The Global Hydrogen Market (Production, Storage, Transport and Utilization) 2024-2035

0

  • Published: January 2024
  • Pages: 418
  • Tables: 73
  • Figures: 115
  • Series: Bio-Economy 

 

Demand for hydrogen and its derivatives is increasing, buoyed by sustainability initiatives and government funding. This extensive report examines the emerging global hydrogen market, providing 11-year projections across production, infrastructure, storage, distribution and end-use applications.

It assesses mainstream hydrogen varieties produced from renewable electricity, fossil fuels, and biomass etc. Competitive analysis compares commercial readiness, scalability potential and environmental impact to guide research and adoption roadmaps. Profiles of over 200 companies span electrolyzer manufacturing, hydrogen-based fuel synthesis, CO2 utilization, distribution logistics, dispensing infrastructure, storage vessels and fuel cell development etc.

Regional analysis covers North America, Europe, Asia Pacific and Rest of World markets based on national strategies, resource advantages and de-carbonization commitments driving public and private investments. Falling electrolysis costs, increasing scale manufacturing, maturing synthetic fuel pathways and intensifying policy tailwinds provide strong signals for an expanding role of hydrogen supporting decarbonization of industrial sectors and long-haul transport while providing vital grid balancing via energy storage. However, major challenges exist around achieving fossil independence, infrastructure availability, international standards development and coordinated adoption linkages between producing vs demanding sectors.

The report enables navigation of this complex ecosystem for practitioners through detailed assessments spanning science, industry activity and geopolitics needed for hydrogen to deliver on its immense promise supporting urgent real-economy de-carbonization. Report contents include:

  • Assessment of hydrogen production methods - electrolysis, natural gas reforming, coal gasification etc.
  • Analysis of hydrogen varieties - green, blue, pink, turquoise etc.
  • Profiles of 200+ companies across the hydrogen value chain. Companies profiled include Advanced Ionics, Aker Horizons, C-Zero, Constellation, Dynelectro, Ekona Power, Electric Hydrogen, Enapter, EvoIOH, FuelCell Energy, Heliogen, HiiROC, Hycamite, Hystar, HydrogenPro, Innova Hydrogen, Ionomr Innovations, ITM Power, Jolt Electrodes, McPhy Energy SAS, Monolith Materials, NEL Hydrogen, Ohmium, Parallel Carbon, Plug Power,  PowerCell Sweden, Pure Hydrogen Corporation Limited, Sunfire, Syzgy Plasmonics, Thiozen, Thyssenkrupp Nucera and Verdagy. 
  • Cost evolution analysis, scalability assessments and forecasts
  • Technology analysis for hydrogen liquefaction, storage and transportation
  • Applications and adoption roadmaps across transport, chemicals, steelmaking etc. 
  • Hydrogen utilization in fuel cells, internal combustion engines, turbines
  • Synthetic fuels manufactured using hydrogen as key feedstocks
  • National hydrogen strategies and policy frameworks globally
  • Production trends and forecasts across Americas, Europe, Asia Pacific
  • Renewable hydrogen for grid balancing and buffering intermittent supply
  • Industrial usage for high-grade process heating requirements
  • Decarbonization enabler for heavy industries like steel, shipping, aviation
  • Market challenges around infrastructure availability, production costs, distribution networks

 

Download table of contents (PDF)

1              RESEARCH METHODOLOGY         21

 

2              INTRODUCTION 23

  • 2.1          Hydrogen classification  23
  • 2.2          Global energy demand and consumption              24
  • 2.3          The hydrogen economy and production 24
  • 2.4          Removing CO₂ emissions from hydrogen production        27
  • 2.5          Hydrogen value chain     27
    • 2.5.1      Production          27
    • 2.5.2      Transport and storage    28
    • 2.5.3      Utilization            28
  • 2.6          National hydrogen initiatives      30
  • 2.7          Market challenges           31

 

