The Global Market for Advanced Automotive Technologies 2024-2040

0

  • Published: February 2024
  • Pages: 630
  • Tables: 147
  • Figures: 107

 

The market for advanced automotive technologies is experiencing rapid growth as vehicles become more connected, electrified, autonomous and smart. Favourable regulatory environments coupled with changing consumer preferences and mobility models are accelerating the adoption of these converging technologies on a global scale. Market growth will be driven by rising EV sales, higher adoption of ADAS and autonomous driving sensors, increasing connectivity uptake for V2X and software-defined vehicles, and advancements in in-cabin interfaces.

The Global Market for Advanced Automotive Technologies 2024-2040 provides a detailed analysis of the latest trends and technologies shaping the future of the automotive market. It assesses advanced automotive technologies spanning self-driving vehicles, vehicle connectivity, electrified powertrains, emerging battery tech, in-cabin monitoring, and associated components.

The report thoroughly evaluates the rationale, evolution, current state and future outlook for autonomous driving, assessing automation levels, sensors, perception systems, testing protocols, commercial deployment, OEM and supplier company strategies, and market forecasts. It analyzes the hardware requirements, sensor portfolios, lidars, radars, cameras, sensor fusion, localization, mapping, artificial intelligence, compute platforms, safety, cybersecurity, and testing involved in developing vehicle autonomy.

Global market forecasts are provided for self-driving vehicle unit sales, autonomous driving sensors, radars, and key components from 2022-2040. Regional breakouts, SAE level segmentation, and technology level granularity provide unmatched market insights.  Vehicle connectivity and software-defined vehicles are analyzed in detail, covering vehicle-to-everything (V2X) communication, 5G integration, mobility as a service impacts, over-the-air updates, domain controllers, new app capabilities, data analytics, hardware requirements, and market outlook. Global market forecasts are segmented by software-defined vehicle level and connectivity sub-system from 2022-2040. Powertrain electrification is assessed in depth, analyzing EV types, battery technologies, charging solutions, recycling, key components suppliers, and market trends. Technology evolution, chemistries, cell formats, packs, battery management, thermal interface materials, cooling systems are examined for EV batteries. Market forecasts cover EV sales, components, powertrains, battery demand from 2022-2040.

Emerging beyond lithium-ion battery technologies are evaluated including solid state, Li-sulfur, Na-ion, Al-air, recycling methods, and supply chain sustainability. The transition towards a circular battery economy and closed loop value chain is assessed in detail. In-cabin monitoring systems are thoroughly analyzed covering driver monitoring systems, occupant tracking, attention alerts, behavioural monitoring, regulation, biometrics, transparent displays, holography, flexible interfaces, AR evolution, voice assistants, companies, and market revenue forecasts to 2040. 

In total, the report includes over 140 tables detailing market and technology data as well as over 100 figures illustrating key insights. Complete listings of all abbreviations and acronyms used in the report are provided. The report will help technology vendors, automakers, researchers, and government agencies understand the latest developments in these converging automotive disciplines as the industry transitions towards smart, connected, electric, and autonomous mobility. 

The Global Market for Advanced Automotive Technologies 2024-2040 profiles over 800 companies. Companies profiled in the report include ABB, Actronika, Adaps Photonics, Advanchip, AEye, AMS Osram, Arbe Robotics Ltd, Aspinity, Baidu, Bosch, Continental, Echodyne, Grayscale AI, Haike Electronics, Hikvision, Huawei, iGentAI Computing Technology, Infineon, Joyson Safety Systems, Kneron, Kognic, Lumotive, Lunewave Inc., LG Innotek, Magna, Metawave, Mojo Vision, NODAR, NXP Semiconductors, Omnitron Sensors, OmniVision, Plastic Omnium, Prophesee, RoboSense,  SenseTime, SiLC Technologies, Spartan Radar, STMicroelectronics, Stellantis, Svolt, Tacterion, Terabee, Tesla, Texas Instruments, Toyota, Ultraleap, Uhnder, Valeo, Vayyar, Visteon, Volkswagen, Volvo, Vueron, Waymo, Zadar Labs, and Zendar. 

 

 

 

 

 

 

Download table of contents (PDF)

 

1              RESEARCH METHODOLOGY         25

 

2              EXECUTIVE SUMMARY   26

  • 2.1          Automotive technologies covered            26
  • 2.2          Market outlook and disruption   27
  • 2.3          Key trends overview       28
  • 2.4          Automotive technology convergence      33
  • 2.5          New mobility ecosystem              35
  • 2.6          Market map       38
  • 2.7          Technology cost curves 41
  • 2.8          Benchmarking maturation paths               42
  • 2.9          Opportunity for Advanced Automotive Technologies       42

 

