- Published: December 2024
- Pages: 2,329
- Tables: 534
- Figures: 623
The global market for advanced bio-based and sustainable materials is experiencing rapid growth driven by increasing environmental concerns, regulatory pressure for sustainable solutions, and growing consumer demand for eco-friendly products. These materials are being developed to replace petroleum-based and other non-sustainable materials across multiple industries while offering improved environmental performance and circularity.
Key drivers include:
- Push to reduce carbon emissions and environmental impact
- Government regulations promoting sustainable materials
- Corporate sustainability commitments
- Consumer preference for eco-friendly products
- Need for alternatives to petroleum-based materials
- Advancement in production technologies
- Investment in bio-based manufacturing
The market encompasses multiple material categories including bio-based chemicals, polymers, composites, and advanced materials for construction, packaging, textiles, and electronics applications. Current market size is estimated at over $100 billion and growing at 10-15% annually, with bio-based polymers and sustainable packaging representing the largest segments.
Significant opportunities exist in:
- Drop-in replacements for petroleum-based chemicals
- Novel bio-based polymers with enhanced properties
- Natural fiber composites for automotive and construction
- Sustainable building materials and green steel
- Bio-based packaging solutions
- Next-generation sustainable textiles
- Electronics from renewable materials
The outlook remains highly positive as technologies mature and costs decrease. Growth is expected to accelerate as manufacturers increase adoption of sustainable materials to meet environmental goals and consumer demands. Asia Pacific represents the fastest growing market, while Europe leads in technology development and adoption.
This extensive 2200+ page report provides detailed market data and analysis of the rapidly growing advanced bio-based and sustainable materials market, covering bio-based chemicals, polymers, composites, construction materials, packaging, textiles, adhesives, and electronics applications. The report includes granular 10-year forecasts, competitive analysis of over 1,000 companies, and in-depth assessment of technologies, manufacturing processes, and end-use markets.
Key Report Features:
- Comprehensive analysis of bio-based chemicals and intermediates including starch, glucose, lignin, and plant-based feedstocks
- Detailed market sizing and forecasts for bio-based polymers and plastics including PLA, PHA, bio-PE, bio-PET
- Assessment of natural fiber composites and wood composites market opportunities
- Analysis of sustainable construction materials including bio-concrete, green steel, and thermal materials
- Deep dive into bio-based packaging applications and markets
- Coverage of sustainable textiles and bio-based leather alternatives
- Evaluation of bio-based adhesives, coatings and electronic materials
- Company profiles of over 1,000 companies developing advanced sustainable materials. Companies profiled include ADBioplastics, AlgiKnit, Allbirds Materials, Ananas Anam, Anellotech, Avantium, Basilisk, BASF, Blue Planet, Bluepha, Bolt Threads, Borealis, Braskem, Carbios, CarbonCure, Cargill, Cathay Biotech, CJ Biomaterials, Danimer Scientific, DuPont, Ecologic Brands, Ecovative, FlexSea, Futamura, Genomatica, GRECO, Helian Polymers BV, Huitong Biomaterials, Interface, Kaneka, Kingfa Science and Technology, Lactips, Loliware, MarinaTex, Modern Meadow, Mogu, Mushroom Packaging, MycoWorks, Natural Fiber Welding, NatureWorks, Newlight Technologies, Notpla, Novamont, Novozymes, Orange Fiber, Origin Materials, Ourobio, Paptic, Plantic Technologies, PlantSea, Prometheus Materials, Roquette, RWDC Industries, Solidia Technologies, Spinnova, Succinity, Sulapac, Sulzer, TerraVerdae Bioworks, Tipa Corp, Total Corbion, TotalEnergies Corbion, Trinseo, UPM, Vitrolabs, Wear Once, Xampla, Yield10 Bioscience, Zoa BioFabrics and more....
Detailed Coverage Includes:
- Raw material sourcing and feedstock analysis
- Production processes and manufacturing methods
- Material properties and performance characteristics
- End-use applications and market opportunities
- Competitive landscape and company strategies
- Technology roadmaps and future outlook
- Regional market analysis
- Regulatory considerations
- Sustainability metrics and environmental impact
The report segments the market by:
- Material Type:
- Bio-based chemicals and intermediates
- Bio-based polymers and plastics
- Natural fiber composites
- Sustainable construction materials
- Bio-based packaging
- Sustainable textiles
- Bio-based adhesives and coatings
- Sustainable electronics
- End-Use Markets:
- Packaging
- Construction
- Automotive
- Textiles & Apparel
- Electronics
- Consumer Products
- Industrial Applications
- Geographic Regions:
- North America
- Europe
- Asia Pacific
- Rest of World
The report provides essential market intelligence for:
- Chemical and materials companies
- Packaging manufacturers
- Construction companies
- Textile and apparel brands
- Electronics manufacturers
- Investment firms and VCs
- R&D organizations
1 RESEARCH METHODOLOGY 106
2 INTRODUCTION 107
- 2.1 Definition of Sustainable and Bio-based Materials 107
- 2.2 Importance and Benefits of Bio-based and Sustainable Materials 108
3 BIOBASED CHEMICALS AND INTERMEDIATES 109
- 3.1 BIOREFINERIES 109
- 3.2 BIO-BASED FEEDSTOCK AND LAND USE 110
- 3.3 PLANT-BASED 113
- 3.3.1 STARCH 113
- 3.3.1.1 Overview 113
- 3.3.1.2 Sources 113
- 3.3.1.3 Global production 114
- 3.3.1.4 Lysine 115
- 3.3.1.4.1 Source 115
- 3.3.1.4.2 Applications 116
- 3.3.1.4.3 Global production 116
- 3.3.1.5 Glucose 117
- 3.3.1.5.1 HMDA 118
- 3.3.1.5.1.1 Overview 118
- 3.3.1.5.1.2 Sources 119
- 3.3.1.5.1.3 Applications 119
- 3.3.1.5.1.4 Global production 119
- 3.3.1.5.2 1,5-diaminopentane (DA5) 120
- 3.3.1.5.2.1 Overview 120
- 3.3.1.5.2.2 Sources 120
- 3.3.1.5.2.3 Applications 121
- 3.3.1.5.2.4 Global production 121
- 3.3.1.5.3 Sorbitol 122
- 3.3.1.5.3.1 Isosorbide 122
- 3.3.1.5.3.1.1 Overview 122
- 3.3.1.5.3.1.2 Sources 123
- 3.3.1.5.3.1.3 Applications 123
- 3.3.1.5.3.1.4 Global production 123
- 3.3.1.5.4 Lactic acid 124
- 3.3.1.5.4.1 Overview 124
- 3.3.1.5.4.2 D-lactic acid 124
- 3.3.1.5.4.3 L-lactic acid 125
- 3.3.1.5.4.4 Lactide 125
- 3.3.1.5.5 Itaconic acid 127
- 3.3.1.5.5.1 Overview 127
- 3.3.1.5.5.2 Sources 127
- 3.3.1.5.5.3 Applications 128
- 3.3.1.5.5.4 Global production 128
- 3.3.1.5.6 3-HP 129
- 3.3.1.5.6.1 Overview 129
- 3.3.1.5.6.2 Sources 129
- 3.3.1.5.6.3 Applications 130
- 3.3.1.5.6.4 Global production 130
- 3.3.1.5.6.5 Acrylic acid 131
- 3.3.1.5.6.5.1 Overview 131
- 3.3.1.5.6.5.2 Applications 131
- 3.3.1.5.6.5.3 Global production 132
- 3.3.1.5.6.6 1,3-Propanediol (1,3-PDO) 133
- 3.3.1.5.6.6.1 Overview 133
- 3.3.1.5.6.6.2 Applications 133
- 3.3.1.5.6.6.3 Global production 133
- 3.3.1.5.7 Succinic Acid 134
- 3.3.1.5.7.1 Overview 134
- 3.3.1.5.7.2 Sources 134
- 3.3.1.5.7.3 Applications 135
- 3.3.1.5.7.4 Global production 135
- 3.3.1.5.7.5 1,4-Butanediol (1,4-BDO) 136
- 3.3.1.5.7.5.1 Overview 136
- 3.3.1.5.7.5.2 Applications 136
- 3.3.1.5.7.5.3 Global production 137
- 3.3.1.5.7.6 Tetrahydrofuran (THF) 138
- 3.3.1.5.7.6.1 Overview 138
- 3.3.1.5.7.6.2 Applications 138
- 3.3.1.5.7.6.3 Global production 138
- 3.3.1.5.8 Adipic acid 139
- 3.3.1.5.8.1 Overview 139
- 3.3.1.5.8.2 Applications 140
- 3.3.1.5.8.3 Caprolactame 140
- 3.3.1.5.8.3.1 Overview 140
- 3.3.1.5.8.3.2 Applications 141
- 3.3.1.5.8.3.3 Global production 141
- 3.3.1.5.9 Isobutanol 142
- 3.3.1.5.9.1 Overview 142
- 3.3.1.5.9.2 Sources 143
- 3.3.1.5.9.3 Applications 143
- 3.3.1.5.9.4 Global production 143
- 3.3.1.5.9.5 p-Xylene 144
- 3.3.1.5.9.5.1 Overview 144
- 3.3.1.5.9.5.2 Sources 144
- 3.3.1.5.9.5.3 Applications 145
- 3.3.1.5.9.5.4 Global production 145
- 3.3.1.5.9.5.5 Terephthalic acid 146
- 3.3.1.5.9.5.6 Overview 146
- 3.3.1.5.10 1,3 Proppanediol 147
- 3.3.1.5.10.1.1 Overview 147
- 3.3.1.5.10.2 Sources 147
- 3.3.1.5.10.3 Applications 148
- 3.3.1.5.10.4 Global production 148
