The Global Industrial Decarbonization Market 2025-2035

0

cover

cover

  • Published: February 2025
  • Pages: 1,900
  • Tables: 337
  • Figures: 234

 

The global market for industrial decarbonization technologies is experiencing substantial growth as industries worldwide seek to modernize operations and reduce environmental footprints. With the industrial sector accounting for 38% of global final energy consumption and 25% of direct CO2 emissions, there are significant opportunities for technological innovation and process improvement. The market is being shaped by a diverse portfolio of technologies at varying stages of maturity. Solutions including carbon capture and storage (CCS) and fuel switching to hydrogen or biomass, have demonstrated potential to reduce emissions by approximately 85% across most industrial sectors. Emerging electric technologies, though still at lower maturity levels, show theoretical potential to eliminate between 40% and 100% of direct emissions from energy-intensive industrial processes.

Market dynamics are currently driven by several forces, including increasingly stringent regulatory frameworks, growing corporate sustainability commitments, investor pressure, and consumer demand for low-carbon products. The EU's Carbon Border Adjustment Mechanism and similar policies emerging globally are creating economic incentives for industrial decarbonization, transforming what was once viewed as a cost center into a strategic business imperative. Investment in industrial decarbonization technologies reached $87 billion in 2022, with projections suggesting this figure could exceed $250 billion annually by 2030. This growth is supported by both public and private capital, with governments worldwide establishing industrial decarbonization funds and major industrial players committing substantial resources to emissions reduction technologies.

The market is segmented across multiple technology pathways. Electrification technologies, including high-temperature heat pumps and electric arc furnaces, are gaining traction in sectors previously dependent on fossil fuels. Hydrogen applications are advancing particularly in steel production, chemicals manufacturing, and high-temperature industrial processes. Biomass-based solutions are finding applications in sectors where renewable feedstocks can replace fossil inputs. CCS technologies are showing promise in hard-to-abate sectors like cement and chemicals.

Regional adoption patterns vary significantly. Europe leads in policy frameworks and early adoption, driven by the EU Green Deal and national initiatives. North America shows strong growth in CCS and hydrogen technologies, supported by the Inflation Reduction Act in the US. Asia-Pacific, particularly China, is making substantial investments in electrification and efficiency technologies, while rapidly developing industrial economies are focusing on leapfrogging to cleaner technologies rather than following traditional high-carbon development pathways.

Challenges to market growth include high capital costs, infrastructure requirements, technological uncertainties, and competitive pressures from regions with less stringent carbon regulations. The development of necessary infrastructure—including hydrogen networks, CO2 transport pipelines, and reinforced electrical grids—represents both a barrier and an opportunity.

Looking ahead, the market trajectory suggests a phased approach to industrial decarbonization. Near-term growth is concentrated in energy efficiency improvements and fuel switching, while medium-term expansion will likely focus on hydrogen applications and CCS. Long-term market development depends heavily on the commercialization of breakthrough technologies currently at low TRLs.

For these emerging technologies to reach their potential, continued research, development, and demonstration efforts are essential, supported by large-scale infrastructure investments and consistent policy frameworks. The rate at which these enabling conditions develop will ultimately determine how quickly the global market for industrial decarbonization technologies reaches its multi-trillion-dollar potential.

The Global Industrial Decarbonization Market 2025-2035 provides an in-dpeth analysis of industrial decarbonization trends and data from 2025 to 2035. The research covers technologies that reduce industrial carbon emissions while maintaining productivity and competitiveness. The report includes green hydrogen, carbon capture, industrial electrification, and green steel production with market forecasts across major sectors. Each technology section features cost benchmarking and carbon reduction metrics to support investment decisions. Regional coverage spans North America, Europe, Asia-Pacific, and emerging markets, including carbon pricing mechanisms and regulatory frameworks. The competitive landscape lists technology providers and industrial companies with their capabilities and market positions.

Report Contents include:  

  • Market Overview
    • Current Industrial Emissions
    • Regulatory Landscape
    • Technology Readiness Levels
  • Green Steel Technologies
    • Production Technologies
    • Advanced Materials
    • Market Applications
    • Market Forecast 2025-2035
  • Green Hydrogen
    • Production Technologies
    • Electrolyzer Technologies
    • Storage and Transport
    • Industrial Applications
    • Market Forecast 2025-2035
  • Carbon Capture and Storage
    • Direct Air Capture
    • Biomass Carbon Removal
    • Mineralization Methods
    • Ocean-based Removal
    • Market Forecast 2025-2035
  • Industrial Heat Decarbonization
    • Electric Heating Technologies
    • Heat Pumps
    • Biomass Solutions
    • Advanced Technologies
    • Market Forecast 2025-2035
  • Electrification of Industrial Processes
    • Electric Process Heating
    • Electrochemical Processes
    • Motors and Drives
    • Market Forecast 2025-2035
  • Circular Economy Solutions
    • Advanced Sorting Technologies
    • Recycling Technologies
    • Materials Recovery
    • Waste-to-Energy
    • Market Forecast 2025-2035
  • Environmental Technologies
    • Water Treatment
    • Air Quality Management
    • Soil Remediation
    • Digital Environmental Solutions
    • Market Forecast 2025-2035
  • Green Building Technologies
    • Sustainable Materials
    • Carbon Capture in Construction
    • Energy Efficiency Solutions
    • Market Forecast 2025-2035
  • Competitive Landscape
    • Technology Providers
    • Industrial Implementers
  • Infrastructure Requirements
    • Grid Integration
    • CO₂ Transport Networks
    • Hydrogen Infrastructure
  • Implementation Costs and Strategies
  • Future Outlook and Scenarios

 

Over 1,000 companies are profiled including 1414 Degrees, A.Virtual, Aclarity, Adaptavate, Advanced Ionics, Allozymes, Adsorbi, Aerogel Core, Allonia, AGITEC International, Air Liquide, Air Products, Antora Energy, Aker Carbon Capture, Alchemy, Algoma Steel, Alison Hi-Tech, Alstom, Ambrell, Ambri, Andritz, Antora Energy, Aperam BioEnergia, ArcelorMittal, Ardent, Armacell International, Asahi Kasei, Autarkize, Augury, AutoGrid, BASF, Basilisk, Battery Pollution Technologies, Beltran Technologies, Betolar, Bio Fab NZ, Biohm, Biomason, BioZeroc, Blastr Green Steel, Blue Planet Systems, Blueshift Materials, Boreal Laser, Boston Metal, BP, Braincube, Brimstone, C-Zero, Cabot Corporation, Calgon Carbon, Cambridge Carbon Capture, Cambridge Electric Cement, Canvass Analytics, Carbogenics, CarbiCrete, Carbonaide, Carbon Clean, Carbon Engineering, CarbonCure, Carbon8 Systems, Carbon Ridge CEIA Power, Charbone Hydrogen, Chevron, China Baowu Steel Group, Chromalox, Chumpower, Clariant, Climeworks, Cummins, Coagtech, De Nora, Despatch Industries, Dow Chemical, Doosan Heavy Industries, Eaton, Electra Steel, Electric Hydrogen, Enapter, Electrified Thermal Solutions, Epoch Biodesign, Evoqua, Fero Labs, Fluor, FLSmidth, Fortescue, GE, GH Induction, Gradiant, Green Hydrogen Systems, HPNOw,  H2 Green Steel, H2Pro, HeatXcel, Heliogen, Heatrix GmbH, Honeywell, Hysata, IDOM, ION Clean Energy Ionomr Innovations, ITM Power, JFE Steel, Johnson Controls, Johnson Matthey, Kaneka, Kawasaki Heavy Industries, Kobe Steel, Kurita Water, Linde, LyondellBasell, MAN Energy, McPhy Energy, Metso Outotec, Microwave Chemical, Mitsubishi Heavy Industries, Modultherm, Nanjing Iron & Steel, Nel Hydrogen, Neustark, Nippon Steel, Novobiom,Ohmium, Ovivo, Pall Corporation, Phoenix Contact, Plenesys, Pluvion, Puraffinity, Promethean Particles, Pyrolyze, Quantafuel, Regal Rexnord, Repsol, Rondo Energy,Sabic, Salzgitter AG, Samsung Engineering, Sany Heavy Industry, Schneider Electric, Shell, Siemens, Siemens Energy, Smart Ops, SSAB, Starfire Industries, Statkraft, Stamicarbon, Stiesdal, Stoffu, Sublime Systems, Sunfire, Sunthru, Svante, Sympower, Tata Steel, Tenova, ThermCell, ThermFLEX, Thermon, ThyssenKrupp, Toshiba, Total Energies, Toyo Engineering, Trane Technologies, Umicore, UBreathe, Valmet, Vattenfall, Veolia, Vestas, Verdagy, Wärtsilä, Waste Management, Watlow, WEG, WesTech Engineering, Wood, Wärtsilä, Xcel Energy, Xylem, Yokogawa, Yosemite Clean Energy, ZeaChem, ZeePure, ZEG Power, Zenyatta and more......

 

1             EXECUTIVE SUMMARY            92

  • 1.1        Key findings and market opportunities         93
  • 1.2        Market drivers and challenges            94
  • 1.3        Investment landscape             96
  • 1.4        Future outlook              98

 

2             GREEN STEEL 100

  • 2.1        Current Steelmaking processes        100
  • 2.2        "Double carbon" (carbon peak and carbon neutrality) goals and ultra-low emissions requirements 101
  • 2.3        What is green steel?  103
    • 2.3.1    Properties         104
    • 2.3.2    Decarbonization target and policies               105
      • 2.3.2.1 EU Carbon Border Adjustment Mechanism (CBAM)            107
    • 2.3.3    Advances in clean production technologies             107
  • 2.4        Production technologies        108
    • 2.4.1    The role of hydrogen  108
    • 2.4.2    Comparative analysis              109
    • 2.4.3    Hydrogen Direct Reduced Iron (DRI)              110
    • 2.4.4    Electrolysis      111
    • 2.4.5    Carbon Capture, Utilization and Storage (CCUS)  112
    • 2.4.6    Biochar replacing coke            114
    • 2.4.7    Hydrogen Blast Furnace         114
    • 2.4.8    Renewable energy powered processes        115
    • 2.4.9    Flash ironmaking        116
    • 2.4.10 Hydrogen Plasma Iron Ore Reduction           117
    • 2.4.11 Ferrous Bioprocessing            118
    • 2.4.12 Microwave Processing             119
    • 2.4.13 Additive Manufacturing          119
    • 2.4.14 Technology readiness level (TRL)      120
  • 2.5        Advanced materials in green steel   120
    • 2.5.1    Composite electrodes             120
    • 2.5.2    Solid oxide materials 121
    • 2.5.3    Hydrogen storage metals       121
    • 2.5.4    Carbon composite steels      122
    • 2.5.5    Coatings and membranes     122
    • 2.5.6    Sustainable binders  122
    • 2.5.7    Iron ore catalysts         123
    • 2.5.8    Carbon capture materials     123
    • 2.5.9    Waste gas utilization 124
  • 2.6        Advantages and disadvantages of green steel         124
  • 2.7        Markets and applications      125
  • 2.8        Energy Savings and Cost Reduction in Steel Production   126
  • 2.9        Digitalization  126
  • 2.10     Biomass Steel Production and Sustainable Green Steel Production Chai            126
  • 2.11     The Global Maket for Green Steel     128
    • 2.11.1 Global steel production          128
      • 2.11.1.1            Steel prices     128
      • 2.11.1.2            Green steel prices       128
    • 2.11.2 Green steel plants and production, current and planned 129
    • 2.11.3 Market map    130
    • 2.11.4 SWOT analysis              131
    • 2.11.5 Market trends and opportunities      132
    • 2.11.6 Industry developments, funding and innovation 2022-2025          132
    • 2.11.7 Market growth drivers               138
    • 2.11.8 Market challenges      139
    • 2.11.9 End-use industries     140
      • 2.11.9.1            Automotive      140
        • 2.11.9.1.1        Market overview           140
        • 2.11.9.1.2        Applications   142
      • 2.11.9.2            Construction  143
        • 2.11.9.2.1        Market overview           143
        • 2.11.9.2.2        Applications   143
      • 2.11.9.3            Consumer appliances             144
        • 2.11.9.3.1        Market overview           144
        • 2.11.9.3.2        Applications   145
      • 2.11.9.4            Machinery        145
        • 2.11.9.4.1        Market overview           146
        • 2.11.9.4.2        Applications   146
      • 2.11.9.5            Rail       146
        • 2.11.9.5.1        Market overview           146
        • 2.11.9.5.2        Applications   147
      • 2.11.9.6            Packaging        147
        • 2.11.9.6.1        Market overview           147
        • 2.11.9.6.2        Applications   148
      • 2.11.9.7            Electronics      148
        • 2.11.9.7.1        Market overview           148
        • 2.11.9.7.2        Applications   149
  • 2.12     Global market production and demand       150
    • 2.12.1 Production Capacity 2020-2035      150
    • 2.12.2 Production vs. Demand 2020-2035 152
    • 2.12.3 Revenues 2020-2035               152
    • 2.12.4 Competitive landscape          156
    • 2.12.5 Future market outlook             157
  • 2.13     Company profiles       158 (46 company profiles)

 

