The Global Market for Advanced Bio-based and Sustainable Materials 2025-2035

0

cover

cover

  • Published: December 2024
  • Pages: 2,329
  • Tables: 534
  • Figures: 623

 

The global market for advanced bio-based and sustainable materials is experiencing rapid growth driven by increasing environmental concerns, regulatory pressure for sustainable solutions, and growing consumer demand for eco-friendly products. These materials are being developed to replace petroleum-based and other non-sustainable materials across multiple industries while offering improved environmental performance and circularity.

Key drivers include:

  • Push to reduce carbon emissions and environmental impact
  • Government regulations promoting sustainable materials
  • Corporate sustainability commitments
  • Consumer preference for eco-friendly products
  • Need for alternatives to petroleum-based materials
  • Advancement in production technologies
  • Investment in bio-based manufacturing

 

The market encompasses multiple material categories including bio-based chemicals, polymers, composites, and advanced materials for construction, packaging, textiles, and electronics applications. Current market size is estimated at over $100 billion and growing at 10-15% annually, with bio-based polymers and sustainable packaging representing the largest segments.

Significant opportunities exist in:

  • Drop-in replacements for petroleum-based chemicals
  • Novel bio-based polymers with enhanced properties
  • Natural fiber composites for automotive and construction
  • Sustainable building materials and green steel
  • Bio-based packaging solutions
  • Next-generation sustainable textiles
  • Electronics from renewable materials

 

The outlook remains highly positive as technologies mature and costs decrease. Growth is expected to accelerate as manufacturers increase adoption of sustainable materials to meet environmental goals and consumer demands. Asia Pacific represents the fastest growing market, while Europe leads in technology development and adoption.

This extensive 2200+ page report provides detailed market data and analysis of the rapidly growing advanced bio-based and sustainable materials market, covering bio-based chemicals, polymers, composites, construction materials, packaging, textiles, adhesives, and electronics applications. The report includes granular 10-year forecasts, competitive analysis of over 1,000 companies, and in-depth assessment of technologies, manufacturing processes, and end-use markets.

Key Report Features:

  • Comprehensive analysis of bio-based chemicals and intermediates including starch, glucose, lignin, and plant-based feedstocks
  • Detailed market sizing and forecasts for bio-based polymers and plastics including PLA, PHA, bio-PE, bio-PET
  • Assessment of natural fiber composites and wood composites market opportunities
  • Analysis of sustainable construction materials including bio-concrete, green steel, and thermal materials
  • Deep dive into bio-based packaging applications and markets
  • Coverage of sustainable textiles and bio-based leather alternatives
  • Evaluation of bio-based adhesives, coatings and electronic materials
  • Company profiles of over 1,000 companies developing advanced sustainable materials. Companies profiled include ADBioplastics, AlgiKnit, Allbirds Materials, Ananas Anam, Anellotech, Avantium, Basilisk, BASF, Blue Planet, Bluepha, Bolt Threads, Borealis, Braskem, Carbios, CarbonCure, Cargill, Cathay Biotech, CJ Biomaterials, Danimer Scientific, DuPont, Ecologic Brands, Ecovative, FlexSea, Futamura, Genomatica, GRECO, Helian Polymers BV, Huitong Biomaterials, Interface, Kaneka, Kingfa Science and Technology, Lactips, Loliware, MarinaTex, Modern Meadow, Mogu, Mushroom Packaging, MycoWorks, Natural Fiber Welding, NatureWorks, Newlight Technologies, Notpla, Novamont, Novozymes, Orange Fiber, Origin Materials, Ourobio, Paptic, Plantic Technologies, PlantSea, Prometheus Materials, Roquette, RWDC Industries, Solidia Technologies, Spinnova, Succinity, Sulapac, Sulzer, TerraVerdae Bioworks, Tipa Corp, Total Corbion, TotalEnergies Corbion, Trinseo, UPM, Vitrolabs, Wear Once, Xampla, Yield10 Bioscience, Zoa BioFabrics and more....

     

Detailed Coverage Includes:

  • Raw material sourcing and feedstock analysis
  • Production processes and manufacturing methods
  • Material properties and performance characteristics
  • End-use applications and market opportunities
  • Competitive landscape and company strategies
  • Technology roadmaps and future outlook
  • Regional market analysis
  • Regulatory considerations
  • Sustainability metrics and environmental impact

 

The report segments the market by:

  • Material Type:
    • Bio-based chemicals and intermediates
    • Bio-based polymers and plastics
    • Natural fiber composites
    • Sustainable construction materials
    • Bio-based packaging
    • Sustainable textiles
    • Bio-based adhesives and coatings
    • Sustainable electronics
  • End-Use Markets:
    • Packaging
    • Construction
    • Automotive
    • Textiles & Apparel
    • Electronics
    • Consumer Products
    • Industrial Applications
  • Geographic Regions:
    • North America
    • Europe
    • Asia Pacific
    • Rest of World

 

The report provides essential market intelligence for:

  • Chemical and materials companies
  • Packaging manufacturers
  • Construction companies
  • Textile and apparel brands
  • Electronics manufacturers
  • Investment firms and VCs
  • R&D organizations

 

1        RESEARCH METHODOLOGY              106

 

2             INTRODUCTION          107

  • 2.1        Definition of Sustainable and Bio-based Materials 107
  • 2.2        Importance and Benefits of Bio-based and Sustainable Materials              108

 

3             BIOBASED CHEMICALS AND INTERMEDIATES       109

  • 3.1        BIOREFINERIES            109
  • 3.2        BIO-BASED FEEDSTOCK AND LAND USE    110
  • 3.3        PLANT-BASED                113
    • 3.3.1    STARCH             113
      • 3.3.1.1 Overview           113
      • 3.3.1.2 Sources             113
      • 3.3.1.3 Global production      114
      • 3.3.1.4 Lysine 115
      • 3.3.1.4.1           Source                115
      • 3.3.1.4.2           Applications   116
      • 3.3.1.4.3           Global production      116
      • 3.3.1.5 Glucose             117
      • 3.3.1.5.1           HMDA 118
      • 3.3.1.5.1.1      Overview           118
      • 3.3.1.5.1.2      Sources             119
      • 3.3.1.5.1.3      Applications   119
      • 3.3.1.5.1.4      Global production      119
      • 3.3.1.5.2           1,5-diaminopentane (DA5)   120
      • 3.3.1.5.2.1      Overview           120
      • 3.3.1.5.2.2      Sources             120
      • 3.3.1.5.2.3      Applications   121
      • 3.3.1.5.2.4      Global production      121
      • 3.3.1.5.3           Sorbitol              122
      • 3.3.1.5.3.1      Isosorbide        122
      • 3.3.1.5.3.1.1  Overview           122
      • 3.3.1.5.3.1.2  Sources             123
      • 3.3.1.5.3.1.3  Applications   123
      • 3.3.1.5.3.1.4  Global production      123
      • 3.3.1.5.4           Lactic acid       124
      • 3.3.1.5.4.1      Overview           124
      • 3.3.1.5.4.2      D-lactic acid   124
      • 3.3.1.5.4.3      L-lactic acid    125
      • 3.3.1.5.4.4      Lactide               125
      • 3.3.1.5.5           Itaconic acid  127
      • 3.3.1.5.5.1      Overview           127
      • 3.3.1.5.5.2      Sources             127
      • 3.3.1.5.5.3      Applications   128
      • 3.3.1.5.5.4      Global production      128
      • 3.3.1.5.6           3-HP     129
      • 3.3.1.5.6.1      Overview           129
      • 3.3.1.5.6.2      Sources             129
      • 3.3.1.5.6.3      Applications   130
      • 3.3.1.5.6.4      Global production      130
      • 3.3.1.5.6.5      Acrylic acid     131
      • 3.3.1.5.6.5.1  Overview           131
      • 3.3.1.5.6.5.2  Applications   131
      • 3.3.1.5.6.5.3  Global production      132
      • 3.3.1.5.6.6      1,3-Propanediol (1,3-PDO)   133
      • 3.3.1.5.6.6.1  Overview           133
      • 3.3.1.5.6.6.2  Applications   133
      • 3.3.1.5.6.6.3  Global production      133
      • 3.3.1.5.7           Succinic Acid 134
      • 3.3.1.5.7.1      Overview           134
      • 3.3.1.5.7.2      Sources             134
      • 3.3.1.5.7.3      Applications   135
      • 3.3.1.5.7.4      Global production      135
      • 3.3.1.5.7.5      1,4-Butanediol (1,4-BDO)     136
      • 3.3.1.5.7.5.1  Overview           136
      • 3.3.1.5.7.5.2  Applications   136
      • 3.3.1.5.7.5.3  Global production      137
      • 3.3.1.5.7.6      Tetrahydrofuran (THF)               138
      • 3.3.1.5.7.6.1  Overview           138
      • 3.3.1.5.7.6.2  Applications   138
      • 3.3.1.5.7.6.3  Global production      138
      • 3.3.1.5.8           Adipic acid      139
      • 3.3.1.5.8.1      Overview           139
      • 3.3.1.5.8.2      Applications   140
      • 3.3.1.5.8.3      Caprolactame               140
      • 3.3.1.5.8.3.1  Overview           140
      • 3.3.1.5.8.3.2  Applications   141
      • 3.3.1.5.8.3.3  Global production      141
      • 3.3.1.5.9           Isobutanol       142
      • 3.3.1.5.9.1      Overview           142
      • 3.3.1.5.9.2      Sources             143
      • 3.3.1.5.9.3      Applications   143
      • 3.3.1.5.9.4      Global production      143
      • 3.3.1.5.9.5      p-Xylene            144
      • 3.3.1.5.9.5.1  Overview           144
      • 3.3.1.5.9.5.2  Sources             144
      • 3.3.1.5.9.5.3  Applications   145
      • 3.3.1.5.9.5.4  Global production      145
      • 3.3.1.5.9.5.5  Terephthalic acid         146
      • 3.3.1.5.9.5.6  Overview           146
      • 3.3.1.5.10        1,3 Proppanediol         147
      • 3.3.1.5.10.1.1 Overview           147
      • 3.3.1.5.10.2   Sources             147
      • 3.3.1.5.10.3   Applications   148
      • 3.3.1.5.10.4   Global production      148
      • 3.3.1.5.11        Monoethylene glycol (MEG) 149
      • 3.3.1.5.11.1   Overview           149
      • 3.3.1.5.11.2   Sources             149
      • 3.3.1.5.11.3   Applications   149
      • 3.3.1.5.11.4   Global production      150
      • 3.3.1.5.12        Ethanol              150
      • 3.3.1.5.12.1   Overview           150
      • 3.3.1.5.12.2   Sources             151
      • 3.3.1.5.12.3   Applications   151
      • 3.3.1.5.12.4   Global production      152
      • 3.3.1.5.12.5   Ethylene            152
      • 3.3.1.5.12.5.1 Overview           152
      • 3.3.1.5.12.5.2 Applications   153
      • 3.3.1.5.12.5.3 Global production      153
      • 3.3.1.5.12.5.4 Propylene         154
      • 3.3.1.5.12.5.5 Vinyl chloride 155
      • 3.3.1.5.12.6   Methly methacrylate 157
    • 3.3.2    SUGAR CROPS             158
      • 3.3.2.1 Saccharose     158
      • 3.3.2.1.1           Aniline 159
      • 3.3.2.1.1.1      Overview           159
      • 3.3.2.1.1.2      Applications   159
      • 3.3.2.1.1.3      Global production      160
      • 3.3.2.1.2           Fructose            160
      • 3.3.2.1.2.1      Overview           160
      • 3.3.2.1.2.2      Applications   160
      • 3.3.2.1.2.3      Global production      161
      • 3.3.2.1.2.4      5-Hydroxymethylfurfural (5-HMF)    161
      • 3.3.2.1.2.4.1  Overview           161
      • 3.3.2.1.2.4.2  Applications   162
      • 3.3.2.1.2.4.3  Global production      162
      • 3.3.2.1.2.5      5-Chloromethylfurfural (5-CMF)       163
      • 3.3.2.1.2.5.1  Overview           163
      • 3.3.2.1.2.5.2  Applications   163
      • 3.3.2.1.2.5.3  Global production      164
      • 3.3.2.1.2.6      Levulinic Acid 164
      • 3.3.2.1.2.6.1  Overview           164
      • 3.3.2.1.2.6.2  Applications   164
      • 3.3.2.1.2.6.3  Global production      165
      • 3.3.2.1.2.7      FDME  166
      • 3.3.2.1.2.7.1  Overview           166
      • 3.3.2.1.2.7.2  Applications   166
      • 3.3.2.1.2.7.3  Global production      166
      • 3.3.2.1.2.8      2,5-FDCA          167
      • 3.3.2.1.2.8.1  Overview           167
      • 3.3.2.1.2.8.2  Applications   167
      • 3.3.2.1.2.8.3  Global production      168
    • 3.3.3    LIGNOCELLULOSIC BIOMASS           168
      • 3.3.3.1 Levoglucosenone        168
      • 3.3.3.1.1           Overview           168
      • 3.3.3.1.2           Applications   168
      • 3.3.3.1.3           Global production      169
      • 3.3.3.2 Hemicellulose               169
      • 3.3.3.2.1           Overview           169
      • 3.3.3.2.2           Biochemicals from hemicellulose   170
      • 3.3.3.2.3           Global production      171
      • 3.3.3.2.4           Furfural              171
      • 3.3.3.2.4.1      Overview           171
      • 3.3.3.2.4.2      Applications   172
      • 3.3.3.2.4.3      Global production      172
      • 3.3.3.2.4.4      Furfuyl alcohol              173
      • 3.3.3.2.4.4.1  Overview           173
      • 3.3.3.2.4.4.2  Applications   173
      • 3.3.3.2.4.4.3  Global production      173
      • 3.3.3.3 Lignin  174
      • 3.3.3.3.1           Overview           174
      • 3.3.3.3.2           Sources             174
      • 3.3.3.3.3           Applications   176
      • 3.3.3.3.3.1      Aromatic compounds              176
      • 3.3.3.3.3.1.1  Benzene, toluene and xylene               176
      • 3.3.3.3.3.1.2  Phenol and phenolic resins  177
      • 3.3.3.3.3.1.3  Vanillin               177
      • 3.3.3.3.3.2      Polymers           178
      • 3.3.3.3.4           Global production      179
    • 3.3.4    PLANT OILS     180
      • 3.3.4.1 Overview           180
      • 3.3.4.2 Glycerol             180
      • 3.3.4.2.1           Overview           180
      • 3.3.4.2.2           Applications   181
      • 3.3.4.2.3           Global production      181
      • 3.3.4.2.4           MPG     182
      • 3.3.4.2.4.1      Overview           182
      • 3.3.4.2.4.2      Applications   182
      • 3.3.4.2.4.3      Global production      183
      • 3.3.4.2.5           ECH      183
      • 3.3.4.2.5.1      Overview           183
      • 3.3.4.2.5.2      Applications   183
      • 3.3.4.2.5.3      Global production      184
      • 3.3.4.3 Fatty acids       185
      • 3.3.4.3.1           Overview           185
      • 3.3.4.3.2           Applications   185
      • 3.3.4.3.3           Global production      185
      • 3.3.4.4 Castor oil          186
      • 3.3.4.4.1           Overview           186
      • 3.3.4.4.2           Sebacic acid  186
      • 3.3.4.4.2.1      Overview           186
      • 3.3.4.4.2.2      Applications   186
      • 3.3.4.4.2.3      Global production      187
      • 3.3.4.4.3           11-Aminoundecanoic acid (11-AA)  187
      • 3.3.4.4.3.1      Overview           187
      • 3.3.4.4.3.2      Applications   188
      • 3.3.4.4.3.3      Global production      188
      • 3.3.4.5 Dodecanedioic acid (DDDA)                189
      • 3.3.4.5.1           Overview           189
      • 3.3.4.5.2           Applications   189
      • 3.3.4.5.3           Global production      190
      • 3.3.4.6 Pentamethylene diisocyanate            190
      • 3.3.4.6.1           Overview           190
      • 3.3.4.6.2           Applications   191
      • 3.3.4.6.3           Global production      191
    • 3.3.5    NON-EDIBIBLE MILK 192
      • 3.3.5.1 Casein                192
      • 3.3.5.1.1           Overview           192
      • 3.3.5.1.2           Applications   192
      • 3.3.5.1.3           Global production      193
  • 3.4        WASTE                194
    • 3.4.1    Food waste      194
    • 3.4.1.1 Overview           194
    • 3.4.1.2 Products and applications    194
    • 3.4.1.2.1           Global production      195
    • 3.4.2    Agricultural waste       195
    • 3.4.2.1 Overview           195
    • 3.4.2.2 Products and applications    195
    • 3.4.2.3 Global production      196
    • 3.4.3    Forestry waste               196
    • 3.4.3.1 Overview           197
    • 3.4.3.2 Products and applications    197
    • 3.4.3.3 Global production      197
    • 3.4.4    Aquaculture/fishing waste    198
    • 3.4.4.1 Overview           198
    • 3.4.4.2 Products and applications    198
    • 3.4.4.3 Global production      198
    • 3.4.5    Municipal solid waste              199
    • 3.4.5.1 Overview           199
    • 3.4.5.2 Products and applications    199
    • 3.4.5.3 Global production      200
    • 3.4.6    Industrial waste           200
    • 3.4.6.1 Overview           201
    • 3.4.7    Waste oils        201
    • 3.4.7.1 Overview           201
    • 3.4.7.2 Products and applications    201
    • 3.4.7.3 Global production      201
  • 3.5        MICROBIAL & MINERAL SOURCES  202
    • 3.5.1    Microalgae      202
    • 3.5.1.1 Overview           202
    • 3.5.1.2 Products and applications    202
    • 3.5.1.3 Global production      203
    • 3.5.2    Macroalgae     203
    • 3.5.2.1 Overview           204
    • 3.5.2.2 Products and applications    204
    • 3.5.2.3 Global production      204
    • 3.5.3    Mineral sources            205
    • 3.5.3.1 Overview           205
    • 3.5.3.2 Products and applications    206
  • 3.6        GASEOUS         206
    • 3.6.1    Biogas 207
    • 3.6.1.1 Overview           207
    • 3.6.1.2 Products and applications    207
    • 3.6.1.3 Global production      208
    • 3.6.2    Syngas               208
    • 3.6.2.1 Overview           209
    • 3.6.2.2 Products and applications    210
    • 3.6.2.3 Global production      210
    • 3.6.3    Off gases - fermentation CO2, CO   210
    • 3.6.3.1 Overview           211
    • 3.6.3.2 Products and applications    211
  • 3.7        COMPANY PROFILES                211 (128 company profiles)

 

