The Global Conductive Inks Market 2024-2035

0

  • Published: June 2024
  • Pages: 305
  • Tables: 93
  • Figures: 64

 

The market for conductive inks is evolving rapidly, with new opportunities emerging across various industries. Advances in materials and printing technologies, coupled with increasing demand for flexible and cost-effective electronic solutions, are driving market growth. As the technology continues to mature, conductive inks will play a pivotal role in the next generation of electronic devices and systems. Conductive inks are critical in various applications, including printed electronics, solar cells, biosensors, and smart packaging. 

The Global Market for Conductive Inks 2024-2035 provides an in-depth analysis of the conductive inks market, its growth prospects, and emerging opportunities. This report offers valuable insights into the latest trends, technological advancements, and market dynamics shaping the future of this rapidly evolving industry. Conductive inks are essential components in a wide range of applications, including printed electronics, flexible hybrid electronics, photovoltaics, EMI shielding, printed antennas, RFID tags, and smart packaging. As the demand for innovative and sustainable solutions continues to rise, conductive inks are playing a pivotal role in enabling next-generation electronic devices, wearables, and energy-efficient technologies.

This report explores the diverse types of conductive inks, such as silver, copper, carbon/graphene, conductive polymers, particle-free, and stretchable inks, providing a comprehensive analysis of their properties, advantages, and applications. It provides market segmentation by materials, printing technologies, applications, and end-use industries, offering valuable insights for decision-makers and stakeholders.

Report contents include: 

  • Global market forecasts and revenue projections for conductive inks from 2024 to 2035, segmented by ink types.
  • In-depth analysis of emerging applications, such as flexible hybrid electronics (FHE), in-mold electronics (IME), 3D electronics, e-textiles, printed sensors, wearable electrodes, and printed batteries, exploring their growth potential and market opportunities.
  • Comprehensive coverage of technological advancements, including nanoparticle inks, particle-free inks, silver nanowires, and conductive polymers, highlighting their unique properties and potential applications.
  • Detailed profiles >90 leading conductive ink manufacturers, providing insights into their product offerings, market positioning, and competitive landscapes. Companies profiled include Advanced Nano Products (ANP), Agfa-Gevaert NV, Bando Chemical, C3 Nano, C-Ink, ChemCubed, Copprint, Copprium, DuPont, Dycotec, Elantas, Electroninks, GenesInk, Henkel, Heraeus,  Inkron, InkTec Co., Ltd, LayerOne AS,  MCVE Technologie, N-Ink, Nano Dimension, NovaCentrix, PrintCB, Saralon, Sun Chemical and more. 
  • Evaluation of cost-reduction strategies, material prices, and the impact of digitization on the conductive inks industry.
  • SWOT analyses and benchmarking of conductive ink requirements across various applications.
  • Exploration of emerging markets and growth opportunities, such as flexible and wearable electronics, smart packaging, automotive, medical devices, energy harvesting and storage, smart textiles, and aerospace and defense.

 

This report is an essential resource for conductive ink manufacturers, printed electronics companies, material suppliers, research institutions, investors, and industry professionals seeking to stay ahead of the curve in this rapidly evolving market. 

Table of contents (PDF)

1             EXECUTIVE SUMMARY            18

  • 1.1        The market for conductive inks          18
    • 1.1.1    Types of Conductive Inks       18
    • 1.1.2    Main Applications of Conductive Inks           19
    • 1.1.3    Advantages of Conductive Inks         19
    • 1.1.4    Growth and development of conductive inks market          20
      • 1.1.4.1 Market Evolution         20
    • 1.1.5    Opportunities in Conductive Inks    21
      • 1.1.5.1 Flexible and Wearable Electronics   22
      • 1.1.5.2 Smart Packaging         22
      • 1.1.5.3 Automotive Industry  23
      • 1.1.5.4 Medical Devices           24
      • 1.1.5.5 Energy Harvesting and Storage          24
      • 1.1.5.6 Smart Textiles                25
      • 1.1.5.7 Aerospace and Defence         26
  • 1.2        Digitization of industry             26
  • 1.3        Printing processes and equipment  27
  • 1.4        Costs  28
    • 1.4.1    Reducing costs             28
    • 1.4.2    Material prices              28
  • 1.5        Market segmentation               29
    • 1.5.1    Materials           29
    • 1.5.2    Printing Technology    30
    • 1.5.3    Application      31
    • 1.5.4    End-Use Industries    32
  • 1.6        Global conductive ink revenues, by ink type              32

