- Published: May 2024
- Pages: 537
- Tables: 173
- Figures: 65
- Companies profiled: 250+
Additive manufacturing (AM, also known as 3D printing) is an advanced manufacturing technique that has enabled progress in the design and fabrication of complex structures with tuneable properties. The Global Market for 3D Printing and Additive Manufacturing 2024-2035 examines the global market for 3D printing hardware, materials, and services - forecasting growth from 2018 to 2035. It assesses hardware unit sales and revenues by technology including vat photopolymerization, material jetting, binder jetting, material extrusion, powder bed fusion, and directed energy deposition.
Global demand is analyzed for polymers, metals, ceramics, and composite materials in both volume and revenue terms. Regional splits are provided for North America, Europe, Asia Pacific, and Rest of World. The report profiles over 250 companies involved in 3D printer manufacturing, materials production, software, and service provision.
Key end-user markets analyzed include aerospace, medical and dental devices, architecture, automotive, consumer products, industrial machinery, electronics, energy, oil and gas, marine sectors, and food printing. Dozens of product examples showcase applications across these industries.
Trends assessed in 3D printing hardware encompass throughput, multi-material printing, quality, large format, and desktop systems. The latest developments in polymers, metals, ceramics, nanocomposites, and smart materials are reviewed as well.
The report examines the role of additive manufacturing in prototyping, tooling production, and certified end-part manufacturing. Other aspects include design software, process simulation, automation, quality assurance, post-processing, and sustainability impacts.
Report contents include:
- Global market forecasts for AM hardware, materials, and services from 2018-2035
- Analysis of AM hardware by technology type - unit sales and revenues
- Assessment of polymer, metal, ceramic, composite material demand
- Profiles of 250+ leading and emerging companies across the AM value chain. Companies profiled include 3DCERAM, Additive Industries, Admatec Europe, Arris Composites, Bright Laser Technologies, Colibrium Additive, Desktop Metal, Eplus3D, Fabric8Labs, Freeform, GE Additive, Magnus Metal, MADDE, Quantica, SLM Solutions, Seurat Technologies, Stratasys Direct, Tethon3D, TRUMPF, UltiMaker, Velo3D, Xjet and Ziknes.
- AM market growth drivers and latest industry trends
- Role of AM in prototyping, tooling, and end-part production
- AM applications in aerospace, medical, architecture, automotive, consumer, electronics and energy sectors
- Impact of AM on manufacturing, supply chains, sustainability
- Post-processing, quality assurance, simulation, automation in AM
- Latest progress with polymers, metals, ceramics and nanocomposites for AM
- Regional market demand analysis across North America, Europe, Asia Pacific, RoW
1 RESEARCH METHODOLOGY 30
2 EXECUTIVE SUMMARY 31
- 2.1 Additive Manufacturing (AM) and 3D printing 31
- 2.1.1 Processes and feedstock 31
- 2.1.2 Comparison of AM and Conventional Manufacturing 32
- 2.1.3 Benefits of additive manufacturing (AM) 33
- 2.2 Market growth drivers 35
- 2.3 Trends in additive manufacturing 36
- 2.3.1 3D printing hardware 37
- 2.3.2 3D printing materials 37
- 2.4 Market players 38
- 2.4.1 Market map 38
- 2.4.2 Printer Manufacturers 40
- 2.4.3 Materials Companies 42
- 2.4.4 Software Firms 43
- 2.4.5 Service Bureaus 44
- 2.5 Market Outlook 46
- 2.5.1 Printer Hardware Advancements 46
- 2.5.2 Software and Design Advancements 47
- 2.5.3 Manufacturing and Supply Chain Impact 47
- 2.5.4 Sustainability Impact 48
- 2.6 Challenges and Limitations 48
- 2.7 Recent market news and investments 50
- 2.8 Global market 2018-2035 52
- 2.8.1 Hardware 52
- 2.8.1.1 Units 52
- 2.8.1.2 Revenues 54
- 2.8.2 Materials 56
- 2.8.2.1 Tonnes 56
- 2.8.2.2 Revenues 60
- 2.8.3 Services 64
- 2.8.3.1 Revenues 64
- 2.8.4 By region 66
- 2.8.1 Hardware 52
3 INTRODUCTION 71
- 3.1 Overview of Additive Manufacturing 71
- 3.1.1 Prototyping 73
- 3.1.2 Tooling 74
- 3.1.3 Final part production 75
- 3.2 History of Additive Manufacturing 76
- 3.3 Markets 77
- 3.4 Additive Manufacturing Processes 79
- 3.4.1 Vat Photopolymerization 80
- 3.4.2 Material Jetting 81
- 3.4.3 Binder Jetting 82
- 3.4.4 Material Extrusion 83
- 3.4.5 Powder Bed Fusion 84
- 3.4.6 Sheet Lamination 85
- 3.4.7 Directed Energy Deposition 85
- 3.5 Materials 87
- 3.5.1 Polymers 87
- 3.5.2 Metals 87
- 3.5.3 Composites materials 89
- 3.5.4 Ceramics and other materials 90
- 3.6 Desktop 3D printers 90