3              SELF-DRIVING VEHICLES 45

  • 3.1          Autonomous vehicles categories               45
  • 3.2          Rationale for automation              47
  • 3.3          Automation Levels          48
    • 3.3.1      History of Defining Driving Automation  48
    • 3.3.2      Need for Standardization              49
    • 3.3.3      Regulation          49
    • 3.3.4      SAE International Standard J3016              50
    • 3.3.5      SAE automation levels 0-5            51
    • 3.3.6      Transitions from ADAS to full autonomy 52
    • 3.3.7      Adaptations to SAE Model            53
    • 3.3.8      Commercial Implementations    53
      • 3.3.8.1   Main players      53
      • 3.3.8.2   Level 2  54
      • 3.3.8.3   Level 3  55
      • 3.3.8.4   Level 4  56
        • 3.3.8.4.1               Current developments  56
        • 3.3.8.4.2               Robotaxis            57
      • 3.3.8.5   Level 5 timeline 58
    • 3.3.9      Robotaxis            59
      • 3.3.9.1   Current commercial status and testing   60
      • 3.3.9.2   Market outlook 66
    • 3.3.10    Hardware requirements 69
  • 3.4          Autonomous Driving Sensors      71
    • 3.4.1      Sensor Attributes, Performance Trends and Limitations  73
    • 3.4.2      Sensor Suite Examples by Autonomy Level           75
    • 3.4.3      Cameras              77
      • 3.4.3.1   Camera Types    78
      • 3.4.3.2   Camera Sensor Attributes            79
      • 3.4.3.3   External cameras              80
      • 3.4.3.4   Internal cameras              82
      • 3.4.3.5   Visible light cameras       83
      • 3.4.3.6   Infrared (IR) camera        84
      • 3.4.3.7   SWIR     85
      • 3.4.3.8   Neuromorphic/Event-Based Vision Systems         87
      • 3.4.3.9   E-mirrors             88
        • 3.4.3.9.1               Overview            89
        • 3.4.3.9.2               Benefits               89
        • 3.4.3.9.3               Challenges          90
        • 3.4.3.9.4               Installation and Compatibility     90
      • 3.4.3.10                Companies         91
    • 3.4.4      Radar    97
      • 3.4.4.1   Overview            101
        • 3.4.4.1.1               Market trends   102
        • 3.4.4.1.2               Radar Configurations on Vehicles              103
        • 3.4.4.1.3               Radar Technology Evolution        103
        • 3.4.4.1.4               Commercial Imaging Radar Solutions       104
        • 3.4.4.1.5               Teleoperation   105
        • 3.4.4.1.6               4D Imaging Radar             106
        • 3.4.4.1.7               Low-Loss Materials for Radar      110
      • 3.4.4.2   Front radar         111
      • 3.4.4.3   Side radar            112
      • 3.4.4.4   Performance and technology trends        113
      • 3.4.4.5   Lidar      116
        • 3.4.4.5.1               Lidar configurations on vehicles 117
        • 3.4.4.5.2               Types of Lidar Technology            117
        • 3.4.4.5.3               Companies         118
    • 3.4.5      Ultrasonics          124
      • 3.4.5.1   Advantages        125
      • 3.4.5.2   Challenges          125
    • 3.4.6      Sensor fusion     131
      • 3.4.6.1   Sensor Fusion Methods for Autonomous Driving 131
      • 3.4.6.2   Challenges          132
  • 3.5          Perception and Localization         135
    • 3.5.1      Sensor combinations by autonomy level 137
    • 3.5.2      HD mapping       138
    • 3.5.3      Localization approaches 140
    • 3.5.4      AI and machine learning                142
    • 3.5.5      Companies         143
  • 3.6          Compute and Network Systems 148
    • 3.6.1      Domain controllers          149
    • 3.6.2      GPUs     151
    • 3.6.3      OTA updates      153
    • 3.6.4      Functional safety             155
    • 3.6.5      Cybersecurity    156
  • 3.7          Testing and Simulation   160
    • 3.7.1      Miles/disengagements  161
    • 3.7.2      Weather handling            162
    • 3.7.3      Scenario coverage           164
    • 3.7.4      Virtual testing    165
    • 3.7.5      Safety validation               166
  • 3.8          Commercial Deployment              167
    • 3.8.1      Global policies   168
    • 3.8.2      Legislative progress        170
    • 3.8.3      Level 2/3 consumer autonomy   172
    • 3.8.4      Robotaxi launches           173
    • 3.8.5      Operation Design Domains (ODD)             177
  • 3.9          Autonomous Technology Suppliers          182
    • 3.9.1      OEMs    184
    • 3.9.2      Tier 1 components          191
    • 3.9.3      Startups               194
    • 3.9.4      Semiconductor companies           196
    • 3.9.5      Fleet operators 198
    • 3.9.6      MaaS providers 198
  • 3.10        Global market 2024-2040              201
    • 3.10.1    Global Vehicle Sales by SAE Level 2022-2044         201
    • 3.10.2    Autonomous Driving Sensors      203
    • 3.10.3    Radar    206

 

4              VEHICLE CONNECTIVITY SYSTEMS             210

  • 4.1          Vehicle-to-Everything (V2X) and Connectivity      210
    • 4.1.1      Dedicated Short Range Communication (DSRC)   212
    • 4.1.2      C-V2X    214
    • 4.1.3      5G/6G   216
    • 4.1.4      Hybrid connectivity         218
    • 4.1.5      Spectrum allocation        220
    • 4.1.6      Standards            221
  • 4.2          Software-Defined Vehicles          224
    • 4.2.1      Overview            225
    • 4.2.2      Data movement               226
    • 4.2.3      Domain controllers          227
    • 4.2.4      Consolidation trends      229
    • 4.2.5      New apps features          231
    • 4.2.6      Hardware Requirements (SDV)  233
  • 4.3          Connected Mobility Impact          235
    • 4.3.1      Mobility-as-a-Service     235
    • 4.3.2      Shared mobility 236
    • 4.3.3      New ownership models 237
    • 4.3.4      Usage-based insurance 238
    • 4.3.5      Intelligent transportation             239
    • 4.3.6      Smart cities         241
  • 4.4          Companies         244
  • 4.5          Global market 2022-2040              249
    • 4.5.1      By SDV Level      250
    • 4.5.2      By units 251
    • 4.5.3      Automotive V2X Market               254

 