 

2             INTRODUCTION          34

  • 2.1        Conductivity requirements   34
    • 2.1.1    Challenges      35
    • 2.1.2    Converting conductivity to sheet resistance             35
  • 2.2        Growth in printed electronics              36
    • 2.2.1    Antennas          36
    • 2.2.2    EMI Shielding 37
  • 2.3        Conductive Ink Suppliers       37
    • 2.3.1    Market positioning     37
    • 2.3.2    Suppliers by Conductive Material    38
      • 2.3.2.1 Silver Inks         39
      • 2.3.2.2 Copper Inks    39
      • 2.3.2.3 Carbon/Graphene Inks            39
      • 2.3.2.4 Conductive Polymers               40
    • 2.3.3    Suppliers by Ink Composition            40
      • 2.3.3.1 Nanoparticle Inks       40
      • 2.3.3.2 Particle-free Inks         40
      • 2.3.3.3 Hybrid Inks      41

 

3             CONDUCTIVE INK MATERIALS AND TECHNOLOGY             42

  • 3.1        Overview           42
  • 3.2        Flake-based silver inks            43
    • 3.2.1    Overview           43
      • 3.2.1.1 Increased conductivity and improved durability     43
      • 3.2.1.2 High resolution functional screen printing 43
      • 3.2.1.3 Silver electromigration             44
    • 3.2.2    Flake-based silver ink value chain   44
    • 3.2.3    Comparison of flake-based silver inks          45
    • 3.2.4    Silver flake producers               46
    • 3.2.5    SWOT analysis              47
  • 3.3        Nanoparticle-based silver inks          48
    • 3.3.1    Overview           48
    • 3.3.2    Costs  49
    • 3.3.3    Increasing conductivity           49
    • 3.3.4    Laser-Generated Inks               50
      • 3.3.4.1 Key advantages            50
    • 3.3.5    Prices  51
    • 3.3.6    Ag nanoparticle inks curing  52
      • 3.3.6.1 Curing Temperature   52
      • 3.3.6.2 Curing Time    52
    • 3.3.7    Silver nanoparticle production           53
      • 3.3.7.1 Methods            53
      • 3.3.7.2 Benchmarking              54
      • 3.3.7.3 Nanoparticle ink manufacturers       55
    • 3.3.8    Applications   55
    • 3.3.9    Comparison of nanoparticle-based silver ink types             56
    • 3.3.10 SWOT analysis              58
  • 3.4        Particle-free inks         59
    • 3.4.1    Overview           59
      • 3.4.1.1 Operating principle    60
      • 3.4.1.2 Conductivity   60
      • 3.4.1.3 Benefits of particle-free inks               61
      • 3.4.1.4 Permeability   61
      • 3.4.1.5 Thermoformable particle-free inks  62
      • 3.4.1.6 Particle-free conductive inks based on sintering requirements    63
      • 3.4.1.7 Particle-free inks for different metals            64
      • 3.4.1.8 Properties of particle-free silver inks             65
    • 3.4.2    Applications   66
      • 3.4.2.1 Key application areas               66
