- Published: February 2024
- Pages: 630
- Tables: 147
- Figures: 107
The market for advanced automotive technologies is experiencing rapid growth as vehicles become more connected, electrified, autonomous and smart. Favourable regulatory environments coupled with changing consumer preferences and mobility models are accelerating the adoption of these converging technologies on a global scale. Market growth will be driven by rising EV sales, higher adoption of ADAS and autonomous driving sensors, increasing connectivity uptake for V2X and software-defined vehicles, and advancements in in-cabin interfaces.
The Global Market for Advanced Automotive Technologies 2024-2040 provides a detailed analysis of the latest trends and technologies shaping the future of the automotive market. It assesses advanced automotive technologies spanning self-driving vehicles, vehicle connectivity, electrified powertrains, emerging battery tech, in-cabin monitoring, and associated components.
The report thoroughly evaluates the rationale, evolution, current state and future outlook for autonomous driving, assessing automation levels, sensors, perception systems, testing protocols, commercial deployment, OEM and supplier company strategies, and market forecasts. It analyzes the hardware requirements, sensor portfolios, lidars, radars, cameras, sensor fusion, localization, mapping, artificial intelligence, compute platforms, safety, cybersecurity, and testing involved in developing vehicle autonomy.
Global market forecasts are provided for self-driving vehicle unit sales, autonomous driving sensors, radars, and key components from 2022-2040. Regional breakouts, SAE level segmentation, and technology level granularity provide unmatched market insights. Vehicle connectivity and software-defined vehicles are analyzed in detail, covering vehicle-to-everything (V2X) communication, 5G integration, mobility as a service impacts, over-the-air updates, domain controllers, new app capabilities, data analytics, hardware requirements, and market outlook. Global market forecasts are segmented by software-defined vehicle level and connectivity sub-system from 2022-2040. Powertrain electrification is assessed in depth, analyzing EV types, battery technologies, charging solutions, recycling, key components suppliers, and market trends. Technology evolution, chemistries, cell formats, packs, battery management, thermal interface materials, cooling systems are examined for EV batteries. Market forecasts cover EV sales, components, powertrains, battery demand from 2022-2040.
Emerging beyond lithium-ion battery technologies are evaluated including solid state, Li-sulfur, Na-ion, Al-air, recycling methods, and supply chain sustainability. The transition towards a circular battery economy and closed loop value chain is assessed in detail. In-cabin monitoring systems are thoroughly analyzed covering driver monitoring systems, occupant tracking, attention alerts, behavioural monitoring, regulation, biometrics, transparent displays, holography, flexible interfaces, AR evolution, voice assistants, companies, and market revenue forecasts to 2040.
In total, the report includes over 140 tables detailing market and technology data as well as over 100 figures illustrating key insights. Complete listings of all abbreviations and acronyms used in the report are provided. The report will help technology vendors, automakers, researchers, and government agencies understand the latest developments in these converging automotive disciplines as the industry transitions towards smart, connected, electric, and autonomous mobility.
The Global Market for Advanced Automotive Technologies 2024-2040 profiles over 800 companies. Companies profiled in the report include ABB, Actronika, Adaps Photonics, Advanchip, AEye, AMS Osram, Arbe Robotics Ltd, Aspinity, Baidu, Bosch, Continental, Echodyne, Grayscale AI, Haike Electronics, Hikvision, Huawei, iGentAI Computing Technology, Infineon, Joyson Safety Systems, Kneron, Kognic, Lumotive, Lunewave Inc., LG Innotek, Magna, Metawave, Mojo Vision, NODAR, NXP Semiconductors, Omnitron Sensors, OmniVision, Plastic Omnium, Prophesee, RoboSense, SenseTime, SiLC Technologies, Spartan Radar, STMicroelectronics, Stellantis, Svolt, Tacterion, Terabee, Tesla, Texas Instruments, Toyota, Ultraleap, Uhnder, Valeo, Vayyar, Visteon, Volkswagen, Volvo, Vueron, Waymo, Zadar Labs, and Zendar.
Download table of contents (PDF)
1 RESEARCH METHODOLOGY 25
2 EXECUTIVE SUMMARY 26
- 2.1 Automotive technologies covered 26
- 2.2 Market outlook and disruption 27
- 2.3 Key trends overview 28
- 2.4 Automotive technology convergence 33
- 2.5 New mobility ecosystem 35
- 2.6 Market map 38
- 2.7 Technology cost curves 41
- 2.8 Benchmarking maturation paths 42
- 2.9 Opportunity for Advanced Automotive Technologies 42