5              POWERTRAIN ELECTRIFICATION 256

  • 5.1          Electric vehicle introduction        256
    • 5.1.1      Definitions          258
    • 5.1.2      Market Trends  259
  • 5.2          EV Types              265
    • 5.2.1      Battery Electric Vehicles (BEV)    266
      • 5.2.1.1   Electric buses, vans and trucks   267
        • 5.2.1.1.1               Electric medium and heavy duty trucks   268
        • 5.2.1.1.2               Electric light commercial vehicles (LCVs) 268
        • 5.2.1.1.3               Electric buses    269
        • 5.2.1.1.4               Micro EVs            270
    • 5.2.2      Plug-in hybrid (PHEV)     274
      • 5.2.2.1   Technology Overview    274
      • 5.2.2.2   Key components of a plug-in hybrid powertrain  275
      • 5.2.2.3   PHEV Market and Adoption         275
      • 5.2.2.4   Advantages and Disadvantages  276
      • 5.2.2.5   Outlook 277
    • 5.2.3      Hybrid Electric Vehicles (HEV)     279
      • 5.2.3.1   Technology Overview    279
      • 5.2.3.2   HEV powertrain configurations  279
      • 5.2.3.3   Key HEV components     280
      • 5.2.3.4   HEV Market and Adoption           280
      • 5.2.3.5   Advantages and Disadvantages  281
      • 5.2.3.6   Outlook 282
    • 5.2.4      Full Cell Electric Vehicles (FCEV) 283
      • 5.2.4.1   Technology Overview    283
      • 5.2.4.2   Key fuel cell system components              284
      • 5.2.4.3   FCEV Market and Adoption          284
      • 5.2.4.4   FCEV Benefits and Challenges     285
      • 5.2.4.5   Hydrogen production     286
      • 5.2.4.6   Refueling infrastructure 287
      • 5.2.4.7   FCEV cost challenges      288
      • 5.2.4.8   FCEV Outlook     289
    • 5.2.5      Technology comparison 291
  • 5.3          Electric Vehicle Batteries              292
    • 5.3.1      Li-ion evolution 292
    • 5.3.2      Chemistries        297
    • 5.3.3      Types    298
    • 5.3.4      Next-gen cell technology              302
    • 5.3.5      Silicon anodes   303
      • 5.3.5.1   Benefits               305
      • 5.3.5.2   Development in li-ion batteries  306
      • 5.3.5.3   Manufacturing silicon     306
      • 5.3.5.4   Costs     308
      • 5.3.5.5   Future outlook  310
    • 5.3.6      Li-ion battery packs         312
      • 5.3.6.1   Cell-to-pack        312
      • 5.3.6.2   Cell-to-chassis/body       315
      • 5.3.6.3   Hybrid and dual-chemistry battery packs               316
      • 5.3.6.4   Materials             316
    • 5.3.7      Thermal management   317
      • 5.3.7.1   Thermal Interface Materials        320
        • 5.3.7.1.1               Types    322
        • 5.3.7.1.2               Thermal conductivity      324
        • 5.3.7.1.3               Comparative properties of TIMs 325
        • 5.3.7.1.4               Advantages and disadvantages of TIMs, by type 326
        • 5.3.7.1.5               EV applications  329
          • 5.3.7.1.5.1           Pack and Modules           329
          • 5.3.7.1.5.2           By Cell Format   330
      • 5.3.7.2   Liquid cooling systems   330
        • 5.3.7.2.1               Design  330
        • 5.3.7.2.2               Types    331
        • 5.3.7.2.3               Liquid Coolants 332
        • 5.3.7.2.4               Components of Liquid Cooling Systems  332
        • 5.3.7.2.5               Coolant fluids in EVs       333
          • 5.3.7.2.5.1           Coolant Fluid Requirements        333
          • 5.3.7.2.5.2           Common EV Coolant Fluids          334
        • 5.3.7.2.6               Benefits               336
        • 5.3.7.2.7               Challenges          336
        • 5.3.7.2.8               Market overview             337
      • 5.3.7.3   Fire protection materials               338
      • 5.3.7.4   Thermal management and fire protection companies      338
    • 5.3.8      EV Battery Companies   342
    • 5.3.9      Battery management systems    347
      • 5.3.9.1   Overview            347
      • 5.3.9.2   Topology and functionality           349
      • 5.3.9.3   Cell balancing and control            350
      • 5.3.9.4   State of charge and health estimation     351
      • 5.3.9.5   Fast charging      353
      • 5.3.9.6   Companies         355
  • 5.4          Power delivery (SiC, GaN, power semiconductors)            360
    • 5.4.1      Market trends   360
    • 5.4.2      Materials and technologies         361
    • 5.4.3      Companies         361
  • 5.5          EV Charging        370
    • 5.5.1      Overview            371
    • 5.5.2      Market trends   372
    • 5.5.3      Conductive charging       373
    • 5.5.4      Wireless/Inductive Charging       374
    • 5.5.5      Mobile Charging Solutions            376
    • 5.5.6      Battery Swapping             377
    • 5.5.7      Charging infrastructure buildout                378
    • 5.5.8      Companies         380
  • 5.6          Global market 2024-2040              383
    • 5.6.1      Electric Vehicle Sales      383
    • 5.6.2      Components      385
    • 5.6.3      By Powertrain   388
    • 5.6.4      Electric vehicle Li-ion      390

 