4             BIOBASED POLYMERS AND PLASTICS          294

  • 4.1        Overview           294
    • 4.1.1    Drop-in bio-based plastics   294
    • 4.1.2    Novel bio-based plastics       295
  • 4.2        Biodegradable and compostable plastics  295
    • 4.2.1    Biodegradability          296
    • 4.2.2    Compostability            297
  • 4.3        Types   297
  • 4.4        Key market players     299
  • 4.5        Synthetic biobased polymers             300
    • 4.5.1    Polylactic acid (Bio-PLA)        300
    • 4.5.1.1 Market analysis            300
    • 4.5.1.2 Production       302
    • 4.5.1.3 Producers and production capacities, current and planned          302
    • 4.5.1.3.1           Lactic acid producers and production capacities 302
    • 4.5.1.3.2           PLA producers and production capacities 302
    • 4.5.1.3.3           Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes) 304
    • 4.5.2    Polyethylene terephthalate (Bio-PET)            304
    • 4.5.2.1 Market analysis            304
    • 4.5.2.2 Producers and production capacities           305
    • 4.5.2.3 Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes)     306
    • 4.5.3    Polytrimethylene terephthalate (Bio-PTT)   306
    • 4.5.3.1 Market analysis            306
    • 4.5.3.2 Producers and production capacities           307
    • 4.5.3.3 Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes)      307
    • 4.5.4    Polyethylene furanoate (Bio-PEF)     308
    • 4.5.4.1 Market analysis            308
    • 4.5.4.2 Comparative properties to PET          309
    • 4.5.4.3 Producers and production capacities           310
    • 4.5.4.3.1           FDCA and PEF producers and production capacities         310
    • 4.5.4.3.2           Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes).            311
    • 4.5.5    Polyamides (Bio-PA)  311
    • 4.5.5.1 Market analysis            311
    • 4.5.5.2 Producers and production capacities           312
    • 4.5.5.3 Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes)           313
    • 4.5.6    Poly(butylene adipate-co-terephthalate) (Bio-PBAT)           313
    • 4.5.6.1 Market analysis            313
    • 4.5.6.2 Producers and production capacities           314
    • 4.5.6.3 Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes)    315
    • 4.5.7    Polybutylene succinate (PBS) and copolymers       315
    • 4.5.7.1 Market analysis            316
    • 4.5.7.2 Producers and production capacities           316
    • 4.5.7.3 Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes)      316
    • 4.5.8    Polyethylene (Bio-PE)               317
    • 4.5.8.1 Market analysis            317
    • 4.5.8.2 Producers and production capacities           318
    • 4.5.8.3 Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes).      319
    • 4.5.9    Polypropylene (Bio-PP)            319
    • 4.5.9.1 Market analysis            319
    • 4.5.9.2 Producers and production capacities           320
    • 4.5.9.3 Polypropylene (Bio-PP) production 2019-2035 (1,000 tonnes)     320
  • 4.6        Natural biobased polymers  321
    • 4.6.1    Polyhydroxyalkanoates (PHA)             321
    • 4.6.1.1 Technology description           321
    • 4.6.1.2 Types   322
    • 4.6.1.2.1           PHB      324
    • 4.6.1.2.2           PHBV   325
    • 4.6.1.3 Synthesis and production processes             326
    • 4.6.1.4 Market analysis            328
    • 4.6.1.5 Commercially available PHAs            329
    • 4.6.1.6 Markets for PHAs        330
    • 4.6.1.6.1           Packaging        331
    • 4.6.1.6.2           Cosmetics       333
    • 4.6.1.6.2.1      PHA microspheres     333
    • 4.6.1.6.3           Medical              333
    • 4.6.1.6.3.1      Tissue engineering      333
    • 4.6.1.6.3.2      Drug delivery  333
    • 4.6.1.6.4           Agriculture       333
    • 4.6.1.6.4.1      Mulch film        333
    • 4.6.1.6.4.2      Grow bags        334
    • 4.6.1.7 Producers and production capacities           334
    • 4.6.2    Cellulose          335
    • 4.6.2.1 Microfibrillated cellulose (MFC)        335
    • 4.6.2.1.1           Market analysis            335
    • 4.6.2.1.2           Producers and production capacities           336
    • 4.6.2.2 Nanocellulose               337
    • 4.6.2.2.1           Cellulose nanocrystals           337
    • 4.6.2.2.1.1      Synthesis          337
    • 4.6.2.2.1.2      Properties         339
    • 4.6.2.2.1.3      Production       340
    • 4.6.2.2.1.4      Applications   340
    • 4.6.2.2.1.5      Market analysis            341
    • 4.6.2.2.1.6      Producers and production capacities           343
    • 4.6.2.2.2           Cellulose nanofibers 343
    • 4.6.2.2.2.1      Applications   344
    • 4.6.2.2.2.2      Market analysis            345
    • 4.6.2.2.2.3      Producers and production capacities           346
    • 4.6.2.2.3           Bacterial Nanocellulose (BNC)          347
    • 4.6.2.2.3.1      Production       347
    • 4.6.2.2.3.2      Applications   349
    • 4.6.3    Protein-based bioplastics     350
    • 4.6.3.1 Types, applications and producers  351
    • 4.6.4    Algal and fungal           352
    • 4.6.4.1 Algal     352
    • 4.6.4.1.1           Advantages     352
    • 4.6.4.1.2           Production       353
    • 4.6.4.1.3           Producers         354
    • 4.6.4.2 Mycelium          354
    • 4.6.4.2.1           Properties         354
    • 4.6.4.2.2           Applications   355
    • 4.6.4.2.3           Commercialization    356
    • 4.6.5    Chitosan           357
    • 4.6.5.1 Technology description           357
  • 4.7        Bio-rubber        358
    • 4.7.1    Overview           358
    • 4.7.2    Applications   358
    • 4.7.3    Importance of Recycling and Residue Utilization  359
    • 4.7.4    Raw Material Sourcing and Selection             360
    • 4.7.5    Production Methods and Processing Techniques  360
    • 4.7.6    Environmental Impact and Benefits               361
    • 4.7.7    Material Properties and Testing          362
    • 4.7.8    Comparison with Conventional Rubber       363
    • 4.7.9    Applications in Construction              363
    • 4.7.9.1 Bio-Rubber Use in Building Panels  364
    • 4.7.9.2 Thermal and Acoustic Insulation      364
    • 4.7.10 Applications in the Automotive Industry      364
    • 4.7.10.1            Automotive Parts and Components               365
    • 4.7.11 Applications in Personal Protective Equipment (PPE)         366
    • 4.7.11.1            Gloves, Boots, and Safety Equipment           367
    • 4.7.11.2            Enhancing Durability and Comfort  367
    • 4.7.11.3            2 Standards Compliance and Health Implications               367
    • 4.7.11.4            Challenges and Limitations 368
    • 4.7.12 Technological Challenges in Bio-Rubber Production          368
    • 4.7.13 Cost and Economic Viability                369
    • 4.7.14 Regulatory and Safety Concerns       369
    • 4.7.15 Sustainability and Environmental Impact Analysis              370
    • 4.7.16 Growth Prospects in Construction, Automotive, and PPE Sectors             370
  • 4.8        Bio-plastic from residues      371
    • 4.8.1    Overview           371
    • 4.8.2    Production and Properties    373
    • 4.8.3    Manufacturing Processes and Techniques 374
    • 4.8.4    Material Properties: Biodegradability, Food-Safe, and Recyclability          374
    • 4.8.5    Applications   375
    • 4.8.5.1 Caps and Closures    375
    • 4.8.5.1.1           Bottle Caps and Sealing Solutions  375
    • 4.8.5.1.2           Compatibility with Food and Beverage Standards 376
    • 4.8.5.2 Personal Protective Equipment (PPE)            376
    • 4.8.5.2.1           Bio-Plastic in Face Shields, Gloves, and Masks     377
    • 4.8.5.2.2           Biodegradability and Safety Standards        377
    • 4.8.5.2.3           Market Trends in Eco-Friendly PPE  378
    • 4.8.5.3 Healthcare and Medical Products   378
    • 4.8.5.3.1           Disposable Medical Tools, Packaging, and Devices             378
    • 4.8.5.3.2           Sterility, Safety, and Bio-Compatibility Standards 379
    • 4.8.5.3.3           Adoption by Healthcare Providers    379
    • 4.8.5.4 Agriculture       380
    • 4.8.5.4.1           Mulch Films, Plant Pots, and Seed Coatings             380
    • 4.8.5.5 Cosmetics and Food 382
    • 4.8.5.5.1           Bio-Plastic in Cosmetic Jars, Food Containers, and Wraps            382
    • 4.8.5.5.2           Food Contact Safety and Aesthetic Appeal               382
    • 4.8.5.5.3           Demand Trends for Sustainable Cosmetic and Food Packaging 383
    • 4.8.5.6 Automotive Interior Components     384
    • 4.8.5.6.1           Bio-Plastic in Dashboards, Panels, and Upholstery             384
    • 4.8.5.6.2           Performance and Durability Standards        385
    • 4.8.5.6.3           Market Adoption in Eco-Friendly Automotive Solutions    385
  • 4.9        Production by region 386
    • 4.9.1    North America              387
    • 4.9.2    Europe                387
    • 4.9.3    Asia-Pacific    388
    • 4.9.3.1 China  388
    • 4.9.3.2 Japan  388
    • 4.9.3.3 Thailand            388
    • 4.9.3.4 Indonesia         388
    • 4.9.4    Latin America 389
  • 4.10     End use markets          390
    • 4.10.1 Packaging        391
    • 4.10.1.1            Processes for bioplastics in packaging        392
    • 4.10.1.2            Applications   392
    • 4.10.1.3            Flexible packaging     393
    • 4.10.1.3.1        Production volumes 2019-2035       395
    • 4.10.1.4            Rigid packaging            396
    • 4.10.1.4.1        Production volumes 2019-2035       397
    • 4.10.2 Consumer products  398
    • 4.10.2.1            Applications   398
    • 4.10.2.2            Production volumes 2019-2035       398
    • 4.10.3 Automotive      399
    • 4.10.3.1            Applications   399
    • 4.10.3.2            Production volumes 2019-2035       400
    • 4.10.4 Construction  400
    • 4.10.4.1            Applications   400
    • 4.10.4.2            Production volumes 2019-2035       401
    • 4.10.5 Textiles               401
    • 4.10.5.1            Apparel              402
    • 4.10.5.2            Footwear           402
    • 4.10.5.3            Medical textiles            403
    • 4.10.5.4            Production volumes 2019-2035       404
    • 4.10.6 Electronics      404
    • 4.10.6.1            Applications   404
    • 4.10.6.2            Production volumes 2019-2035       405
    • 4.10.7 Agriculture and horticulture 405
    • 4.10.7.1            Production volumes 2019-2035       406
  • 4.11     Lignin  407
    • 4.11.1 Introduction    407
    • 4.11.1.1            What is lignin?              407
    • 4.11.1.1.1        Lignin structure             407
    • 4.11.1.2            Types of lignin               408
    • 4.11.1.2.1        Sulfur containing lignin           411
    • 4.11.1.2.2        Sulfur-free lignin from biorefinery process 411
    • 4.11.1.3            Properties         411
    • 4.11.1.4            The lignocellulose biorefinery             413
    • 4.11.1.5            Markets and applications      414
    • 4.11.1.6            Challenges for using lignin    415
    • 4.11.2 Lignin production processes               416
    • 4.11.2.1            Lignosulphonates       417
    • 4.11.2.2            Kraft Lignin      418
    • 4.11.2.2.1        LignoBoost process   418
    • 4.11.2.2.2        LignoForce method    419
    • 4.11.2.2.3        Sequential Liquid Lignin Recovery and Purification              419
    • 4.11.2.2.4        A-Recovery+   420
    • 4.11.2.3            Soda lignin      421
    • 4.11.2.4            Biorefinery lignin         421
    • 4.11.2.4.1        Commercial and pre-commercial biorefinery lignin production facilities and  processes                423
    • 4.11.2.5            Organosolv lignins     425
    • 4.11.2.6            Hydrolytic lignin           425
    • 4.11.3 Markets for lignin        426
    • 4.11.3.1            Market drivers and trends for lignin 426
    • 4.11.3.2            Production capacities              427
    • 4.11.3.2.1        Technical lignin availability (dry ton/y)           427
    • 4.11.3.2.2        Biomass conversion (Biorefinery)    428
    • 4.11.3.3            Global consumption of lignin              428
    • 4.11.3.3.1        By type                429
    • 4.11.3.3.2        By market         431
    • 4.11.3.4            Prices  433
    • 4.11.3.5            Heat and power energy            433
    • 4.11.3.6            Pyrolysis and syngas 433
    • 4.11.3.7            Aromatic compounds              433
    • 4.11.3.7.1        Benzene, toluene and xylene               433
    • 4.11.3.7.2        Phenol and phenolic resins  434
    • 4.11.3.7.3        Vanillin               434
    • 4.11.3.8            Plastics and polymers              435
  • 4.12     COMPANY PROFILES                436 (526 company profiles)

 

5             NATURAL FIBER PLASTICS AND COMPOSITES       809

  • 5.1        Introduction    809
    • 5.1.1    What are natural fiber materials?     809
    • 5.1.2    Benefits of natural fibers over synthetic       811
    • 5.1.3    Markets and applications for natural fibers               812
    • 5.1.4    Commercially available natural fiber products       814
    • 5.1.5    Market drivers for natural fibers         817
    • 5.1.6    Market challenges      818
    • 5.1.7    Wood flour as a plastic filler 819
  • 5.2        Types of natural fibers in plastic composites           819
    • 5.2.1    Plants 821
    • 5.2.1.1 Seed fibers      821
    • 5.2.1.1.1           Kapok 821
    • 5.2.1.1.2           Luffa    822
    • 5.2.1.2 Bast fibers        823
    • 5.2.1.2.1           Jute       823
    • 5.2.1.2.2           Hemp  824
    • 5.2.1.2.3           Flax       826
    • 5.2.1.2.4           Ramie 827
    • 5.2.1.2.5           Kenaf   828
    • 5.2.1.3 Leaf fibers        828
    • 5.2.1.3.1           Sisal     828
    • 5.2.1.3.2           Abaca 829
    • 5.2.1.4 Fruit fibers       830
    • 5.2.1.4.1           Coir      830
    • 5.2.1.4.2           Banana              831
    • 5.2.1.4.3           Pineapple         832
    • 5.2.1.5 Stalk fibers from agricultural residues          833
    • 5.2.1.5.1           Rice fiber          833
    • 5.2.1.5.2           Corn     834
    • 5.2.1.6 Cane, grasses and reed           835
    • 5.2.1.6.1           Switchgrass    835
    • 5.2.1.6.2           Sugarcane (agricultural residues)    836
    • 5.2.1.6.3           Bamboo            837
    • 5.2.1.6.4           Fresh grass (green biorefinery)           838
    • 5.2.1.7 Modified natural polymers    838
    • 5.2.1.7.1           Mycelium          838
    • 5.2.1.7.2           Chitosan           840
    • 5.2.1.7.3           Alginate              841
    • 5.2.2    Animal (fibrous protein)          842
    • 5.2.2.1 Silk fiber            842
    • 5.2.3    Wood-based natural fibers   844
    • 5.2.3.1 Cellulose fibers            844
    • 5.2.3.1.1           Market overview           844
    • 5.2.3.1.2           Producers         844
    • 5.2.3.2 Microfibrillated cellulose (MFC)        845
    • 5.2.3.2.1           Market overview           845
    • 5.2.3.2.2           Producers         846
    • 5.2.3.3 Cellulose nanocrystals           847
    • 5.2.3.3.1           Market overview           847
    • 5.2.3.3.2           Producers         848
    • 5.2.3.4 Cellulose nanofibers 849
    • 5.2.3.4.1           Market overview           849
    • 5.2.3.4.2           Producers         850
  • 5.3        Processing and Treatment of Natural Fibers              851
  • 5.4        Interface and Compatibility of Natural Fibers with Plastic Matrices          852
    • 5.4.1    Adhesion and Bonding            852
    • 5.4.2    Moisture Absorption and Dimensional Stability      852
    • 5.4.3    Thermal Expansion and Compatibility          853
    • 5.4.4    Dispersion and Distribution 853
    • 5.4.5    Matrix Selection           853
    • 5.4.6    Fiber Content and Alignment              853
    • 5.4.7    Manufacturing Techniques   853
  • 5.5        Manufacturing processes      853
    • 5.5.1    Injection molding        855
    • 5.5.2    Compression moulding          856
    • 5.5.3    Extrusion          857
    • 5.5.4    Thermoforming            857
    • 5.5.5    Thermoplastic pultrusion      858
    • 5.5.6    Additive manufacturing (3D printing)             858
  • 5.6        Global market for natural fibers         859
    • 5.6.1    Automotive      861
    • 5.6.1.1 Applications   862
    • 5.6.1.2 Commercial production         862
    • 5.6.1.3 SWOT analysis              865
    • 5.6.2    Packaging        866
    • 5.6.2.1 Applications   866
    • 5.6.2.2 SWOT analysis              868
    • 5.6.3    Construction  869
    • 5.6.3.1 Applications   869
    • 5.6.3.2 SWOT analysis              870
    • 5.6.4    Appliances      871
    • 5.6.4.1 Applications   871
    • 5.6.4.2 SWOT analysis              872
    • 5.6.5    Consumer electronics             874
    • 5.6.5.1 Applications   874
    • 5.6.5.2 SWOT analysis              876
    • 5.6.6    Furniture           877
    • 5.6.6.1 Applications   877
    • 5.6.6.2 SWOT analysis              877
  • 5.7        Wood composites      878
    • 5.7.1    Applications   878
    • 5.7.2    Importance of Wood Composite in Sustainable Manufacturing  879
    • 5.7.3    Market Overview and Dynamics of Wood Composite Market        880
    • 5.7.4    Production and Material Properties 880
    • 5.7.5    Types of Wood Composite Materials              880
    • 5.7.6    Performance Characteristics              882
    • 5.7.7    Applications   882
    • 5.7.7.1 Tools and Appliances               882
    • 5.7.7.1.1           Wood Composite Use in Industrial Tools     883
    • 5.7.7.1.2           Bearings, Including Sliding Bearings               883
    • 5.7.7.1.3           Advantages of Wood Composite Bearings in Load-Bearing Applications              883
    • 5.7.7.1.4           Case Studies  884
    • 5.7.7.1.5           Industry Trends             884
    • 5.7.7.2 Construction and Building Materials              884
    • 5.7.7.2.1           Wood Composite in Floor Plates, Panels, and Walls           885
    • 5.7.7.2.2           Benefits in Construction: Strength, Insulation, and Aesthetics    885
    • 5.7.7.2.3           Case Studies  886
    • 5.7.7.3 Engine Components 886
    • 5.7.7.3.1           Benefits of Wood Composite in Weight Reduction and Insulation             887
    • 5.7.7.3.2           Analysis of Wood Composite Performance in High-Stress Environments             887
    • 5.7.8    Technological Barriers             888
    • 5.7.9    Environmental and Sustainability Considerations 889
    • 5.7.10 Emerging Technologies in Wood Composite Manufacturing          889
  • 5.8        Competitive landscape          891
  • 5.9        Future outlook              891
  • 5.10     Revenues          891
    • 5.10.1 By end use market      891
    • 5.10.2 By Material Type           893
    • 5.10.3 By Plastic Type              894
    • 5.10.4 By region           895
  • 5.11     Company profiles       897 (67 company profiles)

 

6             SUSTAINABLE CONSTRUCTION MATERIALS             966

  • 6.1        Market overview           966
    • 6.1.1    Benefits of Sustainable Construction            966
    • 6.1.2    Global Trends and Drivers     966
  • 6.2        Global revenues           968
    • 6.2.1    By materials type         968
    • 6.2.2    By market         971
  • 6.3        Types of sustainable construction materials            973
    • 6.3.1    Established bio-based construction materials       973
    • 6.3.2    Hemp-based Materials           975
    • 6.3.2.1 Hemp Concrete (Hempcrete)              975
    • 6.3.2.2 Hemp Fiberboard        975
    • 6.3.2.3 Hemp Insulation          976
    • 6.3.3    Mycelium-based Materials   976
    • 6.3.3.1 Insulation         977
    • 6.3.3.2 Structural Elements  977
    • 6.3.3.3 Acoustic Panels           978
    • 6.3.3.4 Decorative Elements 978
    • 6.3.4    Sustainable Concrete and Cement Alternatives     978
    • 6.3.4.1 Geopolymer Concrete              978
    • 6.3.4.2 Recycled Aggregate Concrete             979
    • 6.3.4.3 Lime-Based Materials              979
    • 6.3.4.4 Self-healing concrete                980
    • 6.3.4.4.1           Bioconcrete    981
    • 6.3.4.4.2           Fiber concrete               982
    • 6.3.4.5 Microalgae biocement             983
    • 6.3.4.6 Carbon-negative concrete     985
    • 6.3.4.7 Biomineral binders     985
    • 6.3.5    Natural Fiber Composites     986
    • 6.3.5.1 Types of Natural Fibers            986
    • 6.3.5.2 Properties         986
    • 6.3.5.3 Applications in Construction              986
    • 6.3.6    Cellulose nanofibers 987
    • 6.3.6.1 Sandwich composites             987
    • 6.3.6.2 Cement additives       987
    • 6.3.6.3 Pump primers                988
    • 6.3.6.4 Insulation materials  988
    • 6.3.6.5 Coatings and paints  989
    • 6.3.6.6 3D printing materials 989
    • 6.3.7    Sustainable Insulation Materials      990
    • 6.3.7.1 Types of sustainable insulation materials   990
    • 6.3.7.2 Aerogel Insulation       991
    • 6.3.7.2.1           Silica aerogels               993
    • 6.3.7.2.1.1      Properties         993
    • 6.3.7.2.1.2      Thermal conductivity                994
    • 6.3.7.2.1.3      Mechanical     994
    • 6.3.7.2.1.4      Silica aerogel precursors        994
    • 6.3.7.2.1.5      Products           995
    • 6.3.7.2.1.5.1  Monoliths         995
    • 6.3.7.2.1.5.2  Powder               995
    • 6.3.7.2.1.5.3  Granules           996
    • 6.3.7.2.1.5.4  Blankets            997
    • 6.3.7.2.1.5.5  Aerogel boards             998
    • 6.3.7.2.1.5.6  Aerogel renders            999
    • 6.3.7.2.1.6      3D printing of aerogels             999
    • 6.3.7.2.1.7      Silica aerogel from sustainable feedstocks               1000
    • 6.3.7.2.1.8      Silica composite aerogels     1000
    • 6.3.7.2.1.8.1  Organic crosslinkers 1001
    • 6.3.7.2.1.9      Cost of silica aerogels              1001
    • 6.3.7.2.1.10   Main players   1001
    • 6.3.7.2.2           Aerogel-like foam materials 1002
    • 6.3.7.2.2.1      Properties         1002
    • 6.3.7.2.2.2      Applications   1003
    • 6.3.7.2.3           Metal oxide aerogels 1003
    • 6.3.7.2.4           Organic aerogels         1004
    • 6.3.7.2.4.1      Polymer aerogels         1004
    • 6.3.7.2.5           Biobased and sustainable aerogels (bio-aerogels)               1006
    • 6.3.7.2.5.1      Cellulose aerogels     1007
    • 6.3.7.2.5.1.1  Cellulose nanofiber (CNF) aerogels                1008
    • 6.3.7.2.5.1.2  Cellulose nanocrystal aerogels         1008
    • 6.3.7.2.5.1.3  Bacterial nanocellulose aerogels     1009
    • 6.3.7.2.5.2      Lignin aerogels              1009
    • 6.3.7.2.5.3      Alginate aerogels         1010
    • 6.3.7.2.5.4      Starch aerogels            1010
    • 6.3.7.2.5.5      Chitosan aerogels      1011
    • 6.3.7.2.6           Carbon aerogels          1011
    • 6.3.7.2.6.1      Carbon nanotube aerogels   1013
    • 6.3.7.2.6.2      Graphene and graphite aerogels       1014
    • 6.3.7.2.7           Additive manufacturing (3D printing)             1014
    • 6.3.7.2.7.1      Carbon nitride               1015
    • 6.3.7.2.7.2      Gold     1016
    • 6.3.7.2.7.3      Cellulose          1016
    • 6.3.7.2.7.4      Graphene oxide            1016
    • 6.3.7.2.8           Hybrid aerogels            1017
  • 6.4        Carbon capture and utilization          1017
    • 6.4.1    Overview           1017
    • 6.4.2    Market structure          1019
    • 6.4.3    CCUS technologies in the cement industry               1022
    • 6.4.4    Products           1024
    • 6.4.4.1 Carbonated aggregates          1024
    • 6.4.4.2 Additives during mixing           1025
    • 6.4.4.3 Carbonates from natural minerals  1026
    • 6.4.4.4 Carbonates from waste          1026
    • 6.4.5    Concrete curing           1027
    • 6.4.6    Costs  1028
    • 6.4.7    Challenges      1028
  • 6.5        Green steel      1029
    • 6.5.1    Current Steelmaking processes        1029
    • 6.5.1.1.1           Capturing then sequestering or utilizing carbon emissions from conventional steel mills.                1031
    • 6.5.2    Decarbonization target and policies               1032
    • 6.5.2.1 EU Carbon Border Adjustment Mechanism (CBAM)            1034
    • 6.5.3    Advances in clean production technologies             1035
    • 6.5.4    Production technologies        1035
    • 6.5.4.1 The role of hydrogen  1035
    • 6.5.4.2 Comparative analysis              1036
    • 6.5.4.3 Hydrogen Direct Reduced Iron (DRI)              1037
    • 6.5.4.4 Electrolysis      1039
    • 6.5.4.5 Carbon Capture, Utilization and Storage (CCUS)  1040
    • 6.5.4.6 Biochar replacing coke            1041
    • 6.5.4.7 Hydrogen Blast Furnace         1042
    • 6.5.4.8 Renewable energy powered processes        1043
    • 6.5.4.9 Flash ironmaking        1044
    • 6.5.4.10            Hydrogen Plasma Iron Ore Reduction           1045
    • 6.5.4.11            Ferrous Bioprocessing            1047
    • 6.5.4.12            Microwave Processing             1047
    • 6.5.4.13            Additive Manufacturing          1048
    • 6.5.4.14            Technology readiness level (TRL)      1048
    • 6.5.5    Properties         1049
  • 6.6        Markets and applications      1051
    • 6.6.1    Residential Buildings                1052
    • 6.6.2    Commercial and Office Buildings    1053
    • 6.6.3    Infrastructure 1055
  • 6.7        Company profiles       1057 (144 company profiles)