3              HYDROGEN MARKET ANALYSIS  33

  • 3.1          Industry developments 2020-2024            33
  • 3.2          Market map       48
  • 3.3          Global hydrogen production       50
    • 3.3.1      Industrial applications    51
    • 3.3.2      Hydrogen energy             52
      • 3.3.2.1   Stationary use   52
      • 3.3.2.2   Hydrogen for mobility    52
    • 3.3.3      Current Annual H2 Production    53
    • 3.3.4      Hydrogen production processes 54
      • 3.3.4.1   Hydrogen as by-product 55
      • 3.3.4.2   Reforming           56
        • 3.3.4.2.1               SMR wet method             56
        • 3.3.4.2.2               Oxidation of petroleum fractions              56
        • 3.3.4.2.3               Coal gasification                56
      • 3.3.4.3   Reforming or coal gasification with CO2 capture and storage        56
      • 3.3.4.4   Steam reforming of biomethane               57
      • 3.3.4.5   Water electrolysis            58
      • 3.3.4.6   The "Power-to-Gas" concept      59
      • 3.3.4.7   Fuel cell stack    60
      • 3.3.4.8   Electrolysers      61
      • 3.3.4.9   Other    62
        • 3.3.4.9.1               Plasma technologies       62
        • 3.3.4.9.2               Photosynthesis 63
        • 3.3.4.9.3               Bacterial or biological processes 64
        • 3.3.4.9.4               Oxidation (biomimicry)  65
    • 3.3.5      Production costs               65
    • 3.3.6      Global hydrogen demand forecasts         67
    • 3.3.7      Hydrogen Production in the United States            68
      • 3.3.7.1   Gulf Coast           68
      • 3.3.7.2   California             69
      • 3.3.7.3   Midwest              69
      • 3.3.7.4   Northeast           69
      • 3.3.7.5   Northwest          70
    • 3.3.8      DOE Hydorgen Hubs       71
    • 3.3.9      US Hydrogen Electrolyzer Capacities, Planned and Installed           71

 

4              TYPES OF HYDROGEN     75

  • 4.1          Comparative analysis      75
  • 4.2          Green hydrogen               75
    • 4.2.1      Overview            75
    • 4.2.2      Role in energy transition               76
    • 4.2.3      SWOT analysis   77
    • 4.2.4      Electrolyzer technologies             78
      • 4.2.4.1   Alkaline water electrolysis (AWE)              80
      • 4.2.4.2   Anion exchange membrane (AEM) water electrolysis       81
      • 4.2.4.3   PEM water electrolysis  82
      • 4.2.4.4   Solid oxide water electrolysis      83
    • 4.2.5      Market players  84
  • 4.3          Blue hydrogen (low-carbon hydrogen)   86
    • 4.3.1      Overview            86
    • 4.3.2      Advantages over green hydrogen             86
    • 4.3.3      SWOT analysis   87
    • 4.3.4      Production technologies               88
      • 4.3.4.1   Steam-methane reforming (SMR)             88
      • 4.3.4.2   Autothermal reforming (ATR)     89
      • 4.3.4.3   Partial oxidation (POX)  90
      • 4.3.4.4   Sorption Enhanced Steam Methane Reforming (SE-SMR) 91
      • 4.3.4.5   Methane pyrolysis (Turquoise hydrogen)              92
      • 4.3.4.6   Coal gasification                94
      • 4.3.4.7   Advanced autothermal gasification (AATG)           96
      • 4.3.4.8   Biomass processes          97
      • 4.3.4.9   Microwave technologies               100
      • 4.3.4.10                Dry reforming    100
      • 4.3.4.11                Plasma Reforming           100
      • 4.3.4.12                Solar SMR            101
      • 4.3.4.13                Tri-Reforming of Methane           101
      • 4.3.4.14                Membrane-assisted reforming   101
      • 4.3.4.15                Catalytic partial oxidation (CPOX)             101
      • 4.3.4.16                Chemical looping combustion (CLC)         102
    • 4.3.5      Carbon capture 102
      • 4.3.5.1   Pre-Combustion vs. Post-Combustion carbon capture      102
      • 4.3.5.2   What is CCUS?  103
        • 4.3.5.2.1               Carbon Capture 108
      • 4.3.5.3   Carbon Utilization            113
        • 4.3.5.3.1               CO2 utilization pathways              114
      • 4.3.5.4   Carbon storage 115
      • 4.3.5.5   Transporting CO2             117
        • 4.3.5.5.1               Methods of CO2 transport           117
      • 4.3.5.6   Costs     120
      • 4.3.5.7   Market map       122
      • 4.3.5.8   Point-source carbon capture for blue hydrogen  124
        • 4.3.5.8.1               Transportation  125
        • 4.3.5.8.2               Global point source CO2 capture capacities          126
        • 4.3.5.8.3               By source            127
        • 4.3.5.8.4               By endpoint       128
        • 4.3.5.8.5               Main carbon capture processes 129
      • 4.3.5.9   Carbon utilization             135
      • 4.3.5.9.1               Benefits of carbon utilization       139
      • 4.3.5.9.2               Market challenges           141
      • 4.3.5.9.3               Co2 utilization pathways               142
      • 4.3.5.9.4               Conversion processes    145
    • 4.3.6      Market players  161
  • 4.4          Pink hydrogen   162
    • 4.4.1      Overview            162
    • 4.4.2      Production          162
    • 4.4.3      Applications       163
    • 4.4.4      SWOT analysis   163
    • 4.4.5      Market players  165
  • 4.5          Turquoise hydrogen       165
    • 4.5.1      Overview            165
    • 4.5.2      Production          165
    • 4.5.3      Applications       166
    • 4.5.4      SWOT analysis   167
    • 4.5.5      Market players  168