6              EMERGING BATTERY TECHNOLOGY          394

  • 6.1          Beyond Li-ion     394
    • 6.1.1      Solid-state batteries       394
      • 6.1.1.1   Technology description 394
        • 6.1.1.1.1               Solid-state electrolytes  396
      • 6.1.1.2   Features and advantages              397
      • 6.1.1.3   Technical specifications 398
      • 6.1.1.4   Types    400
      • 6.1.1.5   Company profiles             404
    • 6.1.2      Lithium sulfur    408
      • 6.1.2.1   Technology description 408
      • 6.1.2.2   Advantages        408
      • 6.1.2.3   Challenges          409
      • 6.1.2.4   Commercialization           410
      • 6.1.2.5   Company profiles             411
    • 6.1.3      Sodium-ion         413
      • 6.1.3.1   Technology description 413
        • 6.1.3.1.1               Cathode materials           413
          • 6.1.3.1.1.1           Layered transition metal oxides 413
            • 6.1.3.1.1.1.1        Types    414
            • 6.1.3.1.1.1.2        Cycling performance      414
            • 6.1.3.1.1.1.3        Advantages and disadvantages  415
            • 6.1.3.1.1.1.4        Market prospects for LO SIB        415
          • 6.1.3.1.1.2           Polyanionic materials     416
            • 6.1.3.1.1.2.1        Advantages and disadvantages  417
            • 6.1.3.1.1.2.2        Types    417
            • 6.1.3.1.1.2.3        Market prospects for Poly SIB     417
          • 6.1.3.1.1.3           Prussian blue analogues (PBA)   418
            • 6.1.3.1.1.3.1        Types    418
            • 6.1.3.1.1.3.2        Advantages and disadvantages  419
            • 6.1.3.1.1.3.3        Market prospects for PBA-SIB     420
        • 6.1.3.1.2               Anode materials               421
          • 6.1.3.1.2.1           Hard carbons     421
          • 6.1.3.1.2.2           Carbon black      423
          • 6.1.3.1.2.3           Graphite              423
          • 6.1.3.1.2.4           Carbon nanotubes           427
          • 6.1.3.1.2.5           Graphene           428
          • 6.1.3.1.2.6           Alloying materials            430
          • 6.1.3.1.2.7           Sodium Titanates             430
          • 6.1.3.1.2.8           Sodium Metal    430
        • 6.1.3.1.3               Electrolytes        431
      • 6.1.3.2   Company profiles             433
    • 6.1.4      Aluminium batteries       437
      • 6.1.4.1   Technology description 438
      • 6.1.4.2   Industry Development  438
      • 6.1.4.3   Automotive Applications              439
  • 6.2          Battery Recycling and Reuse       441
    • 6.2.1      EV battery reuse in energy storage           442
    • 6.2.2      Recycling methods          443
      • 6.2.2.1   Black mass powder         445
      • 6.2.2.2   Recycling different cathode chemistries 446
      • 6.2.2.3   Preparation        446
      • 6.2.2.4   Pre-Treatment  447
        • 6.2.2.4.1               Discharging         447
        • 6.2.2.4.2               Mechanical Pre-Treatment          447
        • 6.2.2.4.3               Thermal Pre-Treatment 450
      • 6.2.2.5   Comparison of recycling techniques        451
      • 6.2.2.6   Hydrometallurgy              452
        • 6.2.2.6.1               Method overview            452
          • 6.2.2.6.1.1           Solvent extraction           454
      • 6.2.2.7   Pyrometallurgy 455
        • 6.2.2.7.1               Method overview            455
      • 6.2.2.8   Direct recycling 456
        • 6.2.2.8.1               Method overview            456
          • 6.2.2.8.1.1           Electrolyte separation    457
          • 6.2.2.8.1.2           Separating cathode and anode materials               457
          • 6.2.2.8.1.3           Binder removal 458
          • 6.2.2.8.1.4           Relithiation         458
          • 6.2.2.8.1.5           Cathode recovery and rejuvenation         459
          • 6.2.2.8.1.6           Hydrometallurgical-direct hybrid recycling            460
      • 6.2.2.9   Other methods 461
        • 6.2.2.9.1               Mechanochemical Pretreatment              461
        • 6.2.2.9.2               Electrochemical Method               461
        • 6.2.2.9.3               Ionic Liquids       462
      • 6.2.2.10                Recycling of Specific Components             462
        • 6.2.2.10.1             Anode (Graphite)            462
        • 6.2.2.10.2             Cathode               462
        • 6.2.2.10.3             Electrolyte          463
      • 6.2.2.11                Recycling of Beyond Li-ion Batteries         463
        • 6.2.2.11.1             Conventional vs Emerging Processes       464
        • 6.2.2.11.2             Li-Metal batteries            465
        • 6.2.2.11.3             Lithium sulfur batteries (Li–S)     466
        • 6.2.2.11.4             All-solid-state batteries (ASSBs) 467
        • 6.2.2.11.5             Closed-loop value chain for EV batteries 468
    • 6.2.3      Lithium-Ion Battery recycling value chain               469
    • 6.2.4      Circular life cycle              470
    • 6.2.5      Regulations        472
    • 6.2.6      Supply chain sustainability           474
    • 6.2.7      Company profiles             475

 