4 POLYMERS 93
- 4.1 Overview 93
- 4.1.1 Plastics 96
- 4.1.1.1 Sustainable materials 97
- 4.1.1 Plastics 96
- 4.2 Trends 100
- 4.3 Hardware 100
- 4.3.1 Material Jetting 101
- 4.3.1.1 Material Extrusion 102
- 4.3.1.1.1 Filament Extrusion 102
- 4.3.1.1.1.1 Fused Deposition Modeling (FDM) 102
- 4.3.1.1.1.2 Fused Filament Fabrication (FFF) 102
- 4.3.1.1.1.3 Pellet Material Extrusion 103
- 4.3.1.1.2 Large-Format Additive Manufacturing (LFAM) 103
- 4.3.1.1.2.1 FGF (Fused Granular Fabrication) 103
- 4.3.1.1.2.2 Robotic Extrusion 103
- 4.3.1.1.3 Pneumatic Extrusion 104
- 4.3.1.1.3.1 Silicone 104
- 4.3.1.1.3.2 Polyurethane 104
- 4.3.1.1.1 Filament Extrusion 102
- 4.3.1.2 Vat Photopolymerization 105
- 4.3.1.2.1 Laser Stereolithography (SLA) 105
- 4.3.1.2.2 Digital Light Processing (DLP) Stereolithography 105
- 4.3.1.2.3 LED/LCD-based DLP Stereolithography 105
- 4.3.1.2.4 Continuous DLP Stereolithography 105
- 4.3.1.2.5 2PP and other micro 3D printing processes 105
- 4.3.1.3 Powder Bed Fusion 106
- 4.3.1.3.1 Selective Laser Sintering (SLS) 106
- 4.3.1.3.2 Multi Jet Fusion (MJF) 107
- 4.3.1.3.3 Thermal Powder Bed Fusion Processes 108
- 4.3.1.4 Material Jetting 109
- 4.3.1.4.1 PolyJet Technology 109
- 4.3.1.4.2 MultiJet Modeling (MJM) 109
- 4.3.1.1 Material Extrusion 102
- 4.3.1 Material Jetting 101
- 4.4 Materials 112
-
- 4.4.1 Photopolymers 112
- 4.4.1.1 Photosensitive Resins 112
- 4.4.1.2 Photopolymer Resins 113
- 4.4.1.3 Resin types 114
- 4.4.1.4 Vat photopolymers 116
- 4.4.1.5 High-speed vat photopolymerization materials 119
- 4.4.1.5.1 Polyurethane-Based High-Speed Resins 119
- 4.4.1.5.2 Epoxy-Based Rapid Vat Photopolymerization 120
- 4.4.1.5.3 Silicone-Based High-Speed 3D Printing 120
- 4.4.1 Photopolymers 112
- 4.4.2 Thermoplastics 121
- 4.4.2.1 General purpose filaments 122
- 4.4.2.2 Engineering Filaments 122
- 4.4.2.3 Flexible Filaments 123
- 4.4.2.4 Reinforced Filaments 123
- 4.4.2.5 High Temperature Filaments 124
- 4.4.2.6 Support Filaments 125
- 4.4.2.7 Fillers for Thermoplastic Filaments 125
- 4.4.2.8 Thermoplastic Filament Suppliers 126
- 4.4.2.9 Extrusion 3D printing (filaments and pellets) 127
- 4.4.2.9.1 ABS 128
- 4.4.2.9.2 PLA 129
- 4.4.2.9.3 Nylon (Polyamides) 129
- 4.4.2.9.4 PAEKs (PEEK and PEKK) 130
- 4.4.2.9.5 PEI (ULTEM) 130
- 4.4.2.9.6 Polyester and Co-polyester 130
- 4.4.2.9.7 Polypropylene (PP) 131
- 4.4.2.9.8 TPU/TPE and other elastomers 131
- 4.4.2.9.9 Polycarbonate 132
- 4.4.2.9.10 Polysulphones (PPS, PESU, PPSU) 132
- 4.4.2.9.11 Other materials 132
- 4.4.2.9.11.1 ABS 132
- 4.4.2.9.11.2 PLA 133
- 4.4.2.9.11.3 Nylon (Polyamides) 133
- 4.4.2.9.11.4 PAEKs (PEEK and PEKK) 134
- 4.4.2.9.11.5 PEI (ULTEM) 134
- 4.4.2.9.11.6 Polyester and Co-polyesters 134
- 4.4.2.9.11.7 Polypropylene (PP) 135
- 4.4.2.9.11.8 TPU/TPE and Elastomers 135
- 4.4.2.9.11.9 Polycarbonate 136
- 4.4.2.9.11.10 Polysulfones (PPS, PESU, PPSU) 136
- 4.4.2.9.11.11 ASA 136
- 4.4.2.9.11.12 Polystyrene and HIPS 137
- 4.4.2.9.11.13 PVDF 137
- 4.4.2.9.11.14 PVA and Water-Soluble Materials 138
- 4.4.2.9.11.15 Other Water-Soluble Options 138
- 4.4.2.10 Powders 138
- 4.4.2.10.1 Flexible Powders 139
- 4.4.2.10.2 Composite Powders 139
- 4.4.2.10.3 High Temperature Powders 140
- 4.4.2.10.4 Engineering (Other) Powders 140
- 4.4.2.10.5 Thermoplastic Powders: Post-Processing 141
- 4.4.2.10.6 Nylon 141
- 4.4.2.10.7 TPU/TPE 143
- 4.4.2.10.8 Polypropylene 143
- 4.4.2.10.9 PEEK and PEKK 143
- 4.4.3 Thermosets 144
- 4.4.3.1 Silicone 144
- 4.4.3.2 Thermoset Polyurethane 144
- 4.4.4 Hydrogels 145
- 4.4.5 Functional Polymers 146
- 4.4.5.1 Piezopolymers/Ferroelectrics 146
- 4.4.5.2 Self-Healing Polymers 147
- 4.4.5.3 Shape Memory Polymers 147
- 4.4.5.4 Blends and Alloys 147
- 4.4.5.5 Interpenetrating Networks 147
- 4.4.6 Composites 148
- 4.4.7 Biological Systems 148
- 4.4.7.1 Polysaccharides 148
- 4.4.7.2 Proteins 149
- 4.4.7.3 Bioderived Polymers 149
- 4.4.8 Smart polymers and 4D printing (shape-morphing system) 149
-
- 4.5 Market players 150
- 4.6 Historical and forecasted markets 151
- 4.6.1 Hardware unit sales 2018-2035 151
- 4.6.2 Hardware revenues 2018-2035 152
- 4.6.3 Regional hardware revenues, 2018-2035 154
- 4.6.4 Material volumes, 2018-2035 155
- 4.6.5 Material revenues, 2018-2035 156
- 4.6.6 Regional materials revenues, 2018-2035 158
5 METALS 160
- 5.1 Overview 160
- 5.2 Trends 161
- 5.3 Hardware 161
- 5.3.1 Powder Bed Fusion: Direct Metal Laser Sintering (DMLS) 162
- 5.3.2 Powder Bed Fusion: Electron Beam Melting (EBM) 163
- 5.3.3 Directed Energy Deposition 163
- 5.3.4 Directed Energy Deposition: Wire 164
- 5.3.5 Binder Jetting: Metal Binder Jetting 164
- 5.3.6 Sand Binder Jetting 165