3             GREEN HYDROGEN  194

  • 3.1        Hydrogen classification          195
    • 3.1.1    Hydrogen colour shades        195
  • 3.2        Global energy demand and consumption  196
  • 3.3        The hydrogen economy and production       196
  • 3.4        Removing CO₂ emissions from hydrogen production          198
  • 3.5        Hydrogen value chain              199
    • 3.5.1    Production       200
    • 3.5.2    Transport and storage              200
    • 3.5.3    Utilization         200
  • 3.6        National hydrogen initiatives, policy and regulation             201
  • 3.7        Hydrogen certification              203
  • 3.8        Carbon pricing              204
  • 3.9        Market challenges      204
  • 3.10     Industry developments 2020-2024 205
  • 3.11     Market map    218
  • 3.12     Global hydrogen production 220
    • 3.12.1 Industrial applications            221
    • 3.12.2 Hydrogen energy          222
      • 3.12.2.1            Stationary use               222
      • 3.12.2.2            Hydrogen for mobility               222
    • 3.12.3 Current Annual H2 Production           223
    • 3.12.4 Hydrogen production processes       224
      • 3.12.4.1            Hydrogen as by-product         225
      • 3.12.4.2            Reforming        225
        • 3.12.4.2.1        SMR wet method         225
        • 3.12.4.2.2        Oxidation of petroleum fractions     225
        • 3.12.4.2.3        Coal gasification         226
      • 3.12.4.3            Reforming or coal gasification with CO2 capture and storage      226
      • 3.12.4.4            Steam reforming of biomethane       226
      • 3.12.4.5            Water electrolysis       227
      • 3.12.4.6            The "Power-to-Gas" concept                228
      • 3.12.4.7            Fuel cell stack               229
      • 3.12.4.8            Electrolysers   230
      • 3.12.4.9            Other   231
        • 3.12.4.9.1        Plasma technologies 231
        • 3.12.4.9.2        Photosynthesis            232
        • 3.12.4.9.3        Bacterial or biological processes     232
        • 3.12.4.9.4        Oxidation (biomimicry)           233
    • 3.12.5 Production costs         234
    • 3.12.6 Global hydrogen demand forecasts               235
    • 3.12.7 Hydrogen Production in the United States  236
      • 3.12.7.1            Gulf Coast       236
      • 3.12.7.2            California         237
      • 3.12.7.3            Midwest             237
      • 3.12.7.4            Northeast         237
      • 3.12.7.5            Northwest        238
    • 3.12.8 DOE Hydrogen Hubs 238
    • 3.12.9 US Hydrogen Electrolyzer Capacities, Planned and Installed        239
  • 3.13     Green hydrogen production 241
    • 3.13.1 Overview           241
    • 3.13.2 Green hydrogen projects        242
    • 3.13.3 Motivation for use       243
    • 3.13.4 Decarbonization          244
    • 3.13.5 Comparative analysis              245
    • 3.13.6 Role in energy transition         245
    • 3.13.7 Renewable energy sources   246
      • 3.13.7.1            Wind power     247
      • 3.13.7.2            Solar Power     247
      • 3.13.7.3            Nuclear              247
      • 3.13.7.4            Capacities       247
      • 3.13.7.5            Costs  247
    • 3.13.8 SWOT analysis              248
  • 3.14     Electrolyzer technologies      250
    • 3.14.1 Introduction    250
    • 3.14.2 Main types       251
    • 3.14.3 Balance of Plant          252
    • 3.14.4 Characteristics             254
    • 3.14.5 Advantages and disadvantages        256
    • 3.14.6 Electrolyzer market    256
      • 3.14.6.1            Market trends 256
      • 3.14.6.2            Market landscape       257
      • 3.14.6.3            Innovations     258
      • 3.14.6.4            Cost challenges           259
      • 3.14.6.5            Scale-up            260
      • 3.14.6.6            Manufacturing challenges    260
      • 3.14.6.7            Market opportunity and outlook        261
    • 3.14.7 Alkaline water electrolyzers (AWE)  262
      • 3.14.7.1            Technology description           262
      • 3.14.7.2            AWE plant        264
      • 3.14.7.3            Components and materials 265
      • 3.14.7.4            Costs  266
      • 3.14.7.5            Companies     266
    • 3.14.8 Anion exchange membrane electrolyzers (AEMEL)               268
      • 3.14.8.1            Technology description           268
      • 3.14.8.2            AEMEL plant   269
      • 3.14.8.3            Components and materials 270
        • 3.14.8.3.1        Catalysts          271
        • 3.14.8.3.2        Anion exchange membranes (AEMs)              271
        • 3.14.8.3.3        Materials           272
      • 3.14.8.4            Costs  274
      • 3.14.8.5            Companies     274
    • 3.14.9 Proton exchange membrane electrolyzers (PEMEL)             276
      • 3.14.9.1            Technology description           276
      • 3.14.9.2            PEMEL plant   278
      • 3.14.9.3            Components and materials 279
        • 3.14.9.3.1        Membranes    280
        • 3.14.9.3.2        Advanced PEMEL stack designs       280
        • 3.14.9.3.3        Plug-and-Play & Customizable PEMEL Systems     281
        • 3.14.9.3.4        PEMELs and proton exchange membrane fuel cells (PEMFCs)     282
      • 3.14.9.4            Costs  283
      • 3.14.9.5            Companies     283
    • 3.14.10              Solid oxide water electrolyzers (SOEC)         285
      • 3.14.10.1         Technology description           285
      • 3.14.10.2         SOEC plant     287
      • 3.14.10.3         Components and materials 287
        • 3.14.10.3.1     External process heat               288
        • 3.14.10.3.2     Clean Syngas Production      288
        • 3.14.10.3.3     Nuclear power               289
        • 3.14.10.3.4     SOEC and SOFC cells              289
          • 3.14.10.3.4.1 Tubular cells   289
          • 3.14.10.3.4.2 Planar cells      290
        • 3.14.10.3.5     SOEC Electrolyte         290
      • 3.14.10.4         Costs  291
      • 3.14.10.5         Companies     292
    • 3.14.11              Other types     293
      • 3.14.11.1         Overview           293
      • 3.14.11.2         CO₂ electrolysis            294
        • 3.14.11.2.1     Electrochemical CO₂ Reduction       295
        • 3.14.11.2.2     Electrochemical CO₂ Reduction Catalysts 296
        • 3.14.11.2.3     Electrochemical CO₂ Reduction Technologies        296
        • 3.14.11.2.4     Low-Temperature Electrochemical CO₂ Reduction              297
        • 3.14.11.2.5     High-Temperature Solid Oxide Electrolyzers              298
        • 3.14.11.2.6     Cost     298
        • 3.14.11.2.7     Challenges      299
        • 3.14.11.2.8     Coupling H₂ and Electrochemical CO₂          300
        • 3.14.11.2.9     Products           300
      • 3.14.11.3         Seawater electrolysis               301
        • 3.14.11.3.1     Direct Seawater vs Brine (Chlor-Alkali) Electrolysis              302
        • 3.14.11.3.2     Key Challenges & Limitations             302
      • 3.14.11.4         Protonic Ceramic Electrolyzers (PCE)           303
      • 3.14.11.5         Microbial Electrolysis Cells (MEC)   304
      • 3.14.11.6         Photoelectrochemical Cells (PEC)  305
      • 3.14.11.7         Companies     306
    • 3.14.12              Costs  306
    • 3.14.13              Water and land use for green hydrogen production              309
    • 3.14.14              Electrolyzer manufacturing capacities         311
  • 3.15     Hydrogen storage and transport        313
    • 3.15.1 Market overview           314
    • 3.15.2 Hydrogen transport methods              315
      • 3.15.2.1            Pipeline transportation           315
      • 3.15.2.2            Road or rail transport                315
      • 3.15.2.3            Maritime transportation         315
      • 3.15.2.4            On-board-vehicle transport 316
    • 3.15.3 Hydrogen compression, liquefaction, storage         316
      • 3.15.3.1            Solid storage  316
      • 3.15.3.2            Liquid storage on support      317
      • 3.15.3.3            Underground storage               317
      • 3.15.3.4            Subsea Hydrogen Storage     317
    • 3.15.4 Market players               318
  • 3.16     Hydrogen utilization  319
    • 3.16.1 Hydrogen Fuel Cells  319
    • 3.16.2 Market overview           320
      • 3.16.2.1            PEM fuel cells (PEMFCs)        320
      • 3.16.2.2            Solid oxide fuel cells (SOFCs)             321
      • 3.16.2.3            Alternative fuel cells  321
    • 3.16.3 Alternative fuel production   322
      • 3.16.3.1            Solid Biofuels 322
      • 3.16.3.2            Liquid Biofuels              322
      • 3.16.3.3            Gaseous Biofuels       323
      • 3.16.3.4            Conventional Biofuels             323
      • 3.16.3.5            Advanced Biofuels     323
      • 3.16.3.6            Feedstocks      324
      • 3.16.3.7            Production of biodiesel and other biofuels 326
      • 3.16.3.8            Renewable diesel        326
      • 3.16.3.9            Biojet and sustainable aviation fuel (SAF)   327
      • 3.16.3.10         Electrofuels (E-fuels, power-to-gas/liquids/fuels) 330
        • 3.16.3.10.1     Hydrogen electrolysis               333
        • 3.16.3.10.2     eFuel production facilities, current and planned   336
    • 3.16.4 Hydrogen Vehicles      340
      • 3.16.4.1            Market overview           340
    • 3.16.5 Aviation              342
      • 3.16.5.1            Market overview           342
    • 3.16.6 Ammonia production               342
      • 3.16.6.1            Market overview           342
      • 3.16.6.2            Decarbonisation of ammonia production  344
      • 3.16.6.3            Green ammonia synthesis methods              345
        • 3.16.6.3.1        Haber-Bosch process              346
        • 3.16.6.3.2        Biological nitrogen fixation   346
        • 3.16.6.3.3        Electrochemical production                347
        • 3.16.6.3.4        Chemical looping processes               347
      • 3.16.6.4            Blue ammonia              347
        • 3.16.6.4.1        Blue ammonia projects           347
      • 3.16.6.5            Chemical energy storage       348
        • 3.16.6.5.1        Ammonia fuel cells    348
        • 3.16.6.5.2        Marine fuel      349
    • 3.16.7 Methanol production                352
      • 3.16.7.1            Market overview           352
      • 3.16.7.2            Methanol-to gasoline technology     352
        • 3.16.7.2.1        Production processes              353
          • 3.16.7.2.1.1   Anaerobic digestion  354
          • 3.16.7.2.1.2   Biomass gasification 354
          • 3.16.7.2.1.3   Power to Methane       355
    • 3.16.8 Steelmaking   356
      • 3.16.8.1            Market overview           356
      • 3.16.8.2            Comparative analysis              358
      • 3.16.8.3            Hydrogen Direct Reduced Iron (DRI)              359
    • 3.16.9 Power & heat generation         360
      • 3.16.9.1            Market overview           360
        • 3.16.9.1.1        Power generation        361
        • 3.16.9.1.2        Heat Generation          361
    • 3.16.10              Maritime           361
      • 3.16.10.1         Market overview           361
    • 3.16.11              Fuel cell trains              362
      • 3.16.11.1         Market overview           362
  • 3.17     Company profiles       363 (130 company profiles)

 