7              IN-CABIN DRIVER AND OCCUPANT MONITORING               480

  • 7.1          Overview            481
  • 7.2          Driver Monitoring Systems (DMS)            484
    • 7.2.1      Technology description 484
    • 7.2.2      Sensors (camera, radar, LiDAR)   485
      • 7.2.2.1   Passive and Active Sensors          485
      • 7.2.2.2   NIR/IR Imaging  486
        • 7.2.2.2.1               Infrared (IR) Cameras     488
      • 7.2.2.3   ToF Cameras      490
      • 7.2.2.4   In-Cabin Radars 492
      • 7.2.2.5   Capacitive Steering Sensors         493
      • 7.2.2.6   Torque Steering Sensors               495
    • 7.2.3      Driver attention, impairment alerts          497
      • 7.2.3.1   Eye Movement Tracking 497
      • 7.2.3.2   Brain Function Monitoring           499
    • 7.2.4      Regulation and safety standards 501
  • 7.3          Occupant Monitoring Systems   502
    • 7.3.1      Occupant Detection and Tracking              502
    • 7.3.2      Access Control and Authentication           502
    • 7.3.3      Driver Monitoring for Handover 502
    • 7.3.4      Post-Drive Analysis and Forensics             503
    • 7.3.5      Behaviour monitoring    503
  • 7.4          Cabin Technologies and Interfaces           505
    • 7.4.1      Displays                505
      • 7.4.1.1   Display types and evolution         505
      • 7.4.1.2   Main types of displays    509
      • 7.4.1.3   Display technologies for Automotive       510
      • 7.4.1.4   Companies         511
      • 7.4.1.5   LCD (Liquid Crystal Display)          511
        • 7.4.1.5.1               Technology description 511
        • 7.4.1.5.2               Advantages        512
        • 7.4.1.5.3               Automotive applications               513
      • 7.4.1.6   OLED (Organic Light Emitting Diode)        513
        • 7.4.1.6.1               Technology description 514
        • 7.4.1.6.2               Types of OLED technology            516
          • 7.4.1.6.2.1           Active-matrix OLEDs (AMOLED) 517
          • 7.4.1.6.2.2           Passive-matrix OLEDs (PMOLEDs)             519
          • 7.4.1.6.2.3           Transparent OLEDs (TOLEDs)       520
          • 7.4.1.6.2.4           Foldable/flexible OLED  521
          • 7.4.1.6.2.5           Tandem OLEDs  522
        • 7.4.1.6.3               Automotive applications               522
        • 7.4.1.6.4               Companies         523
      • 7.4.1.7   TFT-LCD (Thin Film Transistor LCD)            523
        • 7.4.1.7.1               Technology description 523
        • 7.4.1.7.2               Advantages        524
        • 7.4.1.7.3               TFT-LCD Backlight Technologies 525
        • 7.4.1.7.4               Diffusers              526
        • 7.4.1.7.5               Automotive applications               527
        • 7.4.1.7.6               Companies         528
      • 7.4.1.8   Thin-film electroluminescent (TFEL) displays        529
        • 7.4.1.8.1               Technology description 529
        • 7.4.1.8.2               Automotive applications               530
        • 7.4.1.8.3               Commercialization           531
      • 7.4.1.9   Head-Up Displays (HUDs)             532
        • 7.4.1.9.1               Technology description 532
        • 7.4.1.9.2               Automotive applications               533
      • 7.4.1.10                3D displays         533
        • 7.4.1.10.1             Technology description 533
        • 7.4.1.10.2             Automotive applications               534
      • 7.4.1.11                Computer-Generated Holography (CGH) 534
        • 7.4.1.11.1             Technology description 534
        • 7.4.1.11.2             Advantages        536
        • 7.4.1.11.3             Full 3D displays 536
        • 7.4.1.11.4             Next-gen heads-up displays (HUDs)         538
        • 7.4.1.11.5             Automotive applications               538
        • 7.4.1.11.6             Companies         539
      • 7.4.1.12                Light Field Displays (LFDs)             539
        • 7.4.1.12.1             Technology description 539
        • 7.4.1.12.2             Spatial light field displays              540
        • 7.4.1.12.3             Sequential light field displays      541
        • 7.4.1.12.4             Automotive applications               541
        • 7.4.1.12.5             Companies         542
      • 7.4.1.13                Spatial Light Modulators               543
        • 7.4.1.13.1             Technology description 543
        • 7.4.1.13.2             Liquid crystal (LC) spatial light modulators (SLMs)              543
          • 7.4.1.13.2.1         Fabricating LCOS SLMs   546
        • 7.4.1.13.3             Transmissive LC panels  547
        • 7.4.1.13.4             Optically addressed SLM               547
        • 7.4.1.13.5             Digital micromirror device (DMD) spatial light modulators (SLMs)               548
        • 7.4.1.13.6             Automotive applications               548
        • 7.4.1.13.7             Companies         549
      • 7.4.1.14                Flexible displays                550
        • 7.4.1.14.1             Technology description 550
          • 7.4.1.14.1.1         Organic LCDs      553
          • 7.4.1.14.1.2         Organic light-emitting diodes (OLEDs)     554
          • 7.4.1.14.1.3         Inorganic LEDs   555
          • 7.4.1.14.1.4         Flexible AMOLED              555
          • 7.4.1.14.1.5         Printed OLED      556
        • 7.4.1.14.2             Automotive applications               557
      • 7.4.1.15                Transparent displays       557
        • 7.4.1.15.1             Overview            557
        • 7.4.1.15.2             Automotive applications               558
      • 7.4.1.16                Curved displays 559
        • 7.4.1.16.1             Overview            559
        • 7.4.1.16.2             Automotive applications               559
        • 7.4.1.16.3             Companies         560
    • 7.4.2      AR/VR evolution               562
      • 7.4.2.1   Human Machine Interface Design             563
      • 7.4.2.2   Augmented reality navigation     564
      • 7.4.2.3   Gesture and gaze tracking for touchless control  565
    • 7.4.3      Transparent displays       566
    • 7.4.4      Voice assistants 566
    • 7.4.5      Biometrics and wellness monitoring        568
    • 7.4.6      Transparent OLED windows         569
    • 7.4.7      Customized screens        569
    • 7.4.8      Dual screen layouts         570
    • 7.4.9      Ambient lighting integration        570
    • 7.4.10    Display Technologies for Instrument Clusters      571
      • 7.4.10.1                Configurable Clusters     572
      • 7.4.10.2                Full LCD Clusters               572
      • 7.4.10.3                Augmented Reality Clusters        572
      • 7.4.10.4                Holographic Clusters       573
    • 7.4.11    Head-up displays (HUDs)              573
      • 7.4.11.1                Overview            573
      • 7.4.11.2                Trends  574
      • 7.4.11.3                HUD Display Technologies in automotive               575
        • 7.4.11.3.1             Projection displays          577
        • 7.4.11.3.2             Combiner HUD  578
        • 7.4.11.3.3             AR-HUDs             579
      • 7.4.11.4                HUD Content and Features          580
      • 7.4.11.5                Automotive models incorporating HUDs 581
      • 7.4.11.6                Advanced HUDs 582
        • 7.4.11.6.1             Panoramic HUD 582
        • 7.4.11.6.2             Holographic 3D displays 583
        • 7.4.11.6.3             Adaptive displays             583
        • 7.4.11.6.4             Conformal HU    584
  • 7.5          Autonomous Vehicle Interiors    585
    • 7.5.1      Self-driving vehicle interior concepts       585
    • 7.5.2      Reconfigurable seating  586
    • 7.5.3      Occupant productivity and entertainment            587
    • 7.5.4      Motion sickness solutions             588
  • 7.6          Companies         591
  • 7.7          Global market 2022-2040              619
    • 7.7.1      In-Cabin Sensors              619
    • 7.7.2      In-Cabin ToF Cameras    620
    • 7.7.3      IR Cameras         621
    • 7.7.4      In-Cabin Radar   621
    • 7.7.5      Capacitive Steering Sensors         622
    • 7.7.6      Displays                623
      • 7.7.6.1   By display type  623
      • 7.7.6.2   By display application     623

 

8              REFERENCES       623

 

