The Global Market for Advanced Bactericidal & Viricidal Coatings and Surfaces

0

Published July 2021 | 310 pages, 45 tables, 51 figures | Table of contents

The Global Market for Advanced Bactericidal & Viricidal Coatings and Surfaces provides an in depth market analysis of Advanced Bactericidal & Viricidal Coatings and Surface solutions in light of the COVID-19 crisis and the latest technology developments. Industry interest in these types of coatings products was previously hindered by high price, and mainly limited to food packaging and healthcare settings. There is now a significant market opportunity for companies to develop Advanced Bactericidal & Viricidal Coatings and Surface solutions that can counter the health hazards caused by bacteria and viruses for a wide range of applications. 

Advanced Bactericidal & Viricidal Coatings have numerous applications, for virtually all surfaces including: 

  • fabric (mask, gloves, doctor coats, curtains, bed sheet)
  • metal (lifts, doors handle, nobs, railings, public transport)
  • wood (furniture, floors and partition panels)
  • concrete (hospitals, clinics and isolation wards)
  • plastics (switches, kitchen and home appliances).

 

Report contents include: 

  • Current technology and materials used in Advanced Bactericidal & Viricidal Coatings and Surfaces. These include graphene, silicon dioxide nanoparticles, silver/nanosilver, photocatalytic coatings, zinc oxide/zinc oxide nanoparticles, hydrogels, nanocellulose, carbon nanotubes, fullerenes, gold nanoparticles, cerium oxide nanoparticles, chitosan/chitosan nanoparticles, copper nanoparticles, adaptive biomaterials, electroactive smart materials, 2D materials and antibacterial liquid metals.  
  • Market forecasts to 2030, broken down by applications, markets and types of coatings. 
  • Analysis of end user markets for Advanced Bactericidal & Viricidal Coatings and Surfaces including:
    • Interiors
      • Stainless steel, glass, plastics and ceramic surfaces.
      • Medical facilities and sensitive building applications.
      • Air conditioning and ventilation systems.
      • Hand rails.
      • Restroom accessories.
    • Medical
      • Medical hygiene-medical devices and surface hygiene.
      • Wall coatings for hospitals.
      • Hospital furniture.
      • Medical implants.
      • Wound dressings.
      • Catheters.
      • Pharmaceutical labs.
      • Fabric supplies, scrubs, linens, masks (medical textiles).
    • Packaging
      • Food packaging.
      • Polymeric films with anti-microbial properties for food packaging.
      • Nanosilver coatings.
      • Antibacterial coatings on plastic films.
    • Textiles
      • Antibacterial cotton textiles for clothing and apparel.
      • Interior textiles.
      • Automotive textiles.
    • Food processing
      • Food preparation facilities.
      • Food packaging.
      • Food processing equipment.
    • Filtration
      • Water purification.
      • Air filtration units.
    • Other
      • Fitness equipment.
      • Water coolers and ice-making equipment.
      • Automotive interiors.
      • Reusable water bottles, coffee cups and shopping bags.
      • Consumer goods-children's toys, personal care items and appliances.
  • Advanced Bactericidal & Viricidal Coatings and Surfaces Company profiles (Profiles of over 190 companies). Companies profiled include Kastus, ESC Brands, Mankiewicz, HeiQ, KCC, Xefco®, Polygiene, Reactive Surfaces, NEOTENY, Bio-Fence and many more. 