- 3.3.1.5.11 Monoethylene glycol (MEG) 149
- 3.3.1.5.11.1 Overview 149
- 3.3.1.5.11.2 Sources 149
- 3.3.1.5.11.3 Applications 149
- 3.3.1.5.11.4 Global production 150
- 3.3.1.5.12 Ethanol 150
- 3.3.1.5.12.1 Overview 150
- 3.3.1.5.12.2 Sources 151
- 3.3.1.5.12.3 Applications 151
- 3.3.1.5.12.4 Global production 152
- 3.3.1.5.12.5 Ethylene 152
- 3.3.1.5.12.5.1 Overview 152
- 3.3.1.5.12.5.2 Applications 153
- 3.3.1.5.12.5.3 Global production 153
- 3.3.1.5.12.5.4 Propylene 154
- 3.3.1.5.12.5.5 Vinyl chloride 155
- 3.3.1.5.12.6 Methly methacrylate 157
- 3.3.2 SUGAR CROPS 158
- 3.3.2.1 Saccharose 158
- 3.3.2.1.1 Aniline 159
- 3.3.2.1.1.1 Overview 159
- 3.3.2.1.1.2 Applications 159
- 3.3.2.1.1.3 Global production 160
- 3.3.2.1.2 Fructose 160
- 3.3.2.1.2.1 Overview 160
- 3.3.2.1.2.2 Applications 160
- 3.3.2.1.2.3 Global production 161
- 3.3.2.1.2.4 5-Hydroxymethylfurfural (5-HMF) 161
- 3.3.2.1.2.4.1 Overview 161
- 3.3.2.1.2.4.2 Applications 162
- 3.3.2.1.2.4.3 Global production 162
- 3.3.2.1.2.5 5-Chloromethylfurfural (5-CMF) 163
- 3.3.2.1.2.5.1 Overview 163
- 3.3.2.1.2.5.2 Applications 163
- 3.3.2.1.2.5.3 Global production 164
- 3.3.2.1.2.6 Levulinic Acid 164
- 3.3.2.1.2.6.1 Overview 164
- 3.3.2.1.2.6.2 Applications 164
- 3.3.2.1.2.6.3 Global production 165
- 3.3.2.1.2.7 FDME 166
- 3.3.2.1.2.7.1 Overview 166
- 3.3.2.1.2.7.2 Applications 166
- 3.3.2.1.2.7.3 Global production 166
- 3.3.2.1.2.8 2,5-FDCA 167
- 3.3.2.1.2.8.1 Overview 167
- 3.3.2.1.2.8.2 Applications 167
- 3.3.2.1.2.8.3 Global production 168
- 3.3.3 LIGNOCELLULOSIC BIOMASS 168
- 3.3.3.1 Levoglucosenone 168
- 3.3.3.1.1 Overview 168
- 3.3.3.1.2 Applications 168
- 3.3.3.1.3 Global production 169
- 3.3.3.2 Hemicellulose 169
- 3.3.3.2.1 Overview 169
- 3.3.3.2.2 Biochemicals from hemicellulose 170
- 3.3.3.2.3 Global production 171
- 3.3.3.2.4 Furfural 171
- 3.3.3.2.4.1 Overview 171
- 3.3.3.2.4.2 Applications 172
- 3.3.3.2.4.3 Global production 172
- 3.3.3.2.4.4 Furfuyl alcohol 173
- 3.3.3.2.4.4.1 Overview 173
- 3.3.3.2.4.4.2 Applications 173
- 3.3.3.2.4.4.3 Global production 173
- 3.3.3.3 Lignin 174
- 3.3.3.3.1 Overview 174
- 3.3.3.3.2 Sources 174
- 3.3.3.3.3 Applications 176
- 3.3.3.3.3.1 Aromatic compounds 176
- 3.3.3.3.3.1.1 Benzene, toluene and xylene 176
- 3.3.3.3.3.1.2 Phenol and phenolic resins 177
- 3.3.3.3.3.1.3 Vanillin 177
- 3.3.3.3.3.2 Polymers 178
- 3.3.3.3.4 Global production 179
- 3.3.4 PLANT OILS 180
- 3.3.4.1 Overview 180
- 3.3.4.2 Glycerol 180
- 3.3.4.2.1 Overview 180
- 3.3.4.2.2 Applications 181
- 3.3.4.2.3 Global production 181
- 3.3.4.2.4 MPG 182
- 3.3.4.2.4.1 Overview 182
- 3.3.4.2.4.2 Applications 182
- 3.3.4.2.4.3 Global production 183
- 3.3.4.2.5 ECH 183
- 3.3.4.2.5.1 Overview 183
- 3.3.4.2.5.2 Applications 183
- 3.3.4.2.5.3 Global production 184
- 3.3.4.3 Fatty acids 185
- 3.3.4.3.1 Overview 185
- 3.3.4.3.2 Applications 185
- 3.3.4.3.3 Global production 185
- 3.3.4.4 Castor oil 186
- 3.3.4.4.1 Overview 186
- 3.3.4.4.2 Sebacic acid 186
- 3.3.4.4.2.1 Overview 186
- 3.3.4.4.2.2 Applications 186
- 3.3.4.4.2.3 Global production 187
- 3.3.4.4.3 11-Aminoundecanoic acid (11-AA) 187
- 3.3.4.4.3.1 Overview 187
- 3.3.4.4.3.2 Applications 188
- 3.3.4.4.3.3 Global production 188
- 3.3.4.5 Dodecanedioic acid (DDDA) 189
- 3.3.4.5.1 Overview 189
- 3.3.4.5.2 Applications 189
- 3.3.4.5.3 Global production 190
- 3.3.4.6 Pentamethylene diisocyanate 190
- 3.3.4.6.1 Overview 190
- 3.3.4.6.2 Applications 191
- 3.3.4.6.3 Global production 191
- 3.3.5 NON-EDIBIBLE MILK 192
- 3.3.5.1 Casein 192
- 3.3.5.1.1 Overview 192
- 3.3.5.1.2 Applications 192
- 3.3.5.1.3 Global production 193
- 3.3.1 STARCH 113
- 3.4 WASTE 194
- 3.4.1 Food waste 194
- 3.4.1.1 Overview 194
- 3.4.1.2 Products and applications 194
- 3.4.1.2.1 Global production 195
- 3.4.2 Agricultural waste 195
- 3.4.2.1 Overview 195
- 3.4.2.2 Products and applications 195
- 3.4.2.3 Global production 196
- 3.4.3 Forestry waste 196
- 3.4.3.1 Overview 197
- 3.4.3.2 Products and applications 197
- 3.4.3.3 Global production 197
- 3.4.4 Aquaculture/fishing waste 198
- 3.4.4.1 Overview 198
- 3.4.4.2 Products and applications 198
- 3.4.4.3 Global production 198
- 3.4.5 Municipal solid waste 199
- 3.4.5.1 Overview 199
- 3.4.5.2 Products and applications 199
- 3.4.5.3 Global production 200
- 3.4.6 Industrial waste 200
- 3.4.6.1 Overview 201
- 3.4.7 Waste oils 201
- 3.4.7.1 Overview 201
- 3.4.7.2 Products and applications 201
- 3.4.7.3 Global production 201
- 3.5 MICROBIAL & MINERAL SOURCES 202
- 3.5.1 Microalgae 202
- 3.5.1.1 Overview 202
- 3.5.1.2 Products and applications 202
- 3.5.1.3 Global production 203
- 3.5.2 Macroalgae 203
- 3.5.2.1 Overview 204
- 3.5.2.2 Products and applications 204
- 3.5.2.3 Global production 204
- 3.5.3 Mineral sources 205
- 3.5.3.1 Overview 205
- 3.5.3.2 Products and applications 206
- 3.6 GASEOUS 206
- 3.6.1 Biogas 207
- 3.6.1.1 Overview 207
- 3.6.1.2 Products and applications 207
- 3.6.1.3 Global production 208
- 3.6.2 Syngas 208
- 3.6.2.1 Overview 209
- 3.6.2.2 Products and applications 210
- 3.6.2.3 Global production 210
- 3.6.3 Off gases - fermentation CO2, CO 210
- 3.6.3.1 Overview 211
- 3.6.3.2 Products and applications 211
- 3.7 COMPANY PROFILES 211 (128 company profiles)
4 BIOBASED POLYMERS AND PLASTICS 294
- 4.1 Overview 294
- 4.1.1 Drop-in bio-based plastics 294
- 4.1.2 Novel bio-based plastics 295
- 4.2 Biodegradable and compostable plastics 295
- 4.2.1 Biodegradability 296
- 4.2.2 Compostability 297
- 4.3 Types 297
- 4.4 Key market players 299
- 4.5 Synthetic biobased polymers 300
- 4.5.1 Polylactic acid (Bio-PLA) 300
- 4.5.1.1 Market analysis 300
- 4.5.1.2 Production 302
- 4.5.1.3 Producers and production capacities, current and planned 302
- 4.5.1.3.1 Lactic acid producers and production capacities 302
- 4.5.1.3.2 PLA producers and production capacities 302
- 4.5.1.3.3 Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes) 304
- 4.5.2 Polyethylene terephthalate (Bio-PET) 304
- 4.5.2.1 Market analysis 304
- 4.5.2.2 Producers and production capacities 305
- 4.5.2.3 Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes) 306
- 4.5.3 Polytrimethylene terephthalate (Bio-PTT) 306
- 4.5.3.1 Market analysis 306
- 4.5.3.2 Producers and production capacities 307
- 4.5.3.3 Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes) 307
- 4.5.4 Polyethylene furanoate (Bio-PEF) 308
- 4.5.4.1 Market analysis 308
- 4.5.4.2 Comparative properties to PET 309
- 4.5.4.3 Producers and production capacities 310
- 4.5.4.3.1 FDCA and PEF producers and production capacities 310
- 4.5.4.3.2 Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes). 311
- 4.5.5 Polyamides (Bio-PA) 311
- 4.5.5.1 Market analysis 311
- 4.5.5.2 Producers and production capacities 312
- 4.5.5.3 Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes) 313
- 4.5.6 Poly(butylene adipate-co-terephthalate) (Bio-PBAT) 313
- 4.5.6.1 Market analysis 313
- 4.5.6.2 Producers and production capacities 314
- 4.5.6.3 Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes) 315
- 4.5.7 Polybutylene succinate (PBS) and copolymers 315
- 4.5.7.1 Market analysis 316
- 4.5.7.2 Producers and production capacities 316
- 4.5.7.3 Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes) 316
- 4.5.8 Polyethylene (Bio-PE) 317
- 4.5.8.1 Market analysis 317
- 4.5.8.2 Producers and production capacities 318
- 4.5.8.3 Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes). 319
- 4.5.9 Polypropylene (Bio-PP) 319
- 4.5.9.1 Market analysis 319
- 4.5.9.2 Producers and production capacities 320
- 4.5.9.3 Polypropylene (Bio-PP) production 2019-2035 (1,000 tonnes) 320
- 4.6 Natural biobased polymers 321
- 4.6.1 Polyhydroxyalkanoates (PHA) 321
- 4.6.1.1 Technology description 321
- 4.6.1.2 Types 322
- 4.6.1.2.1 PHB 324
- 4.6.1.2.2 PHBV 325
- 4.6.1.3 Synthesis and production processes 326
- 4.6.1.4 Market analysis 328
- 4.6.1.5 Commercially available PHAs 329
- 4.6.1.6 Markets for PHAs 330
- 4.6.1.6.1 Packaging 331
- 4.6.1.6.2 Cosmetics 333
- 4.6.1.6.2.1 PHA microspheres 333
- 4.6.1.6.3 Medical 333
- 4.6.1.6.3.1 Tissue engineering 333
- 4.6.1.6.3.2 Drug delivery 333
- 4.6.1.6.4 Agriculture 333
- 4.6.1.6.4.1 Mulch film 333
- 4.6.1.6.4.2 Grow bags 334