      • 3.4.2.2 EMI shielding 67
    • 3.4.3    Particle free ink producers    67
    • 3.4.4    SWOT analysis              68
  • 3.5        Copper inks    69
    • 3.5.1    Overview           69
      • 3.5.1.1 Challenges      69
        • 3.5.1.1.1           Copper oxidation        70
    • 3.5.2    Sintering            72
    • 3.5.3    Applications   73
      • 3.5.3.1 Flexible and hybrid electronics (FHE)            73
      • 3.5.3.2 RFID     74
    • 3.5.4    Copper ink suppliers 75
    • 3.5.5    SWOT analysis              75
  • 3.6        Carbon-based inks (including graphene & CNTs)  77
    • 3.6.1    Overview           77
    • 3.6.2    Carbon Nanotube (CNT) Inks              77
      • 3.6.2.1 Transparent conductive CNT inks    78
    • 3.6.3    Graphene Inks               79
      • 3.6.3.1.1           Properties         79
    • 3.6.4    Graphene/CNT ink producers             80
    • 3.6.5    Comparative analysis              81
    • 3.6.6    Carbon Black Inks      82
      • 3.6.6.1 Applications   84
    • 3.6.7    SWOT analysis              85
  • 3.7        Stretchable/Thermoformable Inks  87
    • 3.7.1    Overview           87
      • 3.7.1.1 Stretchable v Thermoformable conductive inks     87
      • 3.7.1.2 Size and morphology of  conductive filler particles              88
    • 3.7.2    Applications and innovations             89
    • 3.7.3    Metal gels         91
      • 3.7.3.1 Description     91
      • 3.7.3.2 Advantages     91
    • 3.7.4    Stretchable/thermoformable ink manufacturers   92
    • 3.7.5    SWOT analysis              93
  • 3.8        Silver Nanowires         94
    • 3.8.1    Overview           94
      • 3.8.1.1 Benefits of silver nanowire TCFs       94
      • 3.8.1.2 Performance in TCFs 95
      • 3.8.1.3 Durability and flexibility           96
    • 3.8.2    Improving electrical and mechanical properties    96
    • 3.8.3    Coating and encapsulation  97
    • 3.8.4    Limitations and challenges  98
    • 3.8.5    Value chain     99
    • 3.8.6    Manufacturing processes      99
    • 3.8.7    Applications   100
      • 3.8.7.1 Capacitive touch sensors      100
      • 3.8.7.2 Touchscreens 101
      • 3.8.7.3 Transparent heaters   102
    • 3.8.8    Silver nanowire producers     103
    • 3.8.9    SWOT Analysis             103
  • 3.9        Conductive polymers               104
    • 3.9.1    Overview           104
      • 3.9.1.1 Commercial types      104
        • 3.9.1.1.1           n-type conductive polymers 104
        • 3.9.1.1.2           Biobased conductive polymer inks 105
      • 3.9.1.2 Advantages     106
    • 3.9.2    Applications   106
      • 3.9.2.1 Flexible devices            107
      • 3.9.2.2 Capacitive touch sensors      108
    • 3.9.3    SWOT analysis              109