 

5              HYDROGEN STORAGE AND TRANSPORT 169

  • 5.1          Market overview             169
  • 5.2          Hydrogen transport methods     170
    • 5.2.1      Pipeline transportation  171
    • 5.2.2      Road or rail transport     171
    • 5.2.3      Maritime transportation               171
    • 5.2.4      On-board-vehicle transport         171
  • 5.3          Hydrogen compression, liquefaction, storage      172
    • 5.3.1      Solid storage      172
    • 5.3.2      Liquid storage on support             172
    • 5.3.3      Underground storage    173
  • 5.4          Market players  173

 

6              HYDROGEN UTILIZATION              175

  • 6.1          Hydrogen Fuel Cells         175
  • 6.2          Market overview             175
    • 6.2.1      PEM fuel cells (PEMFCs) 176
    • 6.2.2      Solid oxide fuel cells (SOFCs)       176
    • 6.2.3      Alternative fuel cells       176
  • 6.3          Alternative fuel production          177
    • 6.3.1      Solid Biofuels     178
    • 6.3.2      Liquid Biofuels  178
    • 6.3.3      Gaseous Biofuels             179
    • 6.3.4      Conventional Biofuels    179
    • 6.3.5      Advanced Biofuels           179
    • 6.3.6      Feedstocks         180
    • 6.3.7      Production of biodiesel and other biofuels            182
    • 6.3.8      Renewable diesel            183
    • 6.3.9      Biojet and sustainable aviation fuel (SAF)              184
    • 6.3.10    Electrofuels (E-fuels, power-to-gas/liquids/fuels)               187
      • 6.3.10.1                Hydrogen electrolysis     191
      • 6.3.10.2                eFuel production facilities, current and planned 194
  • 6.4          Hydrogen Vehicles          198
    • 6.4.1      Market overview             198
  • 6.5          Aviation               199
    • 6.5.1      Market overview             199
  • 6.6          Ammonia production     200
    • 6.6.1      Market overview             200
    • 6.6.2      Decarbonisation of ammonia production               201
    • 6.6.3      Green ammonia synthesis methods         203
      • 6.6.3.1   Haber-Bosch process      203
      • 6.6.3.2   Biological nitrogen fixation          204
      • 6.6.3.3   Electrochemical production         204
      • 6.6.3.4   Chemical looping processes        204
    • 6.6.4      Blue ammonia   205
      • 6.6.4.1   Blue ammonia projects  205
    • 6.6.5      Chemical energy storage              205
      • 6.6.5.1   Ammonia fuel cells          205
      • 6.6.5.2   Marine fuel         206
  • 6.7          Methanol production     210
  • 6.8          Market overview             210
    • 6.8.1      Methanol-to gasoline technology             210
      • 6.8.1.1   Production processes     211
        • 6.8.1.1.1               Anaerobic digestion        212
        • 6.8.1.1.2               Biomass gasification        213
        • 6.8.1.1.3               Power to Methane          213
  • 6.9          Steelmaking       214
    • 6.9.1      Market overview             214
    • 6.9.2      Comparative analysis      217
    • 6.9.3      Hydrogen Direct Reduced Iron (DRI)        218
  • 6.10        Power & heat generation             220
    • 6.10.1    Market overview             220
      • 6.10.1.1                Power generation            220
      • 6.10.1.2                Heat Generation              220
  • 6.11        Maritime             221
    • 6.11.1    Market overview             221
  • 6.12        Fuel cell trains   222
    • 6.12.1    Market overview             222

 

7              COMPANY PROFILES       223 (251 company profiles)

 

8              REFERENCES       415

 