- 4.6.1.7 Producers and production capacities 334
- 4.6.2 Cellulose 335
- 4.6.2.1 Microfibrillated cellulose (MFC) 335
- 4.6.2.1.1 Market analysis 335
- 4.6.2.1.2 Producers and production capacities 336
- 4.6.2.2 Nanocellulose 337
- 4.6.2.2.1 Cellulose nanocrystals 337
- 4.6.2.2.1.1 Synthesis 337
- 4.6.2.2.1.2 Properties 339
- 4.6.2.2.1.3 Production 340
- 4.6.2.2.1.4 Applications 340
- 4.6.2.2.1.5 Market analysis 341
- 4.6.2.2.1.6 Producers and production capacities 343
- 4.6.2.2.2 Cellulose nanofibers 343
- 4.6.2.2.2.1 Applications 344
- 4.6.2.2.2.2 Market analysis 345
- 4.6.2.2.2.3 Producers and production capacities 346
- 4.6.2.2.3 Bacterial Nanocellulose (BNC) 347
- 4.6.2.2.3.1 Production 347
- 4.6.2.2.3.2 Applications 349
- 4.6.3 Protein-based bioplastics 350
- 4.6.3.1 Types, applications and producers 351
- 4.6.4 Algal and fungal 352
- 4.6.4.1 Algal 352
- 4.6.4.1.1 Advantages 352
- 4.6.4.1.2 Production 353
- 4.6.4.1.3 Producers 354
- 4.6.4.2 Mycelium 354
- 4.6.4.2.1 Properties 354
- 4.6.4.2.2 Applications 355
- 4.6.4.2.3 Commercialization 356
- 4.6.5 Chitosan 357
- 4.6.5.1 Technology description 357
- 4.7 Bio-rubber 358
- 4.7.1 Overview 358
- 4.7.2 Applications 358
- 4.7.3 Importance of Recycling and Residue Utilization 359
- 4.7.4 Raw Material Sourcing and Selection 360
- 4.7.5 Production Methods and Processing Techniques 360
- 4.7.6 Environmental Impact and Benefits 361
- 4.7.7 Material Properties and Testing 362
- 4.7.8 Comparison with Conventional Rubber 363
- 4.7.9 Applications in Construction 363
- 4.7.9.1 Bio-Rubber Use in Building Panels 364
- 4.7.9.2 Thermal and Acoustic Insulation 364
- 4.7.10 Applications in the Automotive Industry 364
- 4.7.10.1 Automotive Parts and Components 365
- 4.7.11 Applications in Personal Protective Equipment (PPE) 366
- 4.7.11.1 Gloves, Boots, and Safety Equipment 367
- 4.7.11.2 Enhancing Durability and Comfort 367
- 4.7.11.3 2 Standards Compliance and Health Implications 367
- 4.7.11.4 Challenges and Limitations 368
- 4.7.12 Technological Challenges in Bio-Rubber Production 368
- 4.7.13 Cost and Economic Viability 369
- 4.7.14 Regulatory and Safety Concerns 369
- 4.7.15 Sustainability and Environmental Impact Analysis 370
- 4.7.16 Growth Prospects in Construction, Automotive, and PPE Sectors 370
- 4.8 Bio-plastic from residues 371
- 4.8.1 Overview 371
- 4.8.2 Production and Properties 373
- 4.8.3 Manufacturing Processes and Techniques 374
- 4.8.4 Material Properties: Biodegradability, Food-Safe, and Recyclability 374
- 4.8.5 Applications 375
- 4.8.5.1 Caps and Closures 375
- 4.8.5.1.1 Bottle Caps and Sealing Solutions 375
- 4.8.5.1.2 Compatibility with Food and Beverage Standards 376
- 4.8.5.2 Personal Protective Equipment (PPE) 376
- 4.8.5.2.1 Bio-Plastic in Face Shields, Gloves, and Masks 377
- 4.8.5.2.2 Biodegradability and Safety Standards 377
- 4.8.5.2.3 Market Trends in Eco-Friendly PPE 378
- 4.8.5.3 Healthcare and Medical Products 378
- 4.8.5.3.1 Disposable Medical Tools, Packaging, and Devices 378
- 4.8.5.3.2 Sterility, Safety, and Bio-Compatibility Standards 379
- 4.8.5.3.3 Adoption by Healthcare Providers 379
- 4.8.5.4 Agriculture 380
- 4.8.5.4.1 Mulch Films, Plant Pots, and Seed Coatings 380
- 4.8.5.5 Cosmetics and Food 382
- 4.8.5.5.1 Bio-Plastic in Cosmetic Jars, Food Containers, and Wraps 382
- 4.8.5.5.2 Food Contact Safety and Aesthetic Appeal 382
- 4.8.5.5.3 Demand Trends for Sustainable Cosmetic and Food Packaging 383
- 4.8.5.6 Automotive Interior Components 384
- 4.8.5.6.1 Bio-Plastic in Dashboards, Panels, and Upholstery 384
- 4.8.5.6.2 Performance and Durability Standards 385
- 4.8.5.6.3 Market Adoption in Eco-Friendly Automotive Solutions 385
- 4.9 Production by region 386
- 4.9.1 North America 387
- 4.9.2 Europe 387
- 4.9.3 Asia-Pacific 388
- 4.9.3.1 China 388
- 4.9.3.2 Japan 388
- 4.9.3.3 Thailand 388
- 4.9.3.4 Indonesia 388
- 4.9.4 Latin America 389
- 4.10 End use markets 390
- 4.10.1 Packaging 391
- 4.10.1.1 Processes for bioplastics in packaging 392
- 4.10.1.2 Applications 392
- 4.10.1.3 Flexible packaging 393
- 4.10.1.3.1 Production volumes 2019-2035 395
- 4.10.1.4 Rigid packaging 396
- 4.10.1.4.1 Production volumes 2019-2035 397
- 4.10.2 Consumer products 398
- 4.10.2.1 Applications 398
- 4.10.2.2 Production volumes 2019-2035 398
- 4.10.3 Automotive 399
- 4.10.3.1 Applications 399
- 4.10.3.2 Production volumes 2019-2035 400
- 4.10.4 Construction 400
- 4.10.4.1 Applications 400
- 4.10.4.2 Production volumes 2019-2035 401
- 4.10.5 Textiles 401
- 4.10.5.1 Apparel 402
- 4.10.5.2 Footwear 402
- 4.10.5.3 Medical textiles 403
- 4.10.5.4 Production volumes 2019-2035 404
- 4.10.6 Electronics 404
- 4.10.6.1 Applications 404
- 4.10.6.2 Production volumes 2019-2035 405
- 4.10.7 Agriculture and horticulture 405
- 4.10.7.1 Production volumes 2019-2035 406
- 4.11 Lignin 407
- 4.11.1 Introduction 407
- 4.11.1.1 What is lignin? 407
- 4.11.1.1.1 Lignin structure 407
- 4.11.1.2 Types of lignin 408
- 4.11.1.2.1 Sulfur containing lignin 411
- 4.11.1.2.2 Sulfur-free lignin from biorefinery process 411
- 4.11.1.3 Properties 411
- 4.11.1.4 The lignocellulose biorefinery 413
- 4.11.1.5 Markets and applications 414
- 4.11.1.6 Challenges for using lignin 415
- 4.11.2 Lignin production processes 416
- 4.11.2.1 Lignosulphonates 417
- 4.11.2.2 Kraft Lignin 418
- 4.11.2.2.1 LignoBoost process 418
- 4.11.2.2.2 LignoForce method 419
- 4.11.2.2.3 Sequential Liquid Lignin Recovery and Purification 419
- 4.11.2.2.4 A-Recovery+ 420
- 4.11.2.3 Soda lignin 421
- 4.11.2.4 Biorefinery lignin 421
- 4.11.2.4.1 Commercial and pre-commercial biorefinery lignin production facilities and processes 423
- 4.11.2.5 Organosolv lignins 425
- 4.11.2.6 Hydrolytic lignin 425
- 4.11.3 Markets for lignin 426
- 4.11.3.1 Market drivers and trends for lignin 426
- 4.11.3.2 Production capacities 427
- 4.11.3.2.1 Technical lignin availability (dry ton/y) 427
- 4.11.3.2.2 Biomass conversion (Biorefinery) 428
- 4.11.3.3 Global consumption of lignin 428
- 4.11.3.3.1 By type 429
- 4.11.3.3.2 By market 431
- 4.11.3.4 Prices 433
- 4.11.3.5 Heat and power energy 433
- 4.11.3.6 Pyrolysis and syngas 433
- 4.11.3.7 Aromatic compounds 433
- 4.11.3.7.1 Benzene, toluene and xylene 433
- 4.11.3.7.2 Phenol and phenolic resins 434
- 4.11.3.7.3 Vanillin 434
- 4.11.3.8 Plastics and polymers 435
- 4.12 COMPANY PROFILES 436 (526 company profiles)
5 NATURAL FIBER PLASTICS AND COMPOSITES 809
- 5.1 Introduction 809
- 5.1.1 What are natural fiber materials? 809
- 5.1.2 Benefits of natural fibers over synthetic 811
- 5.1.3 Markets and applications for natural fibers 812
- 5.1.4 Commercially available natural fiber products 814
- 5.1.5 Market drivers for natural fibers 817
- 5.1.6 Market challenges 818
- 5.1.7 Wood flour as a plastic filler 819
- 5.2 Types of natural fibers in plastic composites 819
- 5.2.1 Plants 821
- 5.2.1.1 Seed fibers 821
- 5.2.1.1.1 Kapok 821
- 5.2.1.1.2 Luffa 822
- 5.2.1.2 Bast fibers 823
- 5.2.1.2.1 Jute 823
- 5.2.1.2.2 Hemp 824
- 5.2.1.2.3 Flax 826
- 5.2.1.2.4 Ramie 827
- 5.2.1.2.5 Kenaf 828
- 5.2.1.3 Leaf fibers 828
- 5.2.1.3.1 Sisal 828
- 5.2.1.3.2 Abaca 829
- 5.2.1.4 Fruit fibers 830
- 5.2.1.4.1 Coir 830
- 5.2.1.4.2 Banana 831
- 5.2.1.4.3 Pineapple 832
- 5.2.1.5 Stalk fibers from agricultural residues 833
- 5.2.1.5.1 Rice fiber 833
- 5.2.1.5.2 Corn 834
- 5.2.1.6 Cane, grasses and reed 835
- 5.2.1.6.1 Switchgrass 835
- 5.2.1.6.2 Sugarcane (agricultural residues) 836
- 5.2.1.6.3 Bamboo 837
- 5.2.1.6.4 Fresh grass (green biorefinery) 838
- 5.2.1.7 Modified natural polymers 838
- 5.2.1.7.1 Mycelium 838
- 5.2.1.7.2 Chitosan 840
- 5.2.1.7.3 Alginate 841
- 5.2.2 Animal (fibrous protein) 842
- 5.2.2.1 Silk fiber 842
- 5.2.3 Wood-based natural fibers 844
- 5.2.3.1 Cellulose fibers 844
- 5.2.3.1.1 Market overview 844
- 5.2.3.1.2 Producers 844
- 5.2.3.2 Microfibrillated cellulose (MFC) 845
- 5.2.3.2.1 Market overview 845
- 5.2.3.2.2 Producers 846
- 5.2.3.3 Cellulose nanocrystals 847
- 5.2.3.3.1 Market overview 847
- 5.2.3.3.2 Producers 848
- 5.2.3.4 Cellulose nanofibers 849
- 5.2.3.4.1 Market overview 849
- 5.2.3.4.2 Producers 850
- 5.3 Processing and Treatment of Natural Fibers 851