 

4             MARKET AND APPLICATIONS FOR CONDUCTIVE INKS     111

  • 4.1        Overview of key applications for conductive inks  111
  • 4.2        Benchmarking conductive ink requirements            111
    • 4.2.1    Technological and commercial readiness of key conductive ink applications   112
  • 4.3        Photovoltaics 113
    • 4.3.1    Technology overview 113
      • 4.3.1.1 Charge extraction       113
      • 4.3.1.2 Conductive pastes and inks in photovoltaic cells  114
    • 4.3.2    Costs  115
    • 4.3.3    Transitioning from PERC to TOPCon and SHJ            116
    • 4.3.4    Alternative solar cell connection technology            116
    • 4.3.5    Conductive ink requirements              117
    • 4.3.6    SWOT analysis              118
    • 4.3.7    Global market revenues, by ink type               119
  • 4.4        Printed Heaters             122
    • 4.4.1    Technology overview 122
    • 4.4.2    Applications   122
      • 4.4.2.1 Automotive      122
      • 4.4.2.2 Building-integrated solutions              124
      • 4.4.2.3 Wearable heaters        124
    • 4.4.3    Comparison for e-textile heating technologies        125
      • 4.4.3.1 Heated clothing           126
    • 4.4.4    Conductive ink requirements for printed heaters   126
    • 4.4.5    SWOT analysis              127
    • 4.4.6    Global market revenues, by ink type               129
  • 4.5        Flexible hybrid electronics (FHE)      130
    • 4.5.1    Technology overview 130
    • 4.5.2    Advantages     131
    • 4.5.3    FHE value chain           132
    • 4.5.4    Applications   132
      • 4.5.4.1 Wearable skin patches            132
      • 4.5.4.2 Condition monitoring               133
      • 4.5.4.3 Multi-sensor wireless asset tracking systems          134
    • 4.5.5    Conductive ink requirements              135
    • 4.5.6    SWOT analysis              136
    • 4.5.7    Global market revenues, by ink type               137
  • 4.6        In-mold electronics (IME)      139
    • 4.6.1    Technology overview 139
      • 4.6.1.1 Advantages     139
      • 4.6.1.2 IME manufacturing    141
      • 4.6.1.3 Materials           142
    • 4.6.2    IME value chain            143
    • 4.6.3    Silver flake-based ink               144
    • 4.6.4    Conductive ink requirements              144
    • 4.6.5    SWOT analysis              145
    • 4.6.6    Global market revenues, by ink type               146
  • 4.7        3D Electronics               148
    • 4.7.1    Technology overview 148
    • 4.7.2    Partially versus fully additive electronics     149
      • 4.7.2.1 Partially Additive Electronics               150
      • 4.7.2.2 Fully Additive Electronics       150
    • 4.7.3    Nanoscale to macroscale     152
    • 4.7.4    Fully 3D Printed Electronics 153
      • 4.7.4.1 Fully 3D printed circuits and electronic components         154
      • 4.7.4.2 Challenges      154
    • 4.7.5    Conductive Ink Requirements            155
    • 4.7.6    SWOT analysis              157
    • 4.7.7    Global market revenues, by ink type               158
  • 4.8        E-textiles           160
    • 4.8.1    Technology overview 160
      • 4.8.1.1 Integration of electronics into             160
      • 4.8.1.2 Challenges for E-Textiles        161
    • 4.8.2    Applications   162
      • 4.8.2.1 Biometric Monitoring 162
      • 4.8.2.2 Textile sensors              162
    • 4.8.3    Conductive Ink Requirements            164
    • 4.8.4    SWOT analysis              164
    • 4.8.5    Global market revenues, by ink type               165
  • 4.9        Circuit prototyping     167
    • 4.9.1    Technology overview 167
      • 4.9.1.1 PCB prototyping           167
      • 4.9.1.2 Circuit prototyping and 3D electronics         167
    • 4.9.2    Conductive ink requirements              167
    • 4.9.3    SWOT analysis              168
    • 4.9.4    Global market revenues, by ink type               169
  • 4.10     Printed and flexible sensors 171
    • 4.10.1 Key markets for printed/flexible sensors     171
    • 4.10.2 Capacitive sensing    172
      • 4.10.2.1            Working principle        172
      • 4.10.2.2            Printed capacitive sensor technologies       173