List of Tables

  • Table 1. Hydrogen colour shades, Technology, cost, and CO2 emissions.  23
  • Table 2. Main applications of hydrogen. 24
  • Table 3. Overview of hydrogen production methods.       25
  • Table 4. National hydrogen initiatives.    30
  • Table 5. Market challenges in the hydrogen economy and production technologies.          31
  • Table 6. Hydrogen industry developments 2020-2024.     33
  • Table 7. Market map for hydrogen technology and production.   48
  • Table 8. Industrial applications of hydrogen.        51
  • Table 9. Hydrogen energy markets and applications.         52
  • Table 10. Hydrogen production processes and stage of development.      54
  • Table 11. Estimated costs of clean hydrogen production. 66
  • Table 12. US Hydrogen Electrolyzer Capacities, current and planned, as of May 2023, by region.   72
  • Table 13. Comparison of hydrogen types               75
  • Table 14.  Characteristics of typical water electrolysis technologies            79
  • Table 15. Advantages and disadvantages of water electrolysis technologies.          80
  • Table 16. Market players in green hydrogen (electrolyzers).         84
  • Table 17. Technology Readiness Levels (TRL) of main production technologies for blue hydrogen. 88
  • Table 18. Key players in methane pyrolysis.          93
  • Table 19. Commercial coal gasifier technologies. 95
  • Table 20. Blue hydrogen projects using CG.          95
  • Table 21. Biomass processes summary, process description and TRL.         97
  • Table 22. Pathways for hydrogen production from biomass.          99
  • Table 23. CO2 utilization and removal pathways 105
  • Table 24. Approaches for capturing carbon dioxide (CO2) from point sources.       108
  • Table 25. CO2 capture technologies.       110
  • Table 26. Advantages and challenges of carbon capture technologies.      111
  • Table 27. Overview of commercial materials and processes utilized in carbon capture.      111
  • Table 28. Methods of CO2 transport.       118
  • Table 29. Carbon capture, transport, and storage cost per unit of CO2      120
  • Table 30. Estimated capital costs for commercial-scale carbon capture.   121
  • Table 31. Point source examples.              124
  • Table 32. Assessment of carbon capture materials             129
  • Table 33. Chemical solvents used in post-combustion.    132
  • Table 34. Commercially available physical solvents for pre-combustion carbon capture.   135
  • Table 35. Carbon utilization revenue forecast by product (US$).  139
  • Table 36. CO2 utilization and removal pathways.               139
  • Table 37. Market challenges for CO2 utilization.  141
  • Table 38. Example CO2 utilization pathways.       142
  • Table 39. CO2 derived products via Thermochemical conversion-applications, advantages and disadvantages.       145
  • Table 40. Electrochemical CO₂ reduction products.            149
  • Table 41. CO2 derived products via electrochemical conversion-applications, advantages and disadvantages.        150
  • Table 42. CO2 derived products via biological conversion-applications, advantages and disadvantages.     154
  • Table 43. Companies developing and producing CO2-based polymers.     157
  • Table 44. Companies developing mineral carbonation technologies.          160
  • Table 45. Market players in blue hydrogen.          161
  • Table 46. Market players in pink hydrogen.          165
  • Table 47. Market players in turquoise hydrogen. 168
  • Table 48. Market overview-hydrogen storage and transport.        169
  • Table 49. Summary of different methods of hydrogen transport. 170
  • Table 50. Market players in hydrogen storage and transport.        173
  • Table 51. Market overview hydrogen fuel cells-applications, market players and market challenges.           175
  • Table 52. Categories and examples of solid biofuel.           178
  • Table 53. Comparison of biofuels and e-fuels to fossil and electricity.        179
  • Table 54. Classification of biomass feedstock.     180
  • Table 55. Biorefinery feedstocks.              181
  • Table 56. Feedstock conversion pathways.           182
  • Table 57. Biodiesel production techniques.          182
  • Table 58. Advantages and disadvantages of biojet fuel    184
  • Table 59. Production pathways for bio-jet fuel.   185
  • Table 60. Applications of e-fuels, by type.             189
  • Table 61. Overview of e-fuels.    190
  • Table 62. Benefits of e-fuels.      190
  • Table 63. eFuel production facilities, current and planned.            194
  • Table 64. Market overview for hydrogen vehicles-applications, market players and market challenges.      198
  • Table 65. Blue ammonia projects.             205
  • Table 66. Ammonia fuel cell technologies.            206
  • Table 67. Market overview of green ammonia in marine fuel.       207
  • Table 68. Summary of marine alternative fuels.  207
  • Table 69. Estimated costs for different types of ammonia.             208
  • Table 70. Comparison of biogas, biomethane and natural gas.      212
  • Table 71. Hydrogen-based steelmaking technologies.      217
  • Table 72. Comparison of green steel production technologies.     217
  • Table 73. Advantages and disadvantages of each potential hydrogen carrier.         219