4             CARBON CAPTURE AND STORAGE 456

  • 4.1        Main sources of carbon dioxide emissions 456
  • 4.2        CO2 as a commodity                457
  • 4.3        History and evolution of carbon markets     459
  • 4.4        Meeting climate targets          460
  • 4.5        Mitigation costs of CDR technologies            460
  • 4.6        Market map    462
  • 4.7        CDR in voluntary carbon markets     465
  • 4.8        CDR investments        466
  • 4.9        Carbon Dioxide Removal (CDR) and Carbon Capture, Utilization, and Storage (CCUS)               467
  • 4.10     Market size      467
    • 4.10.1 Carbon dioxide removal capacity by technology    468
    • 4.10.2 DACCS Carbon Removal       469
    • 4.10.3 BECCS Carbon Removal        471
    • 4.10.4 Biochar and Biomass Burial Carbon Removal         472
    • 4.10.5 Mineralization Carbon Removal        474
    • 4.10.6 Ocean-based Carbon Removal         476
  • 4.11     Introduction    479
    • 4.11.1 Conventional CDR on land   479
      • 4.11.1.1            Wetland and peatland restoration   480
      • 4.11.1.2            Cropland, grassland, and agroforestry         480
    • 4.11.2 Main CDR methods   481
    • 4.11.3 Novel CDR methods 482
    • 4.11.4 Market drivers                483
    • 4.11.5 Value chain     484
    • 4.11.6 Deployment of carbon dioxide removal technologies         487
  • 4.12     Carbon credits              488
    • 4.12.1 Description     488
    • 4.12.2 Carbon pricing              488
    • 4.12.3 Carbon Removal vs Carbon Avoidance Offsetting 490
    • 4.12.4 Carbon credit certification    491
    • 4.12.5 Carbon registries         491
    • 4.12.6 Carbon credit quality                492
    • 4.12.7 Voluntary Carbon Credits      492
      • 4.12.7.1            Definition         492
      • 4.12.7.2            Purchasing      493
      • 4.12.7.3            Market players               493
      • 4.12.7.4            Pricing 494
    • 4.12.8 Compliance Carbon Credits                494
      • 4.12.8.1            Definition         494
      • 4.12.8.2            Market players               495
      • 4.12.8.3            Pricing 495
    • 4.12.9 Durable carbon dioxide removal (CDR) credits        496
    • 4.12.10              Corporate commitments       498
    • 4.12.11              Increasing government support and regulations    498
    • 4.12.12              Advancements in carbon offset project verification and monitoring        499
    • 4.12.13              Potential for blockchain technology in carbon credit trading         499
    • 4.12.14              Buying and Selling Carbon Credits  500
      • 4.12.14.1         Carbon credit exchanges and trading platforms     500
      • 4.12.14.2         Over-the-counter (OTC) transactions            501
      • 4.12.14.3         Pricing mechanisms and factors affecting carbon credit prices  502
    • 4.12.15              Certification    502
    • 4.12.16              Challenges and risks 503
  • 4.13     Biomass with Carbon Removal and Storage (BiCRS)          505
    • 4.13.1 Feedstocks      506
    • 4.13.2 BiCRS Conversion Pathways                506
    • 4.13.3 Bioenergy with carbon capture and storage (BECCS)         509
      • 4.13.3.1            Biomass conversion 511
      • 4.13.3.2            CO₂ capture technologies     511
      • 4.13.3.3            BECCS facilities           514
      • 4.13.3.4            Cost analysis 515
    • 4.13.4 Market size      515
      • 4.13.4.1            BECCS carbon credits             516
      • 4.13.4.2            Challenges      516
    • 4.13.5 Biochar              519
      • 4.13.5.1            What is biochar?         520
      • 4.13.5.2            Properties of biochar 521
      • 4.13.5.3            Feedstocks      523
      • 4.13.5.4            Production processes              524
        • 4.13.5.4.1        Sustainable production          524
        • 4.13.5.4.2        Pyrolysis            525
          • 4.13.5.4.2.1   Slow pyrolysis               525
          • 4.13.5.4.2.2   Fast pyrolysis 526
        • 4.13.5.4.3        Gasification    527
        • 4.13.5.4.4        Hydrothermal carbonization (HTC)  527
        • 4.13.5.4.5        Torrefaction     527
        • 4.13.5.4.6        Equipment manufacturers   528
      • 4.13.5.5            Biochar pricing             529
      • 4.13.5.6            Biochar carbon credits            530
        • 4.13.5.6.1        Overview           530
        • 4.13.5.6.2        Removal and reduction credits          530
        • 4.13.5.6.3        The advantage of biochar      530
        • 4.13.5.6.4        Prices  531
        • 4.13.5.6.5        Buyers of biochar credits       531
        • 4.13.5.6.6        Competitive materials and technologies    531
    • 4.13.6 Approaches beyond BECCS and biochar    532
      • 4.13.6.1            Bio-oil based CDR      532
      • 4.13.6.2            Integration of biomass-derived carbon into steel and concrete   533
      • 4.13.6.3            Bio-based construction materials for CDR 534
  • 4.14     Direct Air Capture and Storage (DACCS)     535
    • 4.14.1 Description     535
    • 4.14.2 Deployment    537
    • 4.14.3 Point source carbon capture versus Direct Air Capture     538
    • 4.14.4 DAC and other Energy Sources          539
    • 4.14.5 Deployment and Scale-Up    540
    • 4.14.6 Costs  540
    • 4.14.7 Technologies  542
      • 4.14.7.1            Solid sorbents               545
      • 4.14.7.2            Liquid sorbents            547
      • 4.14.7.3            Liquid solvents             548
      • 4.14.7.4            Airflow equipment integration            549
      • 4.14.7.5            Passive Direct Air Capture (PDAC)   549
      • 4.14.7.6            Direct conversion        549
      • 4.14.7.7            Co-product generation            550
      • 4.14.7.8            Low Temperature DAC             550
      • 4.14.7.9            Regeneration methods            550
      • 4.14.7.10         Commercialization and plants           550
      • 4.14.7.11         Metal-organic frameworks (MOFs) in DAC  551
    • 4.14.8 DAC plants and projects-current and planned        551
    • 4.14.9 Markets for DAC           556
    • 4.14.10              Cost analysis 557
    • 4.14.11              Challenges      560
    • 4.14.12              SWOT analysis              561
    • 4.14.13              Players and production           562
  • 4.15     Mineralization-based CDR    564
    • 4.15.1 Overview           564
    • 4.15.2 Storage in CO₂-Derived Concrete     566
    • 4.15.3 Oxide Looping               567
    • 4.15.4 Enhanced Weathering              568
      • 4.15.4.1            Overview           568
      • 4.15.4.2            Benefits             568
      • 4.15.4.3            Monitoring, Reporting, and Verification (MRV)         569
      • 4.15.4.4            Applications   569
      • 4.15.4.5            Commercial activity and companies             570
      • 4.15.4.6            Challenges and Risks               572
    • 4.15.5 Cost analysis 572
    • 4.15.6 SWOT analysis              573
  • 4.16     Afforestation/Reforestation  575
    • 4.16.1 Overview           575
    • 4.16.2 Carbon dioxide removal methods    575
      • 4.16.2.1            Nature-based CDR     575
      • 4.16.2.2            Land-based CDR         577
    • 4.16.3 Technologies  577
      • 4.16.3.1            Remote Sensing           578
      • 4.16.3.2            Drone technology and robotics         578
      • 4.16.3.3            Automated forest fire detection systems    578
      • 4.16.3.4            AI/ML   579
      • 4.16.3.5            Genetics            579
    • 4.16.4 Trends and Opportunities      579
    • 4.16.5 Challenges and Risks               580
      • 4.16.5.1            SWOT analysis              581
  • 4.17     Soil carbon sequestration (SCS)       582
    • 4.17.1 Overview           582
    • 4.17.2 Practices           583
    • 4.17.3 Measuring and Verifying         584
    • 4.17.4 Companies     585
    • 4.17.5 Trends and Opportunities      585
    • 4.17.6 Carbon credits              586
    • 4.17.7 Challenges and Risks               587
    • 4.17.8 SWOT analysis              589
  • 4.18     Ocean-based CDR     591
    • 4.18.1 Overview           591
    • 4.18.2 CO₂ capture from seawater  592
    • 4.18.3 Ocean fertilisation      593
      • 4.18.3.1            Biotic Methods             593
      • 4.18.3.2            Coastal blue carbon ecosystems     594
      • 4.18.3.3            Algal Cultivation           594
      • 4.18.3.4            Artificial Upwelling     594
    • 4.18.4 Ocean alkalinisation 595
      • 4.18.4.1            Electrochemical ocean alkalinity enhancement    595
      • 4.18.4.2            Direct Ocean Capture              596
      • 4.18.4.3            Artificial Downwelling              596
    • 4.18.5 Monitoring, Reporting, and Verification (MRV)         597
    • 4.18.6 Ocean-based CDR Carbon Credits 597
    • 4.18.7 Trends and Opportunities      597
    • 4.18.8 Ocean-based carbon credits               597
    • 4.18.9 Cost analysis 598
    • 4.18.10              Challenges and Risks               598
    • 4.18.11              SWOT analysis              598
    • 4.18.12              Companies     599
  • 4.19     Company profiles       600 (143 company profiles)

 

5             INDUSTRIAL HEAT DECARBONIZATION       696

  • 5.1        Market overview           696
    • 5.1.1    Industrial Heat: Current State and Decarbonization Imperative   696
    • 5.1.2    Industrial Decarbonization Incentives           698
    • 5.1.3    Technology Maturity Overview            699
  • 5.2        Cost Competitiveness Analysis        700
    • 5.2.1    Carbon Abatement Potential               701
  • 5.3        Technologies  703
    • 5.3.1    Electric Heating            703
      • 5.3.1.1 Resistance Heating    704
        • 5.3.1.1.1           Direct Resistance       704
        • 5.3.1.1.2           Indirect Resistance    705
        • 5.3.1.1.3           Infrared Heating           706
      • 5.3.1.2 Induction Heating       708
        • 5.3.1.2.1           High-Frequency Systems       708
        • 5.3.1.2.2           Medium-Frequency Systems              709
        • 5.3.1.2.3           Low-Frequency Systems        710
      • 5.3.1.3 Microwave Heating     711
        • 5.3.1.3.1           Single-Mode Systems              712
        • 5.3.1.3.2           Multi-Mode Systems 713
        • 5.3.1.3.3           Advanced Control Systems  714
      • 5.3.1.4 Plasma Heating            716
        • 5.3.1.4.1           Thermal Plasma          716
        • 5.3.1.4.2           Non-Thermal Plasma               717
        • 5.3.1.4.3           Hybrid Plasma Systems          719
    • 5.3.2    Heat Pumps   719
      • 5.3.2.1 High-Temperature Systems  719
        • 5.3.2.1.1           Vapor Compression  719
        • 5.3.2.1.2           Absorption Systems  719
        • 5.3.2.1.3           Hybrid Configurations             719
      • 5.3.2.2 Integration Strategies                720
        • 5.3.2.2.1           Process Integration    721
        • 5.3.2.2.2           Cascade Systems       721
        • 5.3.2.2.3           Multi-Source Integration         722
      • 5.3.2.3 Emerging Technologies            722
        • 5.3.2.3.1           Chemical Heat Pumps            723
        • 5.3.2.3.2           Magnetocaloric Systems       723
        • 5.3.2.3.3           Thermoacoustic Heat Pumps             724
    • 5.3.3    Biomass Solutions     725
      • 5.3.3.1 Advanced Feedstock Processing      725
        • 5.3.3.1.1           Torrefaction     726
        • 5.3.3.1.2           Pelletization    726
        • 5.3.3.1.3           Gasification    727
      • 5.3.3.2 Combustion Technologies    728
        • 5.3.3.2.1           Fluidized Bed Systems            729
        • 5.3.3.2.2           Grate Firing Systems 730
        • 5.3.3.2.3           6.4.2.3 Pulverized Biomass  731
      • 5.3.3.3 Emerging Biomass Technologies      731
        • 5.3.3.3.1           Supercritical Water Gasification       731
        • 5.3.3.3.2           Plasma-Assisted Combustion           732
        • 5.3.3.3.3           Chemical Looping      733
    • 5.3.4    Advanced and Emerging Technologies          734
      • 5.3.4.1 Solar Thermal 734
        • 5.3.4.1.1           Concentrated Solar Power    735
        • 5.3.4.1.2           Solar-Hydrogen Hybrid Systems       735
      • 5.3.4.2 Geothermal     737
        • 5.3.4.2.1           Deep Geothermal       737
        • 5.3.4.2.2           Enhanced Geothermal Systems       739
      • 5.3.4.3 Novel Heat Storage    740
        • 5.3.4.3.1           Thermochemical Storage      740
        • 5.3.4.3.2           Phase Change Materials         741
        • 5.3.4.3.3           Molten Salt Systems 742
      • 5.3.4.4 Artificial Intelligence and Digital Technologies        744
        • 5.3.4.4.1           Predictive Maintenance          745
        • 5.3.4.4.2           Process Optimization               745
        • 5.3.4.4.3           Digital Twins   747
  • 5.4        Markets and Applications      748
    • 5.4.1    Process Industries      748
      • 5.4.1.1 Chemical Industry      749
      • 5.4.1.2 Food Processing          750
      • 5.4.1.3 Paper and Pulp             751
      • 5.4.1.4 Glass and Ceramics  752
    • 5.4.2    Metal Processing         754
      • 5.4.2.1 Steel Industry 754
      • 5.4.2.2 Aluminum Production              755
      • 5.4.2.3 Other Metals  756
    • 5.4.3    Building Materials       757
      • 5.4.3.1 Cement Production   758
      • 5.4.3.2 Brick Manufacturing 759
      • 5.4.3.3 Other Materials            760
  • 5.5        System Integration     762
    • 5.5.1    Heat Recovery Systems          762
      • 5.5.1.1 Technology Options  763
      • 5.5.1.2 Efficiency Analysis     764
      • 5.5.1.3 Implementation Strategies   765
    • 5.5.2    Process Optimization               766
      • 5.5.2.1 Energy Management 767
      • 5.5.2.2 Control Systems          768
      • 5.5.2.3 Performance Monitoring        769
  • 5.6        Market Analysis           771
    • 5.6.1    Cost Analysis 771
    • 5.6.2    Future Outlook             772
  • 5.7        Company profiles       772 (45 company profiles)

 