1              EXECUTIVE SUMMARY   23

  • 1.1          Antimicrobial additives and coatings market growing       23
    • 1.1.1      Advantages        23
    • 1.1.2      Properties           24
    • 1.1.3      Applications       24
  • 1.2          Antimicrobial and anti-viral coatings and surfaces             25
    • 1.2.1      Self-cleaning antimicrobial coatings and surfaces               25
      • 1.2.1.1   Bionic self-cleaning coatings        25
      • 1.2.1.2   Photocatalytic self-cleaning coatings       27
      • 1.2.1.3   Anti-fouling and easy-to-clean nanocoatings       29
    • 1.2.2      Anti-viral coatings and surfaces 30
    • 1.2.3      Nanomaterials applications          33
    • 1.2.4      Cleanliness of indoor and public areas driving demand for antimicrobials 34
    • 1.2.5      Application in healthcare environments 35
      • 1.2.5.1   COVID-19 and hospital-acquired infections (HAIs)              35
      • 1.2.5.2   Reusable Personal Protective Equipment (PPE)   35
      • 1.2.5.3   Facemask coatings           36
      • 1.2.5.4   Wipe on coatings             36
      • 1.2.5.5   Long-term mitigation of surface contamination with nanocoatings             36
  • 1.3          Main market players by antimicrobial technology area    37
  • 1.4          Global market size and opportunity to 2030          38
    • 1.4.1      End user markets for antimicrobial coatings         38
    • 1.4.2      Global forecast for antimicrobial coatings to 2030              39
  • 1.5          Market and technical challenges               42
  • 1.6          Market drivers and trends            43

 