      • 4.10.2.3            3D Capacitive Sensing            173
      • 4.10.2.4            Current mode sensor readout            174
      • 4.10.2.5            Conductive ink requirements              175
      • 4.10.2.6            SWOT analysis              176
      • 4.10.2.7            Global market revenues, by ink type               177
    • 4.10.3 Pressure sensors         178
      • 4.10.3.1            Force sensitive inks   179
      • 4.10.3.2            Manufacturing methods         179
        • 4.10.3.2.1        Roll-to-roll manufacturing technology          180
      • 4.10.3.3            Conductive ink requirements              180
      • 4.10.3.4            SWOT analysis              181
      • 4.10.3.5            Global market revenues, by ink type               183
    • 4.10.4 Biosensors      185
      • 4.10.4.1            Electrochemical biosensors                185
        • 4.10.4.1.1        Fabrication of electrochemical biosensors               185
          • 4.10.4.1.1.1   Screen Printing             185
          • 4.10.4.1.1.2   Sputtering        185
        • 4.10.4.1.2        Challenges      186
      • 4.10.4.2            Printed pH sensors    187
      • 4.10.4.3            Conductive ink requirements              188
      • 4.10.4.4            SWOT analysis              189
      • 4.10.4.5            Global market revenues, by ink type               190
    • 4.10.5 Strain sensors               192
      • 4.10.5.1            Overview           192
      • 4.10.5.2            Capacitive strain sensors      192
      • 4.10.5.3            Resistive strain sensors          192
      • 4.10.5.4            AR/VR  193
      • 4.10.5.5            Conductive ink requirements              194
      • 4.10.5.6            SWOT analysis              195
      • 4.10.5.7            Global market revenues, by ink type               196
  • 4.11     Wearable electrodes 198
    • 4.11.1 Technology overview 198
      • 4.11.1.1            Wet vs dry electrodes               198
    • 4.11.2 Requirements                199
    • 4.11.3 Applications   199
      • 4.11.3.1            Skin patches   200
      • 4.11.3.2            E-textiles           201
    • 4.11.4 Conductive ink requirements              203
    • 4.11.5 SWOT analysis              204
    • 4.11.6 Global market revenues, by ink type               205
  • 4.12     EMI Shielding 207
    • 4.12.1 Technology overview 207
    • 4.12.2 Process flow   208
    • 4.12.3 Sprayed EMI shielding              208
    • 4.12.4 Conformal shielding technologies   209
    • 4.12.5 Hybrid inks      210
    • 4.12.6 Particle-free Ag ink     211
    • 4.12.7 Heterogeneous integration   212
    • 4.12.8 Suppliers          213
    • 4.12.9 Conductive ink requirements              213
    • 4.12.10              SWOT analysis              215
    • 4.12.11              Global market revenues, by ink type               216
  • 4.13     Printed Antennas        218
    • 4.13.1 Technology overview 218
      • 4.13.1.1            Extruded conductive paste   218
    • 4.13.2 Applications   218
      • 4.13.2.1            Automotive transparent antennas   219
      • 4.13.2.2            Building integrated transparent antennas  219
      • 4.13.2.3            Consumer electronic devices             220
      • 4.13.2.4            Smart packaging         220
    • 4.13.3 Conductive ink requirements              221
    • 4.13.4 SWOT analysis              222
    • 4.13.5 Global market revenues, by ink type               223
  • 4.14     RFID & Smart Packaging        224
    • 4.14.1 Technology overview 224
    • 4.14.2 Applications   225
      • 4.14.2.1            Printed RFID antennas            225
      • 4.14.2.2            Smart packaging         225
      • 4.14.2.3            Sensor-less sensing  226
    • 4.14.3 Conductive ink requirements              227
    • 4.14.4 SWOT analysis              228
    • 4.14.5 Global market revenues, by ink type               229
  • 4.15     Printed batteries          231
    • 4.15.1 Technology overview 231
    • 4.15.2 Applications   231
    • 4.15.3 SWOT analysis              232
    • 4.15.4 Global market revenues, by ink type               233