- 5.4 Interface and Compatibility of Natural Fibers with Plastic Matrices 852
- 5.4.1 Adhesion and Bonding 852
- 5.4.2 Moisture Absorption and Dimensional Stability 852
- 5.4.3 Thermal Expansion and Compatibility 853
- 5.4.4 Dispersion and Distribution 853
- 5.4.5 Matrix Selection 853
- 5.4.6 Fiber Content and Alignment 853
- 5.4.7 Manufacturing Techniques 853
- 5.5 Manufacturing processes 853
- 5.5.1 Injection molding 855
- 5.5.2 Compression moulding 856
- 5.5.3 Extrusion 857
- 5.5.4 Thermoforming 857
- 5.5.5 Thermoplastic pultrusion 858
- 5.5.6 Additive manufacturing (3D printing) 858
- 5.6 Global market for natural fibers 859
- 5.6.1 Automotive 861
- 5.6.1.1 Applications 862
- 5.6.1.2 Commercial production 862
- 5.6.1.3 SWOT analysis 865
- 5.6.2 Packaging 866
- 5.6.2.1 Applications 866
- 5.6.2.2 SWOT analysis 868
- 5.6.3 Construction 869
- 5.6.3.1 Applications 869
- 5.6.3.2 SWOT analysis 870
- 5.6.4 Appliances 871
- 5.6.4.1 Applications 871
- 5.6.4.2 SWOT analysis 872
- 5.6.5 Consumer electronics 874
- 5.6.5.1 Applications 874
- 5.6.5.2 SWOT analysis 876
- 5.6.6 Furniture 877
- 5.6.6.1 Applications 877
- 5.6.6.2 SWOT analysis 877
- 5.7 Wood composites 878
- 5.7.1 Applications 878
- 5.7.2 Importance of Wood Composite in Sustainable Manufacturing 879
- 5.7.3 Market Overview and Dynamics of Wood Composite Market 880
- 5.7.4 Production and Material Properties 880
- 5.7.5 Types of Wood Composite Materials 880
- 5.7.6 Performance Characteristics 882
- 5.7.7 Applications 882
- 5.7.7.1 Tools and Appliances 882
- 5.7.7.1.1 Wood Composite Use in Industrial Tools 883
- 5.7.7.1.2 Bearings, Including Sliding Bearings 883
- 5.7.7.1.3 Advantages of Wood Composite Bearings in Load-Bearing Applications 883
- 5.7.7.1.4 Case Studies 884
- 5.7.7.1.5 Industry Trends 884
- 5.7.7.2 Construction and Building Materials 884
- 5.7.7.2.1 Wood Composite in Floor Plates, Panels, and Walls 885
- 5.7.7.2.2 Benefits in Construction: Strength, Insulation, and Aesthetics 885
- 5.7.7.2.3 Case Studies 886
- 5.7.7.3 Engine Components 886
- 5.7.7.3.1 Benefits of Wood Composite in Weight Reduction and Insulation 887
- 5.7.7.3.2 Analysis of Wood Composite Performance in High-Stress Environments 887
- 5.7.8 Technological Barriers 888
- 5.7.9 Environmental and Sustainability Considerations 889
- 5.7.10 Emerging Technologies in Wood Composite Manufacturing 889
- 5.8 Competitive landscape 891
- 5.9 Future outlook 891
- 5.10 Revenues 891
- 5.10.1 By end use market 891
- 5.10.2 By Material Type 893
- 5.10.3 By Plastic Type 894
- 5.10.4 By region 895
- 5.11 Company profiles 897 (67 company profiles)
6 SUSTAINABLE CONSTRUCTION MATERIALS 966
- 6.1 Market overview 966
- 6.1.1 Benefits of Sustainable Construction 966
- 6.1.2 Global Trends and Drivers 966
- 6.2 Global revenues 968
- 6.2.1 By materials type 968
- 6.2.2 By market 971
- 6.3 Types of sustainable construction materials 973
- 6.3.1 Established bio-based construction materials 973
- 6.3.2 Hemp-based Materials 975
- 6.3.2.1 Hemp Concrete (Hempcrete) 975
- 6.3.2.2 Hemp Fiberboard 975
- 6.3.2.3 Hemp Insulation 976
- 6.3.3 Mycelium-based Materials 976
- 6.3.3.1 Insulation 977
- 6.3.3.2 Structural Elements 977
- 6.3.3.3 Acoustic Panels 978
- 6.3.3.4 Decorative Elements 978
- 6.3.4 Sustainable Concrete and Cement Alternatives 978
- 6.3.4.1 Geopolymer Concrete 978
- 6.3.4.2 Recycled Aggregate Concrete 979
- 6.3.4.3 Lime-Based Materials 979
- 6.3.4.4 Self-healing concrete 980
- 6.3.4.4.1 Bioconcrete 981
- 6.3.4.4.2 Fiber concrete 982
- 6.3.4.5 Microalgae biocement 983
- 6.3.4.6 Carbon-negative concrete 985
- 6.3.4.7 Biomineral binders 985
- 6.3.5 Natural Fiber Composites 986
- 6.3.5.1 Types of Natural Fibers 986
- 6.3.5.2 Properties 986
- 6.3.5.3 Applications in Construction 986
- 6.3.6 Cellulose nanofibers 987
- 6.3.6.1 Sandwich composites 987
- 6.3.6.2 Cement additives 987
- 6.3.6.3 Pump primers 988
- 6.3.6.4 Insulation materials 988
- 6.3.6.5 Coatings and paints 989
- 6.3.6.6 3D printing materials 989
- 6.3.7 Sustainable Insulation Materials 990
- 6.3.7.1 Types of sustainable insulation materials 990
- 6.3.7.2 Aerogel Insulation 991
- 6.3.7.2.1 Silica aerogels 993
- 6.3.7.2.1.1 Properties 993
- 6.3.7.2.1.2 Thermal conductivity 994
- 6.3.7.2.1.3 Mechanical 994
- 6.3.7.2.1.4 Silica aerogel precursors 994
- 6.3.7.2.1.5 Products 995
- 6.3.7.2.1.5.1 Monoliths 995
- 6.3.7.2.1.5.2 Powder 995
- 6.3.7.2.1.5.3 Granules 996
- 6.3.7.2.1.5.4 Blankets 997
- 6.3.7.2.1.5.5 Aerogel boards 998
- 6.3.7.2.1.5.6 Aerogel renders 999
- 6.3.7.2.1.6 3D printing of aerogels 999
- 6.3.7.2.1.7 Silica aerogel from sustainable feedstocks 1000
- 6.3.7.2.1.8 Silica composite aerogels 1000
- 6.3.7.2.1.8.1 Organic crosslinkers 1001
- 6.3.7.2.1.9 Cost of silica aerogels 1001
- 6.3.7.2.1.10 Main players 1001
- 6.3.7.2.2 Aerogel-like foam materials 1002
- 6.3.7.2.2.1 Properties 1002
- 6.3.7.2.2.2 Applications 1003
- 6.3.7.2.3 Metal oxide aerogels 1003
- 6.3.7.2.4 Organic aerogels 1004
- 6.3.7.2.4.1 Polymer aerogels 1004
- 6.3.7.2.5 Biobased and sustainable aerogels (bio-aerogels) 1006
- 6.3.7.2.5.1 Cellulose aerogels 1007
- 6.3.7.2.5.1.1 Cellulose nanofiber (CNF) aerogels 1008
- 6.3.7.2.5.1.2 Cellulose nanocrystal aerogels 1008
- 6.3.7.2.5.1.3 Bacterial nanocellulose aerogels 1009
- 6.3.7.2.5.2 Lignin aerogels 1009
- 6.3.7.2.5.3 Alginate aerogels 1010
- 6.3.7.2.5.4 Starch aerogels 1010
- 6.3.7.2.5.5 Chitosan aerogels 1011
- 6.3.7.2.6 Carbon aerogels 1011
- 6.3.7.2.6.1 Carbon nanotube aerogels 1013
- 6.3.7.2.6.2 Graphene and graphite aerogels 1014
- 6.3.7.2.7 Additive manufacturing (3D printing) 1014
- 6.3.7.2.7.1 Carbon nitride 1015
- 6.3.7.2.7.2 Gold 1016
- 6.3.7.2.7.3 Cellulose 1016
- 6.3.7.2.7.4 Graphene oxide 1016
- 6.3.7.2.8 Hybrid aerogels 1017
- 6.4 Carbon capture and utilization 1017
- 6.4.1 Overview 1017
- 6.4.2 Market structure 1019
- 6.4.3 CCUS technologies in the cement industry 1022
- 6.4.4 Products 1024
- 6.4.4.1 Carbonated aggregates 1024
- 6.4.4.2 Additives during mixing 1025
- 6.4.4.3 Carbonates from natural minerals 1026
- 6.4.4.4 Carbonates from waste 1026
- 6.4.5 Concrete curing 1027
- 6.4.6 Costs 1028
- 6.4.7 Challenges 1028
- 6.5 Green steel 1029
- 6.5.1 Current Steelmaking processes 1029
- 6.5.1.1.1 Capturing then sequestering or utilizing carbon emissions from conventional steel mills. 1031
- 6.5.2 Decarbonization target and policies 1032
- 6.5.2.1 EU Carbon Border Adjustment Mechanism (CBAM) 1034
- 6.5.3 Advances in clean production technologies 1035
- 6.5.4 Production technologies 1035
- 6.5.4.1 The role of hydrogen 1035
- 6.5.4.2 Comparative analysis 1036
- 6.5.4.3 Hydrogen Direct Reduced Iron (DRI) 1037
- 6.5.4.4 Electrolysis 1039
- 6.5.4.5 Carbon Capture, Utilization and Storage (CCUS) 1040
- 6.5.4.6 Biochar replacing coke 1041
- 6.5.4.7 Hydrogen Blast Furnace 1042
- 6.5.4.8 Renewable energy powered processes 1043
- 6.5.4.9 Flash ironmaking 1044
- 6.5.4.10 Hydrogen Plasma Iron Ore Reduction 1045
- 6.5.4.11 Ferrous Bioprocessing 1047
- 6.5.4.12 Microwave Processing 1047
- 6.5.4.13 Additive Manufacturing 1048
- 6.5.4.14 Technology readiness level (TRL) 1048
- 6.5.5 Properties 1049
- 6.6 Markets and applications 1051
- 6.6.1 Residential Buildings 1052
- 6.6.2 Commercial and Office Buildings 1053
- 6.6.3 Infrastructure 1055
- 6.7 Company profiles 1057 (144 company profiles)
7 BIOBASED PACKAGING MATERIALS 1171
- 7.1 Market overview 1171
- 7.1.1 Current global packaging market and materials 1171
- 7.1.2 Market trends 1172
- 7.1.3 Drivers for recent growth in bioplastics in packaging 1173
- 7.1.4 Challenges for bio-based and sustainable packaging 1173
- 7.2 Materials 1174
- 7.2.1 Materials innovation 1174
- 7.2.2 Active packaging 1175
- 7.2.3 Monomaterial packaging 1175
- 7.2.4 Conventional polymer materials used in packaging 1176
- 7.2.4.1 Polyolefins: Polypropylene and polyethylene 1176
- 7.2.4.2 PET and other polyester polymers 1178
- 7.2.4.3 Renewable and bio-based polymers for packaging 1179
- 7.2.4.4 Comparison of synthetic fossil-based and bio-based polymers 1181
- 7.2.4.5 Processes for bioplastics in packaging 1181
- 7.2.4.6 End-of-life treatment of bio-based and sustainable packaging 1182
- 7.3 Synthetic bio-based packaging materials 1183