List of Tables

  • Table 1. Key trends in automotive technologies. 28
  • Table 2. Robotaxi past efforts, current activities and future testing plans 61
  • Table 3. Market players in robotaxis.       64
  • Table 4. Robotaxi Fleet Size 2024-2040.   65
  • Table 5. Robotaxi Service Revenues 2024-2034.  65
  • Table 6. Hardware requirements for increasing levels of automation in self-driving vehicles.          69
  • Table 7.  Sensor requirements for different levels of driving automation in autonomous vehicles. 76
  • Table 8. Sensor suite costs for different levels of driving automation.        76
  • Table 9. Vehicle camera applications.      77
  • Table 10. Infrared cameras for automotive applications. 84
  • Table 11. Companies developing cameras for autonomous vehicles.         91
  • Table 12. Key ADAS sensors in automotive.          97
  • Table 13. Trends in automotive radar.     102
  • Table 14. 4D Imaging Radar operation.   107
  • Table 15. Companies in 4D imaging radar products/development.             107
  • Table 16. Front radar applications in autonomous vehicles.           112
  • Table 17. ADAS Side Radar Applications. 112
  • Table 18. Automotive lidar companies.   118
  • Table 19. Sensor combinations by autonomy level.           137
  • Table 20. Main Methods of Localisation. 140
  • Table 21. Perception and Localization companies.             144
  • Table 22. Global policies related to self-driving vehicles. 168
  • Table 23. Self-driving vehicles legislation.              170
  • Table 24. Automotive autonomous technology OEMs.    182
  • Table 25. Self-driving vehicle OEMs.         185
  • Table 26. Self-driving vehicle Tier 1 component companies.          191
  • Table 27. Self-driving vehicle technology start-ups.           194
  • Table 28. Self-driving vehicle semiconductor component companies.       196
  • Table 29. Self-driving vehicle fleet operators.      198
  • Table 30. Self-driving vehicle MaaS providers.     198
  • Table 31. Global Vehicle Sales by SAE Level 2022-2044.    202
  • Table 32. Global revenues for Autonomous Driving Sensors 2022-2040 (Billions USD).       204
  • Table 33. Radar Unit Sales by SAE Level, 2020-2040.          206
  • Table 34. Software-Defined Vehicle Level Guide 225
  • Table 35. Hardware requirements for SDVs.         233
  • Table 36. Companies developing automotive Vehicle-to-Everything (V2X) and connectivity technologies. 244
  • Table 37. Global revenues for Software-Defined Vehicles (SDV) by SDL Level 2022-2040 (Billions USD).      250
  • Table 38. Global volumes for Software-Defined Vehicles 2022-2040 (Units).          251
  • Table 39. Global revenues for the  Automotive V2X Market, segmented, 2022-2040 (Billions USD).             254
  • Table 40. Global revenues for the  Automotive V2X Market, segmented, 2022-2040 (Billions USD).             255
  • Table 41. Electric Vehicle Definitions.      258
  • Table 42. Electric Car Market Trends.      259
  • Table 43. Battery chemistries used in electric buses.        269
  • Table 44. Micro EV types              270
  • Table 45. Comparative analysis of EV battery technology.              292
  • Table 46. Commercial Li-ion battery cell composition.      293
  • Table 47.  Lithium-ion (Li-ion) battery supply chain.           296
  • Table 48. Types of lithium battery.           298
  • Table 49. Manufacturing methods for nano-silicon anodes.           307
  • Table 50. Markets and applications for silicon anodes.     309
  • Table 51. Thermal conductivities (κ) of common metallic, carbon, and ceramic fillers employed in TIMs.   324
  • Table 52. Commercial TIMs and their properties.               325
  • Table 53. Advantages and disadvantages of TIMs, by type.             326
  • Table 54. Thermal management and fire protection materials company profiles. 338
  • Table 55. Electric Vehicle Battery companies.      342
  • Table 56. BMS company profiles.              355
  • Table 57. Companies in automotive power semiconductors.         361
  • Table 58. EV charging levels.       371
  • Table 59. Global charging infrastructure installations.       378
  • Table 60. EV Charging players.    380
  • Table 61. Electric Vehicle Revenues 2022-2040 (Billions USD).      383
  • Table 62. Electric Vehicle Component Revenue Forecast 2022-2040 (Billion USD).               385
  • Table 63. Global revenues, by powertrain 2022-2040 (US$ Billion).             388
  • Table 64. Global EV Li-ion battery market 2022-2040 (GWh).        390
  • Table 65. Global EV Li-ion battery market 2022-2040 ($US Billion).             392
  • Table 66. Comparison of Solid-state Electrolyte Systems 394
  • Table 67. Types of solid-state electrolytes.            396
  • Table 68. Market segmentation and status for solid-state batteries.          396
  • Table 69.  Typical process chains for manufacturing key components and assembly of solid-state batteries.            398
  • Table 70. Comparison between liquid and solid-state batteries.  402
  • Table 71. Solid-state battery companies.               404
  • Table 72. Comparison of the theoretical energy densities of lithium-sulfur batteries versus other common battery types.   409
  • Table 73. Lithium sulfur battery companies.         411
  • Table 74. Comparison of cathode materials.         413
  • Table 75.  Layered transition metal oxide cathode materials for sodium-ion batteries.       414
  • Table 76. General cycling performance characteristics of common layered transition metal oxide cathode materials.                414
  • Table 77. Polyanionic materials for sodium-ion battery cathodes.               416
  • Table 78. Comparative analysis of different polyanionic materials.              417