- 5.3.7 Sheet Lamination: Ultrasonic Additive Manufacturing (UAM) 165
- 5.3.8 Extrusion: Metal-Polymer Filament (MPFE) 165
- 5.3.9 Extrusion: Metal-Polymer Pellet 166
- 5.3.10 Extrusion: Metal Paste 166
- 5.3.11 Vat Photopolymerization: Digital Light Processing (DLP) 166
- 5.3.12 Material Jetting: Nanoparticle Jetting (NPJ) 167
- 5.3.13 Material Jetting: Magnetohydrodynamic Deposition 167
- 5.3.14 Material Jetting: Electrochemical Deposition 167
- 5.3.15 Material Jetting: Cold Spray 168
- 5.3.16 Slurry Feedstock Processes 169
- 5.3.17 Metal PBF technologies 171
- 5.3.17.1 Laser metal PBF (L-PBF or SLM) 171
- 5.3.18 Metal DED technologies 172
- 5.3.18.1 Powder metal laser DED (L-DED) 172
- 5.3.18.2 Wire metal DED (WAAM, EBAM, RPD) 173
- 5.3.19 Sinter-based technologies 173
- 5.3.19.1 Metal binder jetting (MBJ) 173
- 5.3.19.2 Metal Material Jetting (MMJ) 174
- 5.3.19.3 Bound metal material extrusion (MEX – bound) 175
- 5.3.19.4 Bound metal stereolithography (VPP – bound) 175
- 5.3.19.5 Bound metal SLS (SLS – bound) 175
- 5.3.20 Consolidation technologies 176
- 5.3.20.1 Kinetic consolidation (cold spray) 176
- 5.3.20.2 Friction consolidation (friction stir welding) 176
- 5.3.20.3 Ultrasound consolidation 176
- 5.3.20.4 EBM metal PBF (EB-PBF) 177
- 5.4 Materials 178
- 5.4.1 Metal + Polymer Filaments 178
- 5.4.2 Metal + Photopolymer Resins 179
- 5.4.3 High Entropy Alloys for AM 180
- 5.4.4 Amorphous Alloys for AM 181
- 5.4.5 Emerging Aluminum Alloys and MMCs 182
- 5.4.6 Multi-Metal AM Solutions 182
- 5.4.7 Materials Informatics for AM 183
- 5.4.8 Metal powders 184
- 5.4.8.1 Atomization processes 184
- 5.4.8.1.1 Water Atomization 185
- 5.4.8.1.2 Gas Atomization 185
- 5.4.8.1.3 Plasma Atomization 185
- 5.4.8.1.4 Electrochemical Atomization 185
- 5.4.8.2 Steel powders 186
- 5.4.8.3 Titanium and titanium alloy powders 188
- 5.4.8.4 Aluminum Alloy Powders for AM 188
- 5.4.8.4.1 Binder Jetting of Aluminum Alloys 189
- 5.4.8.4.2 Kinetic Consolidation of Aluminum and Alloys 190
- 5.4.8.5 Nickel alloy powders 190
- 5.4.8.6 Cobalt-Chromium Alloy Powders 191
- 5.4.8.7 Copper alloy powders 192
- 5.4.8.8 Refractory metal alloy powders for AM 193
- 5.4.8.9 Precious metal powders 194
- 5.4.8.10 Amorphous metal powders for AM 195
- 5.4.8.1 Atomization processes 184
- 5.4.9 Metal wire 196
- 5.4.9.1 Steel wires 198
- 5.4.9.2 Titanium and titanium alloys wire 198
- 5.4.9.3 Aluminum and aluminum alloys wire 199
- 5.4.9.4 Nickel superalloys wire 199
- 5.4.9.5 Other metal alloys wire 200
- 5.4.10 Bound metal feedstock 200
- 5.4.10.1 Metal/Polymer Pellets 201
- 5.4.10.2 Metal/Polymer Filaments 201
- 5.4.10.3 Bound Paste Metal 201
- 5.4.10.3.1 Metal Pastes 201
- 5.4.10.3.2 Metal Inks/Gels 202
- 5.4.10.4 Bound Metal Slurries for Stereolithography 202
- 5.4.10.5 Bound Metal AM Powders for Cold Fusion 202
- 5.4.10.6 Other Bound Metal AM Feedstocks 203
- 5.5 Market players 204
- 5.6 Historical and forecasted markets 206
- 5.6.1 Hardware unit sales, 2018-2035 206
- 5.6.2 Hardware revenues, 2018-2035 207
- 5.6.3 Regional hardware revenues, 2018-2035 209
- 5.6.4 Materials volumes, 2018-2035 210
- 5.6.5 Materials revenues, 2018-2035 211
- 5.6.6 Regional materials revenues, 2018-2035 212
6 CERAMICS 214
- 6.1 Overview 214
- 6.1.1 Traditional ceramics in additive manufacturing 215
- 6.1.1.1 Trends 215
- 6.1.2 Technical ceramics in additive manufacturing 216
- 6.1.2.1 Trends 216
- 6.1.1 Traditional ceramics in additive manufacturing 215
- 6.2 Hardware 217
- 6.2.1 Extrusion 217
- 6.2.1.1 Extrusion: Ceramic Paste 217
- 6.2.1.2 Extrusion: Ceramic-Polymer Filament 218
- 6.2.1.3 Extrusion: Ceramic-Polymer Pellet 218
- 6.2.2 Vat photopolymerisation 218
- 6.2.2.1 Vat photopolymerisation: stereolithography (SLA) 218
- 6.2.2.2 Vat Photopolymerization: Digital Light Processing (DLP) 219
- 6.2.3 Material jetting: nanoparticle jetting (NPJ) 219
- 6.2.4 Binder jetting: ceramic binder jetting 219
- 6.2.5 Ceramic Printers Benchmarking 220
- 6.2.6 Traditional ceramics 222
- 6.2.2.1 Binder jetting technology 222
- 6.2.2.2 Paste deposition/extrusion technologies 223
- 6.2.7 Technical ceramics 224
- 6.2.7.1 Stereolithography 224
- 6.2.7.1.1 SLA Stereolithography 224
- 6.2.7.1.2 DLP Stereolithography 224
- 6.2.7.2 Binder jetting 225
- 6.2.7.3 Material extrusion 225
- 6.2.7.3.1.1 Bound Filament Extrusion Technologies 225
- 6.2.7.3.1.2 Paste Deposition/Extrusion Technologies 225
- 6.2.3.4 Material jetting 226
- 6.2.7.1 Stereolithography 224
- 6.2.1 Extrusion 217
- 6.3 Materials 226
- 6.3.1 Commercial Ceramic 3D Printing Materials 226
- 6.3.2 Properties of 3D Printed Ceramic Materials 228
- 6.3.3 Traditional ceramics 229
- 6.3.3.1 Binder jetting 229