2              ADVANCED MATERIALS USED IN BACTERICIDAL & VIRICIDAL COATINGS AND SURFACES   48

  • 2.1          Metallic-based coatings 48
  • 2.2          Polymer-based coatings 49
  • 2.3          Mode of action  51
  • 2.4          Nanosilver or silver-ion antimicrobial coatings and additives         52
    • 2.4.1      Properties           52
      • 2.4.1.1   Antiviral properties of AgNPs      53
    • 2.4.2      Mode of action  55
    • 2.4.3      Environmental and safety considerations              57
    • 2.4.4      SWOT analysis   58
    • 2.4.5      Products and applications             58
      • 2.4.5.1   Silver nanocoatings         58
      • 2.4.5.2   Antimicrobial silver paints            59
    • 2.4.6      Markets               59
      • 2.4.6.1   Textiles 60
      • 2.4.6.2   Wound dressings and medical    60
      • 2.4.6.3   Consumer products        60
      • 2.4.6.4   Air filtration        61
  • 2.5          Copper antimicrobial coatings and additives        61
    • 2.5.1      Properties           61
    • 2.5.2      Mode of action  62
    • 2.5.3      SWOT analysis   63
    • 2.5.4      Application in antimicrobial coatings       64
  • 2.6          Zinc oxide coatings and additives              64
    • 2.6.1      Properties           64
    • 2.6.2      Mode of action  65
    • 2.6.3      Application in antimicrobial coatings       65
  • 2.7          Photocatalytic coatings (Titanium Dioxide)           67
    • 2.7.1      Development of photocatalytic coatings 68
      • 2.7.1.1   Market drivers and trends            69
    • 2.7.2      Mode of action  71
    • 2.7.3      Glass coatings    71
    • 2.7.4      Interior coatings               72
    • 2.7.5      Improving indoor air quality        73
    • 2.7.6      Application in antimicrobial coatings       74
      • 2.7.6.1   Self-Cleaning coatings-glass         75
      • 2.7.6.2   Self-cleaning coatings-building and construction surfaces               75
      • 2.7.6.3   Photocatalytic oxidation (PCO) indoor air filters  77
      • 2.7.6.4   Water treatment             77
      • 2.7.6.5   Medical facilities               78
      • 2.7.6.6   Antimicrobial coating indoor light activation         78
  • 2.8          Gold Nanoparticles (AuNPs)        79
    • 2.8.1      Properties           79
    • 2.8.2      Mode of action  79
  • 2.9          Quaternary ammonium silane    82
    • 2.9.1      Mode of action  82
    • 2.9.2      Application in antimicrobial coatings       82
    • 2.9.3      Companies         82
  • 2.10        Biobased antimicrobial coatings 83
    • 2.10.1    Chitosan              83
      • 2.10.1.1                Properties           83
      • 2.10.1.2                Application in antimicrobial coatings       85
    • 2.10.2    Antimicrobial peptide (AMP) coatings     86
      • 2.10.2.1                Properties           86
      • 2.10.2.2                Mode of action  86
      • 2.10.2.3                Application in antimicrobial coatings       86
    • 2.10.3    Nanocellulose (Nanocrystalline, Nanofibrillated, and Bacterial Cellulose) 88
      • 2.10.3.1                Properties           88
      • 2.10.3.2                Application in antimicrobial coatings       89
    • 2.10.4    Adaptive biomaterials    90
      • 2.10.4.1                Properties           90
      • 2.10.4.2                Application in antimicrobial coatings       90
  • 2.11        Hydrogels            91
    • 2.11.1    Properties           91
    • 2.11.2    Application in antimicrobial coatings       92
  • 2.12        Antibacterial liquid metals           93
    • 2.12.1    Properties           93
  • 2.13        MXENES               93
    • 2.13.1    Properties           93
  • 2.14        LAYERED DOUBLE HYDROXIDES (LDH)     95
    • 2.14.1    Properties           95
  • 2.15        Self-cleaning antimicrobial coatings         95
    • 2.15.1    Hydrophilic coatings       96
    • 2.15.2    Hydrophobic coatings     96
      • 2.15.2.1                Properties           96
      • 2.15.2.2                Application in facemasks              97
  • 2.16        Superhydrophobic coatings and surfaces               98
    • 2.16.1    Properties           98
      • 2.16.1.1                Antibacterial use              99
  • 2.17        Oleophobic and omniphobic coatings and surfaces           99
    • 2.17.1    SLIPS     100
    • 2.17.2    Covalent bonding             101
    • 2.17.3    Step-growth graft polymerization             101
  • 2.18        Other antimicrobial materials additives in coatings            103
    • 2.18.1    Graphene           103
      • 2.18.1.1                Properties           103
      • 2.18.1.2                Graphene oxide 104
      • 2.18.1.3                Anti-bacterial activity      104
      • 2.18.1.4                Reduced graphene oxide (rGO) 105
      • 2.18.1.5                Application in antimicrobial coatings       107
    • 2.18.2    Silicon dioxide/silica nanoparticles (Nano-SiO2)  107
      • 2.18.2.1                Properties           107
      • 2.18.2.2                Application in antimicrobial coatings       108
    • 2.18.3    Polyhexamethylene biguanide (PHMB)  109
      • 2.18.3.1                Properties           109
      • 2.18.3.2                Application in antimicrobial coatings       109
    • 2.18.4    Single-walled carbon nanotubes (SWCNTs)           109
      • 2.18.4.1                Properties           109
      • 2.18.4.2                Application in antimicrobial coatings       110
    • 2.18.5    Fullerenes           110
      • 2.18.5.1                Properties           110
      • 2.18.5.2                Application in antimicrobial coatings       111
    • 2.18.6    Cerium oxide nanoparticles         112
      • 2.18.6.1                Properties           112
    • 2.18.7    Iron oxide nanoparticles               112
      • 2.18.7.1                Properties           112
    • 2.18.8    Magnesium oxide nanoparticles 113
      • 2.18.8.1                Properties           113
    • 2.18.9    Piezoelectrics    114

 

3              ENVIRONMENTAL AND REGULATORY      115

 