6             ELECTRIFICATION OF INDUSTRIAL PROCESSES   809

  • 6.1        Grid Integration and Power Systems               810
    • 6.1.1    Grid Requirements     810
      • 6.1.1.1 Power Quality 811
      • 6.1.1.2 Capacity Planning      811
      • 6.1.1.3 Smart Grid Integration             813
    • 6.1.2    Energy Storage Systems         814
      • 6.1.2.1 Battery Storage             814
      • 6.1.2.2 Thermal Storage          815
      • 6.1.2.3 Hybrid Systems            816
    • 6.1.3    Renewable Energy Integration            818
      • 6.1.3.1 Solar PV Integration   818
      • 6.1.3.2 Wind Power Integration           819
      • 6.1.3.3 Hybrid Power Systems             820
  • 6.2        Electric Process Heating        823
    • 6.2.1    Resistance Heating Systems               824
      • 6.2.1.1 Direct Resistance Heating     825
      • 6.2.1.2 Indirect Resistance Heating 826
      • 6.2.1.3 Immersion Heating    827
      • 6.2.1.4 Advanced Control Systems  828
    • 6.2.2    Induction Technology               830
      • 6.2.2.1 High-Frequency Systems       830
    • 6.2.3    Medium-Frequency Systems              831
      • 6.2.3.1 Low-Frequency Systems        832
      • 6.2.3.2 Advanced Power Supply         833
    • 6.2.4    Infrared Heating           835
      • 6.2.4.1 Short-wave Systems 836
      • 6.2.4.2 Medium-wave Systems           837
      • 6.2.4.3 Long-wave Systems   838
      • 6.2.4.4 Hybrid Solutions          839
    • 6.2.5    Dielectric Heating       841
      • 6.2.5.1 Microwave Systems   841
      • 6.2.5.2 Radio Frequency Systems     842
      • 6.2.5.3 Advanced Control       843
    • 6.2.6    Plasma Systems          845
      • 6.2.6.1 Thermal Plasma          846
      • 6.2.6.2 Non-Thermal Plasma               847
      • 6.2.6.3 Hybrid Plasma Systems          848
  • 6.3        Electrochemical Processes  850
    • 6.3.1    Advanced Electrolysis Systems         850
      • 6.3.1.1 Alkaline Electrolysis  850
      • 6.3.1.2 PEM Electrolysis          851
      • 6.3.1.3 Solid Oxide Electrolysis           852
    • 6.3.2    Electrochemical Reactors     854
      • 6.3.2.1 Flow Reactors               855
      • 6.3.2.2 Batch Reactors             856
      • 6.3.2.3 Novel Designs               856
    • 6.3.3    Membrane Technologies        858
      • 6.3.3.1 Ion Exchange Membranes     858
      • 6.3.3.2 Ceramic Membranes                859
      • 6.3.3.3 Composite Membranes          860
  • 6.4        Electric Motors and Drives    862
    • 6.4.1    Advanced Motor Technologies           862
      • 6.4.1.1 Permanent Magnet Motors   863
      • 6.4.1.2 Synchronous Reluctance Motors     864
      • 6.4.1.3 High-Speed Motors    865
  • 6.5        Emerging Technologies            866
    • 6.5.1    Digital Twin Technologies       866
      • 6.5.1.1 Process Modeling       867
      • 6.5.1.2 Real-time Optimization           868
    • 6.5.2    AI and Machine Learning        868
      • 6.5.2.1 Predictive Maintenance          868
      • 6.5.2.2 Process Optimization               869
      • 6.5.2.3 Energy Management 870
    • 6.5.3    Novel Heating Technologies 871
      • 6.5.3.1 Ultrasonic Heating      871
      • 6.5.3.2 Electron Beam Processing    872
      • 6.5.3.3 Laser Processing         873
  • 6.6        Applications   873
    • 6.6.1    Chemical Industry      873
      • 6.6.1.1 Process Electrification             874
      • 6.6.1.2 Energy Integration       875
    • 6.6.2    Metal Processing         875
      • 6.6.2.1 Melting and Casting  875
      • 6.6.2.2 Heat Treatment             876
      • 6.6.2.3 Surface Processing    877
    • 6.6.3    Food and Beverage    878
      • 6.6.3.1 Heating Processes     878
      • 6.6.3.2 Cooling Systems          879
      • 6.6.3.3 Process Integration    880
    • 6.6.4    Mining and Minerals  880
      • 6.6.4.1 Equipment Electrification      880
      • 6.6.4.2 Process Conversion  881
      • 6.6.4.3 Energy Management 882
  • 6.7        Company profiles       883 (245 company profiles)

 

7             CIRCULAR ECONOMY SOLUTIONS 975

  • 7.1        Advanced Sorting and Detection Technologies       975
    • 7.1.1    Artificial Intelligence and Machine Learning             975
    • 7.1.2    Computer Vision Systems     976
    • 7.1.3    Deep Learning Algorithms     977
    • 7.1.4    Real-time Sorting        979
  • 7.2        Spectroscopic Technologies                981
    • 7.2.1    NIR Spectroscopy       981
    • 7.2.2    Raman Spectroscopy               982
    • 7.2.3    X-ray Technologies     983
    • 7.2.4    Robotic Sorting Systems        987
    • 7.2.5    Automated Processing Lines               988
    • 7.2.6    Quality Control Systems        989
  • 7.3        Recycling Technologies           990
    • 7.3.1    Pyrolysis            991
      • 7.3.1.1 Non-catalytic 992
      • 7.3.1.2 Catalytic            993
        • 7.3.1.2.1           Polystyrene pyrolysis 994
        • 7.3.1.2.2           Pyrolysis for production of bio fuel  995
        • 7.3.1.2.3           Used tires pyrolysis   998
          • 7.3.1.2.3.1      Conversion to biofuel               999
        • 7.3.1.2.4           Co-pyrolysis of biomass and plastic wastes             1000
      • 7.3.1.3 Companies and capacities  1000
    • 7.3.2    Gasification    1002
      • 7.3.2.1 Technology overview 1002
        • 7.3.2.1.1           Syngas conversion to methanol        1003
        • 7.3.2.1.2           Biomass gasification and syngas fermentation       1007
        • 7.3.2.1.3           Biomass gasification and syngas thermochemical conversion    1007
      • 7.3.2.2 Companies and capacities (current and planned)                1008
    • 7.3.3    Dissolution     1008
      • 7.3.3.1 Technology overview 1009
      • 7.3.3.2 Companies and capacities (current and planned)                1010
    • 7.3.4    Depolymerisation       1010
      • 7.3.4.1 Hydrolysis        1012
        • 7.3.4.1.1           Technology overview 1012
        • 7.3.4.1.2           SWOT analysis              1014
      • 7.3.4.2 Enzymolysis   1014
        • 7.3.4.2.1           Technology overview 1014
        • 7.3.4.2.2           SWOT analysis              1015
      • 7.3.4.3 Methanolysis 1016
        • 7.3.4.3.1           Technology overview 1016
        • 7.3.4.3.2           SWOT analysis              1017
      • 7.3.4.4 Glycolysis         1018
        • 7.3.4.4.1           Technology overview 1018
        • 7.3.4.4.2           SWOT analysis              1019
      • 7.3.4.5 Aminolysis      1020
        • 7.3.4.5.1           Technology overview 1020
        • 7.3.4.5.2           SWOT analysis              1021
      • 7.3.4.6 Companies and capacities (current and planned)                1021
    • 7.3.5    Other advanced chemical recycling technologies 1022
      • 7.3.5.1 Hydrothermal cracking           1022
      • 7.3.5.2 Pyrolysis with in-line reforming          1023
      • 7.3.5.3 Microwave-assisted pyrolysis             1024
      • 7.3.5.4 Plasma pyrolysis         1024
      • 7.3.5.5 Plasma gasification   1025
      • 7.3.5.6 Supercritical fluids     1025
      • 7.3.5.7 Carbon fiber recycling              1026
        • 7.3.5.7.1           Processes        1026
        • 7.3.5.7.2           Companies     1028
    • 7.3.6    Advanced recycling of thermoset materials              1029
      • 7.3.6.1 Thermal recycling        1030
        • 7.3.6.1.1           Energy Recovery Combustion            1030
        • 7.3.6.1.2           Anaerobic Digestion 1030
        • 7.3.6.1.3           Pyrolysis Processing 1031
        • 7.3.6.1.4           Microwave Pyrolysis  1032
      • 7.3.6.2 Solvolysis         1033
      • 7.3.6.3 Catalyzed Glycolysis 1034
      • 7.3.6.4 Alcoholysis and Hydrolysis   1034
      • 7.3.6.5 Ionic liquids    1035
      • 7.3.6.6 Supercritical fluids     1036
      • 7.3.6.7 Plasma              1037
      • 7.3.6.8 Companies     1038
    • 7.3.7    Comparison with Traditional Recycling Methods   1039
      • 7.3.7.1 Mechanical Recycling Limitations   1040
      • 7.3.7.2 Energy Efficiency Comparison           1040
      • 7.3.7.3 Quality of Output Comparison          1041
      • 7.3.7.4 Cost Analysis 1042
    • 7.3.8    Environmental Impact Assessment                1043
      • 7.3.8.1 Carbon Footprint Analysis    1043
      • 7.3.8.2 Energy Consumption Assessment  1045
      • 7.3.8.3 Waste Reduction Potential   1046
      • 7.3.8.4 Sustainability Metrics               1048
    • 7.3.9    Emerging Technologies            1049
      • 7.3.9.1 AI and Machine Learning Applications          1049
        • 7.3.9.1.1           Sorting Optimization 1050
        • 7.3.9.1.2           Process Control           1050
        • 7.3.9.1.3           Quality Prediction       1052
        • 7.3.9.1.4           Maintenance Prediction          1053
  • 7.4        Materials Recovery     1053
    • 7.4.1    Critical Raw Materials              1054
    • 7.4.2    Global market forecasts         1054
      • 7.4.2.1 By Material Type (2025-2040)             1054
      • 7.4.2.2 By Recovery Source (2025-2040)     1056
    • 7.4.3    Metals and minerals processed and extracted        1058
      • 7.4.3.1 Copper               1058
        • 7.4.3.1.1           Global copper demand and trends 1058
        • 7.4.3.1.2           Markets and applications      1059
        • 7.4.3.1.3           Copper extraction and recovery        1060
      • 7.4.3.2 Nickel  1061
        • 7.4.3.2.1           Global nickel demand and trends    1061
        • 7.4.3.2.2           Markets and applications      1061
        • 7.4.3.2.3           Nickel extraction and recovery           1062
      • 7.4.3.3 Cobalt 1063
        • 7.4.3.3.1           Global cobalt demand and trends   1063
        • 7.4.3.3.2           Markets and applications      1064
        • 7.4.3.3.3           Cobalt extraction and recovery          1065
      • 7.4.3.4 Rare Earth Elements (REE)   1066
        • 7.4.3.4.1           Global Rare Earth Elements demand and trends   1066
        • 7.4.3.4.2           Markets and applications      1066
        • 7.4.3.4.3           Rare Earth Elements extraction and recovery           1067
        • 7.4.3.4.4           Recovery of REEs from secondary resources            1067
      • 7.4.3.5 Lithium              1068
        • 7.4.3.5.1           Global lithium demand and trends  1068
        • 7.4.3.5.2           Markets and applications      1069
        • 7.4.3.5.3           Lithium extraction and recovery        1070
      • 7.4.3.6 Gold     1070
        • 7.4.3.6.1           Global gold demand and trends        1070
        • 7.4.3.6.2           Markets and applications      1071
        • 7.4.3.6.3           Gold extraction and recovery               1071
      • 7.4.3.7 Uranium            1072
        • 7.4.3.7.1           Global uranium demand and trends               1072
        • 7.4.3.7.2           Markets and applications      1072
        • 7.4.3.7.3           Uranium extraction and recovery      1073
      • 7.4.3.8 Zinc      1074
        • 7.4.3.8.1           Global Zinc demand and trends        1074
        • 7.4.3.8.2           Markets and applications      1074
        • 7.4.3.8.3           Zinc extraction and recovery                1075
      • 7.4.3.9 Manganese     1076
        • 7.4.3.9.1           Global manganese demand and trends       1076
        • 7.4.3.9.2           Markets and applications      1076
        • 7.4.3.9.3           Manganese extraction and recovery               1077
      • 7.4.3.10            Tantalum          1077
        • 7.4.3.10.1        Global tantalum demand and trends             1077
        • 7.4.3.10.2        Markets and applications      1078
        • 7.4.3.10.3        Tantalum extraction and recovery    1079
      • 7.4.3.11            Niobium            1079
        • 7.4.3.11.1        Global niobium demand and trends               1079
        • 7.4.3.11.2        Markets and applications      1080
        • 7.4.3.11.3        Niobium extraction and recovery      1080
      • 7.4.3.12            Indium                1081
        • 7.4.3.12.1        Global indium demand and trends  1081
        • 7.4.3.12.2        Markets and applications      1081
        • 7.4.3.12.3        Indium extraction and recovery          1082
      • 7.4.3.13            Gallium              1082
        • 7.4.3.13.1        Global gallium demand and trends 1083
        • 7.4.3.13.2        Markets and applications      1083
        • 7.4.3.13.3        Gallium extraction and recovery        1083
      • 7.4.3.14            Germanium    1084
        • 7.4.3.14.1        Global germanium demand and trends        1084
        • 7.4.3.14.2        Markets and applications      1084
        • 7.4.3.14.3        Germanium extraction and recovery              1085
      • 7.4.3.15            Antimony          1085
        • 7.4.3.15.1        Global antimony demand and trends            1085
        • 7.4.3.15.2        Markets and applications      1086
        • 7.4.3.15.3        Antimony extraction and recovery    1086
      • 7.4.3.16            Scandium        1087
        • 7.4.3.16.1        Global scandium demand and trends           1087
        • 7.4.3.16.2        Markets and applications      1087
        • 7.4.3.16.3        Scandium extraction and recovery  1088
      • 7.4.3.17            Graphite            1088
        • 7.4.3.17.1        Global graphite demand and trends               1088
        • 7.4.3.17.2        Markets and applications      1089
        • 7.4.3.17.3        Graphite extraction and recovery      1090
    • 7.4.4    Recovery sources       1091
      • 7.4.4.1 Primary sources           1092
      • 7.4.4.2 Secondary sources    1093
      • 7.4.4.2.1           Extraction         1096
      • 7.4.4.2.1.1      Hydrometallurgical extraction            1097
      • 7.4.4.2.1.1.1  Overview           1097
      • 7.4.4.2.1.1.2  Lixiviants          1098
      • 7.4.4.2.1.1.3  SWOT analysis              1099
      • 7.4.4.2.1.2      Pyrometallurgical extraction                1100
      • 7.4.4.2.1.2.1  Overview           1100
      • 7.4.4.2.1.2.2  SWOT analysis              1100
      • 7.4.4.2.1.3      Biometallurgy 1102
      • 7.4.4.2.1.3.1  Overview           1102
      • 7.4.4.2.1.3.2  SWOT analysis              1103
      • 7.4.4.2.1.4      Ionic liquids and deep eutectic solvents     1104
      • 7.4.4.2.1.4.1  Overview           1104
      • 7.4.4.2.1.4.2  SWOT analysis              1106
      • 7.4.4.2.1.5      Electroleaching extraction    1107
      • 7.4.4.2.1.5.1  Overview           1107
      • 7.4.4.2.1.5.2  SWOT analysis              1108
      • 7.4.4.2.1.6      Supercritical fluid extraction               1109
      • 7.4.4.2.1.6.1  Overview           1109
      • 7.4.4.2.1.6.2  SWOT analysis              1109
      • 7.4.4.2.2           Recovery           1111
      • 7.4.4.2.2.1      Solvent extraction       1111
      • 7.4.4.2.2.1.1  Overview           1111
      • 7.4.4.2.2.1.2  Rare-Earth Element Recovery             1111
      • 7.4.4.2.2.1.3  WOT analysis 1112
      • 7.4.4.2.2.2      Ion exchange recovery             1114
      • 7.4.4.2.2.2.1  Overview           1114
      • 7.4.4.2.2.2.2  SWOT analysis              1115
      • 7.4.4.2.2.3      Ionic liquid (IL) and deep eutectic solvent (DES) recovery                1116
      • 7.4.4.2.2.3.1  Overview           1116
      • 7.4.4.2.2.3.2  SWOT analysis              1118
      • 7.4.4.2.2.4      Precipitation   1120
      • 7.4.4.2.2.4.1  Overview           1120
      • 7.4.4.2.2.4.2  Coagulation and flocculation              1121
      • 7.4.4.2.2.4.3  SWOT analysis              1122
      • 7.4.4.2.2.5      Biosorption     1123
      • 7.4.4.2.2.5.1  Overview           1123
      • 7.4.4.2.2.5.2  SWOT analysis              1124
      • 7.4.4.2.2.6      Electrowinning              1126
      • 7.4.4.2.2.6.1  Overview           1126
      • 7.4.4.2.2.6.2  SWOT analysis              1127
      • 7.4.4.2.2.7      Direct materials recovery       1128
      • 7.4.4.2.2.7.1  Overview           1128
      • 7.4.4.2.2.7.2  Rare-earth Oxide (REO) Processing Using Molten Salt Electrolysis            1129
      • 7.4.4.2.2.7.3  Rare-earth Magnet Recycling by Hydrogen Decrepitation                1129
      • 7.4.4.2.2.7.4  Direct Recycling of Li-ion Battery Cathodes by Sintering  1130
      • 7.4.4.2.2.7.5  SWOT analysis              1130
    • 7.4.5    Metal Recovery Technologies              1134
      • 7.4.5.1 Pyrometallurgy              1134
      • 7.4.5.2 Hydrometallurgy          1134
      • 7.4.5.3 Biometallurgy 1135
      • 7.4.5.4 Supercritical Fluid Extraction              1135
      • 7.4.5.5 Electrokinetic Separation      1136
      • 7.4.5.6 Mechanochemical Processing           1136
    • 7.4.6    Global market 2025-2040     1138
      • 7.4.6.1 Ktonnes             1139
      • 7.4.6.2 Revenues          1140
      • 7.4.6.3 Regional            1141
  • 7.5        Company profiles       1144 (339 company profiles)