- 6.3.3.2 Clays 230
- 6.3.3.3 Concrete 230
- 6.3.3.4 Glass 230
- 6.3.4 Technical ceramics 231
- 6.3.4.1 Technical ceramic slurries 231
- 6.3.4.2 Technical ceramic powders 232
- 6.3.4.3 Oxide ceramics 232
- 6.3.4.3.1 Alumina 233
- 6.3.4.3.2 Zirconia 233
- 6.3.4.3.3 Silicates and technical silica 233
- 6.3.4.4 Non-oxide ceramics 233
- 6.3.4.4.1 Silicon carbide 233
- 6.3.4.4.2 Silicon nitride 233
- 6.3.4.4.3 Boron carbide and other ceramics 234
- 6.3.4.4.4 Other Non-Oxide Ceramics 234
- 6.3.4.5 Calcium-based bioceramics 234
- 6.3.4.5.1 Tricalcium phosphate 234
- 6.3.4.5.2 Hydroxyapatite 234
- 6.4 Market players 235
- 6.5 Historical and forecasted markets 236
- 6.5.1 Hardware unit sales, 2018-2035 236
- 6.5.2 Hardware revenues, 2018-2035 237
- 6.5.3 Regional hardware revenues, 2018-2035 239
- 6.5.4 Materials volumes, 2018-2035 240
- 6.5.5 Materials revenues, 2018-2035 242
- 6.5.6 Regional materials revenues, 2018-2035 243
7 COMPOSITES 245
- 7.1 Overview 245
- 7.2 Trends 245
- 7.3 Hardware 246
- 7.3.1 Chopped fiber 246
- 7.3.1.1 Cartesian filament extrusion systems and OEMs 246
- 7.3.1.2 Cartesian pellet extrusion (LFAM) 246
- 7.3.1.3 Powder bed fusion (PBF) 246
- 7.3.2 Continuous fiber AM technologies and markets 247
- 7.3.2.1 Cartesian extrusion systems and OEMs 247
- 7.3.2.2 Robotic extrusion 247
- 7.3.2.3 Other hybrid technologies and processes 248
- 7.3.2.3.1 3D composite tape laying 248
- 7.3.2.3.2 Composite injection molding 248
- 7.3.2.3.3 Composite 3D lamination 248
- 7.3.2.3.4 3D printed composite tooling 249
- 7.3.1 Chopped fiber 246
- 7.4 Materials 250
- 7.4.1 Filament Extrusion 3D Printed Composite Parts 250
- 7.4.2 Powder Bed Fusion 3D Printed Composite Parts 250
- 7.4.3 Continuous Fiber 3D Printed Composite Parts 250
- 7.4.4 Matrix Considerations 251
- 7.4.5 Mechanical Properties 251
- 7.4.6 Recycled Carbon Fiber as Feedstock Material 251
- 7.4.7 Nanomaterials 251
- 7.4.8 Composite filament materials 252
- 7.4.8.1 Graphene 252
- 7.4.9 Composite pellet materials 253
- 7.4.10 Composite powder materials 254
- 7.4.11 Continuous fiber materials 254
- 7.5 Market players 256
- 7.6 Historical and forecasted markets 258
- 7.6.1 Hardware unit sales, 2018-2035 258
- 7.6.2 Hardware revenues, 2018-2035 259
- 7.6.3 Regional hardware revenues, 2018-2035 261
- 7.6.4 Materials volumes, 2018-2035 262
- 7.6.5 Materials revenues, 2018-2035 264
- 7.6.6 Regional materials revenues, 2018-2035 265
8 POST-PROCESSING 267
- 8.1 Process monitoring 267
- 8.1.1 Introduction 267
- 8.1.1.1 Material removal 268
- 8.1.1.2 Process-Inherent Treatments 268
- 8.1.1.3 Surface Finishing Techniques 268
- 8.1.1.4 Other Post-Processing Treatments 269
- 8.1.2 Process Monitoring of Metal Powder Bed Fusion 269
- 8.1.1 Introduction 267
- 8.2 Metal vs. Polymer in Post-processing 270
- 8.3 Post-processing Approaches 271
- 8.3.1 Metal vs. Polymer in Post-processing 272
- 8.3.1.1 Metal AM Post-processing 272
- 8.3.1.2 Polymer AM Post-processing 272
- 8.3.1.3 Post-processing in the Context of 3D Printing Production 273
- 8.3.1 Metal vs. Polymer in Post-processing 272
- 8.4 Polymer post-processing 275
- 8.5 Metal post-processing 275
- 8.6 Sustainability in Post-processing 276
- 8.7 Market players 276
9 SOFTWARE AND SERVICES 278
- 9.1 Software for 3D printing 278
- 9.1.1 Hobbyist 3D printing software 279
- 9.1.2 Professional 3D printing software 279
- 9.1.3 3D scanning software 280
- 9.1.4 Computer aided design (CAD) 280
- 9.1.5 Market players 281
- 9.2 3D scanning 281
- 9.2.1 Types of 3D Scanning Technologies 282
- 9.2.1.1 Laser Triangulation 282
- 9.2.1.2 Structured Light 282
- 9.2.1.3 3D Computed Tomography (CT) 282
- 9.2.1.4 Price Segmentation of 3D Scanners 283
- 9.2.1.5 Applications 284
- 9.2.1 Types of 3D Scanning Technologies 282
- 9.3 Production services 285
- 9.3.1 Design for Additive Manufacturing (DfAM) 286
- 9.3.2 Challenges 287
- 9.3.3 Market outlook 288
- 9.3.4 Market players 289
- 9.3.5 Global revenues 290
10 MARKETS FOR ADDITIVE MANUFACTURING 294
- 10.1 Prototypes 295
- 10.1.1 Functional prototypes 295
- 10.1.2 Multi-iteration prototyping 295
- 10.1.3 Prototype to production 296
- 10.2 Tools 296
- 10.2.1 Molds for die casting 296
- 10.2.2 Mechanical tools 297
- 10.2.3 End of arm tools (EOAT) 297
- 10.3 Final parts 297
- 10.4 Aerospace 298
- 10.4.1 Overview 298
- 10.4.2 Materials and applications 299
- 10.4.3 Market players 300
- 10.4.4 Product examples 301
- 10.5 Medical and Dental 302
- 10.5.1 Overview 302
- 10.5.1.1 Bio-Printing 303
- 10.5.2 Materials and applications 304
- 10.5.2.1 Polymers 304
- 10.5.2.2 Metals 305
- 10.5.2.3 Ceramics 306
- 10.5.2.4 Composites 307