 

7             BIOBASED PACKAGING MATERIALS               1171

  • 7.1        Market overview           1171
    • 7.1.1    Current global packaging market and materials     1171
    • 7.1.2    Market trends 1172
    • 7.1.3    Drivers for recent growth in bioplastics in packaging          1173
    • 7.1.4    Challenges for bio-based and sustainable packaging        1173
  • 7.2        Materials           1174
    • 7.2.1    Materials innovation 1174
    • 7.2.2    Active packaging         1175
    • 7.2.3    Monomaterial packaging       1175
    • 7.2.4    Conventional polymer materials used in packaging            1176
    • 7.2.4.1 Polyolefins: Polypropylene and polyethylene            1176
    • 7.2.4.2 PET and other polyester polymers   1178
    • 7.2.4.3 Renewable and bio-based polymers for packaging             1179
    • 7.2.4.4 Comparison of synthetic fossil-based and bio-based polymers  1181
    • 7.2.4.5 Processes for bioplastics in packaging        1181
    • 7.2.4.6 End-of-life treatment of bio-based and sustainable packaging   1182
  • 7.3        Synthetic bio-based packaging materials   1183
    • 7.3.1    Polylactic acid (Bio-PLA)        1183
    • 7.3.1.1 Properties         1183
    • 7.3.1.2 Applicaitons   1184
    • 7.3.2    Polyethylene terephthalate (Bio-PET)            1186
    • 7.3.2.1 Properties         1187
    • 7.3.2.2 Applications   1187
    • 7.3.2.3 Advantages of Bio-PET in Packaging              1188
    • 7.3.2.4 Challenges and Limitations 1188
    • 7.3.3    Polytrimethylene terephthalate (Bio-PTT)   1190
    • 7.3.3.1 Production Process   1190
    • 7.3.3.2 Properties         1190
    • 7.3.3.3 Applications   1191
    • 7.3.3.4 Advantages of Bio-PTT in Packaging               1191
    • 7.3.3.5 Challenges and Limitations 1191
    • 7.3.4    Polyethylene furanoate (Bio-PEF)     1192
    • 7.3.4.1 Properties         1192
    • 7.3.4.2 Applications   1193
    • 7.3.4.3 Advantages of Bio-PEF in Packaging              1193
    • 7.3.4.4 Challenges and Limitations 1193
    • 7.3.5    Bio-PA 1194
    • 7.3.5.1 Properties         1194
    • 7.3.5.2 Applications in Packaging     1195
    • 7.3.5.3 Advantages of Bio-PA in Packaging 1195
    • 7.3.5.4 Challenges and Limitations 1195
    • 7.3.6    Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters                1196
    • 7.3.6.1 Properties         1196
    • 7.3.6.2 Applications in Packaging     1197
    • 7.3.6.3 Advantages of Bio-PBAT in Packaging           1197
    • 7.3.6.4 Challenges and Limitations 1197
    • 7.3.7    Polybutylene succinate (PBS) and copolymers       1198
    • 7.3.7.1 Properties         1198
    • 7.3.7.2 Applications in Packaging     1198
    • 7.3.7.3 Advantages of Bio-PBS and Co-polymers in Packaging     1199
    • 7.3.7.4 Challenges and Limitations 1199
    • 7.3.8    Polypropylene (Bio-PP)            1200
    • 7.3.8.1 Properties         1200
    • 7.3.8.2 Applications in Packaging     1200
    • 7.3.8.3 Advantages of Bio-PP in Packaging 1201
    • 7.3.8.4 Challenges and Limitations 1201
  • 7.4        Natural bio-based packaging materials       1201
    • 7.4.1    Polyhydroxyalkanoates (PHA)             1202
    • 7.4.1.1 Properties         1202
    • 7.4.1.2 Applications in Packaging     1202
    • 7.4.1.3 Advantages of PHA in Packaging      1204
    • 7.4.1.4 Challenges and Limitations 1204
    • 7.4.2    Starch-based blends 1205
    • 7.4.2.1 Properties         1205
    • 7.4.2.2 Applications in Packaging     1205
    • 7.4.2.3 Advantages of Starch-Based Blends in Packaging 1206
    • 7.4.2.4 Challenges and Limitations 1206
    • 7.4.3    Cellulose          1206
    • 7.4.3.1 Feedstocks      1206
    • 7.4.3.1.1           Wood  1207
    • 7.4.3.1.2           Plant    1207
    • 7.4.3.1.3           Tunicate             1208
    • 7.4.3.1.4           Algae   1208
    • 7.4.3.1.5           Bacteria             1209
    • 7.4.3.2 Microfibrillated cellulose (MFC)        1210
    • 7.4.3.2.1           Properties         1210
    • 7.4.3.3 Nanocellulose               1211
    • 7.4.3.3.1           Cellulose nanocrystals           1211
    • 7.4.3.3.1.1      Applications in packaging     1211
    • 7.4.3.3.2           Cellulose nanofibers 1213
    • 7.4.3.3.2.1      Applications in packaging     1213
    • 7.4.3.3.2.1.1  Reinforcement and barrier    1218
    • 7.4.3.3.2.1.2  Biodegradable food packaging foil and films            1218
    • 7.4.3.3.2.1.3  Paperboard coatings 1219
    • 7.4.3.3.3           Bacterial Nanocellulose (BNC)          1219
    • 7.4.3.3.3.1      Applications in packaging     1222
    • 7.4.4    Protein-based bioplastics in packaging       1223
    • 7.4.5    Lipids and waxes for packaging         1225
    • 7.4.6    Seaweed-based packaging  1225
    • 7.4.6.1 Production       1227
    • 7.4.6.2 Applications in packaging     1227
    • 7.4.6.3 Producers         1227
    • 7.4.7    Mycelium          1228
    • 7.4.7.1 Applications in packaging     1229
    • 7.4.8    Chitosan           1230
    • 7.4.8.1 Applications in packaging     1231
    • 7.4.9    Bio-naphtha   1231
    • 7.4.9.1 Overview           1231
    • 7.4.9.2 Markets and applications      1232
  • 7.5        Applications   1234
    • 7.5.1    Paper and board packaging 1234
    • 7.5.2    Food packaging           1234
    • 7.5.2.1 Bio-Based films and trays      1235
    • 7.5.2.2 Bio-Based pouches and bags             1235
    • 7.5.2.3 Bio-Based textiles and nets  1235
    • 7.5.2.4 Bioadhesives 1236
    • 7.5.2.4.1           Starch 1237
    • 7.5.2.4.2           Cellulose          1237
    • 7.5.2.4.3           Protein-Based               1237
    • 7.5.2.5 Barrier coatings and films     1238
    • 7.5.2.5.1           Polysaccharides          1239
    • 7.5.2.5.1.1      Chitin  1239
    • 7.5.2.5.1.2      Chitosan           1239
    • 7.5.2.5.1.3      Starch 1239
    • 7.5.2.5.2           Poly(lactic acid) (PLA)              1239
    • 7.5.2.5.3           Poly(butylene Succinate)       1239
    • 7.5.2.5.4           Functional Lipid and Proteins Based Coatings        1239
    • 7.5.2.6 Active and Smart Food Packaging   1240
    • 7.5.2.6.1           Active Materials and Packaging Systems    1240
    • 7.5.2.6.2           Intelligent and Smart Food Packaging           1241
    • 7.5.2.7 Antimicrobial films and agents          1242
    • 7.5.2.7.1           Natural               1243
    • 7.5.2.7.2           Inorganic nanoparticles          1244
    • 7.5.2.7.3           Biopolymers   1244
    • 7.5.2.8 Bio-based Inks and Dyes        1244
    • 7.5.2.9 Edible films and coatings       1245
  • 7.6        Biobased films and coatings in packaging 1247
    • 7.6.1    Challenges using bio-based paints and coatings   1247
    • 7.6.2    Types of bio-based coatings and films in packaging           1250
    • 7.6.2.1 Polyurethane coatings             1250
    • 7.6.2.1.1           Properties         1250
    • 7.6.2.1.2           Bio-based polyurethane coatings     1250
    • 7.6.2.1.3           Products           1251
    • 7.6.2.2 Acrylate resins              1252
    • 7.6.2.2.1           Properties         1252
    • 7.6.2.2.2           Bio-based acrylates  1252
    • 7.6.2.2.3           Products           1253
    • 7.6.2.3 Polylactic acid (Bio-PLA)        1253
    • 7.6.2.3.1           Properties         1255
    • 7.6.2.3.2           Bio-PLA coatings and films  1255
    • 7.6.2.4 Polyhydroxyalkanoates (PHA) coatings         1256
    • 7.6.2.5 Cellulose coatings and films               1257
    • 7.6.2.5.1           Microfibrillated cellulose (MFC)        1257
    • 7.6.2.5.2           Cellulose nanofibers 1258
    • 7.6.2.5.2.1      Properties         1258
    • 7.6.2.5.2.2      Product developers    1259
    • 7.6.2.6 Lignin coatings              1261
    • 7.6.2.7 Protein-based biomaterials for coatings      1262
    • 7.6.2.7.1           Plant derived proteins              1262
    • 7.6.2.7.2           Animal origin proteins              1262
  • 7.7        Carbon capture derived materials for packaging   1263
    • 7.7.1    Benefits of carbon utilization for plastics feedstocks         1264
    • 7.7.2    CO₂-derived polymers and plastics 1267
    • 7.7.3    CO2 utilization products        1267
  • 7.8        Global biobased packaging markets              1269
    • 7.8.1    Flexible packaging     1269
    • 7.8.2    Rigid packaging            1272
    • 7.8.3    Coatings and films     1274
  • 7.9        Company profiles       1275 (207 company profiles)

 

8             SUSTAINABLE TEXTILES AND APPAREL        1444

  • 8.1        Types of bio-based fibres       1444
    • 8.1.1    Natural fibres 1446
    • 8.1.2    Main-made bio-based fibres               1447
  • 8.2        Bio-based synthetics                1448
  • 8.3        Recyclability of bio-based fibres       1448
  • 8.4        Lyocell                1449
  • 8.5        Bacterial cellulose      1449
  • 8.6        Algae textiles  1450
  • 8.7        Bio-based leather        1451
    • 8.7.1    Properties of bio-based leathers       1454
    • 8.7.1.1 Tear strength. 1454
    • 8.7.1.2 Tensile strength            1455
    • 8.7.1.3 Bally flexing     1455
    • 8.7.2    Comparison with conventional leathers      1456
    • 8.7.3    Comparative analysis of bio-based leathers             1459
    • 8.7.4    Plant-based leather   1459
    • 8.7.4.1 Overview           1459
    • 8.7.4.2 Production processes              1460
    • 8.7.4.2.1           Feedstocks      1460
    • 8.7.4.2.1.1      Agriculture Residues 1460
    • 8.7.4.2.1.2      Food Processing Waste          1460
    • 8.7.4.2.1.3      Invasive Plants              1461
    • 8.7.4.2.1.4      Culture-Grown Inputs              1461
    • 8.7.4.2.2           Textile-Based  1461
    • 8.7.4.2.3           Bio-Composite             1462
    • 8.7.4.3 Products           1462
    • 8.7.4.4 Market players               1463
    • 8.7.5    Mycelium leather         1465
    • 8.7.5.1 Overview           1465
    • 8.7.5.2 Production process   1467
    • 8.7.5.2.1           Growth conditions     1467
    • 8.7.5.2.2           Tanning Mycelium Leather     1468
    • 8.7.5.2.3           Dyeing Mycelium Leather       1468
    • 8.7.5.3 Products           1469
    • 8.7.5.4 Market players               1469
    • 8.7.6    Microbial leather          1470
    • 8.7.6.1 Overview           1470
    • 8.7.6.2 Production process   1470
    • 8.7.6.3 Fermentation conditions       1471
    • 8.7.6.4 Harvesting       1472
    • 8.7.6.5 Products           1472
    • 8.7.6.6 Market players               1475
    • 8.7.7    Lab grown leather        1476
    • 8.7.7.1 Overview           1476
    • 8.7.7.2 Production process   1476
    • 8.7.7.3 Products           1477
    • 8.7.7.4 Market players               1478
    • 8.7.8    Protein-based leather               1478
    • 8.7.8.1 Overview           1478
    • 8.7.8.2 Production process   1479
    • 8.7.8.3 Commercial activity  1479
    • 8.7.9    Sustainable textiles coatings and dyes         1480
    • 8.7.9.1 Overview           1480
    • 8.7.9.1.1           Coatings            1480
    • 8.7.9.1.2           Dyes     1481
    • 8.7.9.2 Commercial activity  1482
  • 8.8        Markets              1483
    • 8.8.1    Footwear           1483
    • 8.8.2    Fashion & Accessories            1484
    • 8.8.3    Automotive & Transport          1485
    • 8.8.4    Furniture           1485
  • 8.9        Global market revenues          1487
    • 8.9.1    By region           1487
    • 8.9.2    By end use market      1489
  • 8.10     Company profiles       1491 (67 company profiles)

 

 

9             BIOBASED COATINGS AND RESINS                1546

  • 9.1        Drop-in replacements              1546
  • 9.2        Bio-based resins         1546
  • 9.3        Reducing carbon footprint in industrial and protective coatings  1547
  • 9.4        Market drivers                1548
  • 9.5        Challenges using bio-based coatings            1548
  • 9.6        Types   1549
    • 9.6.1    Eco-friendly coatings technologies 1549
    • 9.6.1.1 UV-cure             1550
    • 9.6.1.2 Waterborne coatings 1550
    • 9.6.1.3 Treatments with less or no solvents                1550
    • 9.6.1.4 Hyperbranched polymers for coatings          1551
    • 9.6.1.5 Powder coatings          1551
    • 9.6.1.6 High solid (HS) coatings          1552
    • 9.6.1.7 Use of bio-based materials in coatings         1552
    • 9.6.1.7.1           Biopolymers   1552
    • 9.6.1.7.2           Coatings based on agricultural waste           1553
    • 9.6.1.7.3           Vegetable oils and fatty acids             1553
    • 9.6.1.7.4           Proteins             1554
    • 9.6.1.7.5           Cellulose          1554
    • 9.6.1.7.6           Plant-Based wax coatings     1555
    • 9.6.2    Barrier coatings            1556
    • 9.6.2.1 Polysaccharides          1557
    • 9.6.2.1.1           Chitin  1558
    • 9.6.2.1.2           Chitosan           1558
    • 9.6.2.1.3           Starch 1558
    • 9.6.2.2 Poly(lactic acid) (PLA)              1558
    • 9.6.2.3 Poly(butylene Succinate         1558
    • 9.6.2.4 Functional Lipid and Proteins Based Coatings        1559
    • 9.6.3    Alkyd coatings               1559
    • 9.6.3.1 Alkyd resin properties               1559
    • 9.6.3.2 Bio-based alkyd coatings       1560
    • 9.6.3.3 Products           1562
    • 9.6.4    Polyurethane coatings             1563
    • 9.6.4.1 Properties         1563
    • 9.6.4.2 Bio-based polyurethane coatings     1563
    • 9.6.4.2.1           Bio-based polyols       1563
    • 9.6.4.2.2           Non-isocyanate polyurethane (NIPU)            1564
    • 9.6.4.3 Products           1565
    • 9.6.5    Epoxy coatings              1565
    • 9.6.5.1 Properties         1566
    • 9.6.5.2 Bio-based epoxy coatings     1566
    • 9.6.5.3 Prod     1568
    • 9.6.5.4 Products           1568
    • 9.6.6    Acrylate resins              1568
    • 9.6.6.1 Properties         1569
    • 9.6.6.2 Bio-based acrylates  1569
    • 9.6.6.3 Products           1569
    • 9.6.7    Polylactic acid (Bio-PLA)        1570
    • 9.6.7.1 Properties         1572
    • 9.6.7.2 Bio-PLA coatings and films  1572
    • 9.6.8    Polyhydroxyalkanoates (PHA)             1573
    • 9.6.8.1 Properties         1574
    • 9.6.8.2 PHA coatings  1577
    • 9.6.8.3 Commercially available PHAs            1577
    • 9.6.9    Cellulose          1579
    • 9.6.9.1 Microfibrillated cellulose (MFC)        1584
    • 9.6.9.1.1           Properties         1585
    • 9.6.9.1.2           Applications in coatings         1586
    • 9.6.9.2 Cellulose nanofibers 1587
    • 9.6.9.2.1           Properties         1587
    • 9.6.9.2.2           Applications in coatings         1589
    • 9.6.9.3 Cellulose nanocrystals           1592
    • 9.6.9.4 Bacterial Nanocellulose (BNC)          1594
    • 9.6.10 Rosins 1595
    • 9.6.11 Bio-based carbon black         1595
    • 9.6.11.1            Lignin-based  1595
    • 9.6.11.2            Algae-based   1596
    • 9.6.12 Lignin coatings              1596
    • 9.6.13 Edible films and coatings       1596
    • 9.6.14 Antimicrobial films and agents          1598
    • 9.6.14.1            Natural               1599
    • 9.6.14.2            Inorganic nanoparticles          1600
    • 9.6.14.3            Biopolymers   1600
    • 9.6.15 Nanocoatings 1600
    • 9.6.16 Protein-based biomaterials for coatings      1602
    • 9.6.16.1            Plant derived proteins              1602
    • 9.6.16.2            Animal origin proteins              1602
    • 9.6.17 Algal coatings 1603
    • 9.6.18 Polypeptides  1606
    • 9.6.19 Global market revenues          1607
  • 9.7        Company profiles       1609 (168 company profiles)

 