4              MARKETS FOR ADVANCED BACTERICIDAL & VIRICIDAL COATINGS AND SURFACES               117

  • 4.1          HOUSEHOLD AND INDOOR SURFACES     117
    • 4.1.1      Market drivers and trends            117
    • 4.1.2      Applications       117
      • 4.1.2.1   Self-cleaning and easy-to-clean 117
      • 4.1.2.2   Indoor pollutants and air quality                117
    • 4.1.3      Global market size           119
  • 4.2          MEDICAL & HEALTHCARE SETTINGS         121
    • 4.2.1      Market drivers and trends            121
    • 4.2.2      Applications       122
      • 4.2.2.1   Medical surfaces and Hospital Acquired Infections (HAI) 123
      • 4.2.2.2   Wound dressings             124
      • 4.2.2.3   Medical equipment and instruments       124
      • 4.2.2.4   Fabric supplies scrubs, linens, masks (medical textiles)    125
      • 4.2.2.5   Medical implants              125
    • 4.2.3      Global market size           127
  • 4.3          CLOTHING AND TEXTILES              129
    • 4.3.1      Market drivers and trends            129
    • 4.3.2      Applications       129
      • 4.3.2.1   Antimicrobial clothing    130
    • 4.3.3      Global market size           135
  • 4.4          FOOD & BEVERAGE PRODUCTION AND PACKAGING         138
    • 4.4.1      Market drivers and trends            138
    • 4.4.2      Applications       138
      • 4.4.2.1   Antimicrobial coatings in food processing equipment, conveyor belts and preparation surfaces    139
      • 4.4.2.2   Antimicrobial coatings and films in food packaging            140
    • 4.4.3      Global market size           141
  • 4.5          OTHER MARKETS              143
    • 4.5.1      Automotive and transportation interiors                143
    • 4.5.2      Water and air filtration  145

 

5              ADVANCED BACTERICIDAL AND VIRICIDAL COATINGS COMPANIES             148 (193 profiles)

 

6              RECENT RESEARCH IN ACADEMIA             296

 

7              AIMS AND OBJECTIVES OF THE STUDY     297

 

8              RESEARCH METHODOLOGY         298

 

9              REFERENCES       299

 

TABLES

  • Table 1. Summary for bionic self-cleaning nanocoatings. 25
  • Table 2. Market summary for photocatalytic self-cleaning coatings.           27
  • Table 3. Summary of anti-fouling and easy-to-clean coatings.       29
  • Table 4. Anti-viral nanomaterials that inactivate different types of viruses, in preclinical assays in vitro.     32
  • Table 5. Applications of nanomaterials used in Advanced Bactericidal & Viricidal Coatings and Surfaces.   33
  • Table 6. Main market players by antimicrobial technology area.  37
  • Table 7. End user markets for antimicrobial coatings.       38
  • Table 8. Total global revenues for antimicrobial coatings, 2019-2030, USD.             39
  • Table 9. Total global revenues for antimicrobial coatings, 2019-2030, millions USD, conservative estimate, by coatings type.     41
  • Table 10. Market and technical challenges for antimicrobial coatings.       42
  • Table 11. Market drivers and trends in    43
  • Table 12. Polymer-based coatings for antimicrobial coatings and surfaces.             49
  • Table 13. Growth Modes of Bacteria and characteristics. 51
  • Table 14. Antibacterial properties of AgNPs.        53
  • Table 15. Antiviral properties of AgNPs. 54
  • Table 16. SWOT analysis for application of nanosilver and silver-ion antimicrobial coatings.            58