3 SELF-DRIVING VEHICLES 45
- 3.1 Autonomous vehicles categories 45
- 3.2 Rationale for automation 47
- 3.3 Automation Levels 48
- 3.3.1 History of Defining Driving Automation 48
- 3.3.2 Need for Standardization 49
- 3.3.3 Regulation 49
- 3.3.4 SAE International Standard J3016 50
- 3.3.5 SAE automation levels 0-5 51
- 3.3.6 Transitions from ADAS to full autonomy 52
- 3.3.7 Adaptations to SAE Model 53
- 3.3.8 Commercial Implementations 53
- 3.3.8.1 Main players 53
- 3.3.8.2 Level 2 54
- 3.3.8.3 Level 3 55
- 3.3.8.4 Level 4 56
- 3.3.8.4.1 Current developments 56
- 3.3.8.4.2 Robotaxis 57
- 3.3.8.5 Level 5 timeline 58
- 3.3.9 Robotaxis 59
- 3.3.9.1 Current commercial status and testing 60
- 3.3.9.2 Market outlook 66
- 3.3.10 Hardware requirements 69
- 3.4 Autonomous Driving Sensors 71
- 3.4.1 Sensor Attributes, Performance Trends and Limitations 73
- 3.4.2 Sensor Suite Examples by Autonomy Level 75
- 3.4.3 Cameras 77
- 3.4.3.1 Camera Types 78
- 3.4.3.2 Camera Sensor Attributes 79
- 3.4.3.3 External cameras 80
- 3.4.3.4 Internal cameras 82
- 3.4.3.5 Visible light cameras 83
- 3.4.3.6 Infrared (IR) camera 84
- 3.4.3.7 SWIR 85
- 3.4.3.8 Neuromorphic/Event-Based Vision Systems 87
- 3.4.3.9 E-mirrors 88
- 3.4.3.9.1 Overview 89
- 3.4.3.9.2 Benefits 89
- 3.4.3.9.3 Challenges 90
- 3.4.3.9.4 Installation and Compatibility 90
- 3.4.3.10 Companies 91
- 3.4.4 Radar 97
- 3.4.4.1 Overview 101
- 3.4.4.1.1 Market trends 102
- 3.4.4.1.2 Radar Configurations on Vehicles 103
- 3.4.4.1.3 Radar Technology Evolution 103
- 3.4.4.1.4 Commercial Imaging Radar Solutions 104
- 3.4.4.1.5 Teleoperation 105
- 3.4.4.1.6 4D Imaging Radar 106
- 3.4.4.1.7 Low-Loss Materials for Radar 110
- 3.4.4.2 Front radar 111
- 3.4.4.3 Side radar 112
- 3.4.4.4 Performance and technology trends 113
- 3.4.4.5 Lidar 116
- 3.4.4.5.1 Lidar configurations on vehicles 117
- 3.4.4.5.2 Types of Lidar Technology 117
- 3.4.4.5.3 Companies 118
- 3.4.4.1 Overview 101
- 3.4.5 Ultrasonics 124
- 3.4.5.1 Advantages 125
- 3.4.5.2 Challenges 125
- 3.4.6 Sensor fusion 131
- 3.4.6.1 Sensor Fusion Methods for Autonomous Driving 131
- 3.4.6.2 Challenges 132
- 3.5 Perception and Localization 135
- 3.5.1 Sensor combinations by autonomy level 137
- 3.5.2 HD mapping 138
- 3.5.3 Localization approaches 140
- 3.5.4 AI and machine learning 142
- 3.5.5 Companies 143
- 3.6 Compute and Network Systems 148
- 3.6.1 Domain controllers 149
- 3.6.2 GPUs 151
- 3.6.3 OTA updates 153
- 3.6.4 Functional safety 155
- 3.6.5 Cybersecurity 156
- 3.7 Testing and Simulation 160
- 3.7.1 Miles/disengagements 161
- 3.7.2 Weather handling 162
- 3.7.3 Scenario coverage 164
- 3.7.4 Virtual testing 165
- 3.7.5 Safety validation 166
- 3.8 Commercial Deployment 167
- 3.8.1 Global policies 168
- 3.8.2 Legislative progress 170
- 3.8.3 Level 2/3 consumer autonomy 172
- 3.8.4 Robotaxi launches 173
- 3.8.5 Operation Design Domains (ODD) 177
- 3.9 Autonomous Technology Suppliers 182
- 3.9.1 OEMs 184
- 3.9.2 Tier 1 components 191
- 3.9.3 Startups 194
- 3.9.4 Semiconductor companies 196
- 3.9.5 Fleet operators 198
- 3.9.6 MaaS providers 198
- 3.10 Global market 2024-2040 201
- 3.10.1 Global Vehicle Sales by SAE Level 2022-2044 201
- 3.10.2 Autonomous Driving Sensors 203
- 3.10.3 Radar 206
4 VEHICLE CONNECTIVITY SYSTEMS 210
- 4.1 Vehicle-to-Everything (V2X) and Connectivity 210
- 4.1.1 Dedicated Short Range Communication (DSRC) 212
- 4.1.2 C-V2X 214
- 4.1.3 5G/6G 216
- 4.1.4 Hybrid connectivity 218
- 4.1.5 Spectrum allocation 220
- 4.1.6 Standards 221
- 4.2 Software-Defined Vehicles 224
- 4.2.1 Overview 225
- 4.2.2 Data movement 226
- 4.2.3 Domain controllers 227
- 4.2.4 Consolidation trends 229
- 4.2.5 New apps features 231
- 4.2.6 Hardware Requirements (SDV) 233
- 4.3 Connected Mobility Impact 235
- 4.3.1 Mobility-as-a-Service 235
- 4.3.2 Shared mobility 236
- 4.3.3 New ownership models 237
- 4.3.4 Usage-based insurance 238
- 4.3.5 Intelligent transportation 239
- 4.3.6 Smart cities 241
- 4.4 Companies 244
- 4.5 Global market 2022-2040 249
- 4.5.1 By SDV Level 250
- 4.5.2 By units 251
- 4.5.3 Automotive V2X Market 254
5 POWERTRAIN ELECTRIFICATION 256
- 5.1 Electric vehicle introduction 256
- 5.1.1 Definitions 258
- 5.1.2 Market Trends 259
- 5.2 EV Types 265
- 5.2.1 Battery Electric Vehicles (BEV) 266
- 5.2.1.1 Electric buses, vans and trucks 267
- 5.2.1.1.1 Electric medium and heavy duty trucks 268
- 5.2.1.1.2 Electric light commercial vehicles (LCVs) 268
- 5.2.1.1.3 Electric buses 269
- 5.2.1.1.4 Micro EVs 270
- 5.2.1.1 Electric buses, vans and trucks 267
- 5.2.2 Plug-in hybrid (PHEV) 274
- 5.2.2.1 Technology Overview 274
- 5.2.2.2 Key components of a plug-in hybrid powertrain 275
- 5.2.2.3 PHEV Market and Adoption 275
- 5.2.2.4 Advantages and Disadvantages 276
- 5.2.2.5 Outlook 277
- 5.2.3 Hybrid Electric Vehicles (HEV) 279
- 5.2.3.1 Technology Overview 279