- 10.5.2.5 Medical devices 307
- 10.5.2.5.1 3D Printing as a Surgical Tool 307
- 10.5.2.5.2 3D Printing Custom Plates, Implants, Valves, and Stents 308
- 10.5.2.5.3 3D Printing External Medical Devices 308
- 10.5.2.5.4 High-Temperature Thermoplastic Filaments and Powders 309
- 10.5.2.5.5 Photosensitive Resins 309
- 10.5.2.5.6 Titanium Alloy Powders 309
- 10.5.2.5.7 Bioactive Ceramic Filaments and Resins 309
- 10.5.2.6 Pharmaceuticals 309
- 10.5.2.6.1 Novel Dissolution Profiles 309
- 10.5.2.6.2 Personalized Medication 310
- 10.5.2.6.3 Novel Drugs and Drug Testing 310
- 10.5.2.6.4 Commercial Status and Regulatory Overview 310
- 10.5.2.7 Dental 311
- 10.5.2.7.1 Polymer Materials 313
- 10.5.2.7.2 Metal Materials 313
- 10.5.2.7.3 Ceramic Materials 313
- 10.5.2.7.4 Composite Materials 314
- 10.5.2.7.5 Digital Dentistry and 3D Printing 314
- 10.5.2.7.6 Photopolymer Resins for Dentistry 314
- 10.5.2.7.7 3D Printed Orthodontics 315
- 10.5.3 Market players 315
- 10.5.4 Product examples 316
- 10.5.1 Overview 302
- 10.6 Architecture & Construction 317
- 10.6.1 Overview 317
- 10.6.1.1 Market Drivers 318
- 10.6.2 Materials and applications 320
- 10.6.2.1 Key materials 321
- 10.6.2.2 Clay 3D Printing 322
- 10.6.2.3 Thermoset 3D Printing 322
- 10.6.2.4 Barriers to Adoption of Concrete 3D Printing 324
- 10.6.3 Market players 326
- 10.6.4 Product examples 328
- 10.6.1 Overview 317
- 10.7 Automotive 329
- 10.7.1 Overview 329
- 10.7.2 Materials and applications 331
- 10.7.2.1 Electric vehicles (EVs) 332
- 10.7.2.1.1 Prototyping 332
- 10.7.2.1.2 Tools, Jigs, and Fixtures 332
- 10.7.2.1.3 Electric Motors 333
- 10.7.2.1.4 Electric Motor Components 333
- 10.7.2.1.5 3D Printed Sand Casting 334
- 10.7.2.1.6 Lithium-Ion Batteries (LIBs) 335
- 10.7.2.1.7 Solid-State Batteries (SSBs) 337
- 10.7.2.1.8 Thermal Management 339
- 10.7.2.1.9 Interior and Body Parts 341
- 10.7.2.1.10 Luxury EVs 343
- 10.7.2.1.11 Market opportunities in EVs 345
- 10.7.2.1.12 Market barriers 346
- 10.7.3 Market players 347
- 10.7.4 Product examples 348
- 10.8 Consumer Products 349
- 10.8.1 Overview 349
- 10.8.2 Materials and applications 350
- 10.8.3 Challenges 352
- 10.8.4 Market players 353
- 10.8.5 Product examples 354
- 10.9 Energy 354
- 10.9.1 Overview 354
- 10.9.1.1 Energy Generation 354
- 10.9.1.2 Energy Storage 355
- 10.9.1.3 Energy Distribution and Infrastructure 355
- 10.9.1.4 Energy Efficiency and Sustainability 355
- 10.9.2 Materials and applications 357
- 10.9.1 Overview 354
- 10.10 Industrial machinery and tooling 357
- 10.10.1 Overview 357
- 10.10.2 Materials and applications 357
- 10.11 Electronics 360
- 10.11.1 Overview 360
- 10.11.2 Materials and applications 362
- 10.11.3 Market players 362
- 10.12 Oil and Gas 365
- 10.12.1 Overview 365
- 10.12.2 Materials and applications 368
- 10.13 Marine 369
- 10.13.1 Overview 369
- 10.13.2 Materials and applications 369
- 10.14 3D-printed food 372
- 10.14.1 Overview 372
- 10.14.2 Materials and applications 373
- 10.14.3 Market players 375
11 COMPANY PROFILES 377
12 ACRONYMS 526
13 REFERENCES 527
List of Tables
- Table 1. Additive Manufacturing (AM) and 3D printing processes and feedstock. 32
- Table 2. Comparison of AM and Conventional Manufacturing. 32
- Table 3. AM techniques, useable materials, and pros and cons. 33
- Table 4. Market growth drivers for 3D printing and additive manufacturing. 35
- Table 5. Market Players-Printer Manufacturers. 41
- Table 6. Market players-3D printing materials. 42
- Table 7. Market Players-3D Printing Software and Services. 43
- Table 8. Market Players-3D Printing Service Bureaus. 45
- Table 9. Challenges and limitations in additive manufacturing. 48
- Table 10. Recent market news and investments in 3D printing and additive manufacturing. 50
- Table 11. Global market for 3D printing hardware, by technology, 2018-2035 (1,000 Units). 53
- Table 12. Global market for 3D printing hardware, by technology, 2018-2035 (Millions USD). 54
- Table 13. Global market for 3D printing, by material, 2018-2035 (1,000 tonnes). 56
- Table 14. Polymer 3D Printing Materials Forecast by Feedstock (1,000 Tonnes), 2018-2035. 57
- Table 15. Metal 3D Printing Materials Forecast by Feedstock (1,000 Tonnes), 2018-2035. 59
- Table 16. Global market for 3D printing hardware, by material, 2018-2035 (millions USD). 60
- Table 17. Polymer 3D Printing Materials Forecast by Feedstock (Millions USD), 2018-2035. 61
- Table 18. Metal 3D Printing Materials Forecast by Feedstock (Millions USD), 2018-2035. 63
- Table 19. Global market for 3D printing AM services, 2018-2035 (Millions USD). 64
- Table 20. Global Market for 3D Printing Hardware by Region (1,000 Units), 2018-2035. 66