10          BIOFUELS        1747

  • 10.1     Comparison to fossil fuels    1747
  • 10.2     Role in the circular economy               1747
  • 10.3     Market drivers                1748
  • 10.4     Market challenges      1749
  • 10.5     Liquid biofuels market             1749
    • 10.5.1 Liquid biofuel production and consumption (in thousands of m3), 2000-2022 1749
    • 10.5.2 Liquid biofuels market 2020-2035, by type and production.          1751
  • 10.6     The global biofuels market    1753
    • 10.6.1 Diesel substitutes and alternatives 1754
    • 10.6.2 Gasoline substitutes and alternatives           1755
  • 10.7     SWOT analysis: Biofuels market        1756
  • 10.8     Comparison of biofuel costs 2023, by type                1757
  • 10.9     Types   1757
    • 10.9.1 Solid Biofuels 1758
    • 10.9.2 Liquid Biofuels              1758
    • 10.9.3 Gaseous Biofuels       1759
    • 10.9.4 Conventional Biofuels             1760
    • 10.9.5 Advanced Biofuels     1760
  • 10.10  Feedstocks      1761
    • 10.10.1              First-generation (1-G)               1763
    • 10.10.2              Second-generation (2-G)       1764
    • 10.10.2.1         Lignocellulosic wastes and residues             1765
    • 10.10.2.2         Biorefinery lignin         1766
    • 10.10.3              Third-generation (3-G)             1770
    • 10.10.3.1         Algal biofuels 1770
    • 10.10.3.1.1     Properties         1771
    • 10.10.3.1.2     Advantages     1771
    • 10.10.4              Fourth-generation (4-G)          1772
    • 10.10.5              Advantages and disadvantages, by generation        1773
    • 10.10.6              Energy crops  1774
    • 10.10.6.1         Feedstocks      1774
    • 10.10.6.2         SWOT analysis              1774
    • 10.10.7              Agricultural residues 1775
    • 10.10.7.1         Feedstocks      1775
    • 10.10.7.2         SWOT analysis              1776
    • 10.10.8              Manure, sewage sludge and organic waste                1777
    • 10.10.8.1         Processing pathways                1777
    • 10.10.8.2         SWOT analysis              1778
    • 10.10.9              Forestry and wood waste       1779
    • 10.10.9.1         Feedstocks      1779
    • 10.10.9.2         SWOT analysis              1779
    • 10.10.10           Feedstock costs          1780
  • 10.11  Hydrocarbon biofuels              1781
    • 10.11.1              Biodiesel           1781
    • 10.11.1.1         Biodiesel by generation           1782
    • 10.11.1.2         SWOT analysis              1783
    • 10.11.1.3         Production of biodiesel and other biofuels 1785
    • 10.11.1.3.1     Pyrolysis of biomass 1785
    • 10.11.1.3.2     Vegetable oil transesterification       1788
    • 10.11.1.3.3     Vegetable oil hydrogenation (HVO)  1789
    • 10.11.1.3.3.1 Production process   1789
    • 10.11.1.3.4     Biodiesel from tall oil                1790
    • 10.11.1.3.5     Fischer-Tropsch BioDiesel     1791
    • 10.11.1.3.6     Hydrothermal liquefaction of biomass         1792
    • 10.11.1.3.7     CO2 capture and Fischer-Tropsch (FT)          1793
    • 10.11.1.3.8     Dymethyl ether (DME)              1793
    • 10.11.1.4         Prices  1794
    • 10.11.1.5         Global production and consumption            1795
    • 10.11.2              Renewable diesel        1797
    • 10.11.2.1         Production       1797
    • 10.11.2.2         SWOT analysis              1798
    • 10.11.2.3         Global consumption 1799
    • 10.11.2.4         Prices  1801
    • 10.11.3              Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel)              1802
    • 10.11.3.1         Description     1802
    • 10.11.3.2         SWOT analysis              1802
    • 10.11.3.3         Global production and consumption            1803
    • 10.11.3.4         Production pathways                1803
    • 10.11.3.5         Prices  1805
    • 10.11.3.6         Bio-aviation fuel production capacities       1806
    • 10.11.3.7         Market challenges      1806
    • 10.11.3.8         Global consumption 1807
    • 10.11.4              Bio-naphtha   1808
    • 10.11.4.1         Overview           1808
    • 10.11.4.2         SWOT analysis              1809
    • 10.11.4.3         Markets and applications      1810
    • 10.11.4.4         Prices  1811
    • 10.11.4.5         Production capacities, by producer, current and planned               1812
    • 10.11.4.6         Production capacities, total (tonnes), historical, current and planned   1813
  • 10.12  Alcohol fuels  1814
    • 10.12.1              Biomethanol  1814
    • 10.12.1.1         SWOT analysis              1814
    • 10.12.1.2         Methanol-to gasoline technology     1815
    • 10.12.1.2.1     Production processes              1816
    • 10.12.1.2.1.1 Anaerobic digestion  1817
    • 10.12.1.2.1.2 Biomass gasification 1817
    • 10.12.1.2.1.3 Power to Methane       1818
    • 10.12.2              Ethanol              1819
    • 10.12.2.1         Technology description           1819
    • 10.12.2.2         1G Bio-Ethanol             1819
    • 10.12.2.3         SWOT analysis              1820
    • 10.12.2.4         Ethanol to jet fuel technology             1821
    • 10.12.2.5         Methanol from pulp & paper production      1821
    • 10.12.2.6         Sulfite spent liquor fermentation      1822
    • 10.12.2.7         Gasification    1822
    • 10.12.2.7.1     Biomass gasification and syngas fermentation       1822
    • 10.12.2.7.2     Biomass gasification and syngas thermochemical conversion    1823
    • 10.12.2.8         CO2 capture and alcohol synthesis               1823
    • 10.12.2.9         Biomass hydrolysis and fermentation           1823
    • 10.12.2.9.1     Separate hydrolysis and fermentation           1823
    • 10.12.2.9.2     Simultaneous saccharification and fermentation (SSF)    1824
    • 10.12.2.9.3     Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF)      1824
    • 10.12.2.9.4     Simultaneous saccharification and co-fermentation (SSCF)         1825
    • 10.12.2.9.5     Direct conversion (consolidated bioprocessing) (CBP)      1825
    • 10.12.2.10      Global ethanol consumption              1826
    • 10.12.3              Biobutanol      1827
    • 10.12.3.1         Production       1829
    • 10.12.3.2         Prices  1829
  • 10.13  Biomass-based Gas 1829
    • 10.13.1              Feedstocks      1831
    • 10.13.1.1         Biomethane    1831
    • 10.13.1.2         Production pathways                1833
    • 10.13.1.2.1     Landfill gas recovery 1833
    • 10.13.1.2.2     Anaerobic digestion  1834
    • 10.13.1.2.3     Thermal gasification 1835
    • 10.13.1.3         SWOT analysis              1835
    • 10.13.1.4         Global production      1836
    • 10.13.1.5         Prices  1836
    • 10.13.1.5.1     Raw Biogas     1836
    • 10.13.1.5.2     Upgraded Biomethane            1837
    • 10.13.1.6         Bio-LNG             1837
    • 10.13.1.6.1     Markets              1837
    • 10.13.1.6.1.1 Trucks 1837
    • 10.13.1.6.1.2 Marine 1837
    • 10.13.1.6.2     Production       1837
    • 10.13.1.6.3     Plants 1838
    • 10.13.1.7         bio-CNG (compressed natural gas derived from biogas)  1838
    • 10.13.1.8         Carbon capture from biogas               1839
    • 10.13.2              Biosyngas        1840
    • 10.13.2.1         Production       1840
    • 10.13.2.2         Prices  1841
    • 10.13.3              Biohydrogen   1841
    • 10.13.3.1         Description     1841
    • 10.13.3.2         SWOT analysis              1842
    • 10.13.3.3         Production of biohydrogen from biomass  1843
    • 10.13.3.3.1     Biological Conversion Routes             1843
    • 10.13.3.3.1.1 Bio-photochemical Reaction              1843
    • 10.13.3.3.1.2 Fermentation and Anaerobic Digestion        1844
    • 10.13.3.3.2     Thermochemical conversion routes               1844
    • 10.13.3.3.2.1 Biomass Gasification               1844
    • 10.13.3.3.2.2 Biomass Pyrolysis      1844
    • 10.13.3.3.2.3 Biomethane Reforming           1845
    • 10.13.3.4         Applications   1845
    • 10.13.3.5         Prices  1846
    • 10.13.4              Biochar in biogas production              1846
    • 10.13.5              Bio-DME            1847
  • 10.14  Chemical recycling for biofuels         1847
    • 10.14.1              Plastic pyrolysis           1847
    • 10.14.2              Used tires pyrolysis   1848
    • 10.14.2.1         Conversion to biofuel               1849
    • 10.14.3              Co-pyrolysis of biomass and plastic wastes             1851
    • 10.14.4              Gasification    1851
    • 10.14.4.1         Syngas conversion to methanol        1852
    • 10.14.4.2         Biomass gasification and syngas fermentation       1856
    • 10.14.4.3         Biomass gasification and syngas thermochemical conversion    1856
    • 10.14.5              Hydrothermal cracking           1856
    • 10.14.6              SWOT analysis              1857
  • 10.15  Electrofuels (E-fuels, power-to-gas/liquids/fuels) 1858
    • 10.15.1              Introduction    1858
    • 10.15.2              Benefits of e-fuels       1861
    • 10.15.3              Feedstocks      1862
    • 10.15.3.1         Hydrogen electrolysis               1862
    • 10.15.3.2         CO2 capture   1862
    • 10.15.4              SWOT analysis              1863
    • 10.15.5              Production       1864
    • 10.15.5.1         eFuel production facilities, current and planned   1866
    • 10.15.6              Electrolysers   1867
    • 10.15.6.1         Commercial alkaline electrolyser cells (AECs)        1868
    • 10.15.6.2         PEM electrolysers (PEMEC)  1868
    • 10.15.6.3         High-temperature solid oxide electrolyser cells (SOECs) 1868
    • 10.15.7              Prices  1868
    • 10.15.8              Market challenges      1871
    • 10.15.9              Companies     1872
  • 10.16  Algae-derived biofuels             1873
    • 10.16.1              Technology description           1873
    • 10.16.2              Conversion pathways               1873
    • 10.16.3              SWOT analysis              1874
    • 10.16.4              Production       1875
    • 10.16.5              Market challenges      1876
    • 10.16.6              Prices  1876
    • 10.16.7              Producers         1877
  • 10.17  Green Ammonia          1877
    • 10.17.1              Production       1877
    • 10.17.1.1         Decarbonisation of ammonia production  1879
    • 10.17.1.2         Green ammonia projects       1880
    • 10.17.2              Green ammonia synthesis methods              1880
    • 10.17.2.1         Haber-Bosch process              1880
    • 10.17.2.2         Biological nitrogen fixation   1881
    • 10.17.2.3         Electrochemical production                1882
    • 10.17.2.4         Chemical looping processes               1882
    • 10.17.3              SWOT analysis              1882
    • 10.17.4              Blue ammonia              1883
    • 10.17.4.1         Blue ammonia projects           1883
    • 10.17.5              Markets and applications      1884
    • 10.17.5.1         Chemical energy storage       1884
    • 10.17.5.1.1     Ammonia fuel cells    1884
    • 10.17.5.2         Marine fuel      1884
    • 10.17.6              Prices  1886
    • 10.17.7              Estimated market demand   1888
    • 10.17.8              Companies and projects        1888
  • 10.18  Biofuels from carbon capture             1889
    • 10.18.1              Overview           1890
    • 10.18.2              CO2 capture from point sources      1892
    • 10.18.3              Production routes       1893
    • 10.18.4              SWOT analysis              1894
    • 10.18.5              Direct air capture (DAC)         1894
    • 10.18.5.1         Description     1894
    • 10.18.5.2         Deployment    1896
    • 10.18.5.3         Point source carbon capture versus Direct Air Capture     1897
    • 10.18.5.4         Technologies  1897
    • 10.18.5.4.1     Solid sorbents               1899
    • 10.18.5.4.2     Liquid sorbents            1900
    • 10.18.5.4.3     Liquid solvents             1901
    • 10.18.5.4.4     Airflow equipment integration            1902
    • 10.18.5.4.5     Passive Direct Air Capture (PDAC)   1902
    • 10.18.5.4.6     Direct conversion        1902
    • 10.18.5.4.7     Co-product generation            1903
    • 10.18.5.4.8     Low Temperature DAC             1903
    • 10.18.5.4.9     Regeneration methods            1903
    • 10.18.5.5         Commercialization and plants           1904
    • 10.18.5.6         Metal-organic frameworks (MOFs) in DAC  1904
    • 10.18.5.7         DAC plants and projects-current and planned        1905
    • 10.18.5.8         Markets for DAC           1910
    • 10.18.5.9         Costs  1911
    • 10.18.5.10      Challenges      1916
    • 10.18.5.11      Players and production           1916
    • 10.18.6              Carbon utilization for biofuels            1917
    • 10.18.6.1         Production routes       1921
    • 10.18.6.1.1     Electrolyzers   1921
    • 10.18.6.1.2     Low-carbon hydrogen              1922
    • 10.18.6.2         Products & applications         1923
    • 10.18.6.2.1     Vehicles             1923
    • 10.18.6.2.2     Shipping            1923
    • 10.18.6.2.3     Aviation              1924
    • 10.18.6.2.4     Costs  1925
    • 10.18.6.2.5     Ethanol              1925
    • 10.18.6.2.6     Methanol          1925
    • 10.18.6.2.7     Sustainable Aviation Fuel      1929
    • 10.18.6.2.8     Methane            1929
    • 10.18.6.2.9     Algae based biofuels 1931
    • 10.18.6.2.10  CO₂-fuels from solar 1931
    • 10.18.6.3         Challenges      1933
    • 10.18.6.4         SWOT analysis              1934
    • 10.18.6.5         Companies     1935
  • 10.19  Bio-oils (pyrolysis oils)            1937
    • 10.19.1              Description     1937
    • 10.19.1.1         Advantages of bio-oils             1937
    • 10.19.2              Production       1939
    • 10.19.2.1         Fast Pyrolysis 1939
    • 10.19.2.2         Costs of production  1939
    • 10.19.2.3         Upgrading        1939
    • 10.19.3              SWOT analysis              1940
    • 10.19.4              Applications   1941
    • 10.19.5              Bio-oil producers         1941
    • 10.19.6              Prices  1942
  • 10.20  Refuse Derived Fuels (RDF)  1943
    • 10.20.1              Overview           1943
    • 10.20.2              Production       1943
    • 10.20.2.1         Production process   1943
    • 10.20.2.2         Mechanical biological treatment      1944
    • 10.20.3              Markets              1944
  • 10.21  Company profiles       1945 (211 company profiles)

 

11          SUSTAINABLE ELECTRONICS             2097

  • 11.1     Overview           2097
    • 11.1.1 Green electronics manufacturing    2097
    • 11.1.2 Drivers for sustainable electronics  2098
    • 11.1.3 Environmental Impacts of Electronics Manufacturing       2099
    • 11.1.3.1            E-Waste Generation  2099
    • 11.1.3.2            Carbon Emissions     2099
    • 11.1.3.3            Resource Utilization  2100
    • 11.1.3.4            Waste Minimization  2100
    • 11.1.3.5            Supply Chain Impacts             2101
    • 11.1.4 New opportunities from sustainable electronics   2101
    • 11.1.5 Regulations     2102
    • 11.1.5.1            Certifications 2103
    • 11.1.6 Powering sustainable electronics (Bio-based batteries)   2103
    • 11.1.7 Bioplastics in injection moulded electronics parts              2104
  • 11.2     Green electronics manufacturing    2105
    • 11.2.1 Conventional electronics manufacturing   2105
    • 11.2.2 Benefits of Green Electronics manufacturing          2105
    • 11.2.3 Challenges in adopting Green Electronics manufacturing              2106
    • 11.2.4 Approaches    2107
    • 11.2.4.1            Closed-Loop Manufacturing               2107
    • 11.2.4.2            Digital Manufacturing              2108
    • 11.2.4.2.1        Advanced robotics & automation    2108
    • 11.2.4.2.2        AI & machine learning analytics        2109
    • 11.2.4.2.3        Internet of Things (IoT)             2109
    • 11.2.4.2.4        Additive manufacturing          2109
    • 11.2.4.2.5        Virtual prototyping     2109
    • 11.2.4.2.6        Blockchain-enabled supply chain traceability         2110
    • 11.2.4.3            Renewable Energy Usage      2110
    • 11.2.4.4            Energy Efficiency         2111
    • 11.2.4.5            Materials Efficiency   2112
    • 11.2.4.6            Sustainable Chemistry            2112
    • 11.2.4.7            Recycled Materials    2113
    • 11.2.4.7.1        Advanced chemical recycling             2114
    • 11.2.4.8            Bio-Based Materials  2116
    • 11.2.5 Greening the Supply Chain   2118
    • 11.2.5.1            Key focus areas            2119
    • 11.2.5.2            Sustainability activities from major electronics brands    2122
    • 11.2.5.3            Key challenges              2123
    • 11.2.5.4            Use of digital technologies    2123
    • 11.2.6 Sustainable Printed Circuit Board (PCB) manufacturing  2124
    • 11.2.6.1            Conventional PCB manufacturing   2124
    • 11.2.6.2            Trends in PCBs              2125
    • 11.2.6.2.1        High-Speed PCBs       2125
    • 11.2.6.2.2        Flexible PCBs 2125
    • 11.2.6.2.3        3D Printed PCBs          2126
    • 11.2.6.2.4        Sustainable PCBs       2127
    • 11.2.6.3            Reconciling sustainability with performance            2127
    • 11.2.6.4            Sustainable supply chains   2128
    • 11.2.6.5            Sustainability in PCB manufacturing             2129
    • 11.2.6.5.1        Sustainable cleaning of PCBs             2130
    • 11.2.6.6            Design of PCBs for sustainability     2131
    • 11.2.6.6.1        Rigid    2132
    • 11.2.6.6.2        Flexible               2133
    • 11.2.6.6.3        Additive manufacturing          2133
    • 11.2.6.6.4        In-mold elctronics (IME)         2135
    • 11.2.6.7            Materials           2135
    • 11.2.6.7.1        Metal cores     2135
    • 11.2.6.7.2        Recycled laminates   2135
    • 11.2.6.7.3        Conductive inks           2136
    • 11.2.6.7.4        Green and lead-free solder   2138
    • 11.2.6.7.5        Biodegradable substrates     2139
    • 11.2.6.7.5.1   Bacterial Cellulose     2139
    • 11.2.6.7.5.2   Mycelium          2140
    • 11.2.6.7.5.3   Lignin  2142
    • 11.2.6.7.5.4   Cellulose Nanofibers               2144
    • 11.2.6.7.5.5   Soy Protein      2146
    • 11.2.6.7.5.6   Algae   2146
    • 11.2.6.7.5.7   PHAs   2147
    • 11.2.6.7.6        Biobased inks                2148
    • 11.2.6.8            Substrates       2148
    • 11.2.6.8.1        Halogen-free FR4        2148
    • 11.2.6.8.1.1   FR4 limitations             2148
    • 11.2.6.8.1.2   FR4 alternatives           2150
    • 11.2.6.8.1.3   Bio-Polyimide 2150
    • 11.2.6.8.2        Metal-core PCBs         2152
    • 11.2.6.8.3        Biobased PCBs             2152
    • 11.2.6.8.3.1   Flexible (bio) polyimide PCBs             2153
    • 11.2.6.8.3.2   Recent commercial activity  2154
    • 11.2.6.8.4        Paper-based PCBs     2155
    • 11.2.6.8.5        PCBs without solder mask   2155
    • 11.2.6.8.6        Thinner dielectrics      2155
    • 11.2.6.8.7        Recycled plastic substrates 2155
    • 11.2.6.8.8        Flexible substrates     2156
    • 11.2.6.9            Sustainable patterning and metallization in electronics manufacturing 2156
    • 11.2.6.9.1        Introduction    2156
    • 11.2.6.9.2        Issues with sustainability      2156
    • 11.2.6.9.3        Regeneration and reuse of etching chemicals         2157
    • 11.2.6.9.4        Transition from Wet to Dry phase patterning             2158
    • 11.2.6.9.5        Print-and-plate              2158
    • 11.2.6.9.6        Approaches    2159
    • 11.2.6.9.6.1   Direct Printed Electronics      2159
    • 11.2.6.9.6.2   Photonic Sintering      2160
    • 11.2.6.9.6.3   Biometallization          2161
    • 11.2.6.9.6.4   Plating Resist Alternatives     2161
    • 11.2.6.9.6.5   Laser-Induced Forward Transfer       2162
    • 11.2.6.9.6.6   Electrohydrodynamic Printing            2164
    • 11.2.6.9.6.7   Electrically conductive adhesives (ECAs    2165
    • 11.2.6.9.6.8   Green electroless plating       2166
    • 11.2.6.9.6.9   Smart Masking             2167
    • 11.2.6.9.6.10 Component Integration           2167
    • 11.2.6.9.6.11 Bio-inspired material deposition      2167
    • 11.2.6.9.6.12 Multi-material jetting 2168
    • 11.2.6.9.6.13 Vacuumless deposition          2169
    • 11.2.6.9.6.14 Upcycling waste streams      2169
    • 11.2.6.10         Sustainable attachment and integration of components 2170
    • 11.2.6.10.1     Conventional component attachment materials   2170
    • 11.2.6.10.2     Materials           2171
    • 11.2.6.10.2.1 Conductive adhesives             2171
    • 11.2.6.10.2.2 Biodegradable adhesives      2171
    • 11.2.6.10.2.3 Magnets            2171
    • 11.2.6.10.2.4 Bio-based solders      2172
    • 11.2.6.10.2.5 Bio-derived solders   2172
    • 11.2.6.10.2.6 Recycled plastics       2172
    • 11.2.6.10.2.7 Nano adhesives           2173
    • 11.2.6.10.2.8 Shape memory polymers       2173
    • 11.2.6.10.2.9 Photo-reversible polymers    2174
    • 11.2.6.10.2.10              Conductive biopolymers        2175
    • 11.2.6.10.3     Processes        2175
    • 11.2.6.10.3.1 Traditional thermal processing methods     2176
    • 11.2.6.10.3.2 Low temperature solder          2176
    • 11.2.6.10.3.3 Reflow soldering          2179
    • 11.2.6.10.3.4 Induction soldering    2179
    • 11.2.6.10.3.5 UV curing          2180
    • 11.2.6.10.3.6 Near-infrared (NIR) radiation curing 2180
    • 11.2.6.10.3.7 Photonic sintering/curing       2181
    • 11.2.6.10.3.8 Hybrid integration       2181
    • 11.2.7 Sustainable integrated circuits          2182
    • 11.2.7.1            IC manufacturing        2182
    • 11.2.7.2            Sustainable IC manufacturing           2182
    • 11.2.7.3            Wafer production        2183
    • 11.2.7.3.1        Silicon 2183
    • 11.2.7.3.2        Gallium nitride ICs     2184
    • 11.2.7.3.3        Flexible ICs      2184
    • 11.2.7.3.4        Fully printed organic ICs         2185
    • 11.2.7.4            Oxidation methods    2185
    • 11.2.7.4.1        Sustainable oxidation              2185
    • 11.2.7.4.2        Metal oxides   2186
    • 11.2.7.4.3        Recycling          2187
    • 11.2.7.4.4        Thin gate oxide layers                2187
    • 11.2.7.5            Patterning and doping              2188
    • 11.2.7.5.1        Processes        2188
    • 11.2.7.5.1.1   Wet etching     2188
    • 11.2.7.5.1.2   Dry plasma etching    2188
    • 11.2.7.5.1.3   Lift-off patterning        2189
    • 11.2.7.5.1.4   Surface doping             2189
    • 11.2.7.6            Metallization  2190
    • 11.2.7.6.1        Evaporation    2190
    • 11.2.7.6.2        Plating 2190
    • 11.2.7.6.3        Printing              2191
    • 11.2.7.6.3.1   Printed metal gates for organic thin film transistors            2191
    • 11.2.7.6.4        Physical vapour deposition (PVD)    2191
    • 11.2.8 End of life         2192
    • 11.2.8.1            Hazardous waste        2192
    • 11.2.8.2            Emissions        2193
    • 11.2.8.3            Water Usage   2194
    • 11.2.8.4            Recycling          2194
    • 11.2.8.4.1        Mechanical recycling                2195
    • 11.2.8.4.2        Electro-Mechanical Separation         2196
    • 11.2.8.4.3        Chemical Recycling   2196
    • 11.2.8.5            Electrochemical Processes  2197
    • 11.2.8.5.1        Thermal Recycling      2197
    • 11.2.8.6            Green Certification     2198
  • 11.3     Global market                2198
    • 11.3.1 Global PCB manufacturing industry               2198
    • 11.3.1.1            PCB revenues 2198
    • 11.3.2 Sustainable PCBs       2200
    • 11.3.3 Sustainable ICs            2202
  • 11.4     Company profiles       2204 (45 company profiles)