 

5             COMPANY PROFILES                235 (91 company profiles)

 

6             RESEARCH METHODOLOGY              301

 

7             REFERENCES 302

 

List of Tables

  • Table 1. Conductivity of some functional materials used in conductive inks.    18
  • Table 2. Advantages of conductive ink, by type.      20
  • Table 3. Key Growth Markets for Conductive Inks. 21
  • Table 4. Material Type.             29
  • Table 5. Technology Readiness Level (TRL) of different conductive ink types.     29
  • Table 6. Printing technologies             30
  • Table 7. Technology Readiness Level (TRL) of different printing technologies.   30
  • Table 8. Applications for conductive inks,  31
  • Table 9. Technology Readiness Level (TRL) of conductive ink applications.         31
  • Table 10. End-Use Industries for conductive inks. 32
  • Table 11. Global conductive ink revenues, by ink type, 2022-2035 (Millions US$).         32
  • Table 12. Conductivity Requirements by Application.        34
  • Table 13. Suppliers by Conductive Material.             38
  • Table 14. Suppliers by Ink Composition.     40
  • Table 15. Benchmarking conductive ink properties.             42
  • Table 16. Properties of various flake-based silver inks.     45
  • Table 17. Silver Flake Producers and Products.       46
  • Table 18. Prices of various silver nanoparticle products and ink formulations. 51
  • Table 19. Comparative analysis of Silver Nanoparticle Production Methods.     54
  • Table 20. Benchmarking Parameters for Silver Nanoparticle Production Methods.        54
  • Table 21. Nanoparticle ink manufacturers.               55
  • Table 22. Application Opportunities for Nanoparticle Inks.            56
  • Table 23. Comparing properties of nanoparticle-based silver inks.           56
  • Table 24. Key benefits of particle-free inks.               61
  • Table 25. Particle-free conductive inks based on their sintering requirements. 63
  • Table 26. Particle-free conductive inks for different metals.          64
  • Table 27. Properties of different particle-free silver ink systems. 65
  • Table 28. Key application areas and the potential benefits of using particle-free inks. 66
  • Table 29. Particle-Free Ink Manufacturers and Products. 67
  • Table 30. Challenges in developing copper inks.   69
  • Table 31. Particle-free conductive inks based on their sintering requirements. 72
  • Table 32. Copper ink suppliers.         75
  • Table 33. Comparison table of various carbon conductive inks. 77
  • Table 34. Properties for various transparent conductive materials.           78
  • Table 35. Graphene-based conductive inks applications.               79
  • Table 36. Graphene/CNT ink producers.      80
  • Table 37. Properties of graphene and CNT inks.     81
  • Table 38. Commercially available carbon black grades.   82
  • Table 39. Stretchable v Thermoformable conductive inks.              88
  • Table 40. TRL for stretchable and thermoformable electronics.   89
  • Table 41. Properties of selected stretchable and thermoformable conductive inks.     91
  • Table 42. Stretchable/Thermoformable Ink Manufacturers.           92
  • Table 43. Key benefits of silver nanowires. 94
  • Table 44. Applications of silver nanowires. 100
  • Table 45. TRL of silver nanowire technology.             102
  • Table 46. Silver nanowire producers.             103
  • Table 47.Biobased conductive polymer inks.           105
  • Table 48. Applications of conductive polymers in flexible electronics.    106
  • Table 49. Key applications of conductive inks.        111
  • Table 50. Benchmarking conductive ink requirements by application.   112
  • Table 51. Technological and commercial readiness levels of various conductive ink applications.     112
  • Table 52. Conductive ink requirements for photovoltaics.              117