- Table 21. Global Market for 3D Printing Hardware by Region (Millions USD), 2018-2035. 67
- Table 22. Global Market for 3D Printing Materials by Region (1,000 Tonnes), 2018-2035. 68
- Table 23. Global Market for 3D Printing Materials by Region (Millions USD), 2018-2035. 69
- Table 24. Markets and applications in 3D printing. 77
- Table 25. Types of 3D printing processes. 79
- Table 26. Comparison of AM processes. 86
- Table 27. Desktop 3D Printer Products 91
- Table 28. Overview of polymer 3D printing technologies. 93
- Table 29. Types of polymer materials for 3D printing. 95
- Table 30. Trends in polymer additive manufacturing. 100
- Table 31. 3D polymer printing technologies. 102
- Table 32. Material Jetting Vendors/Systems. 111
- Table 33. Polymer Printer Benchmarking. 111
- Table 34. Photosensitive Resin Suppliers. 113
- Table 35. Photosensitive Resin Advantages and Disadvantages. 114
- Table 36. Resin types. 114
- Table 37. Castable Resins properties. 116
- Table 38. Tough and Rigid Digital Materials. 117
- Table 39. High Temperature Resins properties. 117
- Table 40. Transparent Resins properties. 118
- Table 41. Flexible Elastomeric Resins. 118
- Table 42. General Purpose Filaments. 122
- Table 43. Engineering thermoplastic filaments. 122
- Table 44. Reinforced Filaments. 124
- Table 45. High Temperature Filaments. 124
- Table 46. Fillers for Thermoplastic Filaments. 126
- Table 47. Thermoplastic Filament Suppliers. 126
- Table 48. Thermoplastic materials for extrusion 3D printing. 127
- Table 49. Engineering (Nylon) Powders. 139
- Table 50. Composite powder types and benefits. 139
- Table 51. High temperature powders and properties. 140
- Table 52. Thermoplastic Powder Suppliers. 141
- Table 53. 4D printed hydrogels. 145
- Table 54. Market players in polymer additive manufacturing. 150
- Table 55. Polymer 3D Printing/Additive Manufacturing Hardware Unit Sales (1,000 Units), 2018-2035. 151
- Table 56. Polymer 3D Printing/Additive Manufacturing Hardware Revenues (Millions USD), 2018-2035. 152
- Table 57. Polymer 3D Printing/Additive Manufacturing Hardware Revenues, 2018-2035 (Millions USD), by Region. 154
- Table 58. Polymer 3D Printing/Additive Manufacturing Material Volumes, 2018-2035 (Tonnes). 155
- Table 59. Polymer AM material revenues, 2018-2035 (millions USD). 156
- Table 60. Polymer AM material revenues, 2018-2035 (millions USD), by region. 158
- Table 61. Overview of metal 3D printing technologies. 160
- Table 62. Trends in metal additive manufacturing. 161
- Table 63. 3D Metal Printing Technologies. 161
- Table 64. Metal Printers: Benchmarking 170
- Table 65. Metal AM feedstocks. 178
- Table 66. Compatibility of metal alloys with AM technologies. 185
- Table 67. Suppliers of metal powders for AM applications. 186
- Table 68. Steel powder applications for AM. 187
- Table 69. Aluminum alloy powder applications in AM. 190
- Table 70. Nickel superalloy powder applications in AM. 191
- Table 71. Cobalt-chromium alloy powder applications in AM. 192
- Table 72.Copper alloy powder applications in AM in a table. 193
- Table 73. Refractory metal alloy powder applications for AM. 194
- Table 74. Precious metal powder applications in AM. 195
- Table 75. Amorphous metal powder applications in AM. 196
- Table 76. Metal wire vs metal AM powder costs. 197
- Table 77. Steel Wires for AM. 198
- Table 78. Other Metal Alloy Wires for AM. 200
- Table 79. Bound Metal AM Feedstocks. 203
- Table 80. Market players in metal AM manufacturing. 204
- Table 81. Metal AM hardware unit sales 2018-2035. 206
- Table 82. Metal AM hardware revenues 2018-2035 (Millions USD). 207
- Table 83. Metal AM hardware revenues 2018-2035 (Millions USD), by region. 209
- Table 84. Metal AM material volumes, 2018-2035 (tonnes). 210
- Table 85. Metal AM material revenues, 2018-2035 (millions USD). 211
- Table 86. Metal AM material revenues, 2018-2035 (millions USD), by region. 212
- Table 87. Overview of 3D printing ceramics. 214
- Table 88. Trends in traditional ceramic additive manufacturing. 215
- Table 89. Trends in technical ceramic additive manufacturing. 216
- Table 90. Build Volumes by Printer Manufacturer. 220
- Table 91. Minimum Z Resolution by Printer Manufacturer. 220
- Table 92. Minimum XY Resolution by Printer Manufacturer. 221
- Table 93. Build Speed by Technology Type. 221
- Table 94. Evaluation of Ceramic 3D Printing Technologies. 221
- Table 95. Commercial Ceramic 3D Printing Materials. 226
- Table 96. Classification by feedstock type. 227
- Table 97. Classification by application. 227
- Table 98. Classification by Chemistry 228
- Table 99. Properties of 3D Printed Ceramic Materials. 228