 

8             ENVIRONMENTAL TECHNOLOGIES               1378

  • 8.1        Market Overview          1378
  • 8.2        Water Treatment Technologies           1379
    • 8.2.1    Advanced Membrane Systems          1379
      • 8.2.1.1 Next-Generation Membranes             1380
        • 8.2.1.1.1           Graphene-Based Membranes            1381
        • 8.2.1.1.2           Biomimetic Membranes         1381
        • 8.2.1.1.3           Mixed Matrix Membranes      1381
      • 8.2.1.2 Membrane Processes              1382
        • 8.2.1.2.1           Ultrafiltration Advances          1382
        • 8.2.1.2.2           Reverse Osmosis Innovations            1383
        • 8.2.1.2.3           Forward Osmosis Systems   1384
      • 8.2.1.3 Anti-Fouling Technologies     1385
        • 8.2.1.3.1           Surface Modifications             1387
        • 8.2.1.3.2           Dynamic Membrane Systems             1388
        • 8.2.1.3.3           Cleaning Innovations               1390
    • 8.2.2    Advanced Oxidation Processes (AOP)           1391
      • 8.2.2.1 Photocatalytic Systems          1391
        • 8.2.2.1.1           Novel Catalysts            1392
        • 8.2.2.1.2           Reactor Designs          1393
        • 8.2.2.1.3           Process Integration    1394
      • 8.2.2.2 Electrochemical AOPs             1395
        • 8.2.2.2.1           Electrode Materials   1395
        • 8.2.2.2.2           Process Optimization               1396
        • 8.2.2.2.3           Scale-up Solutions    1398
    • 8.2.3    Biological Treatment Systems            1399
      • 8.2.3.1 Advanced Bioreactors             1399
        • 8.2.3.1.1           Membrane Bioreactors           1399
        • 8.2.3.1.2           Moving Bed Systems 1400
        • 8.2.3.1.3           Granular Sludge Technology 1401
      • 8.2.3.2 Microbial Solutions    1404
        • 8.2.3.2.1           Enhanced Microbial Consortia          1405
      • 8.2.3.3 Bioaugmentation        1406
        • 8.2.3.3.1           Synthetic Biology Applications          1408
  • 8.3        Air Quality Management        1409
    • 8.3.1    Advanced Emission Control 1410
      • 8.3.1.1 Particulate Matter Control     1411
        • 8.3.1.1.1           Advanced Filtration    1412
        • 8.3.1.1.2           Electrostatic Systems              1413
        • 8.3.1.1.3           Wet Scrubbers              1414
      • 8.3.1.2 Gas Treatment Systems          1415
        • 8.3.1.2.1           Catalytic Technologies            1416
        • 8.3.1.2.2           Plasma Treatment       1417
        • 8.3.1.2.3           Biological Gas Treatment       1419
      • 8.3.1.3 Smart Monitoring Systems    1420
      • 8.3.1.3.1           Real-time Sensors      1420
      • 8.3.1.3.2           Network Integration   1421
      • 8.3.1.3.3           Predictive Analytics   1422
  • 8.4        Soil and Groundwater Remediation                1423
    • 8.4.1    In-Situ Technologies  1423
      • 8.4.1.1 Chemical Treatment  1424
        • 8.4.1.1.1           Advanced Oxidation  1425
        • 8.4.1.1.2           Reduction Technologies         1426
        • 8.4.1.1.3           Stabilization Methods              1427
      • 8.4.1.2 Biological Remediation           1428
        • 8.4.1.2.1           Bioaugmentation        1428
        • 8.4.1.2.2           Phytoremediation       1429
        • 8.4.1.2.3           Mycoremediation        1431
  • 8.5        Digital Environmental Technologies                1433
    • 8.5.1    Environmental IoT       1433
      • 8.5.1.1 Sensor Networks         1434
      • 8.5.1.2 Data Integration           1435
      • 8.5.1.3 Analytics Platforms   1436
    • 8.5.2    AI and Machine Learning        1437
      • 8.5.2.1 Predictive Monitoring               1438
      • 8.5.2.2 Process Optimization               1440
      • 8.5.2.3 Risk Assessment         1441
  • 8.6        Emerging Technologies            1443
    • 8.6.1    Novel Materials            1443
      • 8.6.1.1 Nanomaterials              1446
      • 8.6.1.2 Bio-based Materials  1447
      • 8.6.1.3 Smart Materials            1449
      • 8.6.1.4 Plasma Systems          1449
      • 8.6.1.5 Supercritical Fluids    1450
      • 8.6.1.6 Electrochemical Processes  1451
  • 8.7        Company profiles       1452 (142 company profiles)

 

9             GREEN BUILDING TECHNOLOGIES               1565

  • 9.1        Market overview           1567
    • 9.1.1    Benefits of Sustainable Construction            1567
    • 9.1.2    Global Trends and Drivers     1568
  • 9.2        Global revenues           1569
    • 9.2.1    By materials type         1569
    • 9.2.2    By market         1571
  • 9.3        Types of sustainable construction materials            1574
  • 9.4        Established bio-based construction materials       1574
  • 9.5        Hemp-based Materials           1576
    • 9.5.1    Hemp Concrete (Hempcrete)              1576
    • 9.5.2    Hemp Fiberboard        1576
    • 9.5.3    Hemp Insulation          1577
  • 9.6        Mycelium-based Materials   1577
    • 9.6.1    Insulation         1578
    • 9.6.2    Structural Elements  1578
    • 9.6.3    Acoustic Panels           1578
    • 9.6.4    Decorative Elements 1579
  • 9.7        Sustainable Concrete and Cement Alternatives     1579
    • 9.7.1    Geopolymer Concrete              1579
    • 9.7.2    Recycled Aggregate Concrete             1580
    • 9.7.3    Lime-Based Materials              1580
    • 9.7.4    Self-healing concrete                1581
      • 9.7.4.1 Bioconcrete    1582
      • 9.7.4.2 Fiber concrete               1583
    • 9.7.5    Microalgae biocement             1584
    • 9.7.6    Carbon-negative concrete     1585
    • 9.7.7    Biomineral binders     1586
    • 9.7.8    Clinker substitutes     1586
    • 9.7.9    Other Alternative cementitious materials   1587
  • 9.8        Natural Fiber Composites     1589
    • 9.8.1    Types of Natural Fibers            1589
    • 9.8.2    Properties         1589
    • 9.8.3    Applications in Construction              1590
  • 9.9        Cellulose nanofibers 1591
    • 9.9.1    Sandwich composites             1591
    • 9.9.2    Cement additives       1591
    • 9.9.3    Pump primers                1591
    • 9.9.4    Insulation materials  1591
    • 9.9.5    Coatings and paints  1592
    • 9.9.6    3D printing materials 1592
  • 9.10     Sustainable Insulation Materials      1593
    • 9.10.1 Types of sustainable insulation materials   1593
    • 9.10.2 Aerogel Insulation       1594
      • 9.10.2.1            Silica aerogels               1596
        • 9.10.2.1.1        Properties         1597
        • 9.10.2.1.2        Thermal conductivity                1598
        • 9.10.2.1.3        Mechanical     1598
        • 9.10.2.1.4        Silica aerogel precursors        1598
        • 9.10.2.1.5        Products           1598
          • 9.10.2.1.5.1   Monoliths         1598
          • 9.10.2.1.5.2   Powder               1599
          • 9.10.2.1.5.3   Granules           1599
          • 9.10.2.1.5.4   Blankets            1601
          • 9.10.2.1.5.5   Aerogel boards             1602
          • 9.10.2.1.5.6   Aerogel renders            1602
        • 9.10.2.1.6        3D printing of aerogels             1603
        • 9.10.2.1.7        Silica aerogel from sustainable feedstocks               1603
        • 9.10.2.1.8        Silica composite aerogels     1604
          • 9.10.2.1.8.1   Organic crosslinkers 1604
        • 9.10.2.1.9        Cost of silica aerogels              1604
        • 9.10.2.1.10     Main players   1605
      • 9.10.2.2            Aerogel-like foam materials 1606
        • 9.10.2.2.1        Properties         1606
        • 9.10.2.2.2        Applications   1606
      • 9.10.2.3            Metal oxide aerogels 1606
      • 9.10.2.4            Organic aerogels         1607
        • 9.10.2.4.1        Polymer aerogels         1607
      • 9.10.2.5            Biobased and sustainable aerogels (bio-aerogels)               1609
        • 9.10.2.5.1        Cellulose aerogels     1611
          • 9.10.2.5.1.1   Cellulose nanofiber (CNF) aerogels                1611
          • 9.10.2.5.1.2   Cellulose nanocrystal aerogels         1612
          • 9.10.2.5.1.3   Bacterial nanocellulose aerogels     1612
        • 9.10.2.5.2        Lignin aerogels              1612
        • 9.10.2.5.3        Alginate aerogels         1613
        • 9.10.2.5.4        Starch aerogels            1613
        • 9.10.2.5.5        Chitosan aerogels      1614
      • 9.10.2.6            Carbon aerogels          1615
        • 9.10.2.6.1        Carbon nanotube aerogels   1616
        • 9.10.2.6.2        Graphene and graphite aerogels       1617
      • 9.10.2.7            Additive manufacturing (3D printing)             1618
        • 9.10.2.7.1        Carbon nitride               1618
        • 9.10.2.7.2        Gold     1619
        • 9.10.2.7.3        Cellulose          1619
        • 9.10.2.7.4        Graphene oxide            1619
      • 9.10.2.8            Hybrid aerogels            1620
  • 9.11     Carbon capture and utilization          1621
    • 9.11.1 Overview           1621
    • 9.11.2 Market structure          1623
    • 9.11.3 CCUS technologies in the cement industry               1625
    • 9.11.4 Products           1627
      • 9.11.4.1            Carbonated aggregates          1627
      • 9.11.4.2            Additives during mixing           1628
      • 9.11.4.3            Carbonates from natural minerals  1629
      • 9.11.4.4            Carbonates from waste          1629
    • 9.11.5 Concrete curing           1630
    • 9.11.6 Costs  1631
    • 9.11.7 Challenges      1631
  • 9.12     Alternative Fuels for Cement Production    1633
    • 9.12.1 Fuel switching for cement kilns         1633
    • 9.12.2 Kiln electrification       1635
    • 9.12.3 Solar power for cement production 1638
  • 9.13     Applications   1640
    • 9.13.1 Residential Buildings                1641
    • 9.13.2 Commercial and Office Buildings    1642
    • 9.13.3 Infrastructure 1644
  • 9.14     Company profiles       1646 (165 company profiles)

 