- 7.3.1 Polylactic acid (Bio-PLA) 1183
- 7.3.1.1 Properties 1183
- 7.3.1.2 Applicaitons 1184
- 7.3.2 Polyethylene terephthalate (Bio-PET) 1186
- 7.3.2.1 Properties 1187
- 7.3.2.2 Applications 1187
- 7.3.2.3 Advantages of Bio-PET in Packaging 1188
- 7.3.2.4 Challenges and Limitations 1188
- 7.3.3 Polytrimethylene terephthalate (Bio-PTT) 1190
- 7.3.3.1 Production Process 1190
- 7.3.3.2 Properties 1190
- 7.3.3.3 Applications 1191
- 7.3.3.4 Advantages of Bio-PTT in Packaging 1191
- 7.3.3.5 Challenges and Limitations 1191
- 7.3.4 Polyethylene furanoate (Bio-PEF) 1192
- 7.3.4.1 Properties 1192
- 7.3.4.2 Applications 1193
- 7.3.4.3 Advantages of Bio-PEF in Packaging 1193
- 7.3.4.4 Challenges and Limitations 1193
- 7.3.5 Bio-PA 1194
- 7.3.5.1 Properties 1194
- 7.3.5.2 Applications in Packaging 1195
- 7.3.5.3 Advantages of Bio-PA in Packaging 1195
- 7.3.5.4 Challenges and Limitations 1195
- 7.3.6 Poly(butylene adipate-co-terephthalate) (Bio-PBAT)- Aliphatic aromatic copolyesters 1196
- 7.3.6.1 Properties 1196
- 7.3.6.2 Applications in Packaging 1197
- 7.3.6.3 Advantages of Bio-PBAT in Packaging 1197
- 7.3.6.4 Challenges and Limitations 1197
- 7.3.7 Polybutylene succinate (PBS) and copolymers 1198
- 7.3.7.1 Properties 1198
- 7.3.7.2 Applications in Packaging 1198
- 7.3.7.3 Advantages of Bio-PBS and Co-polymers in Packaging 1199
- 7.3.7.4 Challenges and Limitations 1199
- 7.3.8 Polypropylene (Bio-PP) 1200
- 7.3.8.1 Properties 1200
- 7.3.8.2 Applications in Packaging 1200
- 7.3.8.3 Advantages of Bio-PP in Packaging 1201
- 7.3.8.4 Challenges and Limitations 1201
- 7.4 Natural bio-based packaging materials 1201
- 7.4.1 Polyhydroxyalkanoates (PHA) 1202
- 7.4.1.1 Properties 1202
- 7.4.1.2 Applications in Packaging 1202
- 7.4.1.3 Advantages of PHA in Packaging 1204
- 7.4.1.4 Challenges and Limitations 1204
- 7.4.2 Starch-based blends 1205
- 7.4.2.1 Properties 1205
- 7.4.2.2 Applications in Packaging 1205
- 7.4.2.3 Advantages of Starch-Based Blends in Packaging 1206
- 7.4.2.4 Challenges and Limitations 1206
- 7.4.3 Cellulose 1206
- 7.4.3.1 Feedstocks 1206
- 7.4.3.1.1 Wood 1207
- 7.4.3.1.2 Plant 1207
- 7.4.3.1.3 Tunicate 1208
- 7.4.3.1.4 Algae 1208
- 7.4.3.1.5 Bacteria 1209
- 7.4.3.2 Microfibrillated cellulose (MFC) 1210
- 7.4.3.2.1 Properties 1210
- 7.4.3.3 Nanocellulose 1211
- 7.4.3.3.1 Cellulose nanocrystals 1211
- 7.4.3.3.1.1 Applications in packaging 1211
- 7.4.3.3.2 Cellulose nanofibers 1213
- 7.4.3.3.2.1 Applications in packaging 1213
- 7.4.3.3.2.1.1 Reinforcement and barrier 1218
- 7.4.3.3.2.1.2 Biodegradable food packaging foil and films 1218
- 7.4.3.3.2.1.3 Paperboard coatings 1219
- 7.4.3.3.3 Bacterial Nanocellulose (BNC) 1219
- 7.4.3.3.3.1 Applications in packaging 1222
- 7.4.4 Protein-based bioplastics in packaging 1223
- 7.4.5 Lipids and waxes for packaging 1225
- 7.4.6 Seaweed-based packaging 1225
- 7.4.6.1 Production 1227
- 7.4.6.2 Applications in packaging 1227
- 7.4.6.3 Producers 1227
- 7.4.7 Mycelium 1228
- 7.4.7.1 Applications in packaging 1229
- 7.4.8 Chitosan 1230
- 7.4.8.1 Applications in packaging 1231
- 7.4.9 Bio-naphtha 1231
- 7.4.9.1 Overview 1231
- 7.4.9.2 Markets and applications 1232
- 7.5 Applications 1234
- 7.5.1 Paper and board packaging 1234
- 7.5.2 Food packaging 1234
- 7.5.2.1 Bio-Based films and trays 1235
- 7.5.2.2 Bio-Based pouches and bags 1235
- 7.5.2.3 Bio-Based textiles and nets 1235
- 7.5.2.4 Bioadhesives 1236
- 7.5.2.4.1 Starch 1237
- 7.5.2.4.2 Cellulose 1237
- 7.5.2.4.3 Protein-Based 1237
- 7.5.2.5 Barrier coatings and films 1238
- 7.5.2.5.1 Polysaccharides 1239
- 7.5.2.5.1.1 Chitin 1239
- 7.5.2.5.1.2 Chitosan 1239
- 7.5.2.5.1.3 Starch 1239
- 7.5.2.5.2 Poly(lactic acid) (PLA) 1239
- 7.5.2.5.3 Poly(butylene Succinate) 1239
- 7.5.2.5.4 Functional Lipid and Proteins Based Coatings 1239
- 7.5.2.6 Active and Smart Food Packaging 1240
- 7.5.2.6.1 Active Materials and Packaging Systems 1240
- 7.5.2.6.2 Intelligent and Smart Food Packaging 1241
- 7.5.2.7 Antimicrobial films and agents 1242
- 7.5.2.7.1 Natural 1243
- 7.5.2.7.2 Inorganic nanoparticles 1244
- 7.5.2.7.3 Biopolymers 1244
- 7.5.2.8 Bio-based Inks and Dyes 1244
- 7.5.2.9 Edible films and coatings 1245
- 7.6 Biobased films and coatings in packaging 1247
- 7.6.1 Challenges using bio-based paints and coatings 1247
- 7.6.2 Types of bio-based coatings and films in packaging 1250
- 7.6.2.1 Polyurethane coatings 1250
- 7.6.2.1.1 Properties 1250
- 7.6.2.1.2 Bio-based polyurethane coatings 1250
- 7.6.2.1.3 Products 1251
- 7.6.2.2 Acrylate resins 1252
- 7.6.2.2.1 Properties 1252
- 7.6.2.2.2 Bio-based acrylates 1252
- 7.6.2.2.3 Products 1253
- 7.6.2.3 Polylactic acid (Bio-PLA) 1253
- 7.6.2.3.1 Properties 1255
- 7.6.2.3.2 Bio-PLA coatings and films 1255
- 7.6.2.4 Polyhydroxyalkanoates (PHA) coatings 1256
- 7.6.2.5 Cellulose coatings and films 1257
- 7.6.2.5.1 Microfibrillated cellulose (MFC) 1257
- 7.6.2.5.2 Cellulose nanofibers 1258
- 7.6.2.5.2.1 Properties 1258
- 7.6.2.5.2.2 Product developers 1259
- 7.6.2.6 Lignin coatings 1261
- 7.6.2.7 Protein-based biomaterials for coatings 1262
- 7.6.2.7.1 Plant derived proteins 1262
- 7.6.2.7.2 Animal origin proteins 1262
- 7.7 Carbon capture derived materials for packaging 1263
- 7.7.1 Benefits of carbon utilization for plastics feedstocks 1264
- 7.7.2 CO₂-derived polymers and plastics 1267
- 7.7.3 CO2 utilization products 1267
- 7.8 Global biobased packaging markets 1269
- 7.8.1 Flexible packaging 1269
- 7.8.2 Rigid packaging 1272
- 7.8.3 Coatings and films 1274
- 7.9 Company profiles 1275 (207 company profiles)
8 SUSTAINABLE TEXTILES AND APPAREL 1444
- 8.1 Types of bio-based fibres 1444
- 8.1.1 Natural fibres 1446
- 8.1.2 Main-made bio-based fibres 1447
- 8.2 Bio-based synthetics 1448
- 8.3 Recyclability of bio-based fibres 1448
- 8.4 Lyocell 1449
- 8.5 Bacterial cellulose 1449
- 8.6 Algae textiles 1450
- 8.7 Bio-based leather 1451
- 8.7.1 Properties of bio-based leathers 1454
- 8.7.1.1 Tear strength. 1454
- 8.7.1.2 Tensile strength 1455
- 8.7.1.3 Bally flexing 1455
- 8.7.2 Comparison with conventional leathers 1456
- 8.7.3 Comparative analysis of bio-based leathers 1459
- 8.7.4 Plant-based leather 1459
- 8.7.4.1 Overview 1459
- 8.7.4.2 Production processes 1460
- 8.7.4.2.1 Feedstocks 1460
- 8.7.4.2.1.1 Agriculture Residues 1460
- 8.7.4.2.1.2 Food Processing Waste 1460
- 8.7.4.2.1.3 Invasive Plants 1461
- 8.7.4.2.1.4 Culture-Grown Inputs 1461
- 8.7.4.2.2 Textile-Based 1461
- 8.7.4.2.3 Bio-Composite 1462
- 8.7.4.3 Products 1462
- 8.7.4.4 Market players 1463
- 8.7.5 Mycelium leather 1465
- 8.7.5.1 Overview 1465
- 8.7.5.2 Production process 1467
- 8.7.5.2.1 Growth conditions 1467
- 8.7.5.2.2 Tanning Mycelium Leather 1468
- 8.7.5.2.3 Dyeing Mycelium Leather 1468
- 8.7.5.3 Products 1469
- 8.7.5.4 Market players 1469
- 8.7.6 Microbial leather 1470
- 8.7.6.1 Overview 1470
- 8.7.6.2 Production process 1470
- 8.7.6.3 Fermentation conditions 1471
- 8.7.6.4 Harvesting 1472
- 8.7.6.5 Products 1472
- 8.7.6.6 Market players 1475
- 8.7.7 Lab grown leather 1476
- 8.7.7.1 Overview 1476
- 8.7.7.2 Production process 1476
- 8.7.7.3 Products 1477
- 8.7.7.4 Market players 1478
- 8.7.8 Protein-based leather 1478
- 8.7.8.1 Overview 1478
- 8.7.8.2 Production process 1479
- 8.7.8.3 Commercial activity 1479
- 8.7.9 Sustainable textiles coatings and dyes 1480
- 8.7.9.1 Overview 1480
- 8.7.9.1.1 Coatings 1480
- 8.7.9.1.2 Dyes 1481
- 8.7.9.2 Commercial activity 1482
- 8.8 Markets 1483
- 8.8.1 Footwear 1483
- 8.8.2 Fashion & Accessories 1484
- 8.8.3 Automotive & Transport 1485
- 8.8.4 Furniture 1485
- 8.9 Global market revenues 1487
- 8.9.1 By region 1487
- 8.9.2 By end use market 1489
- 8.10 Company profiles 1491 (67 company profiles)
9 BIOBASED COATINGS AND RESINS 1546
- 9.1 Drop-in replacements 1546
- 9.2 Bio-based resins 1546
- 9.3 Reducing carbon footprint in industrial and protective coatings 1547
- 9.4 Market drivers 1548
- 9.5 Challenges using bio-based coatings 1548
- 9.6 Types 1549
- 9.6.1 Eco-friendly coatings technologies 1549
- 9.6.1.1 UV-cure 1550
- 9.6.1.2 Waterborne coatings 1550
- 9.6.1.3 Treatments with less or no solvents 1550
- 9.6.1.4 Hyperbranched polymers for coatings 1551
- 9.6.1.5 Powder coatings 1551