- 5.2.3.2 HEV powertrain configurations 279
- 5.2.3.3 Key HEV components 280
- 5.2.3.4 HEV Market and Adoption 280
- 5.2.3.5 Advantages and Disadvantages 281
- 5.2.3.6 Outlook 282
- 5.2.4 Full Cell Electric Vehicles (FCEV) 283
- 5.2.4.1 Technology Overview 283
- 5.2.4.2 Key fuel cell system components 284
- 5.2.4.3 FCEV Market and Adoption 284
- 5.2.4.4 FCEV Benefits and Challenges 285
- 5.2.4.5 Hydrogen production 286
- 5.2.4.6 Refueling infrastructure 287
- 5.2.4.7 FCEV cost challenges 288
- 5.2.4.8 FCEV Outlook 289
- 5.2.5 Technology comparison 291
- 5.2.1 Battery Electric Vehicles (BEV) 266
- 5.3 Electric Vehicle Batteries 292
- 5.3.1 Li-ion evolution 292
- 5.3.2 Chemistries 297
- 5.3.3 Types 298
- 5.3.4 Next-gen cell technology 302
- 5.3.5 Silicon anodes 303
- 5.3.5.1 Benefits 305
- 5.3.5.2 Development in li-ion batteries 306
- 5.3.5.3 Manufacturing silicon 306
- 5.3.5.4 Costs 308
- 5.3.5.5 Future outlook 310
- 5.3.6 Li-ion battery packs 312
- 5.3.6.1 Cell-to-pack 312
- 5.3.6.2 Cell-to-chassis/body 315
- 5.3.6.3 Hybrid and dual-chemistry battery packs 316
- 5.3.6.4 Materials 316
- 5.3.7 Thermal management 317
- 5.3.7.1 Thermal Interface Materials 320
- 5.3.7.1.1 Types 322
- 5.3.7.1.2 Thermal conductivity 324
- 5.3.7.1.3 Comparative properties of TIMs 325
- 5.3.7.1.4 Advantages and disadvantages of TIMs, by type 326
- 5.3.7.1.5 EV applications 329
- 5.3.7.1.5.1 Pack and Modules 329
- 5.3.7.1.5.2 By Cell Format 330
- 5.3.7.2 Liquid cooling systems 330
- 5.3.7.2.1 Design 330
- 5.3.7.2.2 Types 331
- 5.3.7.2.3 Liquid Coolants 332
- 5.3.7.2.4 Components of Liquid Cooling Systems 332
- 5.3.7.2.5 Coolant fluids in EVs 333
- 5.3.7.2.5.1 Coolant Fluid Requirements 333
- 5.3.7.2.5.2 Common EV Coolant Fluids 334
- 5.3.7.2.6 Benefits 336
- 5.3.7.2.7 Challenges 336
- 5.3.7.2.8 Market overview 337
- 5.3.7.3 Fire protection materials 338
- 5.3.7.4 Thermal management and fire protection companies 338
- 5.3.7.1 Thermal Interface Materials 320
- 5.3.8 EV Battery Companies 342
- 5.3.9 Battery management systems 347
- 5.3.9.1 Overview 347
- 5.3.9.2 Topology and functionality 349
- 5.3.9.3 Cell balancing and control 350
- 5.3.9.4 State of charge and health estimation 351
- 5.3.9.5 Fast charging 353
- 5.3.9.6 Companies 355
- 5.4 Power delivery (SiC, GaN, power semiconductors) 360
- 5.4.1 Market trends 360
- 5.4.2 Materials and technologies 361
- 5.4.3 Companies 361
- 5.5 EV Charging 370
- 5.5.1 Overview 371
- 5.5.2 Market trends 372
- 5.5.3 Conductive charging 373
- 5.5.4 Wireless/Inductive Charging 374
- 5.5.5 Mobile Charging Solutions 376
- 5.5.6 Battery Swapping 377
- 5.5.7 Charging infrastructure buildout 378
- 5.5.8 Companies 380
- 5.6 Global market 2024-2040 383
- 5.6.1 Electric Vehicle Sales 383
- 5.6.2 Components 385
- 5.6.3 By Powertrain 388
- 5.6.4 Electric vehicle Li-ion 390
6 EMERGING BATTERY TECHNOLOGY 394
- 6.1 Beyond Li-ion 394
- 6.1.1 Solid-state batteries 394
- 6.1.1.1 Technology description 394
- 6.1.1.1.1 Solid-state electrolytes 396
- 6.1.1.2 Features and advantages 397
- 6.1.1.3 Technical specifications 398
- 6.1.1.4 Types 400
- 6.1.1.5 Company profiles 404
- 6.1.1.1 Technology description 394
- 6.1.2 Lithium sulfur 408
- 6.1.2.1 Technology description 408
- 6.1.2.2 Advantages 408
- 6.1.2.3 Challenges 409
- 6.1.2.4 Commercialization 410
- 6.1.2.5 Company profiles 411
- 6.1.3 Sodium-ion 413
- 6.1.3.1 Technology description 413
- 6.1.3.1.1 Cathode materials 413
- 6.1.3.1.1.1 Layered transition metal oxides 413
- 6.1.3.1.1.1.1 Types 414
- 6.1.3.1.1.1.2 Cycling performance 414
- 6.1.3.1.1.1.3 Advantages and disadvantages 415
- 6.1.3.1.1.1.4 Market prospects for LO SIB 415
- 6.1.3.1.1.2 Polyanionic materials 416
- 6.1.3.1.1.2.1 Advantages and disadvantages 417
- 6.1.3.1.1.2.2 Types 417
- 6.1.3.1.1.2.3 Market prospects for Poly SIB 417
- 6.1.3.1.1.3 Prussian blue analogues (PBA) 418
- 6.1.3.1.1.3.1 Types 418
- 6.1.3.1.1.3.2 Advantages and disadvantages 419
- 6.1.3.1.1.3.3 Market prospects for PBA-SIB 420
- 6.1.3.1.1.1 Layered transition metal oxides 413
- 6.1.3.1.2 Anode materials 421
- 6.1.3.1.2.1 Hard carbons 421
- 6.1.3.1.2.2 Carbon black 423
- 6.1.3.1.2.3 Graphite 423
- 6.1.3.1.2.4 Carbon nanotubes 427
- 6.1.3.1.2.5 Graphene 428
- 6.1.3.1.2.6 Alloying materials 430
- 6.1.3.1.2.7 Sodium Titanates 430
- 6.1.3.1.2.8 Sodium Metal 430
- 6.1.3.1.3 Electrolytes 431
- 6.1.3.1.1 Cathode materials 413
- 6.1.3.2 Company profiles 433
- 6.1.3.1 Technology description 413
- 6.1.4 Aluminium batteries 437
- 6.1.4.1 Technology description 438
- 6.1.4.2 Industry Development 438
- 6.1.4.3 Automotive Applications 439
- 6.1.1 Solid-state batteries 394
- 6.2 Battery Recycling and Reuse 441
- 6.2.1 EV battery reuse in energy storage 442
- 6.2.2 Recycling methods 443
- 6.2.2.1 Black mass powder 445
- 6.2.2.2 Recycling different cathode chemistries 446
- 6.2.2.3 Preparation 446