 

12          BIOBASED ADHESIVES AND SEALANTS       2250

  • 12.1     Overview           2250
    • 12.1.1 Biobased Epoxy Adhesives   2250
    • 12.1.2 Bioobased Polyurethane Adhesives                2251
    • 12.1.3 Other Biobased Adhesives and Sealants    2251
  • 12.2     Types   2252
    • 12.2.1 Cellulose-Based          2252
    • 12.2.2 Starch-Based 2253
    • 12.2.3 Lignin-Based  2253
    • 12.2.4 Vegetable Oils               2254
    • 12.2.5 Protein-Based               2254
    • 12.2.6 Tannin-Based 2255
    • 12.2.7 Algae-based   2255
    • 12.2.8 Chitosan-based           2256
    • 12.2.9 Natural Rubber-based             2257
    • 12.2.10              Silkworm Silk-based 2258
    • 12.2.11              Mussel Protein-based              2258
    • 12.2.12              Soy-based Foam         2259
  • 12.3     Global revenues           2260
    • 12.3.1 By types             2260
    • 12.3.2 By market         2262
  • 12.4     Company profiles       2264 (15 company profiles)

 

13          REFERENCES 2276

 

List of Tables

  • Table 1. Plant-based feedstocks and biochemicals produced.    110
  • Table 2. Waste-based feedstocks and biochemicals produced.  111
  • Table 3. Microbial and mineral-based feedstocks and biochemicals produced.              112
  • Table 4. Common starch sources that can be used as feedstocks for producing biochemicals.           114
  • Table 5. Common lysine sources that can be used as feedstocks for producing biochemicals.            116
  • Table 6. Applications of  lysine as a feedstock for biochemicals.                116
  • Table 7. HDMA sources that can be used as feedstocks for producing biochemicals. 119
  • Table 8. Applications of bio-based HDMA. 119
  • Table 9. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5).            121
  • Table 10. Applications of DN5.           121
  • Table 11. Biobased feedstocks for isosorbide.        123
  • Table 12. Applications of bio-based isosorbide.    123
  • Table 13. Lactide applications.          126
  • Table 14. Biobased feedstock sources for itaconic acid.  127
  • Table 15. Applications of bio-based itaconic acid.               128
  • Table 16. Biobased feedstock sources for 3-HP.     130
  • Table 17. Applications of 3-HP.           130
  • Table 18. Applications of bio-based acrylic acid.  132
  • Table 19. Applications of bio-based 1,3-Propanediol (1,3-PDO). 133
  • Table 20. Biobased feedstock sources for Succinic acid. 135
  • Table 21. Applications of succinic acid.       135
  • Table 22. Applications of bio-based 1,4-Butanediol (BDO).           136
  • Table 23. Applications of bio-based Tetrahydrofuran (THF).           138
  • Table 24. Applications of bio-based adipic acid.    140
  • Table 25. Applications of bio-based caprolactam.               141
  • Table 26. Biobased feedstock sources for isobutanol.       143
  • Table 27. Applications of bio-based isobutanol.    143
  • Table 28. Biobased feedstock sources for p-Xylene.            144
  • Table 29. Applications of bio-based p-Xylene.         145
  • Table 30. Applications of bio-based Terephthalic acid (TPA).         146
  • Table 31. Biobased feedstock sources for 1,3 Proppanediol.        147
  • Table 32. Applications of bio-based 1,3 Proppanediol.     148
  • Table 33. Biobased feedstock sources for MEG.     149
  • Table 34. Applications of bio-based MEG.  149
  • Table 35. Biobased MEG producers capacities.     150
  • Table 36. Biobased feedstock sources for ethanol.              151
  • Table 37. Applications of bio-based ethanol.           151
  • Table 38. Applications of bio-based ethylene.         153
  • Table 39. Applications of bio-based propylene.      154
  • Table 40. Applications of bio-based vinyl chloride.               155
  • Table 41. Applications of bio-based Methly methacrylate.              157
  • Table 42. Applications of bio-based aniline.             159
  • Table 43. Applications of biobased fructose.            160
  • Table 44. Applications of bio-based 5-Hydroxymethylfurfural (5-HMF). 162
  • Table 45. Applications of 5-(Chloromethyl)furfural (CMF).              163
  • Table 46. Applications of Levulinic acid.      165
  • Table 47. Markets and applications for bio-based FDME. 166
  • Table 48. Applications of FDCA.        167
  • Table 49. Markets and applications for bio-based levoglucosenone.       169
  • Table 50. Biochemicals derived from hemicellulose            170
  • Table 51. Markets and applications for bio-based hemicellulose               170
  • Table 52. Markets and applications for bio-based furfuryl alcohol.           173
  • Table 53. Commercial and pre-commercial biorefinery lignin production facilities and processes     174
  • Table 54. Lignin aromatic compound products.     176
  • Table 55. Prices of benzene, toluene, xylene and their derivatives.            176
  • Table 56. Lignin products in polymeric materials. 178
  • Table 57. Application of lignin in plastics and composites.             178
  • Table 58. Markets and applications for bio-based glycerol.            181
  • Table 59. Markets and applications for Bio-based MPG.   182
  • Table 60. Markets and applications: Bio-based ECH.         184
  • Table 61. Mineral source products and applications.         206
  • Table 62. Type of biodegradation.    296
  • Table 63. Advantages and disadvantages of biobased plastics compared to conventional plastics.  297
  • Table 64. Types of Bio-based and/or Biodegradable Plastics, applications.         297
  • Table 65. Key market players by Bio-based and/or Biodegradable Plastic types.              299
  • Table 66. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications.  300
  • Table 67. Lactic acid producers and production capacities.          302
  • Table 68. PLA producers and production capacities.          302
  • Table 69. Planned PLA capacity expansions in China.        303
  • Table 70. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications.     305
  • Table 71. Bio-based Polyethylene terephthalate (PET) producers and production capacities, 305
  • Table 72. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications.     306
  • Table 73. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers.          307
  • Table 74. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications.  308
  • Table 75. PEF vs. PET.               309
  • Table 76. FDCA and PEF producers.               310
  • Table 77. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications.        311
  • Table 78. Leading Bio-PA producers production capacities.          312
  • Table 79. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications.     313
  • Table 80. Leading PBAT producers, production capacities and brands. 314
  • Table 81. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications.         316
  • Table 82. Leading PBS producers and production capacities.      316
  • Table 83. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications.        317
  • Table 84. Leading Bio-PE producers.              318
  • Table 85. Bio-PP market analysis- manufacture, advantages, disadvantages and applications.           319
  • Table 86. Leading Bio-PP producers and capacities.          320
  • Table 87.Types of PHAs and properties.       323
  • Table 88. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers.         325
  • Table 89. Polyhydroxyalkanoate (PHA) extraction methods.           327
  • Table 90. Polyhydroxyalkanoates (PHA) market analysis. 328
  • Table 91. Commercially available PHAs.     329
  • Table 92. Markets and applications for PHAs.          330
  • Table 93. Applications, advantages and disadvantages of PHAs in packaging. 331
  • Table 94. Polyhydroxyalkanoates (PHA) producers.              334
  • Table 95. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications.        335
  • Table 96. Leading MFC producers and capacities.               336
  • Table 97. Synthesis methods for cellulose nanocrystals (CNC). 338
  • Table 98. CNC sources, size and yield.         338
  • Table 99. CNC properties.     339
  • Table 100. Mechanical properties of CNC and other reinforcement materials. 339
  • Table 101. Applications of nanocrystalline cellulose (NCC).         341
  • Table 102. Cellulose nanocrystals analysis.             341
  • Table 103: Cellulose nanocrystal production capacities and production process, by producer.            343
  • Table 104. Applications of cellulose nanofibers (CNF).     344
  • Table 105. Cellulose nanofibers market analysis. 345
  • Table 106. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes.              346
  • Table 107. Applications of bacterial nanocellulose (BNC).             349
  • Table 108. Types of protein based-bioplastics, applications and companies.   351
  • Table 109. Types of algal and fungal based-bioplastics, applications and companies.               352
  • Table 110. Overview of alginate-description, properties, application and market size. 352
  • Table 111. Companies developing algal-based bioplastics.          354
  • Table 112. Overview of mycelium fibers-description, properties, drawbacks and applications.            354
  • Table 113. Companies developing mycelium-based bioplastics.               356
  • Table 114. Overview of chitosan-description, properties, drawbacks and applications.             357
  • Table 115. Applications of Bio-rubber.          358
  • Table 116. Production of Bio-Rubber from Residues and Recycled Materials.   359
  • Table 117. Raw Material Sourcing and Selection.   360
  • Table 118. Production Methods and Processing Techniques.        361
  • Table 119. Material Properties and Testing.                362
  • Table 120. Physical and Mechanical Properties of Bio-Rubber.    363
  • Table 121. Comparison with Conventional Rubber.             363
  • Table 122. Implemented Projects in Construction.              364
  • Table 123. Applications of Bio-Rubber in Automotive Industry.    364
  • Table 124. Performance Analysis in Vehicle Durability and Safety.             365
  • Table 125.Automotive Bio-Rubber Market Analysis             366
  • Table 126. Applications of Bio-rubber in Personal Protective Equipment (PPE).               366
  • Table 127. Standards Compliance and Health Implications.         367
  • Table 128. Challenges and Limitations.       368
  • Table 129. Technological Challenges in Bio-Rubber Production. 368
  • Table 130. Regulatory and Safety Concerns.            370
  • Table 131. Bio-rubber Sustainability and Environmental Impact Analysis            370
  • Table 132. Innovations and Emerging Technologies in Bio-Rubber.            371
  • Table 133. Summary of Applications and Industry Impact               372
  • Table 134. Production and Properties.          373
  • Table 135. Raw Material Sourcing.   373
  • Table 136. Manufacturing Processes and Techniques.       374
  • Table 137. Material Properties Analysis.      374
  • Table 138. Case Studies in Sustainable Packaging.             376
  • Table 139. Bio-Plastic in Face Shields, Gloves, and Masks.           377
  • Table 140. Biodegradability and Safety Standards.              377
  • Table 141. Market Trends in Eco-Friendly PPE.        378
  • Table 142. Sterility, Safety, and Bio-Compatibility Standards.      379
  • Table 143.Bio-Plastic in Mulch Films, Plant Pots, and Seed Coatings.     380
  • Table 144. Biodegradable Solutions in Agriculture and Environmental Impact. 381
  • Table 145. Case Studies of Bio-Plastic Adoption in Farming.         381
  • Table 146. Bio-Plastic in Cosmetic Jars, Food Containers, and Wraps.  382
  • Table 147. Demand Trends for Sustainable Cosmetic and Food Packaging.       383
  • Table 148. Bio-Plastic Automotive Interior Components. 384
  • Table 149. Performance and Durability Standards.              385
  • Table 150. Global production of bioplastics in 2019-2035, by region, 1,000 tonnes.     387
  • Table 151. Biobased and sustainable plastics producers in North America.       387
  • Table 152. Biobased and sustainable plastics producers in Europe.        387
  • Table 153. Biobased and sustainable plastics producers in Asia-Pacific.             389
  • Table 154. Biobased and sustainable plastics producers in Latin America.        389
  • Table 155. Processes for bioplastics in packaging.              392
  • Table 156. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.   393
  • Table 157. Typical applications for bioplastics in flexible packaging.      394
  • Table 158. Typical applications for bioplastics in rigid packaging.             396
  • Table 159. Technical lignin types and applications.             409
  • Table 160. Classification of technical lignins.          411
  • Table 161. Lignin content of selected biomass.     411
  • Table 162. Properties of lignins and their applications.     412
  • Table 163. Example markets and applications for lignin.  414
  • Table 164. Processes for lignin production.               416
  • Table 165. Biorefinery feedstocks.   422
  • Table 166. Comparison of pulping and biorefinery lignins.              422
  • Table 167. Commercial and pre-commercial biorefinery lignin production facilities and  processes 423
  • Table 168. Market drivers and trends for lignin.       427
  • Table 169. Production capacities of technical lignin producers.  427
  • Table 170. Production capacities of biorefinery lignin producers.              428
  • Table 171. Estimated consumption of lignin, by type, 2019-2035 (000 MT).        429
  • Table 172. Estimated consumption of lignin, by market, 2019-2034 (000 MT).  431
  • Table 173. Prices of benzene, toluene, xylene and their derivatives.         434
  • Table 174. Application of lignin in plastics and polymers.                435
  • Table 175. Lactips plastic pellets.    622
  • Table 176. Oji Holdings CNF products.         687
  • Table 177. Types of natural fibers.    809
  • Table 178. Markets and applications for natural fibers.     812
  • Table 179. Commercially available natural fiber products.             814
  • Table 180. Market drivers for natural fibers.               817
  • Table 181. Typical properties of natural fibers.        820
  • Table 182. Overview of kapok fibers-description, properties, drawbacks and applications.     821
  • Table 183. Overview of luffa fibers-description, properties, drawbacks and applications.        822
  • Table 184. Overview of jute fibers-description, properties, drawbacks and applications.          824
  • Table 185. Overview of hemp fibers-description, properties, drawbacks and applications.     825
  • Table 186. Overview of flax fibers-description, properties, drawbacks and applications.          826
  • Table 187. Overview of ramie fibers-description, properties, drawbacks and applications.     827
  • Table 188. Overview of kenaf fibers-description, properties, drawbacks and applications.      828
  • Table 189. Overview of sisal fibers-description, properties, drawbacks and applications.        829
  • Table 190. Overview of abaca fibers-description, properties, drawbacks and applications.    830
  • Table 191. Overview of coir fibers-description, properties, drawbacks and applications.          831
  • Table 192. Overview of banana fibers-description, properties, drawbacks and applications. 832
  • Table 193. Overview of pineapple fibers-description, properties, drawbacks and applications.           832
  • Table 194. Overview of rice fibers-description, properties, drawbacks and applications.          834
  • Table 195. Overview of corn fibers-description, properties, drawbacks and applications.        834
  • Table 196. Overview of switch grass fibers-description, properties and applications.  835
  • Table 197. Overview of sugarcane fibers-description, properties, drawbacks and application and market size.    836
  • Table 198. Overview of bamboo fibers-description, properties, drawbacks and applications.               837
  • Table 199. Overview of mycelium fibers-description, properties, drawbacks and applications.            839
  • Table 200. Overview of chitosan fibers-description, properties, drawbacks and applications.               841
  • Table 201. Overview of alginate-description, properties, application and market size. 842
  • Table 202. Overview of silk fibers-description, properties, application and market size.            843
  • Table 203. Next-gen silk producers.                844
  • Table 204. Companies developing cellulose fibers for application in plastic composites.        844
  • Table 205. Microfibrillated cellulose (MFC) market analysis.        846
  • Table 206. Leading MFC producers and capacities.            846
  • Table 207. Cellulose nanocrystals market overview.           847
  • Table 208. Cellulose nanocrystal production capacities and production process, by producer.            848
  • Table 209. Cellulose nanofibers market analysis. 849
  • Table 210. CNF production capacities and production process, by producer, in metric tons. 850
  • Table 211. Processing and treatment methods for natural fibers used in plastic composites. 851
  • Table 212. Application, manufacturing method, and matrix materials of natural fibers.             853
  • Table 213. Properties of natural fiber-bio-based polymer compounds.  855
  • Table 214. Typical properties of short natural fiber-thermoplastic composites.               855
  • Table 215. Properties of non-woven natural fiber mat composites.           856
  • Table 216. Applications of natural fibers in plastics.           859
  • Table 217. Applications of natural fibers in the automotive industry.       862
  • Table 218. Natural fiber-reinforced polymer composite in the automotive market.        863
  • Table 219. Applications of natural fibers in packaging.      866
  • Table 220. Applications of natural fibers in construction. 869
  • Table 221. Applications of natural fibers in the appliances market.           871
  • Table 222. Applications of natural fibers in the consumer electronics market.  874
  • Table 223. Key Applications and Market Potential in Wood Composites.              878
  • Table 224. Wood Composite Production and Material Properties.             880
  • Table 225. Types of Wood Composite Materials.    881
  • Table 226. Production Technologies               881
  • Table 227. Performance Characteristics: Durability, Strength, and Cost-Efficiency.      882
  • Table 228. Performance in Sliding Bearing Applications.  883
  • Table 229. Case studies of wood composites in tools and applicances.               884
  • Table 230. Industry Trends in Wood Composite Tool Components.          884
  • Table 231. Benefits in Construction: Strength, Insulation, and Aesthetics.          885
  • Table 232. Fire Resistance and Weather Durability for Exterior Applications.     885
  • Table 233. Case Studies in Commercial and Residential Construction. 886
  • Table 234. Trends and Innovations in Wood Composite for Automotive and Machinery Engines.         888
  • Table 235. Technological Barriers in Wood Composite Production.          888
  • Table 236. Environmental impact and sustainability.         889
  • Table 237. Emerging Technologies in Wood Composite Manufacturing. 889
  • Table 238. Global market for natural fiber based plastics, 2018-2035, by end use sector (Billion USD).                892
  • Table 239. Global market for natural fiber based plastics, 2018-2035, by material type (Billion USD).                893
  • Table 240. Global market for natural fiber based plastics, 2018-2035, by plastic type (Billion USD).  894
  • Table 241. Global market for natural fiber based plastics, 2018-2035, by region (Billion USD).              895
  • Table 242. Granbio Nanocellulose Processes.        930
  • Table 243. Oji Holdings CNF products.         948
  • Table 244. Global trends and drivers in sustainable construction materials.      966
  • Table 245. Global revenues in sustainable construction materials, by materials type, 2020-2035 (millions USD).             968
  • Table 246. Global revenues in sustainable construction materials, by market, 2020-2035 (millions USD).                971
  • Table 247. Established bio-based construction materials.             974
  • Table 248. Types of self-healing concrete.  981
  • Table 249. General properties and value of aerogels.         992
  • Table 250. Key properties of silica aerogels.             994
  • Table 251. Chemical precursors used to synthesize silica aerogels.        994
  • Table 252. Commercially available aerogel-enhanced blankets. 998
  • Table 253. Main manufacturers of silica aerogels and product offerings.              1001
  • Table 254. Typical structural properties of metal oxide aerogels.                1003
  • Table 255. Polymer aerogels companies.   1005
  • Table 256. Types of biobased aerogels.        1006
  • Table 257. Carbon aerogel companies.        1013
  • Table 258. Conversion pathway for CO2-derived building materials.       1018
  • Table 259. Carbon capture technologies and projects in the cement sector       1022
  • Table 260. Carbonation of recycled concrete companies.              1027
  • Table 261. Current and projected costs for some key CO2 utilization applications in the construction industry.            1028
  • Table 262. Market challenges for CO2 utilization in construction materials.       1028