  • Table 53. Global Market for Conductive Inks for Photovoltaics (Conventional/Rigid), 2022-2035 (Millions USD).  119
  • Table 54. Global Market for Conductive Inks for Photovoltaics (Flexible), 2022-2035 (Millions USD). 121
  • Table 55. Building-integrated solutions for printed heaters.            124
  • Table 56. Key characteristics of e-textile heating technologies.   125
  • Table 57. Conductive ink requirements for printed heaters.           126
  • Table 58.  Global Market for Conductive Inks in printed heaters, 2022-2035 (Millions USD).   129
  • Table 59. Conductive ink requirements in FHE.       135
  • Table 60. Global market for Conductive Inks in Flexible Hybrid Electronics (FHE), by ink type, 2022-2035 (Millions USD).              137
  • Table 61. Key requirements for conductive inks in IME applications.        145
  • Table 62.  Global Market for Conductive Inks in In-Mold Electronics (IME), 2022-2035 (Millions USD).                146
  • Table 63. Advantages of fully additively manufactured 3D electronics:   150
  • Table 64. Fully 3D printed circuits and electronic components.  154
  • Table 65. Requirements for conductive inks in 3D electronics:     155
  • Table 66.  Global Market for Conductive Inks in 3-D Electronics, 2022-2035 (Millions USD).   158
  • Table 67. Requirements for conductive inks in e-textiles applications.   164
  • Table 68. Global Market for Conductive Inks in E-Textiles, 2022-2035 (Millions USD).  165
  • Table 69. Global Market for Conductive Inks for Circuit Prototyping, 2022-2035 (Millions USD).          169
  • Table 70. Key markets for printed/flexible sensors.              171
  • Table 71. Printed capacitive sensor technologies. 173
  • Table 72. Technology Readiness level of printed capacitive touch sensors materials and technologies.                174
  • Table 73.  Global Market for Conductive Inks in capacitive sensing, 2022-2035 (Millions USD).            177
  • Table 74. Technology Readiness Levels (TRLs) for printed piezoresistive pressure sensors and printed piezoelectric sensors.             178
  • Table 75. Manufacturing of printed piezoresistive sensors.            179
  • Table 76. Conductive ink requirements for printed piezoresistive pressure sensors and printed piezoelectric sensors.             180
  • Table 77. Global Market for Conductive Inks in pressure sensors, 2022-2035 (Millions USD). 183
  • Table 78.  Global Market for Conductive Inks in biosensors, 2022-2035 (Millions USD).             190
  • Table 79.  Global Market for Conductive Inks in printed strain sensors, 2022-2035 (Millions USD).     196
  • Table 80. Comparison of Wet and Dry Electrodes in Wearable Electrodes.          198
  • Table 81. Requirements of wearable electrodes.   199
  • Table 82. Markets, applications and product types for wearable electrodes.      199
  • Table 83. Technology readiness level of printed wearable electrodes.     202
  • Table 84. Conductive ink requirements for printed wearable electrodes.              203
  • Table 85.  Global Market for Conductive Inks in wearable electrodes, 2022-2035 (Millions USD).        205
  • Table 86. Ink-based conformal EMI shielding companies.               213
  • Table 87. Conductive ink requirements for EMI shielding.               213
  • Table 88.  Global Market for Conductive Inks in EMI shielding, 2022-2035 (Milions).    216
  • Table 89. Addressable Markets for Transparent Antennas.             218
  • Table 90.  Global Market for Conductive Inks in printed antennas, 2022-2035 (Millions USD). 223
  • Table 91. Conductive ink requirements for RFID and smart packaging. 227
  • Table 92.  Global Market for Conductive Inks in RFID and smart packaging, 2022-2035 (Millions USD).                229
  • Table 93. Global Market for Conductive Inks in printed batteries, 2022-2035 (Millions USD). 233