  • Table 17. Markets and applications for nanosilver-based Advanced Bactericidal & Viricidal Coatings and Surfaces. 59
  • Table 18. Antibacterial applications of Cu and CuO-based nanoparticles. 61
  • Table 19. SWOT analysis for application of copper antimicrobial coatings.               63
  • Table 20. Antibacterial effects of ZnO NPs in different bacterial species.  66
  • Table 21. Photocatalytic coatings- principles, properties and applications.               67
  • Table 22. Development of photocatalytic coatings, by generation.             68
  • Table 23. Antibacterial applications of Au-based nanoparticles.   79
  • Table 24. Companies developing antimicrobial Silane Quaternary Ammonium Compounds.           82
  • Table 25. Mechanism of chitosan antimicrobial action.    84
  • Table 26. Types of antibacterial AMP coatings.    87
  • Table 27. AMP contact-killing surfaces.   87
  • Table 28. Types of adaptive biomaterials in antimicrobial coatings.            90
  • Table 29. Types of antibacterial hydrogels.           92
  • Table 30. Contact angles of hydrophilic, super hydrophilic, hydrophobic and superhydrophobic surfaces. 97
  • Table 31. Applications of oleophobic & omniphobic coatings.       102
  • Table 32. Graphene properties relevant to application in coatings.             103
  • Table 33. Bactericidal characters of graphene-based materials.   106
  • Table 34. Markets and applications for antimicrobial and antiviral graphene coatings.       107
  • Table 35. Types of carbon-based nanoparticles as antimicrobial agent, their mechanisms of action and characteristics.                111
  • Table 36. Global antimicrobial technology regulations.    115
  • Table 37: Market drivers and trends for antimicrobial coatings in household and indoor surface market.  117
  • Table 38: Market for antimicrobial coatings in household and indoor surfaces to 2030, by revenues and types.     119
  • Table 39: Market drivers and trends for antimicrobial coatings in medicine and healthcare.            121
  • Table 40: Nanocoatings applied in the medical industry-type of coating, nanomaterials utilized, benefits and applications.       123
  • Table 41. Types of advanced antimicrobial medical device coatings.           125
  • Table 42. Types of advanced coatings applied in medical implants.             126
  • Table 43. Nanomaterials utilized in medical implants.      126
  • Table 44. Market for antimicrobial coatings in medical and healthcare settings to 2030, by revenues and types.   128
  • Table 45: Market drivers and trends for antimicrobial coatings in the textiles and apparel industry.             129
  • Table 46. Applications in textiles, by advanced materials type and benefits thereof.           130
  • Table 47. Advanced coatings applied in the textiles industry-type of coating, nanomaterials utilized, benefits and applications.       132
  • Table 48. Market for antimicrobial coatings in clothing and textiles to 2030, by revenues and types.          136
  • Table 49. Market drivers and trends for antimicrobial coatings in the packaging market.  138
  • Table 50. Market for antimicrobial coatings in food and beverage production & packaging to 2030, by revenues and types.   141
  • Table 51. Advanced coatings applied in the automotive industry. 143
  • Table 52. Applications in air and water filters, by advanced materials type and benefits thereof.  146
  • Table 53. Advanced Bactericidal & Viricidal Coatings and Surfaces development in academia.        296