  • Table 263. Global Decarbonization Targets and Policies related to Green Steel.               1032
  • Table 264. Estimated cost for iron and steel industry under the Carbon Border Adjustment Mechanism (CBAM).             1034
  • Table 265. Hydrogen-based steelmaking technologies.    1036
  • Table 266. Comparison of green steel production technologies. 1036
  • Table 267. Advantages and disadvantages of each potential hydrogen carrier. 1038
  • Table 268. CCUS in green steel production.              1040
  • Table 269. Biochar in steel and metal.          1042
  • Table 270. Hydrogen blast furnace schematic.       1043
  • Table 271. Applications of microwave processing in green steelmaking.               1047
  • Table 272. Applications of additive manufacturing (AM) in steelmaking.               1048
  • Table 273.  Technology readiness level (TRL) for key green steel production technologies.       1048
  • Table 274. Properties of Green steels.           1049
  • Table 275. Applications of green steel in the construction industry.         1050
  • Table 276. Market trends in bio-based and sustainable packaging           1172
  • Table 277. Drivers for recent growth in the bioplastics and biopolymers markets.          1173
  • Table 278. Challenges for bio-based and sustainable packaging.             1173
  • Table 279. Types of bio-based plastics and fossil-fuel-based plastics    1176
  • Table 280. Comparison of synthetic fossil-based and bio-based polymers.        1181
  • Table 281. Processes for bioplastics in packaging.              1182
  • Table 282. PLA properties for packaging applications.       1183
  • Table 283. Applications, advantages and disadvantages of PHAs in packaging.              1203
  • Table 284. Major polymers found in the extracellular covering of different algae.            1209
  • Table 285. Market overview for cellulose microfibers (microfibrillated cellulose) in paperboard and packaging-market age, key benefits, applications and producers.            1210
  • Table 286. Applications of nanocrystalline cellulose (CNC).         1212
  • Table 287. Market overview for cellulose nanofibers in packaging.           1214
  • Table 288. Types of protein based-bioplastics, applications and companies.   1223
  • Table 289. Overview of alginate-description, properties, application and market size. 1226
  • Table 290. Companies developing algal-based bioplastics.          1227
  • Table 291. Overview of mycelium fibers-description, properties, drawbacks and applications.            1228
  • Table 292. Overview of chitosan-description, properties, drawbacks and applications.             1231
  • Table 293. Bio-based naphtha markets and applications.               1232
  • Table 294. Bio-naphtha market value chain.            1233
  • Table 295. Pros and cons of different type of food packaging materials. 1234
  • Table 296. Active Biodegradable Films films and their food applications.             1241
  • Table 297. Intelligent Biodegradable Films.               1241
  • Table 298. Edible films and coatings market summary.    1245
  • Table 299. Summary of barrier films and coatings for packaging.              1248
  • Table 300. Types of polyols. 1250
  • Table 301. Polyol producers.                1251
  • Table 302. Bio-based polyurethane coating products.       1251
  • Table 303. Bio-based acrylate resin products.         1253
  • Table 304. Polylactic acid (PLA) market analysis.  1253
  • Table 305. Commercially available PHAs.  1256
  • Table 306. Market overview for cellulose nanofibers in paints and coatings.       1258
  • Table 307. Companies developing cellulose nanofibers products in paints and coatings.         1259
  • Table 308. Types of protein based-biomaterials, applications and companies. 1263
  • Table 309. CO2 utilization and removal pathways.                1265
  • Table 310. CO2 utilization products developed by chemical and plastic producers.     1267
  • Table 311. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging.   1269
  • Table 312. Typical applications for bioplastics in flexible packaging.      1270
  • Table 313. Typical applications for bioplastics in rigid packaging.             1272
  • Table 314. Market revenues for bio-based coatings, 2018-2035 (billions USD), high estimate.               1274
  • Table 315. Lactips plastic pellets.    1372
  • Table 316. Oji Holdings CNF products.         1396
  • Table 317. Properties and applications of the main natural fibres              1446
  • Table 318. Types of sustainable alternative leathers.          1452
  • Table 319. Properties of bio-based leathers.             1454
  • Table 320. Comparison with conventional leathers.            1456
  • Table 321. Price of commercially available sustainable alternative leather products.  1458
  • Table 322. Comparative analysis of sustainable alternative leathers.      1459
  • Table 323. Key processing steps involved in transforming plant fibers into leather materials. 1460
  • Table 324. Current and emerging plant-based leather products. 1462
  • Table 325. Companies developing plant-based leather products.             1463
  • Table 326. Overview of mycelium-description, properties, drawbacks and applications.          1465
  • Table 327. Companies developing mycelium-based leather products.  1469
  • Table 328. Types of microbial-derived leather alternative.               1472
  • Table 329. Companies developing microbial leather products.   1475
  • Table 330. Companies developing plant-based leather products.             1478
  • Table 331. Types of protein-based leather alternatives.     1478
  • Table 332. Companies developing protein based leather.                1480
  • Table 333. Companies developing sustainable coatings and dyes for leather - 1482
  • Table 334. Markets and applications for bio-based textiles and leather. 1483
  • Table 335. Applications of biobased leather in furniture and upholstery.              1486
  • Table 336. Global revenues for bio-based textiles by type, 2018-2035 (millions USD). 1487
  • Table 337. Global revenues for bio-based and sustainable textiles by end use market, 2018-2035 (millions USD).             1489
  • Table 338. Market drivers and trends in bio-based and sustainable coatings.    1548
  • Table 339. Example envinronmentally friendly coatings, advantages and disadvantages.        1549
  • Table 340. Plant Waxes.          1555
  • Table 341. Types of alkyd resins and properties.     1560
  • Table 342. Market summary for bio-based alkyd coatings-raw materials, advantages, disadvantages, applications and producers.                1561
  • Table 343. Bio-based alkyd coating products.         1562
  • Table 344. Types of polyols. 1563
  • Table 345. Polyol producers.                1564
  • Table 346. Bio-based polyurethane coating products.       1565
  • Table 347. Market summary for bio-based epoxy resins.  1566
  • Table 348. Bio-based polyurethane coating products.       1568
  • Table 349. Bio-based acrylate resin products.         1569
  • Table 350. Polylactic acid (PLA) market analysis.  1570
  • Table 351. PLA producers and production capacities.       1571
  • Table 352. Polyhydroxyalkanoates (PHA) market analysis.             1573
  • Table 353.Types of PHAs and properties.     1576
  • Table 354. Polyhydroxyalkanoates (PHA) producers.           1577
  • Table 355. Commercially available PHAs.  1578
  • Table 356. Properties of micro/nanocellulose, by type.     1581
  • Table 357: Types of nanocellulose. 1583
  • Table 358. Microfibrillated Cellulose (MFC) production capacities in metric tons and production process, by producer, metric tons. 1585
  • Table 359. Commercially available Microfibrillated Cellulose products.               1586
  • Table 360. Market overview for cellulose nanofibers in paints and coatings.       1587
  • Table 361. Market assessment for cellulose nanofibers in paints and coatings-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global paints and coatings OEMs.               1589
  • Table 362. Companies developing CNF products in paints and coatings, applications targeted and stage of commercialization. 1591
  • Table 363. CNC properties.  1592
  • Table 364: Cellulose nanocrystal capacities (by type, wet or dry) and production process, by producer, metric tonnes.              1594
  • Table 365. Applications of bacterial nanocellulose (BNC).             1594
  • Table 366. Edible films and coatings market summary.    1597
  • Table 367. Types of protein based-biomaterials, applications and companies. 1603
  • Table 368. Overview of algal coatings-description, properties, application and market size.  1604
  • Table 369. Companies developing algal-based plastics.  1606
  • Table 370. Market revenues for bio-based coatings by market, 2018-2035 (billions USD), conservative estimate.          1607
  • Table 371. Lactips plastic pellets.    1682
  • Table 372. Oji Holdings CNF products.         1706
  • Table 373. Market drivers for biofuels.          1748
  • Table 374. Market challenges for biofuels. 1749
  • Table 375. Liquid biofuels market 2020-2035, by type and production.  1751
  • Table 376. Comparison of biofuels. 1752
  • Table 377. Comparison of biofuel costs (USD/liter) 2023, by type.             1757
  • Table 378. Categories and examples of solid biofuel.         1758
  • Table 379. Comparison of biofuels and e-fuels to fossil and electricity.  1760
  • Table 380. Classification of biomass feedstock.    1761
  • Table 381. Biorefinery feedstocks.   1762
  • Table 382. Feedstock conversion pathways.             1762
  • Table 383. First-Generation Feedstocks.     1763
  • Table 384.  Lignocellulosic ethanol plants and capacities.             1765
  • Table 385. Comparison of pulping and biorefinery lignins.              1766
  • Table 386. Commercial and pre-commercial biorefinery lignin production facilities and  processes 1767
  • Table 387. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol.   1768
  • Table 388. Properties of microalgae and macroalgae.       1771
  • Table 389. Yield of algae and other biodiesel crops.            1772
  • Table 390. Advantages and disadvantages of biofuels, by generation.    1773
  • Table 391. Biodiesel by generation. 1782
  • Table 392. Biodiesel production techniques.            1785
  • Table 393. Summary of pyrolysis technique under different operating conditions.         1786
  • Table 394. Biomass materials and their bio-oil yield.          1787
  • Table 395. Biofuel production cost from the biomass pyrolysis process.              1787
  • Table 396. Properties of vegetable oils in comparison to diesel.  1789
  • Table 397. Main producers of HVO and capacities.              1790
  • Table 398. Example commercial Development of BtL processes.              1791
  • Table 399. Pilot or demo projects for biomass to liquid (BtL) processes.               1792
  • Table 400. Global biodiesel consumption, 2010-2035 (M litres/year).     1796
  • Table 401. Global renewable diesel consumption, 2010-2035 (M litres/year).   1800
  • Table 402. Renewable diesel price ranges. 1801
  • Table 403. Advantages and disadvantages of Bio-aviation fuel.   1802
  • Table 404. Production pathways for Bio-aviation fuel.        1804
  • Table 405. Current and announced Bio-aviation fuel facilities and capacities. 1806
  • Table 406. Global bio-jet fuel consumption 2019-2035 (Million litres/year).       1807
  • Table 407. Bio-based naphtha markets and applications.               1810
  • Table 408. Bio-naphtha market value chain.            1810
  • Table 409. Bio-naphtha pricing against petroleum-derived naphtha and related fuel products.            1812
  • Table 410. Bio-based Naphtha production capacities, by producer.         1812
  • Table 411. Comparison of biogas, biomethane and natural gas. 1817
  • Table 412.  Processes in bioethanol production.  1824
  • Table 413. Microorganisms used in CBP for ethanol production from biomass lignocellulosic.             1825
  • Table 414. Ethanol consumption 2010-2035 (million litres).          1826
  • Table 415. Biogas feedstocks.            1831
  • Table 416. Existing and planned bio-LNG production plants.        1838
  • Table 417. Methods for capturing carbon dioxide from biogas.    1839
  • Table 418. Comparison of different Bio-H2 production pathways.             1843
  • Table 419. Markets and applications for biohydrogen.       1845
  • Table 420. Summary of gasification technologies.                1851
  • Table 421. Overview of hydrothermal cracking for advanced chemical recycling.            1856
  • Table 422. Applications of e-fuels, by type.                1860
  • Table 423. Overview of e-fuels.          1861
  • Table 424. Benefits of e-fuels.             1861
  • Table 425. eFuel production facilities, current and planned.         1866
  • Table 426. Main characteristics of different electrolyzer technologies.  1867
  • Table 427. Market challenges for e-fuels.    1871
  • Table 428. E-fuels companies.           1872
  • Table 429. Algae-derived biofuel producers.             1877
  • Table 430. Green ammonia projects (current and planned).          1880
  • Table 431. Blue ammonia projects. 1883
  • Table 432. Ammonia fuel cell technologies.              1884
  • Table 433. Market overview of green ammonia in marine fuel.      1885
  • Table 434. Summary of marine alternative fuels.   1886
  • Table 435. Estimated costs for different types of ammonia.          1887
  • Table 436. Main players in green ammonia.              1888
  • Table 437. Market overview for CO2 derived fuels.               1890
  • Table 438. Point source examples.  1893
  • Table 439. Advantages and disadvantages of DAC.              1896
  • Table 440. Companies developing airflow equipment integration with DAC.      1902
  • Table 441. Companies developing Passive Direct Air Capture (PDAC) technologies.    1902
  • Table 442. Companies developing regeneration methods for DAC technologies.            1903
  • Table 443. DAC companies and technologies.        1904
  • Table 444. DAC technology developers and production.  1906
  • Table 445. DAC projects in development.   1909
  • Table 446. Markets for DAC. 1911
  • Table 447. Costs summary for DAC.               1911
  • Table 448. Cost estimates of DAC.  1914
  • Table 449. Challenges for DAC technology.               1916
  • Table 450. DAC companies and technologies.        1916
  • Table 451. Market overview for CO2 derived fuels.               1918
  • Table 452. Main production routes and processes for manufacturing fuels from captured carbon dioxide.              1921
  • Table 453. CO₂-derived fuels projects.         1922
  • Table 454. Thermochemical methods to produce methanol from CO2. 1926
  • Table 455. pilot plants for CO2-to-methanol conversion. 1929
  • Table 456. Microalgae products and prices.              1931
  • Table 457. Main Solar-Driven CO2 Conversion Approaches.         1933
  • Table 458. Market challenges for CO2 derived fuels.           1933
  • Table 459. Companies in CO2-derived fuel products.        1935
  • Table 460. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils.          1938
  • Table 461. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil.                1938
  • Table 462. Main techniques used to upgrade bio-oil into higher-quality fuels.   1940
  • Table 463. Markets and applications for bio-oil.     1941
  • Table 464. Bio-oil producers.              1942
  • Table 465. Key resource recovery technologies       1943
  • Table 466. Markets and end uses for refuse-derived fuels (RDF).                1945
  • Table 467. Granbio Nanocellulose Processes.        2010
  • Table 468. Key factors driving adoption of green electronics.         2098
  • Table 469. Key circular economy strategies for electronics.           2100
  • Table 470. Regulations pertaining to green electronics.    2102
  • Table 471. Companies developing bio-based batteries for application in sustainable electronics.     2103
  • Table 472. Benefits of Green Electronics Manufacturing  2105
  • Table 473. Challenges in adopting Green Electronics manufacturing.    2106
  • Table 474. Major chipmakers' renewable energy road maps.        2111
  • Table 475. Energy efficiency in sustainable electronics manufacturing. 2111
  • Table 476. Composition of plastic waste streams.               2114
  • Table 477. Comparison of mechanical and advanced chemical recycling.          2115
  • Table 478. Example chemically recycled plastic products.             2116
  • Table 479. Bio-based and non-toxic materials in sustainable electronics.           2117
  • Table 480. Key focus areas for enabling greener and ethically responsible electronics supply chains.                2119
  • Table 481. Sustainability programs and disclosure from major electronics brands.      2122
  • Table 482. PCB manufacturing process.      2124
  • Table 483. Challenges in PCB manufacturing.        2124
  • Table 484. 3D PCB manufacturing. 2127
  • Table 485.  Comparison of some sustainable PCB alternatives against conventional options in terms of key performance factors.      2128
  • Table 486. Sustainable PCB supply chain. 2129
  • Table 487. Key areas where the PCB industry can improve sustainability.            2129
  • Table 488. Improving sustainability of PCB design.              2131
  • Table 489. PCB design options for sustainability.  2132
  • Table 490.  Sustainability benefits and challenges associated with 3D printing.              2134
  • Table 491. Conductive ink producers.           2137
  • Table 492.  Green and lead-free solder companies.            2138
  • Table 493. Biodegradable substrates for PCBs.      2139
  • Table 494. Overview of mycelium fibers-description, properties, drawbacks and applications.            2140
  • Table 495. Application of lignin in composites.       2142
  • Table 496. Properties of lignins and their applications.     2142
  • Table 497. Properties of flexible electronics‐cellulose nanofiber film (nanopaper).       2144
  • Table 498. Companies developing cellulose nanofibers for electronics.                2145
  • Table 499. Commercially available PHAs.  2147
  • Table 500. Main limitations of the FR4 material system used for manufacturing printed circuit boards (PCBs).              2149
  • Table 501. Halogen-free FR4 companies.   2151
  • Table 502. Properties of biobased PCBs.    2152
  • Table 503. Applications of flexible (bio) polyimide PCBs. 2154
  • Table 504. Main patterning and metallization steps in PCB fabrication and sustainable options.         2156
  • Table 505. Sustainability issues with conventional metallization processes.     2157
  • Table 506. Benefits of print-and-plate.          2158
  • Table 507. Sustainable alternative options to standard plating resists used in printed circuit board (PCB) fabrication.     2161
  • Table 508. Applications for laser induced forward transfer             2163
  • Table 509. Copper versus silver inks in laser-induced forward transfer (LIFT) for electronics fabrication.                2163
  • Table 510. Approaches for in-situ oxidation prevention.   2164
  • Table 511. Market readiness and maturity of different lead-free solders and electrically conductive adhesives (ECAs) for electronics manufacturing. 2166
  • Table 512. Advantages of green electroless plating.            2166
  • Table 513. Comparison of component attachment materials.     2170
  • Table 514. Comparison between sustainable and conventional component attachment materials for printed circuit boards              2171
  • Table 515. Comparison between the SMAs and SMPs.      2173
  • Table 516. Comparison of conductive biopolymers versus conventional materials for printed circuit board fabrication.       2175
  • Table 517. Comparison of curing and reflow processes used for attaching components in electronics assembly.        2175
  • Table 518. Low temperature solder alloys. 2177
  • Table 519. Thermally sensitive substrate materials.            2177
  • Table 520. Limitations of existing IC production.   2182
  • Table 521. Strategies for improving sustainability in integrated circuit (IC) manufacturing.      2182
  • Table 522. Comparison of oxidation methods and level of sustainability.             2186
  • Table 523. Stage of commercialization for oxides. 2186
  • Table 524. Alternative doping techniques.  2189
  • Table 525.  Metal content mg / Kg in Printed Circuit Boards (PCBs) from waste desktop computers. 2195
  • Table 526. Chemical recycling methods for handling electronic waste. 2196
  • Table 527.  Electrochemical processes for recycling metals from electronic waste       2197
  • Table 528. Thermal recycling processes for electronic waste.      2197
  • Table 529. Global PCB revenues 2018-2035 (billions USD), by substrate types.               2199
  • Table 530. Global sustainable PCB revenues 2018-2035, by type (millions USD).           2200
  • Table 531. Global sustainable ICs revenues 2018-2035, by type (millions USD).             2203
  • Table 532. Oji Holdings CNF products.         2234
  • Table 533. Global market revenues for bio-based adhesives & sealants, by types,  2018-2035 (millions USD).  2260
  • Table 534. Global market revenues for bio-based adhesives & sealants, by market,  2018-2035 (millions USD).  2262

 