10          REFERENCES 1768

 

List of Tables

  • Table 1. Properties of Green steels. 94
  • Table 2. Global Decarbonization Targets and Policies related to Green Steel.     95
  • Table 3. Estimated cost for iron and steel industry under the Carbon Border Adjustment Mechanism (CBAM).             97
  • Table 4. Hydrogen-based steelmaking technologies.          99
  • Table 5. Comparison of green steel production technologies.      99
  • Table 6. Advantages and disadvantages of each potential hydrogen carrier.       101
  • Table 7. CCUS in green steel production.    103
  • Table 8. Biochar in steel and metal. 105
  • Table 9. Hydrogen blast furnace schematic.             106
  • Table 10. Applications of microwave processing in green steelmaking. 110
  • Table 11. Applications of additive manufacturing (AM) in steelmaking.  110
  • Table 12.  Technology readiness level (TRL) for key green steel production technologies.          111
  • Table 13. Coatings and membranes in green steel production.    113
  • Table 14. Advantages and disadvantages of green steel.  115
  • Table 15. Markets and applications: green steel.   116
  • Table 16. Green Steel Plants - Current and Planned Production  120
  • Table 17. Industry developments and innovation in Green steel, 2022-2025.    123
  • Table 18. Summary of market growth drivers for Green steel.        129
  • Table 19. Market challenges in Green steel.              130
  • Table 20. Supply agreements between green steel producers and automakers.              131
  • Table 21. Applications of green steel in the automotive industry.               133
  • Table 22. Applications of green steel in the construction industry.            134
  • Table 23. Applications of green steel in the consumer appliances industry.        136
  • Table 24. Applications of green steel in machinery.             137
  • Table 25. Applications of green steel in the rail industry.  138
  • Table 26. Applications of green steel in the packaging industry.  139
  • Table 27. Applications of green steel in the electronics industry. 140
  • Table 28. Low-Emissions Steel Production Capacity 2020-2035 (Million Metric Tons). 141
  • Table 29. Low-Emissions Steel Production vs. Demand 2020-2035 (Million Metric Tons)           143
  • Table 30. Low-Emissions Steel Market Revenues 2020-2035.      143
  • Table 31. Demand for Low-Emissions Steel by End-Use Industry 2020-2035 (Million Metric Tons).     143
  • Table 32. Regional Demand for Low-Emissions Steel 2020-2035 (Million Metric Tons).               144
  • Table 33. Regional Demand for Low-Emissions Steel 2020-2035, NORTH AMERICA (Million Metric Tons)                144
  • Table 34. Regional Demand for Low-Emissions Steel 2020-2035, EUROPE (Million Metric Tons).         145
  • Table 35. Regional Demand for Low-Emissions Steel 2020-2035, CHINA (Million Metric Tons).             145
  • Table 36. Regional Demand for Low-Emissions Steel 2020-2035, INDIA (Million Metric Tons).               146
  • Table 37. Regional Demand for Low-Emissions Steel 2020-2035, ASIA-PACIFIC (excluding China) (Million Metric Tons). 146
  • Table 38. Regional Demand for Low-Emissions Steel 2020-2035, MIDDLE EAST & AFRICA (Million Metric Tons).  146
  • Table 39. Regional Demand for Low-Emissions Steel 2020-2035, SOUTH AMERICA (Million Metric Tons).                147
  • Table 40. Key players in Green steel, location and production methods.               147
  • Table 41. Hydrogen colour shades, Technology, cost, and CO2 emissions.        186
  • Table 42. Main applications of hydrogen.    188
  • Table 43. Overview of hydrogen production methods.       188
  • Table 44. National hydrogen initiatives.        193
  • Table 45. Market challenges in the hydrogen economy and production technologies. 195
  • Table 46. Green hydrogen industry developments 2020-2024.    196
  • Table 47. Market map for hydrogen technology and production. 209
  • Table 48. Industrial applications of hydrogen.         212
  • Table 49. Hydrogen energy markets and applications.       213
  • Table 50. Hydrogen production processes and stage of development.   215
  • Table 51. Estimated costs of clean hydrogen production.                225
  • Table 52. US Hydrogen Electrolyzer Capacities, current and planned, as of May 2023, by region.        231
  • Table 53. Green hydrogen application markets.      233
  • Table 54. Green hydrogen projects. 233
  • Table 55. Traditional Hydrogen Production.               234
  • Table 56. Hydrogen Production Processes.                235
  • Table 57. Comparison of hydrogen types.   236
  • Table 58.  Characteristics of typical water electrolysis technologies        246
  • Table 59. Advantages and disadvantages of water electrolysis technologies.    247
  • Table 60. Classifications of Alkaline Electrolyzers.               253
  • Table 61. Advantages & limitations of AWE.               254
  • Table 62. Key performance characteristics of AWE.             254
  • Table 63. Companies in the AWE market.   257
  • Table 64. Comparison of Commercial AEM Materials.       264
  • Table 65. Companies in the AMEL market. 265
  • Table 66. Companies in the PEMEL market.              274
  • Table 67. Companies in the SOEC market. 283
  • Table 68. Other types of electrolyzer technologies               284
  • Table 69. Electrochemical CO₂ Reduction Technologies/ 287
  • Table 70. Cost Comparison of CO₂ Electrochemical Technologies.          289
  • Table 71. Companies developing other electrolyzer technologies.            297
  • Table 72. Electrolyzer Installations Forecast (GW), 2020-2040.  302
  • Table 73. Global market size for Electrolyzers, 2018-2035 (US$B).           303
  • Table 74. Market overview-hydrogen storage and transport.          305
  • Table 75. Summary of different methods of hydrogen transport. 306
  • Table 76. Market players in hydrogen storage and transport.         309
  • Table 77. Market overview hydrogen fuel cells-applications, market players and market challenges.                311
  • Table 78. Categories and examples of solid biofuel.            313
  • Table 79. Comparison of biofuels and e-fuels to fossil and electricity.     315
  • Table 80. Classification of biomass feedstock.       315
  • Table 81. Biorefinery feedstocks.     316
  • Table 82. Feedstock conversion pathways.                316
  • Table 83. Biodiesel production techniques.              317
  • Table 84. Advantages and disadvantages of biojet fuel      318
  • Table 85. Production pathways for bio-jet fuel.       319
  • Table 86. Applications of e-fuels, by type.   323
  • Table 87. Overview of e-fuels.             323
  • Table 88. Benefits of e-fuels.               324
  • Table 89. eFuel production facilities, current and planned.            327
  • Table 90. Market overview for hydrogen vehicles-applications, market players and market challenges.                332
  • Table 91. Blue ammonia projects.   338
  • Table 92. Ammonia fuel cell technologies. 339
  • Table 93. Market overview of green ammonia in marine fuel.         340
  • Table 94. Summary of marine alternative fuels.      341
  • Table 95. Estimated costs for different types of ammonia.             342
  • Table 96. Comparison of biogas, biomethane and natural gas.   345
  • Table 97. Hydrogen-based steelmaking technologies.       349
  • Table 98. Comparison of green steel production technologies.   349
  • Table 99. Advantages and disadvantages of each potential hydrogen carrier.    351
  • Table 100. History and Evolution of Carbon Credit Markets.          450
  • Table 101. Long-term marginal abatement costs of selected removal methods.             451
  • Table 102. Companies in Voluntary Carbon Markets.         456
  • Table 103. CDR investments and VC funding by company.             457
  • Table 104. CDR versus CCUS.            458
  • Table 105. Carbon dioxide removal capacity by technology (million metric tons of CO₂/year), 2020-2045.  459
  • Table 106. Carbon Dioxide Removal Revenues by Technology (Billion US$).       460
  • Table 107. DACCS Carbon Removal Capacity Forecast (Million Metric Tons CO₂/Year).              460
  • Table 108. DACCS Carbon Credit Revenue Forecast (Million US$).           461
  • Table 109. BECCS Carbon Removal Capacity Forecast (Million Metric Tons CO₂/Year).              462
  • Table 110. Biochar and Biomass Burial Carbon Removal Forecast (Million Metric Tons CO₂/Year).     463
  • Table 111. BiCRS Carbon Credit Revenue Forecast (Million US$).             464
  • Table 112. Mineralization Carbon Removal Forecast (Million Metric Tons CO₂/Year).    465
  • Table 113. Mineralization Carbon Credit Revenue Forecast (Million US$).           466
  • Table 114. Ocean-based Carbon Removal Forecast (Million Metric Tons CO₂/Year).     467
  • Table 115. Ocean-based Carbon Credit Revenue Forecast (Million US$).             468
  • Table 116. Global purchases of CO2 removal (tonnes) 2019-2024.          470
  • Table 117. Main CDR methods.         472
  • Table 118. Technology Readiness Level (TRL) for Carbon Dioxide Removal Methods.   473
  • Table 119. Carbon Dioxide Removal Technology Benchmarking.               473
  • Table 120. Novel CDR Methods.        474
  • Table 121. Market drivers for carbon dioxide removal (CDR).        474
  • Table 122. CDR Value Chain.              475
  • Table 123. Engineered Carbon Dioxide Removal Value Chain       477
  • Table 124. Carbon pricing and carbon markets       480
  • Table 125. Carbon Removal vs Emission Reduction Offsets.         481
  • Table 126. Carbon Crediting Programs.       482
  • Table 127. Voluntary Carbon Credits Key Market Players and Projects.  484
  • Table 128. Compliance Carbon Credits Key Market Players and Projects.            486
  • Table 129. Comparison of Voluntary and Compliance Carbon Credits.  486
  • Table 130. Durable Carbon Removal Buyers.           487
  • Table 131. Prices of CDR Credits.     488
  • Table 132. Major Corporate Carbon Credit Commitments.            489
  • Table 133. Key Carbon Market Regulations and Support Mechanisms.  489
  • Table 134. Carbon credit prices by company and technology.      490
  • Table 135. Carbon Credit Exchanges and Trading Platforms.         491
  • Table 136. OTC Carbon Market Characteristics.    492
  • Table 137. Challenges and Risks.    495
  • Table 138. TRL of Biomass Conversion Processes and Products by Feedstock.                496
  • Table 139. BiCRS feedstocks.             497
  • Table 140. BiCRS conversion pathways.      498
  • Table 141. BiCRS Technological Challenges.            499
  • Table 142. CO₂ capture technologies for BECCS.  503
  • Table 143. Existing and planned capacity for sequestration of biogenic carbon.              505
  • Table 144. Existing facilities with capture and/or geologic sequestration of biogenic CO2.       505
  • Table 145.Carbon Market 2024 and Forecast to 2035        506
  • Table 146. BECCS Challenges.          508
  • Table 147. Summary of key properties of biochar. 512
  • Table 148. Biochar physicochemical and morphological properties         513
  • Table 149. Biochar feedstocks-source, carbon content, and characteristics.    514
  • Table 150. Biochar production technologies, description, advantages and disadvantages.    515
  • Table 151. Comparison of slow and fast pyrolysis for biomass.  517
  • Table 152. Comparison of thermochemical processes for biochar production.                519
  • Table 153. Biochar production equipment manufacturers.            519
  • Table 154. Competitive materials and technologies that can also earn carbon credits.              522
  • Table 155. Bio-oil-based CDR pros and cons.          524
  • Table 156. Advantages and disadvantages of DAC.              528
  • Table 157. DAC vs Point-Source Carbon Capture. 529
  • Table 158. Capture Cost of DAC.      532
  • Table 159. Component Specific Capture Cost Contributions for DACCS.             532
  • Table 160. CO₂ Capture/Separation Mechanisms in DAC.               534
  • Table 161. Emerging solid sorbent materials for DAC.        537
  • Table 162.Solid Sorbent vs Liquid Solvent-based DAC       538
  • Table 163. Companies developing airflow equipment integration with DAC.      540
  • Table 164. Companies developing Passive Direct Air Capture (PDAC) technologies.    540
  • Table 165. Companies developing regeneration methods for DAC technologies.            541
  • Table 166. DAC technology developers and production.  543
  • Table 167. DAC projects in development.   547
  • Table 168. Markets for DAC. 548
