1.1            Sorting Optimization 145
      • 5.10.1.2            Process Control           145
      • 5.10.1.3            Quality Prediction       147
      • 5.10.1.4            Maintenance Prediction          148
    • 5.10.2 Robotics in Sorting     150
      • 5.10.2.1            Vision Systems             151
      • 5.10.2.2            Picking Mechanisms 151
      • 5.10.2.3            Control Systems          152
      • 5.10.2.4            Integration Methods  153
    • 5.10.3 Novel Catalyst Development               154
      • 5.10.3.1            Nano-catalysts             154
      • 5.10.3.2            Bio-catalysts  155
      • 5.10.3.3            Hybrid Catalysts          156

 

6             MATERIALS ANALYSIS               158

  • 6.1        Plastics              158
    • 6.1.1    Polyethylene (PE)        159
      • 6.1.1.1 HDPE Analysis              159
      • 6.1.1.2 LLDPE Analysis            160
      • 6.1.1.3 Recovery Methods     160
  • 6.1.2    Polypropylene (PP)     161
    • 6.1.2.1 Homopolymer               162
    • 6.1.2.2 Copolymer       163
    • 6.1.2.3 Processing Methods 164
    • 6.1.2.4 Quality Grades              165
  • 6.1.3    Polyethylene Terephthalate (PET)     166
    • 6.1.3.1 Bottle Grade   167
    • 6.1.3.2 Fiber Grade     168
    • 6.1.3.3 Film Grade       169
    • 6.1.3.4 Recovery Technologies            170
  • 6.1.4    Polystyrene (PS)           171
    • 6.1.4.1 Expanded PS  172
    • 6.1.4.2 Processing Methods 172
  • 6.1.5    Other Plastics               173
    • 6.1.5.1 PVC      174
    • 6.1.5.2 PC         175
    • 6.1.5.3 ABS       176
    • 6.1.5.4 Mixed Plastics               177
  • 6.2        Metals 178
    • 6.2.1    Precious Metals           179
      • 6.2.1.1 Gold     179
      • 6.2.1.2 Silver    181
      • 6.2.1.3 Platinum Group Metals           182
      • 6.2.1.4 Recovery Methods     182
  • 6.3        Base Metals    183
    • 6.3.1    Copper               184
    • 6.3.2    Aluminum        185
    • 6.3.3    Steel     186
    • 6.3.4    Processing Technologies        187
  • 6.4        Rare Earth Elements 188
    • 6.4.1    Light REEs        189
    • 6.4.2    Heavy REEs     190
    • 6.4.3    Extraction Methods   191
  • 6.5        Electronic Waste         192
    • 6.5.1    Circuit Boards               192
      • 6.5.1.1 PCB Types        193
      • 6.5.1.2 Component Separation          194
      • 6.5.1.3 Metal Recovery             195
      • 6.5.1.4 Waste Management  196
  • 6.5.2    Batteries            197
    • 6.5.2.1 Lithium-ion     198
    • 6.5.2.2 Lead-acid         199
    • 6.5.2.3 Nickel-based  200
    • 6.5.2.4 Recovery Processes  201
  • 6.5.3    Displays            202
    • 6.5.3.1 LCD      202
    • 6.5.3.2 LED       202
    • 6.5.3.3 OLED   203
    • 6.5.3.4 Material Recovery       204
  • 6.5.4    Other Components   205
    • 6.5.4.1 Capacitors      205
    • 6.5.4.2 Resistors          206
    • 6.5.4.3 Semiconductors          207
    • 6.5.4.4 Connectors     208
  • 6.6        Textiles               209
    • 6.6.1    Natural Fibers                209
    • 6.6.2    Cotton 210
    • 6.6.3 Wool    211
    • 6.6.4 Silk        212
    • 6.6.5 Processing Methods 213
    • 6.6.6    Synthetic Fibers           214
      • 6.6.1 Polyester           214
      • 6.6.2 Nylon   215
      • 6.6.3 Acrylic 216
      • 6.6.4 Recovery Technologies            217

 

7             END PRODUCT ANALYSIS      219

  • 7.1        Chemical Feedstocks              219
    • 7.1.1    Monomers       219
    • 7.1.2    Oligomers        220
    • 7.1.3    Specialty Chemicals 220
  • 7.2        Fuels    221
    • 7.2.1    Diesel  222
    • 7.2.2    Gasoline           223
    • 7.2.3    Synthetic Gas 224
  • 7.3        Raw Materials                225
    • 7.3.1    Recycled Plastics       225
    • 7.3.2    Recovered Metals       226
    • 7.3.3    Other Materials            227
  • 7.4        Energy Products           228
    • 7.4.1    Electricity          228
    • 7.4.2    Heat     229
    • 7.4.3    Biofuels             230