- Table 100. Concrete applications in AM 230
- Table 101. Technical Ceramic Slurry Products and Suppliers. 231
- Table 102. Technical Ceramic Powder Products and Suppliers. 232
- Table 103. Technical Ceramic Bound Filament Products and Suppliers. 232
- Table 104. Market players in ceramics additive manufacturing. 235
- Table 105. Ceramic AM hardware unit sales 2018-2035. 236
- Table 106. Ceramic AM hardware revenues 2018-2035 (Millions USD). 237
- Table 107. Ceramic AM hardware revenues 2018-2035 (Millions USD), by region. 239
- Table 108. Ceramic AM material volumes, 2018-2035 (tonnes). 240
- Table 109. Ceramic AM material revenues, 2018-2035 (millions USD). 242
- Table 110. Ceramic AM material revenues, 2018-2035 (millions USD), by region. 243
- Table 111. Trends in composites additive manufacturing. 245
- Table 112. Composite Material Feedstock. 250
- Table 113.Types of composite materials used in AM 252
- Table 114. Composite Filament Materials Types 252
- Table 115. Composite Pellet Materials Types 253
- Table 116. Composite Powder Materials Types. 254
- Table 117. Continuous Fiber Materials Types. 254
- Table 118. Continuous fiber 3D printing producers. 254
- Table 119. Market players in composites additive manufacturing. 256
- Table 120. Composites AM hardware unit sales 2018-2035. 258
- Table 121. Composites AM hardware revenues 2018-2035 (Millions USD). 259
- Table 122. Composites AM hardware revenues 2018-2035 (Millions USD), by region. 261
- Table 123. Composites AM material volumes, 2018-2035 (tonnes). 262
- Table 124. Composites AM material revenues, 2018-2035 (millions USD). 264
- Table 125. Composites AM material revenues, 2018-2035 (millions USD), by region. 265
- Table 126. Overview of Post-Processing Techniques for Metal Additive Manufacturing 267
- Table 127. Overview of Post-Processing Techniques for Polymer Additive Manufacturing. 268
- Table 128. Common post-processing techniques for various polymer materials. 269
- Table 129. Post-processing Approaches. 273
- Table 130. AM post-processing companies 276
- Table 131. Market players in AM software. 281
- Table 132. Price segmentation for different types of 3D scanners: 283
- Table 133. Key industries for 3D scanning and their applications. 284
- Table 134. 3D Printing Service Bureaus 289
- Table 135. Global AM Software Revenues by Tool Type, (Millions USD), 2018-2035. 290
- Table 136. Global AM Software Revenues by Market, (Millions USD), 2018-2035. 291
- Table 137. Global AM Service Revenues, (Millions USD), 2018-2035. 292
- Table 138. Markets and applications for additive manufacturing. 294
- Table 139. 3D printing applications in aerospace. 300
- Table 140. Market players in 3D printing for aerospace. 300
- Table 141. 3D printed product examples in Aerospace. 301
- Table 142. 3D printing technologies in medical and dental. 302
- Table 143. Applications of polymer 3D printing in medical and dental. 304
- Table 144. Polymers used in medical 3D printing. 305
- Table 145. Metals Used in Medical 3D Printing. 305
- Table 146. Ceramics Used in Medical 3D Printing. 306
- Table 147. Composites Used in Medical 3D Printing. 307
- Table 148. Applications of 3D printing in medical devices. 307
- Table 149. Applications of 3D Printing in Pharmaceuticals. 310
- Table 150. Applications of 3D printing in dentistry. 312
- Table 151. Market players in 3D printing in Medical and Dental. 315
- Table 152. 3D printed product examples in Medical and Dental. 316
- Table 153. Main categories of concrete AM technology. 319
- Table 154. Key materials used in concrete 3D printing. 321
- Table 155. Concrete 3D Printing Projects. 323
- Table 156. 3D printing construction companies. 326
- Table 157. 3D printed product examples in Architecture and Construction. 328
- Table 158. 3D printed cars. 329
- Table 159. 3D printing applications in automotive. 331
- Table 160. Market players in automotive additive manufacturing. 347
- Table 161. 3D printed product examples in Automotive. 348
- Table 162. 3D printing applications in consumer goods. 350
- Table 163. Market players in 3D printed consumer products. 353
- Table 164. 3D printed product examples in Consumer Products. 354
- Table 165. 3D printing applications in energy. 357
- Table 166. 3D printing applications in industrial machinery and tooling. 357
- Table 167. 3D printing applications in electronics. 362
- Table 168. Market Players in 3D Printing for Electronics. 362
- Table 169. 3D printing applications in oil and gas. 368
- Table 170. 3D printing applications in the marine industry. 369
- Table 171. 3D printing applications in 3d printed food. 373