  • Table 169. Costs summary for DAC.               549
  • Table 170. Cost estimates of DAC.  551
  • Table 171. Challenges for DAC technology.               552
  • Table 172. TRLs of Direct Air Capture Companies.               554
  • Table 173. DACCS Carbon Credit Sales by Company.        555
  • Table 174. DAC companies and technologies.        555
  • Table 175. Ex Situ Mineralization CDR Methods.    556
  • Table 176. Source Materials for Ex Situ Mineralization.      557
  • Table 177. Companies in CO₂-derived Concrete.   559
  • Table 178. Enhanced Weathering Applications.     561
  • Table 179. Enhanced Weathering Materials and Processes.          562
  • Table 180. Enhanced Weathering Companies         563
  • Table 181. Trends and Opportunities in Enhanced Weathering.   564
  • Table 182. Challenges and Risks in Enhanced Weathering.            564
  • Table 183. Cost analysis of enhanced weathering.               565
  • Table 184. Nature-based CDR approaches.              567
  • Table 185. Comparison of A/R and BECCS.               568
  • Table 186. Forest Carbon Removal Projects.            569
  • Table 187. Companies in Robotics in A/R.  570
  • Table 188. Trends and Opportunities in Afforestation/Reforestation.       572
  • Table 189.Challenges and Risks in Afforestation/Reforestation. 572
  • Table 190. Soil Carbon Sequestration Methods.    575
  • Table 191. Soil Sampling and Analysis Methods.   576
  • Table 192. Remote Sensing and Modeling Techniques.     577
  • Table 193. Companies Using Microbial Inoculation for Soil Carbon Sequestration.       577
  • Table 194. Marketplaces for SCS-based CDR Credits.       579
  • Table 195. Challenges and Risks in Soil Carbon Sequestration.   580
  • Table 196. Ocean-based CDR methods.     583
  • Table 197. Technology Readiness Level (TRL) Chart for Ocean-based CDR.        584
  • Table 198. Benchmarking of Ocean-based CDR Methods.              584
  • Table 199. Ocean-based CDR: Biotic Methods.      586
  • Table 200. Market Players in Ocean-based CDR.   591
  • Table 201. Levelized Cost of Heat by Technology.  693
  • Table 202. Resistance Heating Applications by Temperature Range.       699
  • Table 203. Induction Heating Efficiency by Frequency.       702
  • Table 204. Microwave Heating Applications in Industry.   706
  • Table 205. Plasma Technology Applications.            711
  • Table 206. Industrial Heat Pump Specifications.    712
  • Table 207. Emerging Heat Pump Technologies Comparison.         716
  • Table 208. Biomass Feedstock Characteristics.     719
  • Table 209. Biomass Combustion Technologies Comparison.       723
  • Table 210. Emerging Biomass Technology Assessment.   725
  • Table 211.Solar Thermal Industrial Applications.  728
  • Table 212. Geothermal Technology Applications. 731
  • Table 213. Heat Storage Technology Comparison.               734
  • Table 214.Digital Technology Implementation Cases.        739
  • Table 215.Grid Integration Requirements.  805
  • Table 216. Storage Technology Comparison.           809
  • Table 217. Renewable Integration Schemes.            814
  • Table 218. Resistance Heating Applications.           821
  • Table 219. Induction Heating Efficiency Analysis. 826
  • Table 220. Dielectric Heating Technology Comparison.    836
  • Table 221. Plasma Technology Applications.            841
  • Table 222. Electrolysis Technology Comparison.  845
  • Table 223.  Reactor Technology Assessment.          849
  • Table 224. Membrane Technology Applications.    853
  • Table 225. Motor Technology Comparison.               857
  • Table 226. Novel Heating Technology Assessment.             865
  • Table 227. Spectroscopic Technology Comparison.           976
  • Table 228. Robotics and Automation.           978
  • Table 229. Advanced Robotics Applications.           981
  • Table 230. Summary of non-catalytic pyrolysis technologies.      984
  • Table 231. Summary of catalytic pyrolysis technologies. 985
  • Table 232. Summary of pyrolysis technique under different operating conditions.         988
  • Table 233. Biomass materials and their bio-oil yield.          989
  • Table 234. Biofuel production cost from the biomass pyrolysis process.              989
  • Table 235. Pyrolysis companies and plant capacities, current and planned.      992
  • Table 236. Summary of gasification technologies.                994
  • Table 237. Advanced recycling (Gasification) companies.              1000
  • Table 238. Summary of dissolution technologies. 1001
  • Table 239. Advanced recycling (Dissolution) companies 1002
  • Table 240. Depolymerisation processes for PET, PU, PC and PA, products and yields. 1004
  • Table 241. Summary of hydrolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.           1004
  • Table 242. Summary of Enzymolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 1006
  • Table 243. Summary of methanolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers. 1008
  • Table 244. Summary of glycolysis technologies-feedstocks, process, outputs, commercial maturity and technology developers.           1010
  • Table 245. Summary of aminolysis technologies. 1012
  • Table 246. Advanced recycling (Depolymerisation) companies and capacities (current and planned).                1013
  • Table 247. Overview of hydrothermal cracking for advanced chemical recycling.            1014
  • Table 248. Overview of Pyrolysis with in-line reforming for advanced chemical recycling.         1015
  • Table 249. Overview of microwave-assisted pyrolysis for advanced chemical recycling.            1016
  • Table 250. Overview of plasma pyrolysis for advanced chemical recycling.        1016
  • Table 251. Overview of plasma gasification for advanced chemical recycling.  1017
  • Table 252. Summary of carbon fiber (CF) recycling technologies. Advantages and disadvantages.    1019
  • Table 253. Retention rate of tensile properties of recovered carbon fibres by different recycling processes.       1020
  • Table 254. Recycled carbon fiber producers, technology and capacity. 1020
  • Table 255.  Current thermoset recycling routes.     1021
  • Table 256. Companies developing advanced thermoset recycing routes.             1030
  • Table 257. Energy Efficiency Comparison. 1032
  • Table 258. Quality of Output Comparison. 1033
  • Table 259. Cost Analysis of advanced plastic recycling versus traditional recycling methods.               1035
  • Table 260. Carbon Footprint Analysis.          1035
  • Table 261. Energy Consumption Assessment.        1037
  • Table 262. Primary global suppliers of critical raw materials.        1046
  • Table 263. Global critical raw materials recovery market by material types (2025-2040), by ktonnes.                1046
  • Table 264. Global critical raw materials recovery market by material types (2025-2040), by value (Billions USD).               1047
  • Table 265. Global critical raw materials recovery market by recovery source (2025-2040), in ktonnes.                1048
  • Table 266. Global critical raw materials recovery market by recovery source (2025-2040), by value (Billions USD).               1049
  • Table 267. Markets and applications: copper.          1051
  • Table 268. Technologies and Techniques for Copper Extraction and Recovery. 1052
  • Table 269. Markets and applications: nickel.            1054
  • Table 270. Technologies and Techniques for Nickel Extraction and Recovery.    1055
  • Table 271. Markets and applications: cobalt.           1056
  • Table 272. Technologies and Techniques for Cobalt Extraction and Recovery.   1057
  • Table 273. Markets and applications: rare earth elements.             1058
  • Table 274. Technologies and Techniques for Rare Earth Elements Extraction and Recovery.    1059
  • Table 275. Markets and applications: lithium.         1061
  • Table 276. Technologies and Techniques for Lithium Extraction and Recovery. 1062
  • Table 277. Markets and applications: gold.               1063
  • Table 278. Technologies and Techniques for Gold Extraction and Recovery.       1064
  • Table 279. Markets and applications: uranium.      1065
  • Table 280. Technologies and Techniques for Uranium Extraction and Recovery.               1065
  • Table 281. Markets and applications: zinc. 1066
  • Table 282. Zinc Extraction and Recovery Technologies.     1067
  • Table 283. Markets and applications: manganese.              1068
  • Table 284. Manganese Extraction and Recovery Technologies.    1069
  • Table 285. Markets and applications: tantalum.    1070
  • Table 286. Tantalum Extraction and Recovery Technologies.         1071
  • Table 287. Markets and applications: niobium.      1072
  • Table 288. Niobium Extraction and Recovery Technologies.           1073
  • Table 289. Markets and applications: indium.         1074
  • Table 290. Indium Extraction and Recovery Technologies.              1074
  • Table 291. Markets and applications: gallium.        1075
  • Table 292. Gallium Extraction and Recovery Technologies.            1075
  • Table 293. Markets and applications: germanium.               1076
  • Table 294. Germanium Extraction and Recovery Technologies.   1077
  • Table 295. Markets and applications: antimony.    1078
  • Table 296. Antimony Extraction and Recovery Technologies.        1078
  • Table 297. Markets and applications: scandium.  1079
  • Table 298. Scandium Extraction and Recovery Technologies.       1080
  • Table 299. Graphite Markets and Applications.       1081
  • Table 300. Graphite Extraction and Recovery Techniques and Technologies.     1082
  • Table 301. Comparison of Primary vs Secondary Production for Key Materials.                1084
  • Table 302. Environmental Impact Comparison: Primary vs Secondary Production.       1085
  • Table 303. Technologies for critical material recovery from secondary sources.              1085
  • Table 304. Technologies for critical raw material recovery from secondary sources.     1086
  • Table 305. Critical raw material extraction technologies. 1088
  • Table 306. Pyrometallurgical extraction methods. 1092
  • Table 307. Bioleaching processes and their applicability to critical materials.  1094
  • Table 308. Comparative analysis of metal recovery technologies.             1124
  • Table 309. Technology readiness of critical material recovery technologies by secondary material sources.            1125
  • Table 310. Global recovered critical raw electronics material, 2025-2040 (ktonnes).   1132
  • Table 311. Global recovered critical raw electronics material market, 2025-2040 (billions USD).        1132
  • Table 312. Recovered critical raw electronics material market, by region, 2025-2040 (ktonnes).         1134
  • Table 313. Membrane Performance Comparison. 1373
  • Table 314. Electrochemical AOP Performance.      1390
  • Table 315. Microbial Treatment Efficiency. 1400
  • Table 316. Gas Treatment System Performance.   1411
  • Table 317. In-Situ Treatment Comparison. 1419
  • Table 318.Biological Treatment Processes.               1423
  • Table 319. Global trends and drivers in sustainable construction materials.      1560
  • Table 320. Global revenues in sustainable construction materials, by materials type, 2020-2035 (millions USD).             1562
  • Table 321. Global revenues in sustainable construction materials, by market, 2020-2035 (millions USD).                1564
  • Table 322. Established bio-based construction materials.             1567
  • Table 323. Types of self-healing concrete.  1573
  • Table 324. General properties and value of aerogels.         1587
  • Table 325. Key properties of silica aerogels.             1589
  • Table 326. Chemical precursors used to synthesize silica aerogels.        1590
  • Table 327. Commercially available aerogel-enhanced blankets. 1593
  • Table 328. Main manufacturers of silica aerogels and product offerings.              1597
  • Table 329. Typical structural properties of metal oxide aerogels.                1599
  • Table 330. Polymer aerogels companies.   1601
  • Table 331. Types of biobased aerogels.        1602
  • Table 332. Carbon aerogel companies.        1608
  • Table 333. Conversion pathway for CO2-derived building materials.       1614
  • Table 334. Carbon capture technologies and projects in the cement sector       1617
  • Table 335. Carbonation of recycled concrete companies.              1622
  • Table 336. Current and projected costs for some key CO2 utilization applications in the construction industry.            1623
  • Table 337. Market challenges for CO2 utilization in construction materials.       1623