- 6.2.2.4 Pre-Treatment 447
- 6.2.2.4.1 Discharging 447
- 6.2.2.4.2 Mechanical Pre-Treatment 447
- 6.2.2.4.3 Thermal Pre-Treatment 450
- 6.2.2.5 Comparison of recycling techniques 451
- 6.2.2.6 Hydrometallurgy 452
- 6.2.2.6.1 Method overview 452
- 6.2.2.6.1.1 Solvent extraction 454
- 6.2.2.6.1 Method overview 452
- 6.2.2.7 Pyrometallurgy 455
- 6.2.2.7.1 Method overview 455
- 6.2.2.8 Direct recycling 456
- 6.2.2.8.1 Method overview 456
- 6.2.2.8.1.1 Electrolyte separation 457
- 6.2.2.8.1.2 Separating cathode and anode materials 457
- 6.2.2.8.1.3 Binder removal 458
- 6.2.2.8.1.4 Relithiation 458
- 6.2.2.8.1.5 Cathode recovery and rejuvenation 459
- 6.2.2.8.1.6 Hydrometallurgical-direct hybrid recycling 460
- 6.2.2.8.1 Method overview 456
- 6.2.2.9 Other methods 461
- 6.2.2.9.1 Mechanochemical Pretreatment 461
- 6.2.2.9.2 Electrochemical Method 461
- 6.2.2.9.3 Ionic Liquids 462
- 6.2.2.10 Recycling of Specific Components 462
- 6.2.2.10.1 Anode (Graphite) 462
- 6.2.2.10.2 Cathode 462
- 6.2.2.10.3 Electrolyte 463
- 6.2.2.11 Recycling of Beyond Li-ion Batteries 463
- 6.2.2.11.1 Conventional vs Emerging Processes 464
- 6.2.2.11.2 Li-Metal batteries 465
- 6.2.2.11.3 Lithium sulfur batteries (Li–S) 466
- 6.2.2.11.4 All-solid-state batteries (ASSBs) 467
- 6.2.2.11.5 Closed-loop value chain for EV batteries 468
- 6.2.3 Lithium-Ion Battery recycling value chain 469
- 6.2.4 Circular life cycle 470
- 6.2.5 Regulations 472
- 6.2.6 Supply chain sustainability 474
- 6.2.7 Company profiles 475
7 IN-CABIN DRIVER AND OCCUPANT MONITORING 480
- 7.1 Overview 481
- 7.2 Driver Monitoring Systems (DMS) 484
- 7.2.1 Technology description 484
- 7.2.2 Sensors (camera, radar, LiDAR) 485
- 7.2.2.1 Passive and Active Sensors 485
- 7.2.2.2 NIR/IR Imaging 486
- 7.2.2.2.1 Infrared (IR) Cameras 488
- 7.2.2.3 ToF Cameras 490
- 7.2.2.4 In-Cabin Radars 492
- 7.2.2.5 Capacitive Steering Sensors 493
- 7.2.2.6 Torque Steering Sensors 495
- 7.2.3 Driver attention, impairment alerts 497
- 7.2.3.1 Eye Movement Tracking 497
- 7.2.3.2 Brain Function Monitoring 499
- 7.2.4 Regulation and safety standards 501
- 7.3 Occupant Monitoring Systems 502
- 7.3.1 Occupant Detection and Tracking 502
- 7.3.2 Access Control and Authentication 502
- 7.3.3 Driver Monitoring for Handover 502
- 7.3.4 Post-Drive Analysis and Forensics 503
- 7.3.5 Behaviour monitoring 503
- 7.4 Cabin Technologies and Interfaces 505
- 7.4.1 Displays 505
- 7.4.1.1 Display types and evolution 505
- 7.4.1.2 Main types of displays 509
- 7.4.1.3 Display technologies for Automotive 510
- 7.4.1.4 Companies 511
- 7.4.1.5 LCD (Liquid Crystal Display) 511
- 7.4.1.5.1 Technology description 511
- 7.4.1.5.2 Advantages 512
- 7.4.1.5.3 Automotive applications 513
- 7.4.1.6 OLED (Organic Light Emitting Diode) 513
- 7.4.1.6.1 Technology description 514
- 7.4.1.6.2 Types of OLED technology 516
- 7.4.1.6.2.1 Active-matrix OLEDs (AMOLED) 517
- 7.4.1.6.2.2 Passive-matrix OLEDs (PMOLEDs) 519
- 7.4.1.6.2.3 Transparent OLEDs (TOLEDs) 520
- 7.4.1.6.2.4 Foldable/flexible OLED 521
- 7.4.1.6.2.5 Tandem OLEDs 522
- 7.4.1.6.3 Automotive applications 522
- 7.4.1.6.4 Companies 523
- 7.4.1.7 TFT-LCD (Thin Film Transistor LCD) 523
- 7.4.1.7.1 Technology description 523
- 7.4.1.7.2 Advantages 524
- 7.4.1.7.3 TFT-LCD Backlight Technologies 525
- 7.4.1.7.4 Diffusers 526
- 7.4.1.7.5 Automotive applications 527
- 7.4.1.7.6 Companies 528
- 7.4.1.8 Thin-film electroluminescent (TFEL) displays 529
- 7.4.1.8.1 Technology description 529
- 7.4.1.8.2 Automotive applications 530
- 7.4.1.8.3 Commercialization 531
- 7.4.1.9 Head-Up Displays (HUDs) 532
- 7.4.1.9.1 Technology description 532
- 7.4.1.9.2 Automotive applications 533
- 7.4.1.10 3D displays 533
- 7.4.1.10.1 Technology description 533
- 7.4.1.10.2 Automotive applications 534
- 7.4.1.11 Computer-Generated Holography (CGH) 534
- 7.4.1.11.1 Technology description 534
- 7.4.1.11.2 Advantages 536
- 7.4.1.11.3 Full 3D displays 536
- 7.4.1.11.4 Next-gen heads-up displays (HUDs) 538
- 7.4.1.11.5 Automotive applications 538
- 7.4.1.11.6 Companies 539
- 7.4.1.12 Light Field Displays (LFDs) 539
- 7.4.1.12.1 Technology description 539
- 7.4.1.12.2 Spatial light field displays 540
- 7.4.1.12.3 Sequential light field displays 541
- 7.4.1.12.4 Automotive applications 541
- 7.4.1.12.5 Companies 542
- 7.4.1.13 Spatial Light Modulators 543
- 7.4.1.13.1 Technology description 543
- 7.4.1.13.2 Liquid crystal (LC) spatial light modulators (SLMs) 543
- 7.4.1.13.2.1 Fabricating LCOS SLMs 546
- 7.4.1.13.3 Transmissive LC panels 547
- 7.4.1.13.4 Optically addressed SLM 547
- 7.4.1.13.5 Digital micromirror device (DMD) spatial light modulators (SLMs) 548
- 7.4.1.13.6 Automotive applications 548
- 7.4.1.13.7 Companies 549
- 7.4.1.14 Flexible displays 550
- 7.4.1.14.1 Technology description 550
- 7.4.1.14.1.1 Organic LCDs 553