- 9.6.1.6 High solid (HS) coatings 1552
- 9.6.1.7 Use of bio-based materials in coatings 1552
- 9.6.1.7.1 Biopolymers 1552
- 9.6.1.7.2 Coatings based on agricultural waste 1553
- 9.6.1.7.3 Vegetable oils and fatty acids 1553
- 9.6.1.7.4 Proteins 1554
- 9.6.1.7.5 Cellulose 1554
- 9.6.1.7.6 Plant-Based wax coatings 1555
- 9.6.2 Barrier coatings 1556
- 9.6.2.1 Polysaccharides 1557
- 9.6.2.1.1 Chitin 1558
- 9.6.2.1.2 Chitosan 1558
- 9.6.2.1.3 Starch 1558
- 9.6.2.2 Poly(lactic acid) (PLA) 1558
- 9.6.2.3 Poly(butylene Succinate 1558
- 9.6.2.4 Functional Lipid and Proteins Based Coatings 1559
- 9.6.3 Alkyd coatings 1559
- 9.6.3.1 Alkyd resin properties 1559
- 9.6.3.2 Bio-based alkyd coatings 1560
- 9.6.3.3 Products 1562
- 9.6.4 Polyurethane coatings 1563
- 9.6.4.1 Properties 1563
- 9.6.4.2 Bio-based polyurethane coatings 1563
- 9.6.4.2.1 Bio-based polyols 1563
- 9.6.4.2.2 Non-isocyanate polyurethane (NIPU) 1564
- 9.6.4.3 Products 1565
- 9.6.5 Epoxy coatings 1565
- 9.6.5.1 Properties 1566
- 9.6.5.2 Bio-based epoxy coatings 1566
- 9.6.5.3 Prod 1568
- 9.6.5.4 Products 1568
- 9.6.6 Acrylate resins 1568
- 9.6.6.1 Properties 1569
- 9.6.6.2 Bio-based acrylates 1569
- 9.6.6.3 Products 1569
- 9.6.7 Polylactic acid (Bio-PLA) 1570
- 9.6.7.1 Properties 1572
- 9.6.7.2 Bio-PLA coatings and films 1572
- 9.6.8 Polyhydroxyalkanoates (PHA) 1573
- 9.6.8.1 Properties 1574
- 9.6.8.2 PHA coatings 1577
- 9.6.8.3 Commercially available PHAs 1577
- 9.6.9 Cellulose 1579
- 9.6.9.1 Microfibrillated cellulose (MFC) 1584
- 9.6.9.1.1 Properties 1585
- 9.6.9.1.2 Applications in coatings 1586
- 9.6.9.2 Cellulose nanofibers 1587
- 9.6.9.2.1 Properties 1587
- 9.6.9.2.2 Applications in coatings 1589
- 9.6.9.3 Cellulose nanocrystals 1592
- 9.6.9.4 Bacterial Nanocellulose (BNC) 1594
- 9.6.10 Rosins 1595
- 9.6.11 Bio-based carbon black 1595
- 9.6.11.1 Lignin-based 1595
- 9.6.11.2 Algae-based 1596
- 9.6.12 Lignin coatings 1596
- 9.6.13 Edible films and coatings 1596
- 9.6.14 Antimicrobial films and agents 1598
- 9.6.14.1 Natural 1599
- 9.6.14.2 Inorganic nanoparticles 1600
- 9.6.14.3 Biopolymers 1600
- 9.6.15 Nanocoatings 1600
- 9.6.16 Protein-based biomaterials for coatings 1602
- 9.6.16.1 Plant derived proteins 1602
- 9.6.16.2 Animal origin proteins 1602
- 9.6.17 Algal coatings 1603
- 9.6.18 Polypeptides 1606
- 9.6.19 Global market revenues 1607
- 9.7 Company profiles 1609 (168 company profiles)
10 BIOFUELS 1747
- 10.1 Comparison to fossil fuels 1747
- 10.2 Role in the circular economy 1747
- 10.3 Market drivers 1748
- 10.4 Market challenges 1749
- 10.5 Liquid biofuels market 1749
- 10.5.1 Liquid biofuel production and consumption (in thousands of m3), 2000-2022 1749
- 10.5.2 Liquid biofuels market 2020-2035, by type and production. 1751
- 10.6 The global biofuels market 1753
- 10.6.1 Diesel substitutes and alternatives 1754
- 10.6.2 Gasoline substitutes and alternatives 1755
- 10.7 SWOT analysis: Biofuels market 1756
- 10.8 Comparison of biofuel costs 2023, by type 1757
- 10.9 Types 1757
- 10.9.1 Solid Biofuels 1758
- 10.9.2 Liquid Biofuels 1758
- 10.9.3 Gaseous Biofuels 1759
- 10.9.4 Conventional Biofuels 1760
- 10.9.5 Advanced Biofuels 1760
- 10.10 Feedstocks 1761
- 10.10.1 First-generation (1-G) 1763
- 10.10.2 Second-generation (2-G) 1764
- 10.10.2.1 Lignocellulosic wastes and residues 1765
- 10.10.2.2 Biorefinery lignin 1766
- 10.10.3 Third-generation (3-G) 1770
- 10.10.3.1 Algal biofuels 1770
- 10.10.3.1.1 Properties 1771
- 10.10.3.1.2 Advantages 1771
- 10.10.4 Fourth-generation (4-G) 1772
- 10.10.5 Advantages and disadvantages, by generation 1773
- 10.10.6 Energy crops 1774
- 10.10.6.1 Feedstocks 1774
- 10.10.6.2 SWOT analysis 1774
- 10.10.7 Agricultural residues 1775
- 10.10.7.1 Feedstocks 1775
- 10.10.7.2 SWOT analysis 1776
- 10.10.8 Manure, sewage sludge and organic waste 1777
- 10.10.8.1 Processing pathways 1777
- 10.10.8.2 SWOT analysis 1778
- 10.10.9 Forestry and wood waste 1779
- 10.10.9.1 Feedstocks 1779
- 10.10.9.2 SWOT analysis 1779
- 10.10.10 Feedstock costs 1780
- 10.11 Hydrocarbon biofuels 1781
- 10.11.1 Biodiesel 1781
- 10.11.1.1 Biodiesel by generation 1782
- 10.11.1.2 SWOT analysis 1783
- 10.11.1.3 Production of biodiesel and other biofuels 1785
- 10.11.1.3.1 Pyrolysis of biomass 1785
- 10.11.1.3.2 Vegetable oil transesterification 1788
- 10.11.1.3.3 Vegetable oil hydrogenation (HVO) 1789
- 10.11.1.3.3.1 Production process 1789
- 10.11.1.3.4 Biodiesel from tall oil 1790
- 10.11.1.3.5 Fischer-Tropsch BioDiesel 1791
- 10.11.1.3.6 Hydrothermal liquefaction of biomass 1792
- 10.11.1.3.7 CO2 capture and Fischer-Tropsch (FT) 1793
- 10.11.1.3.8 Dymethyl ether (DME) 1793
- 10.11.1.4 Prices 1794
- 10.11.1.5 Global production and consumption 1795
- 10.11.2 Renewable diesel 1797
- 10.11.2.1 Production 1797
- 10.11.2.2 SWOT analysis 1798
- 10.11.2.3 Global consumption 1799
- 10.11.2.4 Prices 1801
- 10.11.3 Bio-aviation fuel (bio-jet fuel, sustainable aviation fuel, renewable jet fuel or aviation biofuel) 1802
- 10.11.3.1 Description 1802
- 10.11.3.2 SWOT analysis 1802
- 10.11.3.3 Global production and consumption 1803
- 10.11.3.4 Production pathways 1803
- 10.11.3.5 Prices 1805
- 10.11.3.6 Bio-aviation fuel production capacities 1806
- 10.11.3.7 Market challenges 1806
- 10.11.3.8 Global consumption 1807
- 10.11.4 Bio-naphtha 1808
- 10.11.4.1 Overview 1808
- 10.11.4.2 SWOT analysis 1809
- 10.11.4.3 Markets and applications 1810
- 10.11.4.4 Prices 1811
- 10.11.4.5 Production capacities, by producer, current and planned 1812
- 10.11.4.6 Production capacities, total (tonnes), historical, current and planned 1813
- 10.12 Alcohol fuels 1814
- 10.12.1 Biomethanol 1814
- 10.12.1.1 SWOT analysis 1814
- 10.12.1.2 Methanol-to gasoline technology 1815
- 10.12.1.2.1 Production processes 1816
- 10.12.1.2.1.1 Anaerobic digestion 1817
- 10.12.1.2.1.2 Biomass gasification 1817
- 10.12.1.2.1.3 Power to Methane 1818
- 10.12.2 Ethanol 1819
- 10.12.2.1 Technology description 1819
- 10.12.2.2 1G Bio-Ethanol 1819
- 10.12.2.3 SWOT analysis 1820
- 10.12.2.4 Ethanol to jet fuel technology 1821
- 10.12.2.5 Methanol from pulp & paper production 1821
- 10.12.2.6 Sulfite spent liquor fermentation 1822
- 10.12.2.7 Gasification 1822
- 10.12.2.7.1 Biomass gasification and syngas fermentation 1822
- 10.12.2.7.2 Biomass gasification and syngas thermochemical conversion 1823
- 10.12.2.8 CO2 capture and alcohol synthesis 1823
- 10.12.2.9 Biomass hydrolysis and fermentation 1823
- 10.12.2.9.1 Separate hydrolysis and fermentation 1823
- 10.12.2.9.2 Simultaneous saccharification and fermentation (SSF) 1824
- 10.12.2.9.3 Pre-hydrolysis and simultaneous saccharification and fermentation (PSSF) 1824
- 10.12.2.9.4 Simultaneous saccharification and co-fermentation (SSCF) 1825
- 10.12.2.9.5 Direct conversion (consolidated bioprocessing) (CBP) 1825
- 10.12.2.10 Global ethanol consumption 1826
- 10.12.3 Biobutanol 1827
- 10.12.3.1 Production 1829
- 10.12.3.2 Prices 1829
- 10.13 Biomass-based Gas 1829
- 10.13.1 Feedstocks 1831
- 10.13.1.1 Biomethane 1831
- 10.13.1.2 Production pathways 1833
- 10.13.1.2.1 Landfill gas recovery 1833
- 10.13.1.2.2 Anaerobic digestion 1834
- 10.13.1.2.3 Thermal gasification 1835
- 10.13.1.3 SWOT analysis 1835
- 10.13.1.4 Global production 1836
- 10.13.1.5 Prices 1836
- 10.13.1.5.1 Raw Biogas 1836
- 10.13.1.5.2 Upgraded Biomethane 1837
- 10.13.1.6 Bio-LNG 1837
- 10.13.1.6.1 Markets 1837
- 10.13.1.6.1.1 Trucks 1837
- 10.13.1.6.1.2 Marine 1837
- 10.13.1.6.2 Production 1837
- 10.13.1.6.3 Plants 1838
- 10.13.1.7 bio-CNG (compressed natural gas derived from biogas) 1838
- 10.13.1.8 Carbon capture from biogas 1839
- 10.13.2 Biosyngas 1840
- 10.13.2.1 Production 1840
- 10.13.2.2 Prices 1841
- 10.13.3 Biohydrogen 1841
- 10.13.3.1 Description 1841
- 10.13.3.2 SWOT analysis 1842
- 10.13.3.3 Production of biohydrogen from biomass 1843
- 10.13.3.3.1 Biological Conversion Routes 1843
- 10.13.3.3.1.1 Bio-photochemical Reaction 1843
- 10.13.3.3.1.2 Fermentation and Anaerobic Digestion 1844
- 10.13.3.3.2 Thermochemical conversion routes 1844
- 10.13.3.3.2.1 Biomass Gasification 1844
- 10.13.3.3.2.2 Biomass Pyrolysis 1844
- 10.13.3.3.2.3 Biomethane Reforming 1845
- 10.13.3.4 Applications 1845