 

8             COMPANY PROFILES                232 (188 company profiles)

 

9             GLOSSARY OF TERMS             360

 

10          REFERENCES 362

 

List of Tables

  • Table 1. Types of recycling.   15
  • Table 2. Issues related to the use of plastics.           18
  • Table 3. Type of biodegradation.       21
  • Table 4. Overview of the recycling technologies.    27
  • Table 5. Polymer types, use, and recovery. 28
  • Table 6. Composition of plastic waste streams.     29
  • Table 7. Comparison of mechanical and advanced chemical recycling.                30
  • Table 8. Life cycle assessment of virgin plastic production, mechanical recycling and chemical recycling.          30
  • Table 9. Life cycle assessment of chemical recycling technologies (pyrolysis, gasification, depolymerization and dissolution). 30
  • Table 10. Market drivers and trends in the advanced plastics recycling market.               31
  • Table 11. Advanced plastics recycling industry news, funding and developments 2020-2024.              44
  • Table 12. Advanced plastics recycling capacities, by technology.              53
  • Table 13. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes).             55
  • Table 14. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes).             57
  • Table 15. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes).             58
  • Table 16. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes).             59
  • Table 17. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes).             60
  • Table 18. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes).*         61
  • Table 19. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes).   63
  • Table 20. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes).             64
  • Table 21. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes).             65
  • Table 22. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes).         67
  • Table 23. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes). 68
  • Table 24. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes).      69
  • Table 25. Example chemically recycled plastic products.                71
  • Table 26. Life Cycle Assessments (LCA) of Advanced Chemical Recycling Processes. 75
  • Table 27. Life cycle assessment of mechanically versus chemically recycling polyethylene (PE).        75
  • Table 28. Life cycle assessment of mechanically versus chemically recycling polypropylene (PP).     76
  • Table 29. Life cycle assessment of mechanically versus chemically recycling polyethylene terephthalate (PET).  76
  • Table 30. Plastic yield of each chemical recycling technologies. 76
  • Table 31. Chemically recycled plastics prices in USD.       77
  • Table 32. Challenges in the advanced chemical recycling market.            77
  • Table 33. Applications of chemically recycled materials. 79
  • Table 34. Summary of non-catalytic pyrolysis technologies.         81
  • Table 35. Summary of catalytic pyrolysis technologies.    82
  • Table 36. Summary of pyrolysis technique under different operating conditions.            85
  • Table 37. Biomass materials and their bio-oil yield.             86
  • Table 38. Biofuel production cost from the biomass pyrolysis process. 86
  • Table 39. Pyrolysis companies and plant capacities, current and planned.         90
  • Table 40. Summary of gasification technologies.  92
  • Table 41. Advanced recycling (Gasification) companies. 98
  • Table 42. Summary of dissolution technologies.   99
  • Table 43. Advanced recycling (Dissolution) companies    101
  • Table 44. Depolymerisation processes for PET, PU, PC and PA, products and yields.    103
  • Table 45. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.           104
  • Table 46. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 106
  • Table 47. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 108
  • Table 48. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.           110
  • Table 49. Summary of aminolysis technologies.    112
  • Table 50. Advanced recycling (Depolymerisation) companies and capacities (current and planned).                113
  • Table 51. Overview of hydrothermal cracking for advanced chemical recycling.              114
  • Table 52. Overview of Pyrolysis with in-line reforming for advanced chemical recycling.            115
  • Table 53. Overview of microwave-assisted pyrolysis for advanced chemical recycling.              116
  • Table 54. Overview of plasma pyrolysis for advanced chemical recycling.           116
  • Table 55. Overview of plasma gasification for advanced chemical recycling.     117
  • Table 56. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages.       119
  • Table 57. Retention rate of tensile properties of recovered carbon fibres by different recycling processes.       120
  • Table 58. Recycled carbon fiber producers, technology and capacity.    121
  • Table 59.  Current thermoset recycling routes.        122
  • Table 60. Companies developing advanced thermoset recycing routes.               130
  • Table 61. Energy Efficiency Comparison.    132
  • Table 62. Quality of Output Comparison.   133
  • Table 63. Cost Analysis of advanced plastic recycling versus traditional recycling methods.  135
  • Table 64. Carbon Footprint Analysis.             135
  • Table 65. Energy Consumption Assessment.           137
  •  