 

List of Figures

  • Figure 1. Share of (a) production, (b) energy consumption and (c) CO2 emissions from different steel making routes.              91
  • Figure 2. Transition to hydrogen-based production.             92
  • Figure 3. CO2 emissions from steelmaking (tCO2/ton crude steel).          94
  • Figure 4. CO2 emissions of different process routes for liquid steel.        97
  • Figure 5. Hydrogen Direct Reduced Iron (DRI) process.     101
  • Figure 6. Molten oxide electrolysis process.              103
  • Figure 7. Steelmaking with CCS.       104
  • Figure 8. Flash ironmaking process.               108
  • Figure 9. Hydrogen Plasma Iron Ore Reduction process.  109
  • Figure 10. Green steel market map. 121
  • Figure 11. SWOT analysis: Green steel.        122
  • Figure 12. Low-Emissions Steel Production Capacity 2020-2035 (Million Metric Tons).              142
  • Figure 13. ArcelorMittal decarbonization strategy.                151
  • Figure 14. HYBRIT process schematic.         161
  • Figure 15. Schematic of HyREX technology.              173
  • Figure 16. EAF Quantum.       174
  • Figure 17. Hydrogen value chain.     192
  • Figure 18. Current Annual H2 Production.  215
  • Figure 19. Principle of a PEM electrolyser.   218
  • Figure 20. Power-to-gas concept.     220
  • Figure 21. Schematic of a fuel cell stack.    221
  • Figure 22. High pressure electrolyser - 1 MW.          222
  • Figure 23. Global hydrogen demand forecast.         226
  • Figure 24. U.S. Hydrogen Production by Producer Type.    227
  • Figure 25. Segmentation of regional hydrogen production capacities in the US.              229
  • Figure 26. Current of planned installations of Electrolyzers over 1MW in the US.             230
  • Figure 27. SWOT analysis: green hydrogen.               240
  • Figure 28. Types of electrolysis technologies.          242
  • Figure 29. Typical Balance of Plant including Gas processing.     244
  • Figure 30. Schematic of alkaline water electrolysis working principle.    255
  • Figure 31. Alkaline water electrolyzer.            256
  • Figure 32. Typical system design and balance of plant for an AEM electrolyser.                261
  • Figure 33. Schematic of PEM water electrolysis working principle.            268
  • Figure 34. Typical system design and balance of plant for a PEM electrolyser.   270
  • Figure 35. Schematic of solid oxide water electrolysis working principle.             277
  • Figure 36. Typical system design and balance of plant for a solid oxide electrolyser.     278
  • Figure 37. Estimated annual electrolyser manufacturing capacity, by manufacture's headquarters (a) and by type and origin (b), 2021-2024.         302
  • Figure 38. Electrolyzer Installations Forecast (GW), 2020-2040. 303
  • Figure 39. Global market size for Electrolyzers, 2018-2035 (US$B)           304
  • Figure 40. Process steps in the production of electrofuels.             322
  • Figure 41. Mapping storage technologies according to performance characteristics.  323
  • Figure 42. Production process for green hydrogen.              325
  • Figure 43. E-liquids production routes.        326
  • Figure 44. Fischer-Tropsch liquid e-fuel products. 326
  • Figure 45. Resources required for liquid e-fuel production.            327
  • Figure 46. Levelized cost and fuel-switching CO2 prices of e-fuels.          329
  • Figure 47. Cost breakdown for e-fuels.         331
  • Figure 48. Hydrogen fuel cell powered EV.  332
  • Figure 49. Green ammonia production and use.    335
  • Figure 50. Classification and process technology according to carbon emission in ammonia production.     336
  • Figure 51. Schematic of the Haber Bosch ammonia synthesis reaction.               337
  • Figure 52. Schematic of hydrogen production via steam methane reformation.               337
  • Figure 53. Estimated production cost of green ammonia.               342
  • Figure 54. Renewable Methanol Production Processes from Different Feedstocks.       344
  • Figure 55. Production of biomethane through anaerobic digestion and upgrading.        345
  • Figure 56. Production of biomethane through biomass gasification and methanation.               346
  • Figure 57. Production of biomethane through the Power to methane process.  346
  • Figure 58. Transition to hydrogen-based production.          348
  • Figure 59. CO2 emissions from steelmaking (tCO2/ton crude steel).       348
  • Figure 60. Hydrogen Direct Reduced Iron (DRI) process.  351
  • Figure 61. Three Gorges Hydrogen Boat No. 1.         353
  • Figure 62. PESA hydrogen-powered shunting locomotive.               354
  • Figure 63. Symbiotic™ technology process.               356
  • Figure 64. Alchemr AEM electrolyzer cell.   359
  • Figure 65. Domsjö process.  375
  • Figure 66. EL 2.1 AEM Electrolyser.  378
  • Figure 67. Enapter – Anion Exchange Membrane (AEM) Water Electrolysis.         379
  • Figure 68. Direct MCH® process.      380
  • Figure 69. FuelPositive system.         386
  • Figure 70. Using electricity from solar power to produce green hydrogen.            390
  • Figure 71. Left: a typical single-stage electrolyzer design, with a membrane separating the hydrogen and oxygen gasses. Right: the two-stage E-TAC process.           398
  • Figure 72. Hystar PEM electrolyser. 404
  • Figure 73. OCOchem’s Carbon Flux Electrolyzer.   416
  • Figure 74.  CO2 hydrogenation to jet fuel range hydrocarbons process. 419
  • Figure 75. The Plagazi ® process.      424
  • Figure 76. Sunfire process for Blue Crude production.       436
  • Figure 77. O12 Reactor.           444
  • Figure 78. Sunglasses with lenses made from CO2-derived materials.  444
  • Figure 79. CO2 made car part.           444
  • Figure 80. Carbon emissions by sector.        448
  • Figure 81. Overview of CCUS market              449
  • Figure 82. Pathways for CO2 use.     450
  • Figure 83. Cost estimates for long-distance CO2 transport.          453
  • Figure 84. Carbon Dioxide Removal Market Map.  455
  • Figure 85. Carbon dioxide removal capacity by technology (million metric tons of CO₂/year), 2020-2045.                460
  • Figure 86. Carbon dioxide removal revenues by technology (billion US$), 2020-2045. 460
  • Figure 87. DACCS Carbon Removal Capacity Forecast (Million Metric Tons CO₂/Year).               461
  • Figure 88. DACCS Carbon Credit Revenue Forecast (Million US$).            462
  • Figure 89. BECCS Carbon Removal Capacity Forecast (Million Metric Tons CO₂/Year).               463
  • Figure 90. Biochar and Biomass Burial Carbon Removal Forecast (Million Metric Tons CO₂/Year).      464
  • Figure 91. BiCRS Carbon Credit Revenue Forecast (Million US$).              465
  • Figure 92. Mineralization Carbon Removal Forecast (Million Metric Tons CO₂/Year).     466
  • Figure 93. Mineralization Carbon Credit Revenue Forecast (Million US$).            467
  • Figure 94. Ocean-based Carbon Removal Forecast (Million Metric Tons CO₂/Year).      468
  • Figure 95. Ocean-based Carbon Credit Revenue Forecast (Million US$).             469
  • Figure 96. BiCRS Value Chain.           497
  • Figure 97. Bioenergy with carbon capture and storage (BECCS) process.             501
  • Figure 98. Schematic of biochar production.           510
  • Figure 99. Biochars from different sources, and by pyrolyzation at different temperatures.      511
  • Figure 100. Compressed biochar.    514
  • Figure 101. Biochar production diagram.   515
  • Figure 102. Pyrolysis process and by-products in agriculture.      517
  • Figure 103. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.     527
  • Figure 104. Global CO2 capture from biomass and DAC in the Net Zero Scenario.         528
  • Figure 105.  DAC technologies.          535
  • Figure 106. Schematic of Climeworks DAC system.            536
  • Figure 107. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.                537
  • Figure 108.  Flow diagram for solid sorbent DAC.   537
  • Figure 109. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.        539
  • Figure 110. Global capacity of direct air capture facilities.             543
  • Figure 111. Global map of DAC and CCS plants.   548
  • Figure 112. Schematic of costs of DAC technologies.        550
  • Figure 113. Operating costs of generic liquid and solid-based DAC systems.    552
  • Figure 114. SWOT analysis: DACCS.              554
  • Figure 115. Capture of carbon dioxide from the atmosphere using bricks of calcium hydroxide.          559
  • Figure 116. Carbon capture using mineral carbonation.   560
  • Figure 117. SWOT analysis: enhanced weathering.              566
  • Figure 118. SWOT analysis: afforestation/reforestation.   574
  • Figure 119. Soil Carbon Sequestration Value Chain.           579
  • Figure 120. SWOT analysis: SCS.      582
  • Figure 121. SWOT analysis: Ocean-based CDR.    591
  • Figure 122. Schematic of carbon capture solar project.    597
  • Figure 123. Capchar prototype pyrolysis kiln.          605
  • Figure 124. Carbon Blade system.   608
  • Figure 125. CarbonCure Technology.             612
  • Figure 126. Direct Air Capture Process.        615
  • Figure 127. Orca facility.         621
  • Figure 128. Carbon Capture balloon.            641
  • Figure 129. Holy Grail DAC system. 642
  • Figure 130. Infinitree swing method.              644
  • Figure 131. Mosaic Materials MOFs.              652
  • Figure 132. Neustark modular plant.             656
  • Figure 133. OCOchem’s Carbon Flux Electrolyzer.                660
  • Figure 134. RepAir technology.           666
  • Figure 135. Soletair Power unit.         673
  • Figure 136. CALF-20 has been integrated into a rotating CO2 capture machine (left), which operates inside a CO2 plant module (right).   677
  • Figure 137. Takavator.               679
  • Figure 138. Global Industrial Heat Consumption by Sector.           688
  • Figure 139. Carbon Emissions from Industrial Heat, By Region.  689
  • Figure 140. Technology Readiness Levels by Solution.       691
  • Figure 141. Marginal Abatement Cost Curve.           694
  • Figure 142. AI-Enabled Sorting Systems.     972
  • Figure 143. Schematic layout of a pyrolysis plant. 983
  • Figure 144. Waste plastic production pathways to (A) diesel and (B) gasoline   987
  • Figure 145. Schematic for Pyrolysis of Scrap Tires.              991
  • Figure 146. Used tires conversion process.               992
  • Figure 147. Total syngas market by product in MM Nm³/h of Syngas, 2021.         996
  • Figure 148. Overview of biogas utilization. 997
  • Figure 149. Biogas and biomethane pathways.       998
  • Figure 150. Products obtained through the different solvolysis pathways of PET, PU, and PA. 1003
  • Figure 151. SWOT analysis-Hydrolysis for advanced chemical recycling.             1006
  • Figure 152. SWOT analysis-Enzymolysis for advanced chemical recycling.         1007
  • Figure 153. SWOT analysis-Methanolysis for advanced chemical recycling.       1009
  • Figure 154. SWOT analysis-Glycolysis for advanced chemical recycling.              1011
  • Figure 155. SWOT analysis-Aminolysis for advanced chemical recycling.            1013
  • Figure 156. Global critical raw materials recovery market by material types (2025-2040), by ktonnes.                1047
  • Figure 157. Global critical raw materials recovery market by material types (2025-2040), by value (Billions USD).               1048
  • Figure 158. Global critical raw materials recovery market by recovery source (2025-2040), by ktonnes.                1049
  • Figure 159. Global critical raw materials recovery market by recovery source (2025-2040), by value.                1050
  • Figure 160. Copper demand outlook.            1051
  • Figure 161. Global nickel demand outlook.               1053
  • Figure 162. Global cobalt demand outlook.              1056
  • Figure 163. Global lithium demand outlook.             1061
  • Figure 164. Global graphite demand outlook.          1081
  • Figure 165.  Solvent extraction (SX) in hydrometallurgy.    1090
  • Figure 166. SWOT analysis: hydrometallurgical extraction.            1092
  • Figure 167. SWOT analysis: pyrometallurgical extraction of critical materials.  1093
  • Figure 168. SWOT analysis: biometallurgy for critical material extraction.           1096
  • Figure 169. SWOT analysis: ionic liquids and deep eutectic solvents for critical material extraction. 1099
  • Figure 170. SWOT analysis: electrochemical leaching for critical material extraction. 1101
  • Figure 171. SWOT analysis: supercritical fluid extraction technology.     1102
  • Figure 172. SWOT analysis: solvent extraction recovery technology.        1106
  • Figure 173. SWOT analysis: ion exchange resin recovery technology.      1108
  • Figure 174. SWOT analysis: ionic liquids and deep eutectic solvents for critical material recovery.    1112
  • Figure 175. SWOT analysis: precipitation for critical material recovery.  1115
  • Figure 176. SWOT analysis: biosorption for critical material recovery.     1118
  • Figure 177. SWOT analysis: electrowinning for critical material recovery.             1120
  • Figure 178. SWOT analysis: direct critical material recovery technology.              1123
  • Figure 179. Global Li-ion battery recycling market, 2025-2040 (chemistry).       1131
  • Figure 180. Global  recovered critical raw electronics materials market, 2025-2040 (ktonnes)             1132
  • Figure 181. Global  recovered critical raw electronics material market, 2025-2040 (Billion USD).       1133
  • Figure 182. Recovered critical raw electronics material market, by region, 2025-2040 (ktonnes).       1135
  • Figure 183. NewCycling process.     1144
  • Figure 184. ChemCyclingTM prototypes.     1147
  • Figure 185. ChemCycling circle by BASF.    1148
  • Figure 186. Recycled carbon fibers obtained through the R3FIBER process.      1149
  • Figure 187. Cassandra Oil  process.               1159
  • Figure 188. CuRe Technology process.         1166
  • Figure 189. MoReTec.                1206
  • Figure 190. Chemical decomposition process of polyurethane foam.    1209
  • Figure 191. OMV ReOil process.        1220
  • Figure 192. Schematic Process of Plastic Energy’s TAC Chemical Recycling.     1224
  • Figure 193. Easy-tear film material from recycled material.            1243
  • Figure 194. Polyester fabric made from recycled monomers.       1247
  • Figure 195. A sheet of acrylic resin made from conventional, fossil resource-derived MMA monomer (left) and a sheet of acrylic resin made from chemically recycled MMA monomer (right).         1257
  • Figure 196. Teijin Frontier Co., Ltd. Depolymerisation process.   1261
  • Figure 197. The Velocys process.     1267
  • Figure 198. The Proesa® Process.     1268
  • Figure 199. Worn Again products.    1270
  • Figure 200. Bioreactor Configurations.         1394
  • Figure 201. Global revenues in sustainable construction materials, by materials type, 2020-2035 (millions USD).             1563
  • Figure 202. Global revenues in sustainable construction materials, by market, 2020-2035 (millions USD).  1566
  • Figure 203. Luum Temple, constructed from Bamboo.      1566
  • Figure 204. Typical structure of mycelium-based foam.   1569
  • Figure 205. Commercial mycelium composite construction materials. 1570
  • Figure 206. Self-healing concrete test study with cracked concrete (left) and self-healed concrete after 28 days (right).              1573
  • Figure 207. Self-healing bacteria crack filler for concrete.               1574
  • Figure 208. Self-healing bio concrete.           1575
  • Figure 209. Microalgae based biocement masonry bloc. 1577
  • Figure 210. Classification of aerogels.          1587
  • Figure 211. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner.                1589
  • Figure 212. Monolithic aerogel.          1591
  • Figure 213. Aerogel granules.              1592
  • Figure 214. Internal aerogel granule applications. 1592
  • Figure 215. 3D printed aerogels.       1595
  • Figure 216. Lignin-based aerogels.  1605
  • Figure 217. Fabrication routes for starch-based aerogels.               1606
  • Figure 218. Graphene aerogel.           1609
  • Figure 219. Schematic of CCUS in cement sector.                1615
  • Figure 220. Carbon8 Systems’ ACT process.             1620
  • Figure 221. CO2 utilization in the Carbon Cure process.  1620
  • Figure 222. Aizawa self-healing concrete.   1640
  • Figure 223. ArcelorMittal decarbonization strategy.             1653
  • Figure 224. Thermal Conductivity Performance of ArmaGel HT.  1656
  • Figure 225. SLENTEX® roll (piece).    1659
  • Figure 226. Biozeroc Biocement.      1662
  • Figure 227. Carbon Re’s DeltaZero dashboard.      1674
  • Figure 228. Neustark modular plant.             1716
  • Figure 229. HIP AERO paint. 1724
  • Figure 230. Sunthru Aerogel pane.   1737
  • Figure 231. Quartzene®.          1739
  • Figure 232. Schematic of HyREX technology.           1745
  • Figure 233. EAF Quantum.    1746
  • Figure 234. CNF insulation flat plates.          1749

 

 

The Global Industrial Decarbonization Market 2025-2035
The Global Industrial Decarbonization Market 2025-2035
PDF download/by email.

The Global Industrial Decarbonization Market 2025-2035
The Global Industrial Decarbonization Market 2025-2035
PDF and 3 Volume Print Edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com