  • Table 79.  Common types of Prussian Blue Analogue materials used as cathodes or anodes in sodium-ion batteries.                419
  • Table 80. Comparison of Na-ion battery anode materials.               421
  • Table 81. Comparison of carbon materials in sodium-ion battery anodes. 422
  • Table 82. Comparison between Natural and Synthetic Graphite. 424
  • Table 83. Properties of graphene, properties of competing materials, applications thereof.            428
  • Table 84. Comparison of carbon based anodes.  429
  • Table 85.  Alloying materials used in sodium-ion batteries.            430
  • Table 86. Na-ion electrolyte formulations.            431
  • Table 87. Sodium-ion battery companies.              433
  • Table 88. Typical lithium-ion battery recycling process flow.          444
  • Table 89. Main feedstock streams that can be recycled for lithium-ion batteries. 445
  • Table 90. Comparison of LIB recycling methods. 451
  • Table 91. Comparison of conventional and emerging processes for recycling beyond lithium-ion batteries.              464
  • Table 92. Closed-loop value chain for electric vehicle (EV) batteries.          468
  • Table 93. Li-ion battery recycling value chain.      469
  • Table 94. Potential circular life cycle for lithium-ion batteries.      471
  • Table 95. Regulations pertaining to the recycling and treatment of EOL batteries in the EU, USA, and China             472
  • Table 96. Companies developing battery recycling technologies. 475
  • Table 97. Interior Monitoring System (IMS), Driver-MS and Occupant-MS               481
  • Table 98. Sensors for In-Cabin Monitoring.            482
  • Table 99. In-cabin monitoring sensing technologies for interior monitoring systems (IMS) and driver/occupant monitoring systems in autonomous vehicles.       485
  • Table 100. TOF camera companies.          491
  • Table 101. Comparison of In-Cabin Radars.           492
  • Table 102. Companies developing Radar for In-Cabin Sensing.      493
  • Table 103. Companies developing Capacitive Sensors.     494
  • Table 104. Commercial examples of Sensors for In-Cabin Monitoring.       495
  • Table 105. Automotive display & backlight architectures 506
  • Table 106. Market trends in automotive displays.              508
  • Table 107. Automotive OEM display strategies by display type.   509
  • Table 108. Comparative analysis of common display technologies used in the automotive industry.            510
  • Table 109. Applications of LCDs in automotive and technology readiness level (TRL).         513
  • Table 110. OLED solutions in the automotive industry.    516
  • Table 111. Types of OLED technology      517
  • Table 112. Applications of OLEDs in automotive and technology readiness level (TRL).      522
  • Table 113. Companies developing OLED display technologies for automotive applications.              523
  • Table 114. Comparison of the key characteristics of TN (twisted nematic), IPS (in-plane switching), and VA (vertical alignment) LCD modes: 524
  • Table 115. Applications of TFT-LCDs in automotive and technology readiness level (TRL). 527
  • Table 116. Companies and organizations producing TFT-LCD (thin film transistor liquid crystal display) technology for the automotive industry.              528
  • Table 117. TFELs benefits and drawbacks.             529
  • Table 118. Applications of TFEL in automotive and technology readiness level (TRL) .         530
  • Table 119. Applications of HUDs in automotive and technology readiness level (TRL).        533
  • Table 120. Applications of 3D displays in automotive and technology readiness level (TRL).             534
  • Table 121. Computer-generated holography solutions    537
  • Table 122. Applications of CGHs in automotive and technology readiness level (TRL).        538
  • Table 123. Companies developing computer-generated holography.        539
  • Table 124.  Types of light field displays.  540
  • Table 125. Applications of LFDs in automotive and technology readiness level (TRL).          542
  • Table 126. Companies developing light field displays (LFDs) for automotive applications. 542
  • Table 127. Classifications of SLMs.            543
  • Table 128. LCOS-SLM assessment features.          544
  • Table 129. LCOS SLM performance factors.           545
  • Table 130. Manufacturing Methods for LCoS.       546
  • Table 131. Applications of SLMs in automotive and technology readiness level (TRL).         549
  • Table 132. Companies developing SLM for automotive applications.          549
  • Table 133. Applications of flexible displays in automotive and technology readiness level (TRL).    557
  • Table 134. Applications of transparent displays in automotive and technology readiness level (TRL).           558
  • Table 135. Applications of curved displays in automotive and technology readiness level (TRL).     559
  • Table 136. Companies developing curved automotive displays.   560
  • Table 137. Display technologies for Instrument clusters. 571
  • Table 138. Markets and applications for Head-up displays (HUDs).             574
  • Table 139. Commercial automotive HUDs.            576
  • Table 140. HUD vs other display types.   576
  • Table 141.  Companies developing AR-HUD technology for automotive applications.i        580
  • Table 142. Companies developing technologies for in-cabin driver and occupant monitoring.         591
  • Table 143. Global marker for In-Cabin Sensors, 2022-2040 (Billions USD). 619
  • Table 144. Global revenues for In-Cabin ToF Cameras 2022-2040 (US$ Millions).  620
  • Table 145. Global revenues for IR Cameras 2022-2040 (US$ Millions).       621
  • Table 146. Global revenues for In-Cabin Radar 2022-2040 (US$ Millions). 621
  • Table 147. Global revenues for Capacitive Steering Sensors 2022-2040 (US$ Millions).       622