- 10.13.3.5 Prices 1846
- 10.13.4 Biochar in biogas production 1846
- 10.13.5 Bio-DME 1847
- 10.14 Chemical recycling for biofuels 1847
- 10.14.1 Plastic pyrolysis 1847
- 10.14.2 Used tires pyrolysis 1848
- 10.14.2.1 Conversion to biofuel 1849
- 10.14.3 Co-pyrolysis of biomass and plastic wastes 1851
- 10.14.4 Gasification 1851
- 10.14.4.1 Syngas conversion to methanol 1852
- 10.14.4.2 Biomass gasification and syngas fermentation 1856
- 10.14.4.3 Biomass gasification and syngas thermochemical conversion 1856
- 10.14.5 Hydrothermal cracking 1856
- 10.14.6 SWOT analysis 1857
- 10.15 Electrofuels (E-fuels, power-to-gas/liquids/fuels) 1858
- 10.15.1 Introduction 1858
- 10.15.2 Benefits of e-fuels 1861
- 10.15.3 Feedstocks 1862
- 10.15.3.1 Hydrogen electrolysis 1862
- 10.15.3.2 CO2 capture 1862
- 10.15.4 SWOT analysis 1863
- 10.15.5 Production 1864
- 10.15.5.1 eFuel production facilities, current and planned 1866
- 10.15.6 Electrolysers 1867
- 10.15.6.1 Commercial alkaline electrolyser cells (AECs) 1868
- 10.15.6.2 PEM electrolysers (PEMEC) 1868
- 10.15.6.3 High-temperature solid oxide electrolyser cells (SOECs) 1868
- 10.15.7 Prices 1868
- 10.15.8 Market challenges 1871
- 10.15.9 Companies 1872
- 10.16 Algae-derived biofuels 1873
- 10.16.1 Technology description 1873
- 10.16.2 Conversion pathways 1873
- 10.16.3 SWOT analysis 1874
- 10.16.4 Production 1875
- 10.16.5 Market challenges 1876
- 10.16.6 Prices 1876
- 10.16.7 Producers 1877
- 10.17 Green Ammonia 1877
- 10.17.1 Production 1877
- 10.17.1.1 Decarbonisation of ammonia production 1879
- 10.17.1.2 Green ammonia projects 1880
- 10.17.2 Green ammonia synthesis methods 1880
- 10.17.2.1 Haber-Bosch process 1880
- 10.17.2.2 Biological nitrogen fixation 1881
- 10.17.2.3 Electrochemical production 1882
- 10.17.2.4 Chemical looping processes 1882
- 10.17.3 SWOT analysis 1882
- 10.17.4 Blue ammonia 1883
- 10.17.4.1 Blue ammonia projects 1883
- 10.17.5 Markets and applications 1884
- 10.17.5.1 Chemical energy storage 1884
- 10.17.5.1.1 Ammonia fuel cells 1884
- 10.17.5.2 Marine fuel 1884
- 10.17.6 Prices 1886
- 10.17.7 Estimated market demand 1888
- 10.17.8 Companies and projects 1888
- 10.18 Biofuels from carbon capture 1889
- 10.18.1 Overview 1890
- 10.18.2 CO2 capture from point sources 1892
- 10.18.3 Production routes 1893
- 10.18.4 SWOT analysis 1894
- 10.18.5 Direct air capture (DAC) 1894
- 10.18.5.1 Description 1894
- 10.18.5.2 Deployment 1896
- 10.18.5.3 Point source carbon capture versus Direct Air Capture 1897
- 10.18.5.4 Technologies 1897
- 10.18.5.4.1 Solid sorbents 1899
- 10.18.5.4.2 Liquid sorbents 1900
- 10.18.5.4.3 Liquid solvents 1901
- 10.18.5.4.4 Airflow equipment integration 1902
- 10.18.5.4.5 Passive Direct Air Capture (PDAC) 1902
- 10.18.5.4.6 Direct conversion 1902
- 10.18.5.4.7 Co-product generation 1903
- 10.18.5.4.8 Low Temperature DAC 1903
- 10.18.5.4.9 Regeneration methods 1903
- 10.18.5.5 Commercialization and plants 1904
- 10.18.5.6 Metal-organic frameworks (MOFs) in DAC 1904
- 10.18.5.7 DAC plants and projects-current and planned 1905
- 10.18.5.8 Markets for DAC 1910
- 10.18.5.9 Costs 1911
- 10.18.5.10 Challenges 1916
- 10.18.5.11 Players and production 1916
- 10.18.6 Carbon utilization for biofuels 1917
- 10.18.6.1 Production routes 1921
- 10.18.6.1.1 Electrolyzers 1921
- 10.18.6.1.2 Low-carbon hydrogen 1922
- 10.18.6.2 Products & applications 1923
- 10.18.6.2.1 Vehicles 1923
- 10.18.6.2.2 Shipping 1923
- 10.18.6.2.3 Aviation 1924
- 10.18.6.2.4 Costs 1925
- 10.18.6.2.5 Ethanol 1925
- 10.18.6.2.6 Methanol 1925
- 10.18.6.2.7 Sustainable Aviation Fuel 1929
- 10.18.6.2.8 Methane 1929
- 10.18.6.2.9 Algae based biofuels 1931
- 10.18.6.2.10 CO₂-fuels from solar 1931
- 10.18.6.3 Challenges 1933
- 10.18.6.4 SWOT analysis 1934
- 10.18.6.5 Companies 1935
- 10.19 Bio-oils (pyrolysis oils) 1937
- 10.19.1 Description 1937
- 10.19.1.1 Advantages of bio-oils 1937
- 10.19.2 Production 1939
- 10.19.2.1 Fast Pyrolysis 1939
- 10.19.2.2 Costs of production 1939
- 10.19.2.3 Upgrading 1939
- 10.19.3 SWOT analysis 1940
- 10.19.4 Applications 1941
- 10.19.5 Bio-oil producers 1941
- 10.19.6 Prices 1942
- 10.20 Refuse Derived Fuels (RDF) 1943
- 10.20.1 Overview 1943
- 10.20.2 Production 1943
- 10.20.2.1 Production process 1943
- 10.20.2.2 Mechanical biological treatment 1944
- 10.20.3 Markets 1944
- 10.21 Company profiles 1945 (211 company profiles)
11 SUSTAINABLE ELECTRONICS 2097
- 11.1 Overview 2097
- 11.1.1 Green electronics manufacturing 2097
- 11.1.2 Drivers for sustainable electronics 2098
- 11.1.3 Environmental Impacts of Electronics Manufacturing 2099
- 11.1.3.1 E-Waste Generation 2099
- 11.1.3.2 Carbon Emissions 2099
- 11.1.3.3 Resource Utilization 2100
- 11.1.3.4 Waste Minimization 2100
- 11.1.3.5 Supply Chain Impacts 2101
- 11.1.4 New opportunities from sustainable electronics 2101
- 11.1.5 Regulations 2102
- 11.1.5.1 Certifications 2103
- 11.1.6 Powering sustainable electronics (Bio-based batteries) 2103
- 11.1.7 Bioplastics in injection moulded electronics parts 2104
- 11.2 Green electronics manufacturing 2105
- 11.2.1 Conventional electronics manufacturing 2105
- 11.2.2 Benefits of Green Electronics manufacturing 2105
- 11.2.3 Challenges in adopting Green Electronics manufacturing 2106
- 11.2.4 Approaches 2107
- 11.2.4.1 Closed-Loop Manufacturing 2107
- 11.2.4.2 Digital Manufacturing 2108
- 11.2.4.2.1 Advanced robotics & automation 2108
- 11.2.4.2.2 AI & machine learning analytics 2109
- 11.2.4.2.3 Internet of Things (IoT) 2109
- 11.2.4.2.4 Additive manufacturing 2109
- 11.2.4.2.5 Virtual prototyping 2109
- 11.2.4.2.6 Blockchain-enabled supply chain traceability 2110
- 11.2.4.3 Renewable Energy Usage 2110
- 11.2.4.4 Energy Efficiency 2111
- 11.2.4.5 Materials Efficiency 2112
- 11.2.4.6 Sustainable Chemistry 2112
- 11.2.4.7 Recycled Materials 2113
- 11.2.4.7.1 Advanced chemical recycling 2114
- 11.2.4.8 Bio-Based Materials 2116
- 11.2.5 Greening the Supply Chain 2118
- 11.2.5.1 Key focus areas 2119
- 11.2.5.2 Sustainability activities from major electronics brands 2122
- 11.2.5.3 Key challenges 2123
- 11.2.5.4 Use of digital technologies 2123
- 11.2.6 Sustainable Printed Circuit Board (PCB) manufacturing 2124
- 11.2.6.1 Conventional PCB manufacturing 2124
- 11.2.6.2 Trends in PCBs 2125
- 11.2.6.2.1 High-Speed PCBs 2125
- 11.2.6.2.2 Flexible PCBs 2125
- 11.2.6.2.3 3D Printed PCBs 2126
- 11.2.6.2.4 Sustainable PCBs 2127
- 11.2.6.3 Reconciling sustainability with performance 2127
- 11.2.6.4 Sustainable supply chains 2128
- 11.2.6.5 Sustainability in PCB manufacturing 2129
- 11.2.6.5.1 Sustainable cleaning of PCBs 2130
- 11.2.6.6 Design of PCBs for sustainability 2131
- 11.2.6.6.1 Rigid 2132
- 11.2.6.6.2 Flexible 2133
- 11.2.6.6.3 Additive manufacturing 2133
- 11.2.6.6.4 In-mold elctronics (IME) 2135
- 11.2.6.7 Materials 2135
- 11.2.6.7.1 Metal cores 2135
- 11.2.6.7.2 Recycled laminates 2135
- 11.2.6.7.3 Conductive inks 2136
- 11.2.6.7.4 Green and lead-free solder 2138
- 11.2.6.7.5 Biodegradable substrates 2139
- 11.2.6.7.5.1 Bacterial Cellulose 2139
- 11.2.6.7.5.2 Mycelium 2140
- 11.2.6.7.5.3 Lignin 2142
- 11.2.6.7.5.4 Cellulose Nanofibers 2144
- 11.2.6.7.5.5 Soy Protein 2146
- 11.2.6.7.5.6 Algae 2146
- 11.2.6.7.5.7 PHAs 2147
- 11.2.6.7.6 Biobased inks 2148
- 11.2.6.8 Substrates 2148
- 11.2.6.8.1 Halogen-free FR4 2148
- 11.2.6.8.1.1 FR4 limitations 2148
- 11.2.6.8.1.2 FR4 alternatives 2150
- 11.2.6.8.1.3 Bio-Polyimide 2150
- 11.2.6.8.2 Metal-core PCBs 2152
- 11.2.6.8.3 Biobased PCBs 2152
- 11.2.6.8.3.1 Flexible (bio) polyimide PCBs 2153
- 11.2.6.8.3.2 Recent commercial activity 2154
- 11.2.6.8.4 Paper-based PCBs 2155
- 11.2.6.8.5 PCBs without solder mask 2155
- 11.2.6.8.6 Thinner dielectrics 2155
- 11.2.6.8.7 Recycled plastic substrates 2155
- 11.2.6.8.8 Flexible substrates 2156
- 11.2.6.9 Sustainable patterning and metallization in electronics manufacturing 2156
- 11.2.6.9.1 Introduction 2156
- 11.2.6.9.2 Issues with sustainability 2156
- 11.2.6.9.3 Regeneration and reuse of etching chemicals 2157
- 11.2.6.9.4 Transition from Wet to Dry phase patterning 2158
- 11.2.6.9.5 Print-and-plate 2158
- 11.2.6.9.6 Approaches 2159