List of Figures

  • Figure 1. Schematic of biorefinery processes.         110
  • Figure 2. Global production of starch for biobased chemicals and intermediates, 2018-2035 (million metric tonnes).             115
  • Figure 3. Global production of biobased lysine, 2018-2035 (metric tonnes).      117
  • Figure 4. Global glucose production for bio-based chemicals and intermediates 2018-2035 (million metric tonnes).             118
  • Figure 5. Global production volumes of bio-HMDA, 2018 to 2035 in metric tonnes.      120
  • Figure 6. Global production of bio-based DN5, 2018-2035 (metric tonnes).       122
  • Figure 7. Global production of bio-based isosorbide, 2018-2035 (metric tonnes).         124
  • Figure 8. L-lactic acid (L-LA) production, 2018-2035 (metric tonnes).     125
  • Figure 9. Global lactide production, 2018-2035 (metric tonnes).                127
  • Figure 10. Global production of bio-itaconic acid, 2018-2035 (metric tonnes). 129
  • Figure 11. Global production of 3-HP,  2018-2035 (metric tonnes).           131
  • Figure 12. Global production of bio-based acrylic acid,  2018-2035 (metric tonnes).   132
  • Figure 13. Global production of bio-based 1,3-Propanediol (1,3-PDO), 2018-2035 (metric tonnes).  134
  • Figure 14. Global production of bio-based Succinic acid, 2018-2035 (metric tonnes). 136
  • Figure 15. Global production of 1,4-Butanediol (BDO), 2018-2035 (metric tonnes).      137
  • Figure 16. Global production of bio-based tetrahydrofuran (THF), 2018-2035 (metric tonnes).              139
  • Figure 17. Overview of Toray process.            140
  • Figure 18. Global production of bio-based caprolactam, 2018-2035 (metric tonnes). 142
  • Figure 19. Global production of bio-based isobutanol, 2018-2035 (metric tonnes).      144
  • Figure 20. Global production of bio-based p-xylene, 2018-2035 (metric tonnes).           146
  • Figure 21. Global production of biobased terephthalic acid (TPA), 2018-2035 (metric tonnes).             147
  • Figure 22. Global production of biobased 1,3 Proppanediol, 2018-2035 (metric tonnes).         148
  • Figure 23. Global production of biobased MEG, 2018-2035 (metric tonnes).      150
  • Figure 24. Global production of biobased ethanol, 2018-2035 (million metric tonnes).              152
  • Figure 25. Global production of biobased ethylene, 2018-2035 (million metric tonnes).            153
  • Figure 26. Global production of biobased propylene, 2018-2035 (metric tonnes).          155
  • Figure 27. Global production of biobased vinyl chloride, 2018-2035 (metric tonnes).  156
  • Figure 28. Global production of bio-based Methly methacrylate, 2018-2035 (metric tonnes).               158
  • Figure 29. Global production of biobased aniline, 2018-2035 (metric tonnes). 160
  • Figure 30. Global production of biobased fructose, 2018-2035 (metric tonnes).              161
  • Figure 31. Global production of biobased 5-Hydroxymethylfurfural (5-HMF), 2018-2035 (metric tonnes).                162
  • Figure 32. Global production of biobased 5-(Chloromethyl)furfural (CMF), 2018-2035 (metric tonnes).                164
  • Figure 33. Global production of biobased Levulinic acid, 2018-2035 (metric tonnes). 165
  • Figure 34. Global production of biobased FDME, 2018-2035 (metric tonnes).   167
  • Figure 35. Global production of biobased Furan-2,5-dicarboxylic acid (FDCA), 2018-2035 (metric tonnes).             168
  • Figure 36. Global production projections for bio-based levoglucosenone from 2018 to 2035 in metric tonnes:              169
  • Figure 37. Global production of hemicellulose, 2018-2035 (metric tonnes).       171
  • Figure 38. Global production of biobased furfural, 2018-2035 (metric tonnes). 172
  • Figure 39. Global production of biobased furfuryl alcohol, 2018-2035 (metric tonnes).              174
  • Figure 40. Schematic of WISA plywood home.        177
  • Figure 41. Global production of biobased lignin, 2018-2035 (metric tonnes).    179
  • Figure 42. Global production of biobased glycerol, 2018-2035 (metric tonnes).               181
  • Figure 43. Global production of Bio-MPG, 2018-2035 (metric tonnes).   183
  • Figure 44. Global production of biobased ECH, 2018-2035 (metric tonnes).      184
  • Figure 45. Global production of biobased fatty acids, 2018-2035 (million metric tonnes).        186
  • Figure 46. Global production of biobased sebacic acid, 2018-2035 (metric tonnes).   187
  • Figure 47. Global production of biobased 11-Aminoundecanoic acid (11-AA), 2018-2035 (metric tonnes).             188
  • Figure 48. Global production of biobased Dodecanedioic acid (DDDA), 2018-2035 (metric tonnes). 190
  • Figure 49. Global production of biobased Pentamethylene diisocyanate, 2018-2035 (metric tonnes).                191
  • Figure 50. Global production of biobased casein, 2018-2035 (metric tonnes). 193
  • Figure 51. Global production of food waste for biochemicals, 2018-2035 (million metric tonnes).      195
  • Figure 52. Global production of agricultural waste for biochemicals, 2018-2035 (million metric tonnes).                196
  • Figure 53. Global production of forestry waste for biochemicals, 2018-2035 (million metric tonnes).                197
  • Figure 54. Global production of aquaculture/fishing waste for biochemicals, 2018-2035 (million metric tonnes).             199
  • Figure 55. Global production of municipal solid waste for biochemicals, 2018-2035 (million metric tonnes).             200
  • Figure 56. Global production of waste oils for biochemicals, 2018-2035 (million metric tonnes).        202
  • Figure 57. Global microalgae production, 2018-2035 (million metric tonnes).  203
  • Figure 58. Global macroalgae production, 2018-2035 (million metric tonnes). 205
  • Figure 59. Global production of biogas, 2018-2035 (billion m3). 208
  • Figure 60. Global production of syngas, 2018-2035 (billion m3). 210
  • Figure 61. formicobio™ technology. 230
  • Figure 62. Domsjö process.  235
  • Figure 63.  TMP-Bio Process.               242
  • Figure 64. Lignin gel. 262
  • Figure 65. BioFlex process.   265
  • Figure 66. LX Process.              267
  • Figure 67. METNIN™ Lignin refining technology.      270
  • Figure 68. Enfinity cellulosic ethanol technology process.              276
  • Figure 69.  Precision Photosynthesis™ technology.               278
  • Figure 70. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.               279
  • Figure 71. UPM biorefinery process.               289
  • Figure 72. The Proesa® Process.        290
  • Figure 73. Goldilocks process and applications.   292
  • Figure 74.  Coca-Cola PlantBottle®. 295
  • Figure 75. Interrelationship between conventional, bio-based and biodegradable plastics.    295
  • Figure 76. Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes).        304
  • Figure 77. Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes)              306
  • Figure 78. Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes).             308
  • Figure 79. Production capacities of Polyethylene furanoate (PEF) to 2025.          310
  • Figure 80. Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes).     311
  • Figure 81. Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes).  313
  • Figure 82. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes).                315
  • Figure 83. Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes).             317
  • Figure 84. Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes).               319
  • Figure 85. Polypropylene (Bio-PP) production capacities 2019-2035 (1,000 tonnes).   320
  • Figure 86. PHA family.              323
  • Figure 87. TEM image of cellulose nanocrystals.   337
  • Figure 88. CNC preparation. 337
  • Figure 89. Extracting CNC from trees.            338
  • Figure 90. CNC slurry.              340
  • Figure 91. CNF gel.     343
  • Figure 92. Bacterial nanocellulose shapes 348
  • Figure 93. BLOOM masterbatch from Algix.               353
  • Figure 94. Typical structure of mycelium-based foam.      355
  • Figure 95. Commercial mycelium composite construction materials.    356
  • Figure 96. Global production capacities for bioplastics by region 2019-2035, 1,000 tonnes.  386
  • Figure 97. Global production capacities for bioplastics by end user market 2019-2035, 1,000 tonnes.                391
  • Figure 98. PHA bioplastics products.             393
  • Figure 99. The global market for biobased and biodegradable plastics for flexible packaging 2019–2033 (‘000 tonnes). 395
  • Figure 100. Production volumes for bioplastics for rigid packaging, 2019–2033 (‘000 tonnes).              397
  • Figure 101. Global production for biobased and biodegradable plastics in consumer products 2019-2035, in 1,000 tonnes.             398
  • Figure 102. Global production capacities for biobased and biodegradable plastics in automotive 2019-2035, in 1,000 tonnes.             400
  • Figure 103. Global production volumes for biobased and biodegradable plastics in building and construction 2019-2035, in 1,000 tonnes. 401
  • Figure 104. Global production volumes for biobased and biodegradable plastics in textiles 2019-2035, in 1,000 tonnes.           404
  • Figure 105. Global production volumes for biobased and biodegradable plastics in electronics 2019-2035, in 1,000 tonnes.             405
  • Figure 106. Biodegradable mulch films.      406
  • Figure 107. Global production volulmes for biobased and biodegradable plastics in agriculture 2019-2035, in 1,000 tonnes.             406
  • Figure 108. High purity lignin.              407
  • Figure 109. Lignocellulose architecture.      408
  • Figure 110. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins.        409
  • Figure 111. The lignocellulose biorefinery. 414
  • Figure 112. LignoBoost process.       418
  • Figure 113. LignoForce system for lignin recovery from black liquor.        419
  • Figure 114. Sequential liquid-lignin recovery and purification (SLPR) system.   420
  • Figure 115. A-Recovery+ chemical recovery concept.        421
  • Figure 116.  Schematic of a biorefinery for production of carriers and chemicals.          423
  • Figure 117. Organosolv lignin.            425
  • Figure 118. Hydrolytic lignin powder.             426
  • Figure 119. Estimated consumption of lignin, by type, 2019-2035 (000 MT).      430
  • Figure 120. Estimated consumption of lignin, by market, 2019-2035 (000 MT). 432
  • Figure 121. Pluumo.  439
  • Figure 122. ANDRITZ Lignin Recovery process.       448
  • Figure 123. Anpoly cellulose nanofiber hydrogel.  450
  • Figure 124. MEDICELLU™.      450
  • Figure 125. Asahi Kasei CNF fabric sheet.  458
  • Figure 126. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.       459
  • Figure 127. CNF nonwoven fabric.   460
  • Figure 128. Roof frame made of natural fiber.          469
  • Figure 129. Beyond Leather Materials product.       472
  • Figure 130. BIOLO e-commerce mailer bag made from PHA.        478
  • Figure 131. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc.          479
  • Figure 132. Fiber-based screw cap. 491
  • Figure 133. formicobio™ technology.              510
  • Figure 134. nanoforest-S.      512
  • Figure 135. nanoforest-PDP. 512
  • Figure 136. nanoforest-MB.  513
  • Figure 137. sunliquid® production process.              520
  • Figure 138. CuanSave film.   523
  • Figure 139. Celish.     524
  • Figure 140. Trunk lid incorporating CNF.      526
  • Figure 141. ELLEX products. 527
  • Figure 142. CNF-reinforced PP compounds.            528
  • Figure 143. Kirekira! toilet wipes.      528
  • Figure 144. Color CNF.             529
  • Figure 145. Rheocrysta spray.             535
  • Figure 146. DKS CNF products.         535
  • Figure 147. Domsjö process.               537
  • Figure 148. Mushroom leather.           546
  • Figure 149. CNF based on citrus peel.           548
  • Figure 150. Citrus cellulose nanofiber.         548
  • Figure 151. Filler Bank CNC products.          559
  • Figure 152. Fibers on kapok tree and after processing.      561
  • Figure 153.  TMP-Bio Process.             564
  • Figure 154. Flow chart of the lignocellulose biorefinery pilot plant in Leuna.      565
  • Figure 155. Water-repellent cellulose.           567
  • Figure 156. Cellulose Nanofiber (CNF) composite with polyethylene (PE).          568
  • Figure 157. PHA production process.            569
  • Figure 158. CNF products from Furukawa Electric.              570
  • Figure 159. AVAPTM process.              580
  • Figure 160. GreenPower+™ process.               581
  • Figure 161. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.               583
  • Figure 162. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer).     585
  • Figure 163. CNF gel.  592
  • Figure 164. Block nanocellulose material. 593
  • Figure 165. CNF products developed by Hokuetsu.             593
  • Figure 166. Marine leather products.             596
  • Figure 167. Inner Mettle Milk products.        599
  • Figure 168. Kami Shoji CNF products.           611
  • Figure 169. Dual Graft System.          613
  • Figure 170. Engine cover utilizing Kao CNF composite resins.      614
  • Figure 171. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).        614
  • Figure 172. Kel Labs yarn.      615
  • Figure 173. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side).                619
  • Figure 174. Lignin gel.               627
  • Figure 175. BioFlex process. 631
  • Figure 176. Nike Algae Ink graphic tee.          632
  • Figure 177. LX Process.           636
  • Figure 178. Made of Air's HexChar panels. 638
  • Figure 179. TransLeather.       640
  • Figure 180. Chitin nanofiber product.            644
  • Figure 181. Marusumi Paper cellulose nanofiber products.           645
  • Figure 182. FibriMa cellulose nanofiber powder.    646
  • Figure 183. METNIN™ Lignin refining technology.    650
  • Figure 184. IPA synthesis method.   653
  • Figure 185. MOGU-Wave panels.      656
  • Figure 186. CNF slurries.        657
  • Figure 187. Range of CNF products.               657
  • Figure 188. Reishi.      661
  • Figure 189. Compostable water pod.             677
  • Figure 190. Leather made from leaves.         678
  • Figure 191. Nike shoe with beLEAF™.              678
  • Figure 192. CNF clear sheets.             687
  • Figure 193. Oji Holdings CNF polycarbonate product.       689
  • Figure 194. Enfinity cellulosic ethanol technology process.           702
  • Figure 195. Fabric consisting of 70 per cent wool and 30 per cent Qmilk.             707
  • Figure 196. XCNF.       714
  • Figure 197: Plantrose process.           715
  • Figure 198. LOVR hemp leather.         718
  • Figure 199. CNF insulation flat plates.          720
  • Figure 200. Hansa lignin.       726
  • Figure 201. Manufacturing process for STARCEL.  730
  • Figure 202. Manufacturing process for STARCEL.  734
  • Figure 203. 3D printed cellulose shoe.          741
  • Figure 204. Lyocell process. 744
  • Figure 205. North Face Spiber Moon Parka.              748
  • Figure 206. PANGAIA LAB NXT GEN Hoodie.             749
  • Figure 207. Spider silk production.  750
  • Figure 208. Stora Enso lignin battery materials.      754
  • Figure 209. 2 wt.% CNF suspension.            755
  • Figure 210. BiNFi-s Dry Powder.         756
  • Figure 211. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.        756
  • Figure 212. Silk nanofiber (right) and cocoon of raw material.       757
  • Figure 213. Sulapac cosmetics containers.              758
  • Figure 214.  Sulzer equipment for PLA polymerization processing.            759
  • Figure 215. Solid Novolac Type lignin modified phenolic resins. 760
  • Figure 216. Teijin bioplastic film for door handles. 769
  • Figure 217. Corbion FDCA production process.     776
  • Figure 218. Comparison of weight reduction effect using CNF.    777
  • Figure 219. CNF resin products.        781
  • Figure 220. UPM biorefinery process.            783
  • Figure 221. Vegea production process.        787
  • Figure 222. The Proesa® Process.     789
  • Figure 223. Goldilocks process and applications. 790
  • Figure 224. Visolis’ Hybrid Bio-Thermocatalytic Process. 793
  • Figure 225. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.            795
  • Figure 226. Worn Again products.    800
  • Figure 227. Zelfo Technology GmbH CNF production process.    804
  • Figure 228. Absolut natural based fiber bottle cap.              814
  • Figure 229. Adidas algae-ink tees.   814
  • Figure 230. Carlsberg natural fiber beer bottle.       815
  • Figure 231. Miratex watch bands.     815
  • Figure 232. Adidas Made with Nature Ultraboost 22.          815
  • Figure 233. PUMA RE:SUEDE sneaker            816
  • Figure 234. Types of natural fibers.  820
  • Figure 235.  Luffa cylindrica fiber.     823
  • Figure 236. Pineapple fiber.  833
  • Figure 237. Typical structure of mycelium-based foam.   839
  • Figure 238. Commercial mycelium composite construction materials. 839
  • Figure 239. SEM image of microfibrillated cellulose.           845
  • Figure 240. Hemp fibers combined with PP in car door panel.      858
  • Figure 241. Car door produced from Hemp fiber.  861
  • Figure 242. Natural fiber composites in the BMW M4 GT4 racing car.       863
  • Figure 243. Mercedes-Benz components containing natural fibers.         863
  • Figure 244. SWOT analysis: natural fibers in the automotive market.       865
  • Figure 245. SWOT analysis: natural fibers in the packaging market.         869
  • Figure 246. SWOT analysis: natural fibers in the appliances market.        871
  • Figure 247. SWOT analysis: natural fibers in the appliances market.        873
  • Figure 248. SWOT analysis: natural fibers in the consumer electronics market.               877
  • Figure 249. SWOT analysis: natural fibers in the furniture market.             878
  • Figure 250. Global market for natural fiber based plastics, 2018-2035, by market (Billion USD).          893
  • Figure 251. Global market for natural fiber based plastics, 2018-2035, by material type (Billion USD).                894
  • Figure 252. Global market for natural fiber based plastics, 2018-2035, by plastic type (Billion USD). 895
  • Figure 253. Global market for natural fiber based plastics, 2018-2035, by region (Billion USD).            896
  • Figure 254. Asahi Kasei CNF fabric sheet.  901
  • Figure 255. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.       901
  • Figure 256. CNF nonwoven fabric.   902
  • Figure 257. Roof frame made of natural fiber.          904
  • Figure 258.Tras Rei chair incorporating ampliTex fibers.    907
  • Figure 259. Natural fibres racing seat.           907
  • Figure 260. Porche Cayman GT4 Clubsport incorporating BComp flax fibers.    907
  • Figure 261. Fiber-based screw cap. 911
  • Figure 262. Cellugy materials.            916
  • Figure 263. CuanSave film.   919
  • Figure 264. Trunk lid incorporating CNF.      920
  • Figure 265. ELLEX products. 921
  • Figure 266. CNF-reinforced PP compounds.            922
  • Figure 267. Kirekira! toilet wipes.      922
  • Figure 268. DKS CNF products.         925
  • Figure 269. Cellulose Nanofiber (CNF) composite with polyethylene (PE).          928
  • Figure 270. CNF products from Furukawa Electric.              929
  • Figure 271. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.               932
  • Figure 272. CNF gel.  934
  • Figure 273. Block nanocellulose material. 934
  • Figure 274. CNF products developed by Hokuetsu.             935
  • Figure 275. Dual Graft System.          936
  • Figure 276. Engine cover utilizing Kao CNF composite resins.      937
  • Figure 277. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended).        937
  • Figure 278. Cellulomix production process.              941
  • Figure 279. Nanobase versus conventional products.        941
  • Figure 280. MOGU-Wave panels.      943
  • Figure 281. CNF clear sheets.             948
  • Figure 282. Oji Holdings CNF polycarbonate product.       949
  • Figure 283. A vacuum cleaner part made of cellulose fiber (left) and the assembled vacuum cleaner.                950
  • Figure 284. XCNF.       953
  • Figure 285. Manufacturing process for STARCEL.  955
  • Figure 286. 2 wt.% CNF suspension.            957
  • Figure 287. Sulapac cosmetics containers.              959
  • Figure 288. Comparison of weight reduction effect using CNF.    962
  • Figure 289. CNF resin products.        963
  • Figure 290. Global revenues in sustainable construction materials, by materials type, 2020-2035 (millions USD).             970
  • Figure 291. Global revenues in sustainable construction materials, by market, 2020-2035 (millions USD).  972
  • Figure 292. Luum Temple, constructed from Bamboo.      973
  • Figure 293. Typical structure of mycelium-based foam.   977
  • Figure 294. Commercial mycelium composite construction materials. 977
  • Figure 295. Self-healing concrete test study with cracked concrete (left) and self-healed concrete after 28 days (right).              980
  • Figure 296. Self-healing bacteria crack filler for concrete.               982
  • Figure 297. Self-healing bio concrete.           982
  • Figure 298. Microalgae based biocement masonry bloc. 984
  • Figure 299. Classification of aerogels.          991
  • Figure 300. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner.                993
  • Figure 301. Monolithic aerogel.          995
  • Figure 302. Aerogel granules.              996
  • Figure 303. Internal aerogel granule applications. 997
  • Figure 304. 3D printed aerogels.       1000
  • Figure 305. Lignin-based aerogels.  1009
  • Figure 306. Fabrication routes for starch-based aerogels.               1011