 

List of Figures

  • Figure 1. Market map: Advanced Automotive Technologies.         38
  • Figure 2. Autonomous vehicle interior.   48
  • Figure 3. WeRide fully driverless Robotaxi.            62
  • Figure 4. Baidu fully driverless Robotaxi. 64
  • Figure 5. Robotaxi Fleet Size 2024-2040. 65
  • Figure 6. Robotaxi Service Revenues 2024-2034. 65
  • Figure 7. Autonomous Vehicle Sensors. 74
  • Figure 8. ADAS sensors - RGB Cameras for Autonomous Vehicles.               83
  • Figure 9. Faurecia emirror.           90
  • Figure 10. Types of an ultrasonic sensors.              126
  • Figure 11. Example of sensor fusion in self-driving vehicle.             133
  • Figure 12. Global Vehicle Sales by SAE Level 2022-2044.   203
  • Figure 13. Global revenues for Autonomous Driving Sensors 2022-2040 (Billions USD).     205
  • Figure 14. Radar Unit Sales by SAE Level, 2020-2040.         207
  • Figure 15. Dedicated Short Range Communication (DSRC) system.             213
  • Figure 16. C-V2X in 5G.  215
  • Figure 17. Global revenues for Software-Defined Vehicles (SDV) by SDL Level 2022-2040 (Billions USD).    251
  • Figure 18. Global volumes for Software-Defined Vehicles 2022-2040 (Units).         252
  • Figure 19. Connected and Software Defined Vehicle Services Revenues 2022-2040 (Billions USD). 253
  • Figure 20. Lithium Cell Design.    294
  • Figure 21. Functioning of a lithium-ion battery.   294
  • Figure 22. Li-ion battery cell pack.             295
  • Figure 23. Li-ion electric vehicle (EV) battery.       300
  • Figure 24. Silicon anode value chain.        305
  • Figure 25. Battery pack with a cell-to-pack design and prismatic cells.       315
  • Figure 26. Cell-to-chassis battery pack.   315
  • Figure 27. Application of thermal interface materials in automobiles.       318
  • Figure 28. EV battery components including TIMs.             319
  • Figure 29. (L-R) Surface of a commercial heatsink surface at progressively higher magnifications, showing tool marks that create a rough surface and a need for a thermal interface material.  321
  • Figure 30. Schematic of thermal interface materials used in a flip chip package.   322
  • Figure 31. Thermal grease.           323
  • Figure 32. Dispensing a bead of silicone-based gap filler onto the heat sink of a power electronics module.             324
  • Figure 33. Electric Vehicle Revenues 2022-2040 (Billions USD).    384
  • Figure 34. Electric Vehicle Component Revenue Forecast 2022-2040 (Billion USD).              386
  • Figure 35. Global revenues, by powertrain 2022-2040 (US$ Billion).           389
  • Figure 36. Global EV Li-ion battery market 2022-2040 (GWh).      391
  • Figure 37. Global EV Li-ion battery market 2022-2040 ($US Billion).            393
  • Figure 38. Schematic illustration of all-solid-state lithium battery.              395
  • Figure 39. ULTRALIFE thin film battery.   395
  • Figure 40. Examples of applications of thin film batteries.              399
  • Figure 41. Capacities and voltage windows of various cathode and anode materials.          400
  • Figure 42. Traditional lithium-ion battery (left), solid state battery (right).               402
  • Figure 43. Bulk type compared to thin film type SSB.        403
  • Figure 44. Schematic diagram of Lithium–sulfur battery. 408
  • Figure 45. Schematic of Prussian blue analogues (PBA).  418
  • Figure 46. Comparison of SEM micrographs of sphere-shaped natural graphite (NG; after several processing steps) and synthetic graphite (SG). 424
  • Figure 47. Overview of graphite production, processing and applications.                426
  • Figure 48. Schematic diagram of a multi-walled carbon nanotube (MWCNT).        427
  • Figure 49. Process for recycling lithium-ion batteries from EVs.    443
  • Figure 50. Typical direct, pyrometallurgical, and hydrometallurgical recycling methods for recovery of Li-ion battery active materials.               444
  • Figure 51. Mechanical separation flow diagram. 448
  • Figure 52. Recupyl mechanical separation flow diagram. 449
  • Figure 53. Flow chart of recycling processes of lithium-ion batteries (LIBs).             452
  • Figure 54. Hydrometallurgical recycling flow sheet.          453
  • Figure 55. Umicore recycling flow diagram.           455
  • Figure 56. Schematic of direct recyling process.  457
  • Figure 57. Schematic diagram of a Li-metal battery.          466
  • Figure 58. Schematic diagram of Lithium–sulfur battery. 467
  • Figure 59. Schematic illustration of all-solid-state lithium battery.              468
  • Figure 60. Circular life cycle of lithium ion-batteries.        472
  • Figure 61. Infineon DMS - REAL3™ ToF Imager.   491
  • Figure 62. Automotive technology roadmap.       506
  • Figure 63. Evolution of automotive displays.        508
  • Figure 64. LCD dashboard display.             513
  • Figure 65. OLED layer structure. 514
  • Figure 66. LED vs OLED displays. 514
  • Figure 67. Active-matrix OLED (AMOLED) schematic.        518
  • Figure 68. 2022 Mercedes EQE electric car display.            519
  • Figure 69. Passive-matrix OLED schematic.            519
  • Figure 70. LG display transparent OLED. 520
  • Figure 71. Flexible OLED incorporated into automotive headlight.              521
  • Figure 72. Audi 2022 A8 .              522
  • Figure 73. TFT-LCD based display component layout.        525
  • Figure 74. Lumineq® TFEL Display.            531
  • Figure 75. Lumineq’s ICEBrite.    532
  • Figure 76. Stereoscopic 3D display.           533
  • Figure 77. Holographic GPS system using multi-planar system prompts.   535
  • Figure 78. Ceres thin-film HoloFlekt® film integrated into windshield.       536
  • Figure 79. Basic architecture of a neareye light field display.         540
  • Figure 80. Structure of LCOS devices.      544
  • Figure 81. LG display stretchable display.               551
  • Figure 82. LG Signature OLED TV R.           551
  • Figure 83. Flexible display.           552
  • Figure 84. Samsung FLEX Hybrid foldable display.               553
  • Figure 85. Organic LCD with a 10-mm bend radius.            554
  • Figure 86. Foldable organic light-emitting diode (OLED) panel.     554
  • Figure 87. TCL printed OLED panel.           557
  • Figure 88. Transparent OLED schematic. 558
  • Figure 89.  AUO Smart Cockpit with 55-inch pillar-to-pillar curved display.               560
  • Figure 90. Cadillac XT4 33-inch curved LED touchscreen display   560
  • Figure 91. Continental Curved Ultrawide Display.               560
  • Figure 92. Hyundai 2024 Sonata panoramic curved display.           561
  • Figure 93. Peugeot 3008 fastback SUV curved wide-screen display.           561
  • Figure 94. TCL CSOT single, continuous flexible curved automotive display panel. 562
  • Figure 95. Augmented reality navigation.              565
  • Figure 96. LG transparent OLED display window. 569
  • Figure 97. Android Auto split-screen.      570
  • Figure 98. Projection display HUD.            578
  • Figure 99. Combiner Head-up Display.    579
  • Figure 100. AR HUD display.        580
  • Figure 101. Global marker for In-Cabin Sensors, 2022-2040 (Billions USD).              620
  • Figure 102. Global revenues for In-Cabin ToF Cameras 2022-2040 (US$ Millions). 620
  • Figure 103.  Global revenues for IR Cameras 2022-2040 (US$ Millions).    621
  • Figure 104. Global revenues for In-Cabin Radar 2022-2040 (US$ Millions).              621
  • Figure 105. Global revenues for Capacitive Steering Sensors 2022-2040 (US$ Millions).     623
  • Figure 106. Global market revenues by automotive display types 2018-2040 (billions USD).            623
  • Figure 107. Global market revenues by display application 2018-2034 (billions USD).         623

 

  

 

The Global Market for Advanced Automotive Technologies 2024-2040
The Global Market for Advanced Automotive Technologies 2024-2040
PDF download.

The Global Market for Advanced Automotive Technologies 2024-2040
The Global Market for Advanced Automotive Technologies 2024-2040
PDF and print edition (including tracked delivery).

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. 

To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select Bank Transfer (Invoice) as a payment method at checkout.