 

FIGURES

  • Figure 1. Self-cleaning superhydrophobic coating schematic.        26
  • Figure 2. Principle of superhydrophilicity.              28
  • Figure 3. Schematic of photocatalytic air purifying pavement.      29
  • Figure 4. Schematic of anti-viral coating using nano-actives for inactivation of any adhered virus on the surfaces. 32
  • Figure 5. Face masks coated with antibacterial & antiviral nanocoating.   36
  • Figure 6. Global revenues for antimicrobial coatings, 2019-2030, USD, conservative estimate.       40
  • Figure 7. Total global revenues for Advanced Bactericidal & Viricidal Coatings, 2019-2030, millions USD, conservative estimate, by coatings type.          41
  • Figure 8. Antibacterial mechanisms of metal and metallic oxide nanoparticles.     48
  • Figure 9. Antiviral mechanism of silver nanoparticles.      54
  • Figure 10. Antibacterial modes of action of, and bacterial resistance towards silver.           56
  • Figure 11.  Antibacterial activities of silver nanoparticles.               57
  • Figure 12. Antibacterial modes of action of, and bacterial resistance towards copper.       63
  • Figure 13. Schematic of antibacterial activity of ZnO NPs.               66
  • Figure 14. Titanium dioxide-coated glass (left) and ordinary glass (right). 70
  • Figure 15. Schematic of photocatalytic indoor air purification filter.           70
  • Figure 16. Schematic indoor air filtration.              73
  • Figure 17. Mechanism of photocatalysis on a surface treated with TiO2 nanoparticles.      74
  • Figure 18.  Schematic showing the self-cleaning phenomena on superhydrophilic surface.              75
  • Figure 19. Schematic of photocatalytic air purifying pavement.   76
  • Figure 20.  Self-Cleaning mechanism utilizing photooxidation.      76
  • Figure 21. Photocatalytic oxidation (PCO) air filter.            77
  • Figure 22. Schematic of photocatalytic water purification.              78
  • Figure 23. Antibacterial mechanisms and effects of functionalized gold nanoparticles.       81
  • Figure 24. TEM images of Burkholderia seminalis treated with (a, c) buffer (control) and (b, d) 2.0 mg/mL chitosan; (A: additional layer; B: membrane damage).               84
  • Figure 25. Antimicrobial peptides mode of action.             86
  • Figure 26. Types of nanocellulose.            89
  • Figure 27. Applications of antibacterial hydrogels              91
  • Figure 28. Structure diagram of Ti3C2Tx.                94
  • Figure 29. (a) Water drops on a lotus leaf.             96
  • Figure 30. A schematic of (a) water droplet on normal hydrophobic surface with contact angle greater than 90° and (b) water droplet on a superhydrophobic surface with a contact angle > 150°.              97
  • Figure 31. Contact angle on superhydrophobic coated surface.    98
  • Figure 32. Self-cleaning nanocellulose dishware. 99
  • Figure 33. SLIPS repellent coatings.          101
  • Figure 34. Omniphobic coatings.                102
  • Figure 35. Antimicrobial activity of Graphene oxide (GO).              105
  • Figure 36. Hydrophobic easy-to-clean coating.    108
  • Figure 37. Mechanism of antimicrobial activity of carbon nanotubes.       110
  • Figure 38. Fullerene schematic. 111
  • Figure 39. Schematic representation of the antibacterial mechanism of cerium-based materials.  112
  • Figure 40. Piezoelectric antimicrobial mechanism.             114
  • Figure 41. Market for antimicrobial coatings in household and indoor surfaces to 2030, by revenues and types.    120
  • Figure 42. Nano-coated self-cleaning touchscreen.           123
  • Figure 43. Anti-bacertial sol-gel nanoparticle silver coating.           124
  • Figure 44. Market for antimicrobial coatings in medical and healthcare settings to 2030, by revenues and types.  128
  • Figure 45. Omniphobic-coated fabric.     130
  • Figure 46. Market for antimicrobial coatings in clothing and textiles to 2030, by revenues and types.         137
  • Figure 47. Steps during food processing and where contamination might occur from various sources.        140
  • Figure 48.  Oso fresh food packaging incorporating antimicrobial silver.   140
  • Figure 49. Market for antimicrobial coatings in food and beverage production & packaging to 2030, by revenues and types.   142
  • Figure 50. CuanSave film.             180
  • Figure 51. Lab tests on DSP coatings.       186
  • Figure 52. GermStopSQ mechanism of action.     189
  • Figure 53. GrapheneCA anti-bacterial and anti-viral coating.          198
  • Figure 54. NOx reduction with TioCem®. 205
  • Figure 55. Microlyte® Matrix bandage for surgical wounds.           209
  • Figure 56. Self-cleaning nanocoating applied to face masks.          213
  • Figure 57. NanoSeptic surfaces. 244
  • Figure 58. NascNanoTechnology personnel shown applying MEDICOAT to airport luggage carts.   249
  • Figure 59. Heavy bacterial recovery from untreated fiber (left) versus Ultra-Fresh antimicrobial treated fiber (right) after testing using the ISO 20743 test method (Staphylococcus aureus test organism).      282
  • Figure 60. V-CAT® photocatalyst mechanism.      288
  • Figure 61. Applications of Titanystar.       293

 

 

 

The Global Market for Advanced Bactericidal & Viricidal Coatings and Surfaces 2021
The Global Market for Advanced Bactericidal & Viricidal Coatings and Surfaces 2021
PDF download.

 
The Global Market for Advanced Bactericidal & Viricidal Coatings and Surfaces 2021
The Global Market for Advanced Bactericidal & Viricidal Coatings and Surfaces 2021
Print edition (including tracked delivery globally).
 
The Global Market for Advanced Bactericidal & Viricidal Coatings and Surfaces 2021
The Global Market for Advanced Bactericidal & Viricidal Coatings and Surfaces 2021
PDF plus Print edition (including tracked delivery globally).
 
To purchase by invoice (bank transfer) contact info@futuremarketsinc.com or select this option after adding to cart.