- 7.4.1.14.1.2 Organic light-emitting diodes (OLEDs) 554
- 7.4.1.14.1.3 Inorganic LEDs 555
- 7.4.1.14.1.4 Flexible AMOLED 555
- 7.4.1.14.1.5 Printed OLED 556
- 7.4.1.14.2 Automotive applications 557
- 7.4.1.14.1 Technology description 550
- 7.4.1.15 Transparent displays 557
- 7.4.1.15.1 Overview 557
- 7.4.1.15.2 Automotive applications 558
- 7.4.1.16 Curved displays 559
- 7.4.1.16.1 Overview 559
- 7.4.1.16.2 Automotive applications 559
- 7.4.1.16.3 Companies 560
- 7.4.2 AR/VR evolution 562
- 7.4.2.1 Human Machine Interface Design 563
- 7.4.2.2 Augmented reality navigation 564
- 7.4.2.3 Gesture and gaze tracking for touchless control 565
- 7.4.3 Transparent displays 566
- 7.4.4 Voice assistants 566
- 7.4.5 Biometrics and wellness monitoring 568
- 7.4.6 Transparent OLED windows 569
- 7.4.7 Customized screens 569
- 7.4.8 Dual screen layouts 570
- 7.4.9 Ambient lighting integration 570
- 7.4.10 Display Technologies for Instrument Clusters 571
- 7.4.10.1 Configurable Clusters 572
- 7.4.10.2 Full LCD Clusters 572
- 7.4.10.3 Augmented Reality Clusters 572
- 7.4.10.4 Holographic Clusters 573
- 7.4.11 Head-up displays (HUDs) 573
- 7.4.11.1 Overview 573
- 7.4.11.2 Trends 574
- 7.4.11.3 HUD Display Technologies in automotive 575
- 7.4.11.3.1 Projection displays 577
- 7.4.11.3.2 Combiner HUD 578
- 7.4.11.3.3 AR-HUDs 579
- 7.4.11.4 HUD Content and Features 580
- 7.4.11.5 Automotive models incorporating HUDs 581
- 7.4.11.6 Advanced HUDs 582
- 7.4.11.6.1 Panoramic HUD 582
- 7.4.11.6.2 Holographic 3D displays 583
- 7.4.11.6.3 Adaptive displays 583
- 7.4.11.6.4 Conformal HU 584
- 7.4.1 Displays 505
- 7.5 Autonomous Vehicle Interiors 585
- 7.5.1 Self-driving vehicle interior concepts 585
- 7.5.2 Reconfigurable seating 586
- 7.5.3 Occupant productivity and entertainment 587
- 7.5.4 Motion sickness solutions 588
- 7.6 Companies 591
- 7.7 Global market 2022-2040 619
- 7.7.1 In-Cabin Sensors 619
- 7.7.2 In-Cabin ToF Cameras 620
- 7.7.3 IR Cameras 621
- 7.7.4 In-Cabin Radar 621
- 7.7.5 Capacitive Steering Sensors 622
- 7.7.6 Displays 623
- 7.7.6.1 By display type 623
- 7.7.6.2 By display application 623
8 REFERENCES 623
List of Tables
- Table 1. Key trends in automotive technologies. 28
- Table 2. Robotaxi past efforts, current activities and future testing plans 61
- Table 3. Market players in robotaxis. 64
- Table 4. Robotaxi Fleet Size 2024-2040. 65
- Table 5. Robotaxi Service Revenues 2024-2034. 65
- Table 6. Hardware requirements for increasing levels of automation in self-driving vehicles. 69
- Table 7. Sensor requirements for different levels of driving automation in autonomous vehicles. 76
- Table 8. Sensor suite costs for different levels of driving automation. 76
- Table 9. Vehicle camera applications. 77
- Table 10. Infrared cameras for automotive applications. 84
- Table 11. Companies developing cameras for autonomous vehicles. 91
- Table 12. Key ADAS sensors in automotive. 97
- Table 13. Trends in automotive radar. 102
- Table 14. 4D Imaging Radar operation. 107
- Table 15. Companies in 4D imaging radar products/development. 107
- Table 16. Front radar applications in autonomous vehicles. 112
- Table 17. ADAS Side Radar Applications. 112
- Table 18. Automotive lidar companies. 118
- Table 19. Sensor combinations by autonomy level. 137
- Table 20. Main Methods of Localisation. 140
- Table 21. Perception and Localization companies. 144
- Table 22. Global policies related to self-driving vehicles. 168
- Table 23. Self-driving vehicles legislation. 170
- Table 24. Automotive autonomous technology OEMs. 182
- Table 25. Self-driving vehicle OEMs. 185
- Table 26. Self-driving vehicle Tier 1 component companies. 191
- Table 27. Self-driving vehicle technology start-ups. 194
- Table 28. Self-driving vehicle semiconductor component companies. 196
- Table 29. Self-driving vehicle fleet operators. 198
- Table 30. Self-driving vehicle MaaS providers. 198
- Table 31. Global Vehicle Sales by SAE Level 2022-2044. 202
- Table 32. Global revenues for Autonomous Driving Sensors 2022-2040 (Billions USD). 204
- Table 33. Radar Unit Sales by SAE Level, 2020-2040. 206
- Table 34. Software-Defined Vehicle Level Guide 225
- Table 35. Hardware requirements for SDVs. 233
- Table 36. Companies developing automotive Vehicle-to-Everything (V2X) and connectivity technologies. 244
- Table 37. Global revenues for Software-Defined Vehicles (SDV) by SDL Level 2022-2040 (Billions USD). 250
- Table 38. Global volumes for Software-Defined Vehicles 2022-2040 (Units). 251
- Table 39. Global revenues for the Automotive V2X Market, segmented, 2022-2040 (Billions USD). 254
- Table 40. Global revenues for the Automotive V2X Market, segmented, 2022-2040 (Billions USD). 255
- Table 41. Electric Vehicle Definitions. 258
- Table 42. Electric Car Market Trends. 259
- Table 43. Battery chemistries used in electric buses. 269