 

List of Figures

  • Figure 1. Hydrogen value chain. 29
  • Figure 2. Current Annual H2 Production. 54
  • Figure 3. Principle of a PEM electrolyser.               58
  • Figure 4. Power-to-gas concept. 60
  • Figure 5. Schematic of a fuel cell stack.   61
  • Figure 6. High pressure electrolyser - 1 MW.        62
  • Figure 7. Global hydrogen demand forecast.        67
  • Figure 8. U.S. Hydrogen Production by Producer Type.    68
  • Figure 9. Segmentation of regional hydrogen production capacities in the US.       70
  • Figure 10. Current of planned installations of Electrolyzers over 1MW in the US.  72
  • Figure 11. SWOT analysis: green hydrogen.          78
  • Figure 12. Types of electrolysis technologies.       78
  • Figure 13. Schematic of alkaline water electrolysis working principle.        81
  • Figure 14. Schematic of PEM water electrolysis working principle.              83
  • Figure 15. Schematic of solid oxide water electrolysis working principle.  84
  • Figure 16. SWOT analysis: blue hydrogen.             88
  • Figure 17. SMR process flow diagram of steam methane reforming with carbon capture and storage (SMR-CCS).  89
  • Figure 18. Process flow diagram of autothermal reforming with a carbon capture and storage (ATR-CCS) plant.     90
  • Figure 19. POX process flow diagram.      91
  • Figure 20. Process flow diagram for a typical SE-SMR.      92
  • Figure 21. HiiROC’s methane pyrolysis reactor.   93
  • Figure 22. Coal gasification (CG) process.               94
  • Figure 23. Flow diagram of Advanced autothermal gasification (AATG).   97
  • Figure 24. Schematic of CCUS process.    104
  • Figure 25. Pathways for CO2 utilization and removal.       104
  • Figure 26. A pre-combustion capture system.      110
  • Figure 27. Carbon dioxide utilization and removal cycle.  114
  • Figure 28. Various pathways for CO2 utilization. 115
  • Figure 29. Example of underground carbon dioxide storage.         116
  • Figure 30. Transport of CCS technologies.              117
  • Figure 31. Railroad car for liquid CO₂ transport    120
  • Figure 32. Estimated costs of capture of one metric ton of carbon dioxide (Co2) by sector.              121
  • Figure 33. CCUS market map.      124
  • Figure 34. Global capacity of point-source carbon capture and storage facilities.  126
  • Figure 35. Global carbon capture capacity by CO2 source, 2021.   127
  • Figure 36. Global carbon capture capacity by CO2 source, 2030.   127
  • Figure 37. Global carbon capture capacity by CO2 endpoint, 2022 and 2030.          128
  • Figure 38. Post-combustion carbon capture process.        131
  • Figure 39. Postcombustion CO2 Capture in a Coal-Fired Power Plant.        131
  • Figure 40. Oxy-combustion carbon capture process.         133
  • Figure 41. Liquid or supercritical CO2 carbon capture process.     134
  • Figure 42. Pre-combustion carbon capture process.          135
  • Figure 43. CO2 non-conversion and conversion technology, advantages and disadvantages.           136
  • Figure 44. Applications for CO2. 138
  • Figure 45. Cost to capture one metric ton of carbon, by sector.    139
  • Figure 46. Life cycle of CO2-derived products and services.            141
  • Figure 47. Co2 utilization pathways and products.             144
  • Figure 48. Plasma technology configurations and their advantages and disadvantages for CO2 conversion.              148
  • Figure 49. LanzaTech gas-fermentation process. 153
  • Figure 50. Schematic of biological CO2 conversion into e-fuels.   154
  • Figure 51. Econic catalyst systems.           157
  • Figure 52. Mineral carbonation processes.            159
  • Figure 53. Pink hydrogen Production Pathway.   162
  • Figure 54. SWOT analysis: pink hydrogen               164
  • Figure 55. Turquoise hydrogen Production Pathway.        166
  • Figure 56. SWOT analysis: turquoise hydrogen    168
  • Figure 57. Process steps in the production of electrofuels.             188
  • Figure 58. Mapping storage technologies according to performance characteristics.           189
  • Figure 59. Production process for green hydrogen.           191
  • Figure 60. E-liquids production routes.   192