List of Figures

  • Figure 1. Global plastics production 1950-2021, millions of tonnes.       17
  • Figure 2.  Coca-Cola PlantBottle®.   19
  • Figure 3. Interrelationship between conventional, bio-based and biodegradable plastics.       20
  • Figure 4. Global production, use, and fate of polymer resins, synthetic fibers, and additives. 22
  • Figure 5. The circular plastic economy.        24
  • Figure 6. Current management systems for waste plastics.           25
  • Figure 7. Overview of the different circular pathways for plastics.             27
  • Figure 8. Global polymer demand 2022-2040, segmented by recycling technology for PE (million tonnes).             56
  • Figure 9. Global polymer demand 2022-2040, segmented by recycling technology for PP (million tonnes).             57
  • Figure 10. Global polymer demand 2022-2040, segmented by recycling technology for PET (million tonnes).             59
  • Figure 11. Global polymer demand 2022-2040, segmented by recycling technology for PS (million tonnes).             60
  • Figure 12. Global polymer demand 2022-2040, segmented by recycling technology for Nylon (million tonnes).             61
  • Figure 13. Global polymer demand 2022-2040, segmented by recycling technology for Other types (million tonnes).          62
  • Figure 14. Global polymer demand in Europe, by recycling technology 2022-2040 (million tonnes). 64
  • Figure 15. Global polymer demand in North America, by recycling technology 2022-2040 (million tonnes).             65
  • Figure 16. Global polymer demand in South America, by recycling technology 2022-2040 (million tonnes).             66
  • Figure 17. Global polymer demand in Asia, by recycling technology 2022-2040 (million tonnes).        68
  • Figure 18. Global polymer demand in Oceania, by recycling technology 2022-2040 (million tonnes).                69
  • Figure 19. Global polymer demand in Africa, by recycling technology 2022-2040 (million tonnes).    70
  • Figure 20. Market map for advanced plastics recycling.    74
  • Figure 21. Value chain for advanced plastics recycling market.   74
  • Figure 22. Schematic layout of a pyrolysis plant.   80
  • Figure 23. Waste plastic production pathways to (A) diesel and (B) gasoline      84
  • Figure 24. Schematic for Pyrolysis of Scrap Tires. 88
  • Figure 25. Used tires conversion process.  89
  • Figure 26. SWOT analysis-pyrolysis for advanced recycling.          90
  • Figure 27. Total syngas market by product in MM Nm³/h of Syngas, 2021.           94
  • Figure 28. Overview of biogas utilization.    95
  • Figure 29. Biogas and biomethane pathways.          96
  • Figure 30. SWOT analysis-gasification for advanced recycling.    98
  • Figure 31. SWOT analysis-dissoluton for advanced recycling.      101
  • Figure 32. Products obtained through the different solvolysis pathways of PET, PU, and PA.    103
  • Figure 33. SWOT analysis-Hydrolysis for advanced chemical recycling. 106
  • Figure 34. SWOT analysis-Enzymolysis for advanced chemical recycling.            107
  • Figure 35. SWOT analysis-Methanolysis for advanced chemical recycling.          109
  • Figure 36. SWOT analysis-Glycolysis for advanced chemical recycling. 111
  • Figure 37. SWOT analysis-Aminolysis for advanced chemical recycling.               113
  • Figure 38. NewCycling process.        236
  • Figure 39. ChemCyclingTM prototypes.       240
  • Figure 40. ChemCycling circle by BASF.       240
  • Figure 41. Recycled carbon fibers obtained through the R3FIBER process.         241
  • Figure 42. Cassandra Oil  process.  251
  • Figure 43. CuRe Technology process.            258
  • Figure 44. MoReTec.   296
  • Figure 45. Chemical decomposition process of polyurethane foam.       299
  • Figure 46. OMV ReOil process.           309
  • Figure 47. Schematic Process of Plastic Energy’s TAC Chemical Recycling.        313
  • Figure 48. Easy-tear film material from recycled material.              330
  • Figure 49. Polyester fabric made from recycled monomers.          333
  • Figure 50. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right).     343
  • Figure 51. Teijin Frontier Co., Ltd. Depolymerisation process.      347
  • Figure 52. The Velocys process.        353
  • Figure 53. The Proesa® Process.        354
  • Figure 54. Worn Again products.       355
  •  

 

 

The Global Advanced Plastics Recycling Market 2025-2040
The Global Advanced Plastics Recycling Market 2025-2040
PDF download/by email.

The Global Advanced Plastics Recycling Market 2025-2040
The Global Advanced Plastics Recycling Market 2025-2040
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com