- Table 44. Micro EV types 270
- Table 45. Comparative analysis of EV battery technology. 292
- Table 46. Commercial Li-ion battery cell composition. 293
- Table 47. Lithium-ion (Li-ion) battery supply chain. 296
- Table 48. Types of lithium battery. 298
- Table 49. Manufacturing methods for nano-silicon anodes. 307
- Table 50. Markets and applications for silicon anodes. 309
- Table 51. Thermal conductivities (κ) of common metallic, carbon, and ceramic fillers employed in TIMs. 324
- Table 52. Commercial TIMs and their properties. 325
- Table 53. Advantages and disadvantages of TIMs, by type. 326
- Table 54. Thermal management and fire protection materials company profiles. 338
- Table 55. Electric Vehicle Battery companies. 342
- Table 56. BMS company profiles. 355
- Table 57. Companies in automotive power semiconductors. 361
- Table 58. EV charging levels. 371
- Table 59. Global charging infrastructure installations. 378
- Table 60. EV Charging players. 380
- Table 61. Electric Vehicle Revenues 2022-2040 (Billions USD). 383
- Table 62. Electric Vehicle Component Revenue Forecast 2022-2040 (Billion USD). 385
- Table 63. Global revenues, by powertrain 2022-2040 (US$ Billion). 388
- Table 64. Global EV Li-ion battery market 2022-2040 (GWh). 390
- Table 65. Global EV Li-ion battery market 2022-2040 ($US Billion). 392
- Table 66. Comparison of Solid-state Electrolyte Systems 394
- Table 67. Types of solid-state electrolytes. 396
- Table 68. Market segmentation and status for solid-state batteries. 396
- Table 69. Typical process chains for manufacturing key components and assembly of solid-state batteries. 398
- Table 70. Comparison between liquid and solid-state batteries. 402
- Table 71. Solid-state battery companies. 404
- Table 72. Comparison of the theoretical energy densities of lithium-sulfur batteries versus other common battery types. 409
- Table 73. Lithium sulfur battery companies. 411
- Table 74. Comparison of cathode materials. 413
- Table 75. Layered transition metal oxide cathode materials for sodium-ion batteries. 414
- Table 76. General cycling performance characteristics of common layered transition metal oxide cathode materials. 414
- Table 77. Polyanionic materials for sodium-ion battery cathodes. 416
- Table 78. Comparative analysis of different polyanionic materials. 417
- Table 79. Common types of Prussian Blue Analogue materials used as cathodes or anodes in sodium-ion batteries. 419
- Table 80. Comparison of Na-ion battery anode materials. 421
- Table 81. Comparison of carbon materials in sodium-ion battery anodes. 422
- Table 82. Comparison between Natural and Synthetic Graphite. 424
- Table 83. Properties of graphene, properties of competing materials, applications thereof. 428
- Table 84. Comparison of carbon based anodes. 429
- Table 85. Alloying materials used in sodium-ion batteries. 430
- Table 86. Na-ion electrolyte formulations. 431
- Table 87. Sodium-ion battery companies. 433
- Table 88. Typical lithium-ion battery recycling process flow. 444
- Table 89. Main feedstock streams that can be recycled for lithium-ion batteries. 445
- Table 90. Comparison of LIB recycling methods. 451
- Table 91. Comparison of conventional and emerging processes for recycling beyond lithium-ion batteries. 464
- Table 92. Closed-loop value chain for electric vehicle (EV) batteries. 468
- Table 93. Li-ion battery recycling value chain. 469
- Table 94. Potential circular life cycle for lithium-ion batteries. 471
- Table 95. Regulations pertaining to the recycling and treatment of EOL batteries in the EU, USA, and China 472
- Table 96. Companies developing battery recycling technologies. 475
- Table 97. Interior Monitoring System (IMS), Driver-MS and Occupant-MS 481
- Table 98. Sensors for In-Cabin Monitoring. 482
- Table 99. In-cabin monitoring sensing technologies for interior monitoring systems (IMS) and driver/occupant monitoring systems in autonomous vehicles. 485
- Table 100. TOF camera companies. 491
- Table 101. Comparison of In-Cabin Radars. 492
- Table 102. Companies developing Radar for In-Cabin Sensing. 493
- Table 103. Companies developing Capacitive Sensors. 494
- Table 104. Commercial examples of Sensors for In-Cabin Monitoring. 495
- Table 105. Automotive display & backlight architectures 506
- Table 106. Market trends in automotive displays. 508
- Table 107. Automotive OEM display strategies by display type. 509
- Table 108. Comparative analysis of common display technologies used in the automotive industry. 510
- Table 109. Applications of LCDs in automotive and technology readiness level (TRL). 513
- Table 110. OLED solutions in the automotive industry. 516
- Table 111. Types of OLED technology 517
- Table 112. Applications of OLEDs in automotive and technology readiness level (TRL). 522