 

List of Figures

  • Figure 1. Printed electronics for smart automotive interiors.         23
  • Figure 2. E-textile with printed antenna.      25
  • Figure 3. Global conductive ink revenues, by ink type, 2022-2035 (Millions US$).          33
  • Figure 4. Flexible RFID antenna printed using conductive ink.      37
  • Figure 5. Flake-Based Silver Ink Value Chain.           45
  • Figure 6. SWOT analysis for Flake-based silver inks.           47
  • Figure 7. SWOT analysis for Nanoparticle inks.       58
  • Figure 8. SWOT analysis for Particle-free conductive inks               68
  • Figure 9. RFID Tag with Nano Copper Antenna on Paper.  75
  • Figure 10. SWOT analysis for Copper-based inks  76
  • Figure 11. SWOT analysis for Carbon black conductive inks.        85
  • Figure 12. SWOT analysis for Nanostructured carbon conductive inks. 86
  • Figure 13. Stretchable conductive ink containing liquid-metal particles prototype.       87
  • Figure 14. SWOT analysis for Stretchable/thermoformable inks. 93
  • Figure 15. Silver nanowires value chain.      99
  • Figure 16. SWOT analysis for Silver nanowires.      104
  • Figure 17. SWOT analysis: conductive polymer inks.          110
  • Figure 18. SWOT analysis for Conductive ink in Photovoltaics.    119
  • Figure 19. Global Market for Conductive Inks for Photovoltaics (Conventional/Rigid), 2022-2035 (Millions USD).              120
  • Figure 20. Global Market for Conductive Inks for Photovoltaics (Flexible), 2022-2035 (Millions USD).                121
  • Figure 21. Haydale 'Hot Seat'.              123
  • Figure 22. SWOT analysis for Conductive inks in Printed heaters.               128
  • Figure 23. Global Market for Conductive Inks in printed heaters, 2022-2035 (Millions USD).   129
  • Figure 24. SWOT analysis: Conductive inks in Flexible hybrid electronics (FHE).             136
  • Figure 25. Global Market for Conductive Inks in Flexible Hybrid Electronics (FHE), by ink type, 2022-2035 (Millions USD). 138
  • Figure 26. In-Mold Electronics (IME) examples.      139
  • Figure 27. IME value chain.   143
  • Figure 28. SWOT analysis for Conductive inks in In-mold electronics (IME).       146
  • Figure 29. Conductive Inks for In-Mold Electronics (IME) Volumes 2022-2035 (Tons). 147
  • Figure 30. SWOT analysis for Conductive inks in 3D electronics. 157
  • Figure 31. Global Market for Conductive Inks in 3-D Electronics, 2022-2035 (Millions USD).  159
  • Figure 32. SWOT analysis for Conductive inks in e-textiles.             165
  • Figure 33. Global Market for Conductive Inks in E-Textiles, 2022-2035 (Millions USD). 166
  • Figure 34. SWOT analysis for conductive inks in circuit prototyping.        169
  • Figure 35. Global Market for Conductive Inks for Circuit Prototyping, 2022-2035 (Millions USD).         170
  • Figure 36. SWOT analysis: Conductive inks in capacitive sensors.            176
  • Figure 37. Global Market for Conductive Inks in capacitive sensing, 2022-2035 (Millions USD).           178
  • Figure 38. SWOT analysis for Piezoresistive sensors.          182
  • Figure 39. SWOT analysis for Piezoelectric sensors.            183
  • Figure 40. Global Market for Conductive Inks in pressure sensors, 2022-2035 (Millions USD).              184
  • Figure 41. SWOT analysis for Conductive inks in Printed biosensors.      190
  • Figure 42. Global Market for Conductive Inks in biosensors, 2022-2035 (Millions USD).            191
  • Figure 43. Conductive Inks in printed strain sensors.          196
  • Figure 44. Global Market for Conductive Inks in printed strain sensors, 2022-2035 (Millions USD).    197
  • Figure 45. SWOT analysis for Printed wearable electrodes              205
  • Figure 46. Global Market for Conductive Inks in wearable electrodes, 2022-2035 (Millions USD).       206
  • Figure 47. SWOT analysis for Conductive inks in EMI shielding.   216
  • Figure 48. Global Market for Conductive Inks in EMI shielding, 2022-2035 (Millions).  217
  • Figure 49. SWOT analysis for Printed antennas.     222
  • Figure 50. Global Market for Conductive Inks in printed antennas, 2022-2035 (Millions USD).              223
  • Figure 51. Chip-less RFID tags.          227
  • Figure 52. SWOT analysis for conductive inks in RFID and smart packaging.     229
  • Figure 53. Global Market for Conductive Inks in RFID and smart packaging, 2022-2035 (Millions USD).                230
  • Figure 54. SWOT analysis for conductive inks in printed batteries.             233
  • Figure 55. Global Market for Conductive Inks in printed batteries, 2022-2035 (Millions USD). 234
  • Figure 56. Bando conductive ink product.  239
  • Figure 57. DryCure J Ag Nanoink for Inkjet Printing.              245
  • Figure 58. Copprium copper ink product.   247
  • Figure 59. Fuji carbon nanotube products. 257
  • Figure 60. A RF antenna printed on the DragonFly IV.          277
  • Figure 61. (A) Thick-Film Conductive Ink. (B) Flexible substrate with patterns printed on its surface using the thick-film conductive ink. (C) Variety of metal complex inks that are used to synthesize the thick-film conductive ink. (D) Copper particles.  284
  • Figure 62. PulpaTronics' paper RFID tag.      286
  • Figure 63. Saral StretchSilver 500 printed on a textile substrate. 288
  • Figure 64. Touchcode technology.    292

 

 

The Global Conductive Ink Market 2024-2035
The Global Conductive Ink Market 2024-2035
PDF.

The Global Conductive Ink Market 2024-2035
The Global Conductive Ink Market 2024-2035
PDF and Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.