  • Figure 307. Graphene aerogel.           1014
  • Figure 308. Schematic of CCUS in cement sector.                1019
  • Figure 309. Carbon8 Systems’ ACT process.             1024
  • Figure 310. CO2 utilization in the Carbon Cure process.  1025
  • Figure 311. Share of (a) production, (b) energy consumption and (c) CO2 emissions from different steel making routes.              1030
  • Figure 312. Transition to hydrogen-based production.       1031
  • Figure 313. CO2 emissions from steelmaking (tCO2/ton crude steel).    1032
  • Figure 314. CO2 emissions of different process routes for liquid steel.  1034
  • Figure 315. Hydrogen Direct Reduced Iron (DRI) process.               1038
  • Figure 316. Molten oxide electrolysis process.        1040
  • Figure 317. Steelmaking with CCS. 1041
  • Figure 318. Flash ironmaking process.         1045
  • Figure 319. Hydrogen Plasma Iron Ore Reduction process.            1046
  • Figure 320. Aizawa self-healing concrete.   1059
  • Figure 321. ArcelorMittal decarbonization strategy.             1069
  • Figure 322. Thermal Conductivity Performance of ArmaGel HT.  1071
  • Figure 323. SLENTEX® roll (piece).    1074
  • Figure 324. Biozeroc Biocement.      1078
  • Figure 325. Carbon Re’s DeltaZero dashboard.      1090
  • Figure 326. Neustark modular plant.             1130
  • Figure 327. HIP AERO paint. 1137
  • Figure 328. Sunthru Aerogel pane.   1146
  • Figure 329. Quartzene®.          1148
  • Figure 330. Schematic of HyREX technology.           1154
  • Figure 331. EAF Quantum.    1156
  • Figure 332. CNF insulation flat plates.          1158
  • Figure 333. Global packaging market by material type.      1171
  • Figure 334. Routes for synthesizing polymers from fossil-based and bio-based resources.      1180
  • Figure 335. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms. 1207
  • Figure 336. Biosynthesis of (a) wood cellulose (b) tunicate cellulose and (c) BC.            1208
  • Figure 337. Cellulose microfibrils and nanofibrils.               1210
  • Figure 338. TEM image of cellulose nanocrystals. 1211
  • Figure 339. CNC slurry.           1212
  • Figure 340. CNF gel.  1213
  • Figure 341. Bacterial nanocellulose shapes             1221
  • Figure 342. BLOOM masterbatch from Algix.            1226
  • Figure 343. Typical structure of mycelium-based foam.   1229
  • Figure 344. Commercial mycelium composite construction materials. 1230
  • Figure 345. Types of bio-based materials used for antimicrobial food packaging application.                1243
  • Figure 346. Schematic of gas barrier properties of nanoclay film.              1248
  • Figure 347. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test.             1261
  • Figure 348. Applications for CO2.    1264
  • Figure 349. Life cycle of CO2-derived products and services.       1266
  • Figure 350.  Conversion pathways for CO2-derived polymeric materials               1267
  • Figure 351. Bioplastics for flexible packaging by bioplastic material type, 2019–2035 (‘000 tonnes). 1271
  • Figure 352. Bioplastics for rigid packaging by bioplastic material type, 2019–2035 (‘000 tonnes).       1273
  • Figure 353. Market revenues for bio-based coatings, 2018-2035 (billions USD), conservative estimate.                1274
  • Figure 354. Pluumo.  1278
  • Figure 355. Anpoly cellulose nanofiber hydrogel.  1285
  • Figure 356. MEDICELLU™.      1285
  • Figure 357. Asahi Kasei CNF fabric sheet.  1292
  • Figure 358. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric.       1293
  • Figure 359. CNF nonwoven fabric.   1294
  • Figure 360. Passionfruit wrapped in Xgo Circular packaging.        1299
  • Figure 361. BIOLO e-commerce mailer bag made from PHA.        1304
  • Figure 362. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc.          1305
  • Figure 363. Fiber-based screw cap. 1314
  • Figure 364. CuanSave film.   1327
  • Figure 365. ELLEX products. 1329
  • Figure 366. CNF-reinforced PP compounds.            1330
  • Figure 367. Kirekira! toilet wipes.      1330
  • Figure 368. Rheocrysta spray.             1334
  • Figure 369. DKS CNF products.         1334
  • Figure 370. Photograph (a) and micrograph (b) of mineral/ MFC composite showing the high viscosity and fibrillar structure.              1345
  • Figure 371. PHA production process.            1350
  • Figure 372. AVAPTM process.              1354
  • Figure 373. GreenPower+™ process.               1355
  • Figure 374. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials.               1357
  • Figure 375. CNF gel.  1359
  • Figure 376. Block nanocellulose material. 1360
  • Figure 377. CNF products developed by Hokuetsu.             1360
  • Figure 378. Kami Shoji CNF products.           1366
  • Figure 379. IPA synthesis method.   1383
  • Figure 380. Compostable water pod.             1391
  • Figure 381. XCNF.       1407
  • Figure 382: Innventia AB movable nanocellulose demo plant.     1408
  • Figure 383. Shellworks packaging containers.         1412
  • Figure 384. Thales packaging incorporating Fibrease.        1418
  • Figure 385. Sulapac cosmetics containers.              1420
  • Figure 386.  Sulzer equipment for PLA polymerization processing.            1421
  • Figure 387. Silver / CNF composite dispersions.   1427
  • Figure 388. CNF/nanosilver powder.               1428
  • Figure 389. Corbion FDCA production process.     1429
  • Figure 390. UPM biorefinery process.            1431
  • Figure 391. Vegea production process.        1434
  • Figure 392. Worn Again products.    1438
  • Figure 393. S-CNF in powder form. 1440
  • Figure 394. AlgiKicks sneaker, made with the Algiknit biopolymer gel.    1451
  • Figure 395. Conceptual landscape of next-gen leather materials.             1452
  • Figure 396. Typical structure of mycelium-based foam.   1466
  • Figure 397. Hermès bag made of MycoWorks' mycelium leather.               1469
  • Figure 398. Ganni blazer made from bacterial cellulose.  1474
  • Figure 399. Bou Bag by GANNI and Modern Synthesis.      1475
  • Figure 400. Global revenues for bio-based textiles by type, 2018-2035 (millions USD).              1488
  • Figure 401. Global revenues for bio-based and sustainable textiles by end use market, 2018-2035 (millions USD).             1490
  • Figure 402. Beyond Leather Materials product.       1496
  • Figure 403. Treekind. 1498
  • Figure 404. Examples of Stella McCartney and Adidas products made using leather alternative Mylo.                1500
  • Figure 405. Mushroom leather.           1503
  • Figure 406. Ecovative Design Forager Hides.            1504
  • Figure 407. LUNA® leather.    1509
  • Figure 408. TransLeather.       1512
  • Figure 409. Reishi.      1518
  • Figure 410. AirCarbon Pellets and AirCarbon Leather.        1522
  • Figure 411. Leather made from leaves.         1526
  • Figure 412. Nike shoe with beLEAF™.              1527
  • Figure 413.  Persiskin leather.              1530
  • Figure 414. LOVR hemp leather.         1534
  • Figure 415. North Face Spiber Moon Parka.              1537
  • Figure 416. PANGAIA LAB NXT GEN Hoodie.             1538
  • Figure 417.  Ultrasuede headrest covers.    1540
  • Figure 418. Vegea production process.        1542
  • Figure 419. Schematic of production of powder coatings.               1551
  • Figure 420. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms. 1554
  • Figure 421. PHA family.           1576
  • Figure 422: Schematic diagram of partial molecular structure of cellulose chain with numbering for carbon atoms and n= number of cellobiose repeating unit.           1580
  • Figure 423: Scale of cellulose materials.     1580
  • Figure 424. Nanocellulose preparation methods and resulting materials.            1581
  • Figure 425: Relationship between different kinds of nanocelluloses.      1583
  • Figure 426. SEM image of microfibrillated cellulose.           1585
  • Figure 427. Applications of cellulose nanofibers in paints and coatings.               1589
  • Figure 428: CNC slurry.           1593
  • Figure 429. Types of bio-based materials used for antimicrobial food packaging application.                1599
  • Figure 430. BLOOM masterbatch from Algix.            1605
  • Figure 431. Market revenues for bio-based coatings by market, 2018-2035 (billions USD), conservative estimate.          1608
  • Figure 432. Dulux Better Living Air Clean Bio-based.           1611
  • Figure 433. NCCTM Process.               1635
  • Figure 434. CNC produced at Tech Futures’ pilot plant; cloudy suspension (1 wt.%), gel-like (10 wt.%), flake-like crystals, and very fine powder. Product advantages include:  1636
  • Figure 435. Cellugy materials.            1637
  • Figure 436. EcoLine® 3690 (left) vs Solvent-Based Competitor Coating (right). 1642
  • Figure 437. Rheocrysta spray.             1648
  • Figure 438. DKS CNF products.         1649
  • Figure 439. Domsjö process.               1650
  • Figure 440. CNF gel.  1669
  • Figure 441. Block nanocellulose material. 1669
  • Figure 442. CNF products developed by Hokuetsu.             1670
  • Figure 443. VIVAPUR® MCC Spheres.             1675
  • Figure 444. BioFlex process. 1686
  • Figure 445. Marusumi Paper cellulose nanofiber products.           1689
  • Figure 446. Melodea CNC barrier coating packaging.        1691
  • Figure 447. Fluorene cellulose ® powder.    1710
  • Figure 448. XCNF.       1718
  • Figure 449. Plantrose process.           1719
  • Figure 450. Spider silk production.  1729
  • Figure 451. CNF dispersion and powder from Starlite.       1731
  • Figure 452. 2 wt.% CNF suspension.            1734
  • Figure 453. BiNFi-s Dry Powder.         1735
  • Figure 454. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet.        1735
  • Figure 455. Silk nanofiber (right) and cocoon of raw material.       1736
  • Figure 456. traceless® hooks.             1739
  • Figure 457. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test.            1741
  • Figure 458. Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film.               1742
  • Figure 459. Bioalkyd products.           1746
  • Figure 460. Liquid biofuel production and consumption (in thousands of m3), 2000-2022.     1750
  • Figure 461. Distribution of global liquid biofuel production in 2023.        1751
  • Figure 462. Diesel and gasoline alternatives and blends. 1755
  • Figure 463. SWOT analysis for biofuels.       1757
  • Figure 464.  Schematic of a biorefinery for production of carriers and chemicals.          1767
  • Figure 465. Hydrolytic lignin powder.             1770
  • Figure 466. SWOT analysis for energy crops in biofuels.   1775
  • Figure 467. SWOT analysis for agricultural residues in biofuels.  1777
  • Figure 468. SWOT analysis for Manure, sewage sludge and organic waste in biofuels. 1779
  • Figure 469. SWOT analysis for forestry and wood waste in biofuels.         1780
  • Figure 470. Range of biomass cost by feedstock type.       1781
  • Figure 471. Regional production of biodiesel (billion litres).           1782
  • Figure 472. SWOT analysis for biodiesel.     1784
  • Figure 473. Flow chart for biodiesel production.    1788
  • Figure 474. Biodiesel (B20) average prices, current and historical, USD/litre.     1794
  • Figure 475. Global biodiesel consumption, 2010-2035 (M litres/year).   1796
  • Figure 476. SWOT analysis for renewable iesel.      1799
  • Figure 477. Global renewable diesel consumption, 2010-2035 (M litres/year). 1800
  • Figure 478. SWOT analysis for Bio-aviation fuel.    1803
  • Figure 479. Global bio-jet fuel consumption to 2019-2035 (Million litres/year). 1807
  • Figure 480. SWOT analysis for bio-naphtha.             1810
  • Figure 481. Bio-based naphtha production capacities, 2018-2035 (tonnes).     1813
  • Figure 482. SWOT analysis biomethanol.   1815
  • Figure 483. Renewable Methanol Production Processes from Different Feedstocks.    1816
  • Figure 484. Production of biomethane through anaerobic digestion and upgrading.     1817
  • Figure 485. Production of biomethane through biomass gasification and methanation.            1818
  • Figure 486. Production of biomethane through the Power to methane process.               1818
  • Figure 487. SWOT analysis for ethanol.        1820
  • Figure 488. Ethanol consumption 2010-2035 (million litres).        1826
  • Figure 489. Properties of petrol and biobutanol.    1828
  • Figure 490. Biobutanol production route.   1828
  • Figure 491. Biogas and biomethane pathways.       1830
  • Figure 492. Overview of biogas utilization. 1832
  • Figure 493. Biogas and biomethane pathways.       1833
  • Figure 494. Schematic overview of anaerobic digestion process for biomethane production. 1834
  • Figure 495. Schematic overview of biomass gasification for biomethane production. 1835
  • Figure 496. SWOT analysis for biogas.          1836
  • Figure 497. Total syngas market by product in MM Nm³/h of Syngas, 2021.         1840
  • Figure 498. SWOT analysis for biohydrogen.             1843
  • Figure 499. Waste plastic production pathways to (A) diesel and (B) gasoline   1848
  • Figure 500. Schematic for Pyrolysis of Scrap Tires.              1849
  • Figure 501. Used tires conversion process.               1850
  • Figure 502. Total syngas market by product in MM Nm³/h of Syngas, 2021.         1852
  • Figure 503. Overview of biogas utilization. 1854
  • Figure 504. Biogas and biomethane pathways.       1855
  • Figure 505. SWOT analysis for chemical recycling of biofuels.     1858
  • Figure 506. Process steps in the production of electrofuels.          1859
  • Figure 507. Mapping storage technologies according to performance characteristics.               1860
  • Figure 508. Production process for green hydrogen.            1862
  • Figure 509. SWOT analysis for E-fuels.          1863
  • Figure 510. E-liquids production routes.      1864
  • Figure 511. Fischer-Tropsch liquid e-fuel products.              1865
  • Figure 512. Resources required for liquid e-fuel production.         1865
  • Figure 513. Levelized cost and fuel-switching CO2 prices of e-fuels.       1869
  • Figure 514. Cost breakdown for e-fuels.      1871
  • Figure 515.  Pathways for algal biomass conversion to biofuels. 1873
  • Figure 516. SWOT analysis for algae-derived biofuels.       1874
  • Figure 517. Algal biomass conversion process for biofuel production.   1875
  • Figure 518. Classification and process technology according to carbon emission in ammonia production.     1878
  • Figure 519. Green ammonia production and use. 1879
  • Figure 520. Schematic of the Haber Bosch ammonia synthesis reaction.            1881
  • Figure 521. Schematic of hydrogen production via steam methane reformation.            1881
  • Figure 522. SWOT analysis for green ammonia.     1883
  • Figure 523. Estimated production cost of green ammonia.            1887
  • Figure 524. Projected annual ammonia production, million tons.              1888
  • Figure 525. CO2 capture and separation technology.         1890
  • Figure 526. Conversion route for CO2-derived fuels and chemical intermediates.         1891
  • Figure 527.  Conversion pathways for CO2-derived methane, methanol and diesel.     1892
  • Figure 528. SWOT analysis for biofuels from carbon capture.       1894
  • Figure 529. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse.     1895
  • Figure 530. Global CO2 capture from biomass and DAC in the Net Zero Scenario.         1896
  • Figure 531.  DAC technologies.          1898
  • Figure 532. Schematic of Climeworks DAC system.            1899
  • Figure 533. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland.                1900
  • Figure 534.  Flow diagram for solid sorbent DAC.   1900
  • Figure 535. Direct air capture based on high temperature liquid sorbent by Carbon Engineering.        1901
  • Figure 536. Global capacity of direct air capture facilities.             1905
  • Figure 537. Global map of DAC and CCS plants.   1910
  • Figure 538. Schematic of costs of DAC technologies.        1913
  • Figure 539. DAC cost breakdown and comparison.             1913
  • Figure 540. Operating costs of generic liquid and solid-based DAC systems.    1915
  • Figure 541. Conversion route for CO2-derived fuels and chemical intermediates.         1920
  • Figure 542.  Conversion pathways for CO2-derived methane, methanol and diesel.     1921
  • Figure 543. CO2 feedstock for the production of e-methanol.      1928
  • Figure 544. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2.             1932
  • Figure 545. SWOT analysis: CO2 utilization in fuels.            1934
  • Figure 546. Audi synthetic fuels.       1935
  • Figure 547. Bio-oil upgrading/fractionation techniques.   1939
  • Figure 548. SWOT analysis for bio-oils.        1941
  • Figure 549. ANDRITZ Lignin Recovery process.       1952
  • Figure 550. ChemCyclingTM prototypes.     1958
  • Figure 551. ChemCycling circle by BASF.    1959
  • Figure 552. FBPO process     1969
  • Figure 553. Direct Air Capture Process.        1974
  • Figure 554. CRI process.        1976
  • Figure 555. Cassandra Oil  process.               1979
  • Figure 556. Colyser process.               1986
  • Figure 557. ECFORM electrolysis reactor schematic.         1991
  • Figure 558. Dioxycle modular electrolyzer. 1992
  • Figure 559. Domsjö process.               1993
  • Figure 560. FuelPositive system.       2004
  • Figure 561. INERATEC unit.   2020
  • Figure 562. Infinitree swing method.              2021
  • Figure 563. Audi/Krajete unit.              2027
  • Figure 564. Enfinity cellulosic ethanol technology process.           2054
  • Figure 565: Plantrose process.           2061
  • Figure 566. Sunfire process for Blue Crude production.    2077
  • Figure 567. Takavator.               2080
  • Figure 568. O12 Reactor.        2084
  • Figure 569. Sunglasses with lenses made from CO2-derived materials.               2084
  • Figure 570. CO2 made car part.        2084
  • Figure 571. The Velocys process.     2087
  • Figure 572. Goldilocks process and applications. 2090
  • Figure 573. The Proesa® Process.     2091
  • Figure 574. Closed-loop manufacturing.    2108
  • Figure 575. Sustainable supply chain for electronics.         2119
  • Figure 576. Flexible PCB.        2126
  • Figure 577. Vapor degreasing.            2130
  • Figure 578. Multi-layered PCB.           2132
  • Figure 579. 3D printed PCB. 2134
  • Figure 580. In-mold electronics prototype devices and products.              2135
  • Figure 581. Silver nanocomposite ink after sintering and resin bonding of discrete electronic components. 2136
  • Figure 582. Typical structure of mycelium-based foam.   2141
  • Figure 583. Flexible electronic substrate made from CNF.              2145
  • Figure 584. CNF composite. 2145
  • Figure 585. Oji CNF transparent sheets.      2146
  • Figure 586. Electronic components using cellulose nanofibers as insulating materials.            2146
  • Figure 587. BLOOM masterbatch from Algix.            2147
  • Figure 588. Dell's Concept Luna laptop.      2154
  • Figure 589.  Direct-write, precision dispensing, and 3D printing platform for 3D printed electronics. 2160
  • Figure 590. 3D printed circuit boards from Nano Dimension.       2160
  • Figure 591. Photonic sintering.          2161
  • Figure 592. Laser-induced forward transfer (LIFT).               2163
  • Figure 593. Material jetting 3d printing.        2168
  • Figure 594. Material jetting 3d printing product.     2169
  • Figure 595. The molecular mechanism of the shape memory effect under different stimuli.   2174
  • Figure 596. Supercooled Soldering™ Technology.  2178
  • Figure 597. Reflow soldering schematic.     2179
  • Figure 598. Schematic diagram of induction heating reflow.          2180
  • Figure 599. Fully-printed organic thin-film transistors and circuitry on one-micron-thick polymer films.                2185
  • Figure 600. Types of PCBs after dismantling waste computers and monitors.   2194
  • Figure 601. Global PCB revenues 2018-2035 (billions USD), by substrate types.              2200
  • Figure 602. Global sustainable PCB revenues 2018-2035, by type (millions USD).         2202
  • Figure 603. Global sustainable ICs revenues 2018-2035, by type (millions USD).           2203
  • Figure 604. Piezotech® FC.    2209
  • Figure 605. PowerCoat® paper.          2210
  • Figure 606. BeFC® biofuel cell and digital platform.             2211
  • Figure 607. DPP-360 machine.           2214
  • Figure 608. P-Flex® Flexible Circuit. 2216
  • Figure 609. Fairphone 4.         2218
  • Figure 610. In2tec’s fully recyclable flexible circuit board assembly.       2223
  •  Figure 611. C.L.A.D. system.              2225
  • Figure 612. Soluboard immersed in water. 2227
  • Figure 613. Infineon PCB before and after immersion.       2227
  • Figure 614. Nano OPS Nanoscale wafer printing system. 2230
  • Figure 615. Stora Enso lignin battery materials.      2241
  • Figure 616. 3D printed electronics.  2243
  • Figure 617. Tactotek IME device.       2244
  • Figure 618. TactoTek® IMSE® SiP - System In Package.       2245
  • Figure 619. Verde Bio-based resins.               2248
  • Figure 620. Global market revenues for bio-based adhesives & sealants, by types,  2018-2035 (millions USD).  2261
  • Figure 621. Global market revenues for bio-based adhesives & sealants, by market,  2018-2035 (millions USD).             2263
  • Figure 622. sunliquid® production process.              2268
  • Figure 623. Spider silk production.  2273

 

 

The Global Market for Advanced Bio-based and Sustainable Materials 2025-2035
The Global Market for Advanced Bio-based and Sustainable Materials 2025-2035
PDF download/by email.

Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com