- Table 113. Companies developing OLED display technologies for automotive applications. 523
- Table 114. Comparison of the key characteristics of TN (twisted nematic), IPS (in-plane switching), and VA (vertical alignment) LCD modes: 524
- Table 115. Applications of TFT-LCDs in automotive and technology readiness level (TRL). 527
- Table 116. Companies and organizations producing TFT-LCD (thin film transistor liquid crystal display) technology for the automotive industry. 528
- Table 117. TFELs benefits and drawbacks. 529
- Table 118. Applications of TFEL in automotive and technology readiness level (TRL) . 530
- Table 119. Applications of HUDs in automotive and technology readiness level (TRL). 533
- Table 120. Applications of 3D displays in automotive and technology readiness level (TRL). 534
- Table 121. Computer-generated holography solutions 537
- Table 122. Applications of CGHs in automotive and technology readiness level (TRL). 538
- Table 123. Companies developing computer-generated holography. 539
- Table 124. Types of light field displays. 540
- Table 125. Applications of LFDs in automotive and technology readiness level (TRL). 542
- Table 126. Companies developing light field displays (LFDs) for automotive applications. 542
- Table 127. Classifications of SLMs. 543
- Table 128. LCOS-SLM assessment features. 544
- Table 129. LCOS SLM performance factors. 545
- Table 130. Manufacturing Methods for LCoS. 546
- Table 131. Applications of SLMs in automotive and technology readiness level (TRL). 549
- Table 132. Companies developing SLM for automotive applications. 549
- Table 133. Applications of flexible displays in automotive and technology readiness level (TRL). 557
- Table 134. Applications of transparent displays in automotive and technology readiness level (TRL). 558
- Table 135. Applications of curved displays in automotive and technology readiness level (TRL). 559
- Table 136. Companies developing curved automotive displays. 560
- Table 137. Display technologies for Instrument clusters. 571
- Table 138. Markets and applications for Head-up displays (HUDs). 574
- Table 139. Commercial automotive HUDs. 576
- Table 140. HUD vs other display types. 576
- Table 141. Companies developing AR-HUD technology for automotive applications.i 580
- Table 142. Companies developing technologies for in-cabin driver and occupant monitoring. 591
- Table 143. Global marker for In-Cabin Sensors, 2022-2040 (Billions USD). 619
- Table 144. Global revenues for In-Cabin ToF Cameras 2022-2040 (US$ Millions). 620
- Table 145. Global revenues for IR Cameras 2022-2040 (US$ Millions). 621
- Table 146. Global revenues for In-Cabin Radar 2022-2040 (US$ Millions). 621
- Table 147. Global revenues for Capacitive Steering Sensors 2022-2040 (US$ Millions). 622
List of Figures
- Figure 1. Market map: Advanced Automotive Technologies. 38
- Figure 2. Autonomous vehicle interior. 48
- Figure 3. WeRide fully driverless Robotaxi. 62
- Figure 4. Baidu fully driverless Robotaxi. 64
- Figure 5. Robotaxi Fleet Size 2024-2040. 65
- Figure 6. Robotaxi Service Revenues 2024-2034. 65
- Figure 7. Autonomous Vehicle Sensors. 74
- Figure 8. ADAS sensors - RGB Cameras for Autonomous Vehicles. 83
- Figure 9. Faurecia emirror. 90
- Figure 10. Types of an ultrasonic sensors. 126
- Figure 11. Example of sensor fusion in self-driving vehicle. 133
- Figure 12. Global Vehicle Sales by SAE Level 2022-2044. 203
- Figure 13. Global revenues for Autonomous Driving Sensors 2022-2040 (Billions USD). 205
- Figure 14. Radar Unit Sales by SAE Level, 2020-2040. 207
- Figure 15. Dedicated Short Range Communication (DSRC) system. 213
- Figure 16. C-V2X in 5G. 215
- Figure 17. Global revenues for Software-Defined Vehicles (SDV) by SDL Level 2022-2040 (Billions USD). 251
- Figure 18. Global volumes for Software-Defined Vehicles 2022-2040 (Units). 252
- Figure 19. Connected and Software Defined Vehicle Services Revenues 2022-2040 (Billions USD). 253
- Figure 20. Lithium Cell Design. 294
- Figure 21. Functioning of a lithium-ion battery. 294
- Figure 22. Li-ion battery cell pack. 295
- Figure 23. Li-ion electric vehicle (EV) battery. 300
- Figure 24. Silicon anode value chain. 305
- Figure 25. Battery pack with a cell-to-pack design and prismatic cells. 315
- Figure 26. Cell-to-chassis battery pack. 315
- Figure 27. Application of thermal interface materials in automobiles. 318
- Figure 28. EV battery components including TIMs. 319
- Figure 29. (L-R) Surface of a commercial heatsink surface at progressively higher magnifications, showing tool marks that create a rough surface and a need for a thermal interface material. 321
- Figure 30. Schematic of thermal interface materials used in a flip chip package. 322
- Figure 31. Thermal grease. 323
- Figure 32. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module. 324