  • Figure 61. Fischer-Tropsch liquid e-fuel products.              193
  • Figure 62. Resources required for liquid e-fuel production.            193
  • Figure 63. Levelized cost and fuel-switching CO2 prices of e-fuels.             196
  • Figure 64. Cost breakdown for e-fuels.   197
  • Figure 65. Hydrogen fuel cell powered EV.            198
  • Figure 66. Green ammonia production and use. 201
  • Figure 67. Classification and process technology according to carbon emission in ammonia production.    202
  • Figure 68. Schematic of the Haber Bosch ammonia synthesis reaction.     203
  • Figure 69. Schematic of hydrogen production via steam methane reformation.    204
  • Figure 70. Estimated production cost of green ammonia.               209
  • Figure 71. Renewable Methanol Production Processes from Different Feedstocks.              211
  • Figure 72. Production of biomethane through anaerobic digestion and upgrading.              213
  • Figure 73. Production of biomethane through biomass gasification and methanation.       213
  • Figure 74. Production of biomethane through the Power to methane process.     214
  • Figure 75. Transition to hydrogen-based production.       215
  • Figure 76. CO2 emissions from steelmaking (tCO2/ton crude steel).          216
  • Figure 77. Hydrogen Direct Reduced Iron (DRI) process.  219
  • Figure 78. Three Gorges Hydrogen Boat No. 1.     221
  • Figure 79. PESA hydrogen-powered shunting locomotive.              222
  • Figure 80. Symbiotic™ technology process.           223
  • Figure 81. Alchemr AEM electrolyzer cell.              231
  • Figure 82. HyCS® technology system.      233
  • Figure 83. Fuel cell module FCwave™.    240
  • Figure 84. Direct Air Capture Process.     247
  • Figure 85. CRI process.   249
  • Figure 86. Croft system. 259
  • Figure 87. ECFORM electrolysis reactor schematic.            265
  • Figure 88. Domsjö process.          266
  • Figure 89. EH Fuel Cell Stack.       269
  • Figure 90. Direct MCH® process. 273
  • Figure 91. Electriq's dehydrogenation system.    276
  • Figure 92. Endua Power Bank.    278
  • Figure 93. EL 2.1 AEM Electrolyser.           279
  • Figure 94. Enapter – Anion Exchange Membrane (AEM) Water Electrolysis.            280
  • Figure 95. Hyundai Class 8 truck fuels at a First Element high capacity mobile refueler.     287
  • Figure 96. FuelPositive system.  290
  • Figure 97. Using electricity from solar power to produce green hydrogen.              296
  • Figure 98. Hydrogen Storage Module.     308
  • Figure 99. Plug And Play Stationery Storage Units.             308
  • Figure 100. Left: a typical single-stage electrolyzer design, with a membrane separating the hydrogen and oxygen gasses. Right: the two-stage E-TAC process.         311
  • Figure 101. Hystar PEM electrolyser.       327
  • Figure 102. KEYOU-H2-Technology.         337
  • Figure 103. Audi/Krajete unit.    338
  • Figure 104. OCOchem’s Carbon Flux Electrolyzer.               357
  • Figure 105.  CO2 hydrogenation to jet fuel range hydrocarbons process. 361
  • Figure 106. The Plagazi ® process.             367
  • Figure 107. Proton Exchange Membrane Fuel Cell.            371
  • Figure 108. Sunfire process for Blue Crude production.    388
  • Figure 109. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right).  391
  • Figure 110. Tevva hydrogen truck.            397
  • Figure 111. Topsoe's SynCORTM autothermal reforming technology.        400
  • Figure 112. O12 Reactor.              405
  • Figure 113. Sunglasses with lenses made from CO2-derived materials.     406
  • Figure 114. CO2 made car part.  406
  • Figure 115. The Velocys process.               408

 

 

 

The Global Hydrogen Market (Production, Storage, Transport and Utilization) 2024-2035
The Global Hydrogen Market (Production, Storage, Transport and Utilization) 2024-2035
PDF download.

The Global Hydrogen Market (Production, Storage, Transport and Utilization) 2024-2035
The Global Hydrogen Market (Production, Storage, Transport and Utilization) 2024-2035
PDF download and Printed Edition (including tracked FEDEX delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.