- Table 172. Companies developing 3D printed food. 375
- Table 173. Additive manufacturing acronyms. 526
List of Figures
- Figure 1. Market map for additive manufacturing. 39
- Figure 2. Global market for 3D printing hardware, by technology, 2018-2035 (1,000 Units). 53
- Figure 3. Global market for 3D printing hardware, by technology, 2018-2035 (Millions USD). 54
- Figure 4. Global market for 3D printing, by material, 2018-2035 (1,000 tonnes). 56
- Figure 5. Polymer 3D Printing Materials Forecast by Feedstock (1,000 Tonnes), 2018-2035. 57
- Figure 6. Metal 3D Printing Materials Forecast by Feedstock (1,000 Tonnes), 2018-2035. 58
- Figure 7. Global market for 3D printing hardware, by material, 2018-2035 (Millions US). 60
- Figure 8. Polymer 3D Printing Materials Forecast by Feedstock (Millions USD), 2018-2035. 61
- Figure 9. Metal 3D Printing Materials Forecast by Feedstock (Millions USD), 2018-2035. 62
- Figure 10. Global market for 3D printing AM services, 2018-2035 (Millions USD). 64
- Figure 11. Global Market for 3D Printing Hardware by Region (1,000 Units), 2018-2035. 66
- Figure 12. Global Market for 3D Printing Hardware by Region (Millions USD), 2018-2035. 67
- Figure 13. Global Market for 3D Printing Materials by Region (1,000 Tonnes), 2018-2035. 68
- Figure 14. Global Market for 3D Printing Materials by Region (Millions USD), 2018-2035. 69
- Figure 15. Schematics of 3D printing techniques. 70
- Figure 16. Timeline of 3D printing development. 76
- Figure 17. VAT Photopolymerisation Process. 80
- Figure 18. Material Jetting Process. 81
- Figure 19. Binder Jetting Process. 82
- Figure 20. Material Extrusion Process. 83
- Figure 21. Powder Bed Fusion. 84
- Figure 22. Directed Energy Deposition Process. 85
- Figure 23. Metal AM hardware unit sales 2018-2035. 206
- Figure 24. Metal AM hardware revenues 2018-2035 (Millions USD). 207
- Figure 25. Metal AM hardware revenues 2018-2035 (Millions USD), by region. 208
- Figure 26. Metal AM material volumes, 2018-2035 (tonnes). 210
- Figure 27. Metal AM material revenues, 2018-2035 (millions USD). 211
- Figure 28. Metal AM material revenues, 2018-2035 (millions USD), by region. 212
- Figure 29. AM produced ceramic functional parts from Lithoz GmbH. 228
- Figure 30. Ceramic AM hardware unit sales 2018-2035. 236
- Figure 31. Ceramic AM hardware revenues 2018-2035 (Millions USD). 237
- Figure 32. Ceramic AM hardware revenues 2018-2035 (Millions USD), by region. 239
- Figure 33. Ceramic AM material volumes, 2018-2035 (tonnes). 240
- Figure 34. Ceramic AM material revenues, 2018-2035 (millions USD). 242
- Figure 35. Ceramic AM material revenues, 2018-2035 (millions USD), by region. 243
- Figure 36. Applications roadmap to 2035 for graphene in additive manufacturing. 252
- Figure 37. Composites AM hardware unit sales 2018-2035. 258
- Figure 38. Composites AM hardware revenues 2018-2035 (Millions USD). 259
- Figure 39. Composites AM hardware revenues 2018-2035 (Millions USD), by region. 261
- Figure 40. Composites AM material volumes, 2018-2035 (tonnes). 262
- Figure 41. Composites AM material revenues, 2018-2035 (millions USD). 264
- Figure 42. Composites AM material revenues, 2018-2035 (millions USD), by region. 265
- Figure 43. Global AM Software Revenues by Tool Type, (Millions USD), 2018-2035. 290
- Figure 44. Global AM Software Revenues by Market, (Millions USD), 2018-2035. 291
- Figure 45. Global AM Service Revenues, (Millions USD), 2018-2035. 292
- Figure 46. NASA logo printed in GRX-810 material. 298
- Figure 47. Custom-Jet Oral Health System with 3D printed mouthpiece. 310
- Figure 48. Czinger Vehicles’ 21c. 328
- Figure 49. Cadillac Celestiq. 329
- Figure 50. Massivit 3d Printing David Bowie Car. 329
- Figure 51. Bugatti Bolide. 330
- Figure 52. NERA e-motorcycle. 330
- Figure 53. XEV Yoyo. 330
- Figure 54. 3D printed footwear. 349
- Figure 55. Brooks Running’s Hyperion Elite 4 which uses an ARRIS carbon fiber plate in the midsole. 350
- Figure 56. A 3D printed titanium carrier tray. 363
- Figure 57. byFlow 3D printed food. 374
- Figure 58. Optical micrograph of Exaddon’s 128 probe array, 3D printed directly on contact pads. 425
- Figure 59. The Continuous Kinetic Mixing system. 430
- Figure 60. Foundry Lab Gen 2 3D printer. 432
- Figure 61. A schematic representation of Cold Metal Fusion. 438
- Figure 62. A 3D printed bicycle saddle designed in Hyperganic Core 2. 443
- Figure 63. 3D printed aerospike rocket engine designed using Hyperganic Core. 444
- Figure 64. RenAM 500. 490
- Figure 65. Seurat Alpha Machine. 500
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer.
To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.