- Figure 33. Electric Vehicle Revenues 2022-2040 (Billions USD). 384
- Figure 34. Electric Vehicle Component Revenue Forecast 2022-2040 (Billion USD). 386
- Figure 35. Global revenues, by powertrain 2022-2040 (US$ Billion). 389
- Figure 36. Global EV Li-ion battery market 2022-2040 (GWh). 391
- Figure 37. Global EV Li-ion battery market 2022-2040 ($US Billion). 393
- Figure 38. Schematic illustration of all-solid-state lithium battery. 395
- Figure 39. ULTRALIFE thin film battery. 395
- Figure 40. Examples of applications of thin film batteries. 399
- Figure 41. Capacities and voltage windows of various cathode and anode materials. 400
- Figure 42. Traditional lithium-ion battery (left), solid state battery (right). 402
- Figure 43. Bulk type compared to thin film type SSB. 403
- Figure 44. Schematic diagram of Lithium–sulfur battery. 408
- Figure 45. Schematic of Prussian blue analogues (PBA). 418
- Figure 46. Comparison of SEM micrographs of sphere-shaped natural graphite (NG; after several processing steps) and synthetic graphite (SG). 424
- Figure 47. Overview of graphite production, processing and applications. 426
- Figure 48. Schematic diagram of a multi-walled carbon nanotube (MWCNT). 427
- Figure 49. Process for recycling lithium-ion batteries from EVs. 443
- Figure 50. Typical direct, pyrometallurgical, and hydrometallurgical recycling methods for recovery of Li-ion battery active materials. 444
- Figure 51. Mechanical separation flow diagram. 448
- Figure 52. Recupyl mechanical separation flow diagram. 449
- Figure 53. Flow chart of recycling processes of lithium-ion batteries (LIBs). 452
- Figure 54. Hydrometallurgical recycling flow sheet. 453
- Figure 55. Umicore recycling flow diagram. 455
- Figure 56. Schematic of direct recyling process. 457
- Figure 57. Schematic diagram of a Li-metal battery. 466
- Figure 58. Schematic diagram of Lithium–sulfur battery. 467
- Figure 59. Schematic illustration of all-solid-state lithium battery. 468
- Figure 60. Circular life cycle of lithium ion-batteries. 472
- Figure 61. Infineon DMS - REAL3™ ToF Imager. 491
- Figure 62. Automotive technology roadmap. 506
- Figure 63. Evolution of automotive displays. 508
- Figure 64. LCD dashboard display. 513
- Figure 65. OLED layer structure. 514
- Figure 66. LED vs OLED displays. 514
- Figure 67. Active-matrix OLED (AMOLED) schematic. 518
- Figure 68. 2022 Mercedes EQE electric car display. 519
- Figure 69. Passive-matrix OLED schematic. 519
- Figure 70. LG display transparent OLED. 520
- Figure 71. Flexible OLED incorporated into automotive headlight. 521
- Figure 72. Audi 2022 A8 . 522
- Figure 73. TFT-LCD based display component layout. 525
- Figure 74. Lumineq® TFEL Display. 531
- Figure 75. Lumineq’s ICEBrite. 532
- Figure 76. Stereoscopic 3D display. 533
- Figure 77. Holographic GPS system using multi-planar system prompts. 535
- Figure 78. Ceres thin-film HoloFlekt® film integrated into windshield. 536
- Figure 79. Basic architecture of a neareye light field display. 540
- Figure 80. Structure of LCOS devices. 544
- Figure 81. LG display stretchable display. 551
- Figure 82. LG Signature OLED TV R. 551
- Figure 83. Flexible display. 552
- Figure 84. Samsung FLEX Hybrid foldable display. 553
- Figure 85. Organic LCD with a 10-mm bend radius. 554
- Figure 86. Foldable organic light-emitting diode (OLED) panel. 554
- Figure 87. TCL printed OLED panel. 557
- Figure 88. Transparent OLED schematic. 558
- Figure 89. AUO Smart Cockpit with 55-inch pillar-to-pillar curved display. 560
- Figure 90. Cadillac XT4 33-inch curved LED touchscreen display 560
- Figure 91. Continental Curved Ultrawide Display. 560
- Figure 92. Hyundai 2024 Sonata panoramic curved display. 561
- Figure 93. Peugeot 3008 fastback SUV curved wide-screen display. 561
- Figure 94. TCL CSOT single, continuous flexible curved automotive display panel. 562
- Figure 95. Augmented reality navigation. 565
- Figure 96. LG transparent OLED display window. 569
- Figure 97. Android Auto split-screen. 570
- Figure 98. Projection display HUD. 578
- Figure 99. Combiner Head-up Display. 579
- Figure 100. AR HUD display. 580
- Figure 101. Global marker for In-Cabin Sensors, 2022-2040 (Billions USD). 620
- Figure 102. Global revenues for In-Cabin ToF Cameras 2022-2040 (US$ Millions). 620
- Figure 103. Global revenues for IR Cameras 2022-2040 (US$ Millions). 621
- Figure 104. Global revenues for In-Cabin Radar 2022-2040 (US$ Millions). 621
- Figure 105. Global revenues for Capacitive Steering Sensors 2022-2040 (US$ Millions). 623
- Figure 106. Global market revenues by automotive display types 2018-2040 (billions USD). 623
- Figure 107. Global market revenues by display application 2018-2034 (billions USD). 623
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer.
To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.