- 11.2.6.9.6.1 Direct Printed Electronics 2159
- 11.2.6.9.6.2 Photonic Sintering 2160
- 11.2.6.9.6.3 Biometallization 2161
- 11.2.6.9.6.4 Plating Resist Alternatives 2161
- 11.2.6.9.6.5 Laser-Induced Forward Transfer 2162
- 11.2.6.9.6.6 Electrohydrodynamic Printing 2164
- 11.2.6.9.6.7 Electrically conductive adhesives (ECAs 2165
- 11.2.6.9.6.8 Green electroless plating 2166
- 11.2.6.9.6.9 Smart Masking 2167
- 11.2.6.9.6.10 Component Integration 2167
- 11.2.6.9.6.11 Bio-inspired material deposition 2167
- 11.2.6.9.6.12 Multi-material jetting 2168
- 11.2.6.9.6.13 Vacuumless deposition 2169
- 11.2.6.9.6.14 Upcycling waste streams 2169
- 11.2.6.10 Sustainable attachment and integration of components 2170
- 11.2.6.10.1 Conventional component attachment materials 2170
- 11.2.6.10.2 Materials 2171
- 11.2.6.10.2.1 Conductive adhesives 2171
- 11.2.6.10.2.2 Biodegradable adhesives 2171
- 11.2.6.10.2.3 Magnets 2171
- 11.2.6.10.2.4 Bio-based solders 2172
- 11.2.6.10.2.5 Bio-derived solders 2172
- 11.2.6.10.2.6 Recycled plastics 2172
- 11.2.6.10.2.7 Nano adhesives 2173
- 11.2.6.10.2.8 Shape memory polymers 2173
- 11.2.6.10.2.9 Photo-reversible polymers 2174
- 11.2.6.10.2.10 Conductive biopolymers 2175
- 11.2.6.10.3 Processes 2175
- 11.2.6.10.3.1 Traditional thermal processing methods 2176
- 11.2.6.10.3.2 Low temperature solder 2176
- 11.2.6.10.3.3 Reflow soldering 2179
- 11.2.6.10.3.4 Induction soldering 2179
- 11.2.6.10.3.5 UV curing 2180
- 11.2.6.10.3.6 Near-infrared (NIR) radiation curing 2180
- 11.2.6.10.3.7 Photonic sintering/curing 2181
- 11.2.6.10.3.8 Hybrid integration 2181
- 11.2.7 Sustainable integrated circuits 2182
- 11.2.7.1 IC manufacturing 2182
- 11.2.7.2 Sustainable IC manufacturing 2182
- 11.2.7.3 Wafer production 2183
- 11.2.7.3.1 Silicon 2183
- 11.2.7.3.2 Gallium nitride ICs 2184
- 11.2.7.3.3 Flexible ICs 2184
- 11.2.7.3.4 Fully printed organic ICs 2185
- 11.2.7.4 Oxidation methods 2185
- 11.2.7.4.1 Sustainable oxidation 2185
- 11.2.7.4.2 Metal oxides 2186
- 11.2.7.4.3 Recycling 2187
- 11.2.7.4.4 Thin gate oxide layers 2187
- 11.2.7.5 Patterning and doping 2188
- 11.2.7.5.1 Processes 2188
- 11.2.7.5.1.1 Wet etching 2188
- 11.2.7.5.1.2 Dry plasma etching 2188
- 11.2.7.5.1.3 Lift-off patterning 2189
- 11.2.7.5.1.4 Surface doping 2189
- 11.2.7.6 Metallization 2190
- 11.2.7.6.1 Evaporation 2190
- 11.2.7.6.2 Plating 2190
- 11.2.7.6.3 Printing 2191
- 11.2.7.6.3.1 Printed metal gates for organic thin film transistors 2191
- 11.2.7.6.4 Physical vapour deposition (PVD) 2191
- 11.2.8 End of life 2192
- 11.2.8.1 Hazardous waste 2192
- 11.2.8.2 Emissions 2193
- 11.2.8.3 Water Usage 2194
- 11.2.8.4 Recycling 2194
- 11.2.8.4.1 Mechanical recycling 2195
- 11.2.8.4.2 Electro-Mechanical Separation 2196
- 11.2.8.4.3 Chemical Recycling 2196
- 11.2.8.5 Electrochemical Processes 2197
- 11.2.8.5.1 Thermal Recycling 2197
- 11.2.8.6 Green Certification 2198
- 11.3 Global market 2198
- 11.3.1 Global PCB manufacturing industry 2198
- 11.3.1.1 PCB revenues 2198
- 11.3.2 Sustainable PCBs 2200
- 11.3.3 Sustainable ICs 2202
- 11.4 Company profiles 2204 (45 company profiles)
12 BIOBASED ADHESIVES AND SEALANTS 2250
- 12.1 Overview 2250
- 12.1.1 Biobased Epoxy Adhesives 2250
- 12.1.2 Bioobased Polyurethane Adhesives 2251
- 12.1.3 Other Biobased Adhesives and Sealants 2251
- 12.2 Types 2252
- 12.2.1 Cellulose-Based 2252
- 12.2.2 Starch-Based 2253
- 12.2.3 Lignin-Based 2253
- 12.2.4 Vegetable Oils 2254
- 12.2.5 Protein-Based 2254
- 12.2.6 Tannin-Based 2255
- 12.2.7 Algae-based 2255
- 12.2.8 Chitosan-based 2256
- 12.2.9 Natural Rubber-based 2257
- 12.2.10 Silkworm Silk-based 2258
- 12.2.11 Mussel Protein-based 2258
- 12.2.12 Soy-based Foam 2259
- 12.3 Global revenues 2260
- 12.3.1 By types 2260
- 12.3.2 By market 2262
- 12.4 Company profiles 2264 (15 company profiles)
13 REFERENCES 2276
List of Tables
- Table 1. Plant-based feedstocks and biochemicals produced. 110
- Table 2. Waste-based feedstocks and biochemicals produced. 111
- Table 3. Microbial and mineral-based feedstocks and biochemicals produced. 112
- Table 4. Common starch sources that can be used as feedstocks for producing biochemicals. 114
- Table 5. Common lysine sources that can be used as feedstocks for producing biochemicals. 116
- Table 6. Applications of lysine as a feedstock for biochemicals. 116
- Table 7. HDMA sources that can be used as feedstocks for producing biochemicals. 119
- Table 8. Applications of bio-based HDMA. 119
- Table 9. Biobased feedstocks that can be used to produce 1,5-diaminopentane (DA5). 121
- Table 10. Applications of DN5. 121
- Table 11. Biobased feedstocks for isosorbide. 123
- Table 12. Applications of bio-based isosorbide. 123
- Table 13. Lactide applications. 126
- Table 14. Biobased feedstock sources for itaconic acid. 127
- Table 15. Applications of bio-based itaconic acid. 128
- Table 16. Biobased feedstock sources for 3-HP. 130
- Table 17. Applications of 3-HP. 130
- Table 18. Applications of bio-based acrylic acid. 132
- Table 19. Applications of bio-based 1,3-Propanediol (1,3-PDO). 133
- Table 20. Biobased feedstock sources for Succinic acid. 135
- Table 21. Applications of succinic acid. 135
- Table 22. Applications of bio-based 1,4-Butanediol (BDO). 136
- Table 23. Applications of bio-based Tetrahydrofuran (THF). 138
- Table 24. Applications of bio-based adipic acid. 140
- Table 25. Applications of bio-based caprolactam. 141
- Table 26. Biobased feedstock sources for isobutanol. 143
- Table 27. Applications of bio-based isobutanol. 143
- Table 28. Biobased feedstock sources for p-Xylene. 144
- Table 29. Applications of bio-based p-Xylene. 145
- Table 30. Applications of bio-based Terephthalic acid (TPA). 146
- Table 31. Biobased feedstock sources for 1,3 Proppanediol. 147
- Table 32. Applications of bio-based 1,3 Proppanediol. 148
- Table 33. Biobased feedstock sources for MEG. 149
- Table 34. Applications of bio-based MEG. 149
- Table 35. Biobased MEG producers capacities. 150
- Table 36. Biobased feedstock sources for ethanol. 151
- Table 37. Applications of bio-based ethanol. 151
- Table 38. Applications of bio-based ethylene. 153
- Table 39. Applications of bio-based propylene. 154
- Table 40. Applications of bio-based vinyl chloride. 155
- Table 41. Applications of bio-based Methly methacrylate. 157
- Table 42. Applications of bio-based aniline. 159
- Table 43. Applications of biobased fructose. 160
- Table 44. Applications of bio-based 5-Hydroxymethylfurfural (5-HMF). 162
- Table 45. Applications of 5-(Chloromethyl)furfural (CMF). 163
- Table 46. Applications of Levulinic acid. 165
- Table 47. Markets and applications for bio-based FDME. 166
- Table 48. Applications of FDCA. 167
- Table 49. Markets and applications for bio-based levoglucosenone. 169
- Table 50. Biochemicals derived from hemicellulose 170
- Table 51. Markets and applications for bio-based hemicellulose 170
- Table 52. Markets and applications for bio-based furfuryl alcohol. 173
- Table 53. Commercial and pre-commercial biorefinery lignin production facilities and processes 174
- Table 54. Lignin aromatic compound products. 176
- Table 55. Prices of benzene, toluene, xylene and their derivatives. 176
- Table 56. Lignin products in polymeric materials. 178
- Table 57. Application of lignin in plastics and composites. 178
- Table 58. Markets and applications for bio-based glycerol. 181
- Table 59. Markets and applications for Bio-based MPG. 182
- Table 60. Markets and applications: Bio-based ECH. 184
- Table 61. Mineral source products and applications. 206
- Table 62. Type of biodegradation. 296
- Table 63. Advantages and disadvantages of biobased plastics compared to conventional plastics. 297
- Table 64. Types of Bio-based and/or Biodegradable Plastics, applications. 297
- Table 65. Key market players by Bio-based and/or Biodegradable Plastic types. 299
- Table 66. Polylactic acid (PLA) market analysis-manufacture, advantages, disadvantages and applications. 300
- Table 67. Lactic acid producers and production capacities. 302
- Table 68. PLA producers and production capacities. 302
- Table 69. Planned PLA capacity expansions in China. 303
- Table 70. Bio-based Polyethylene terephthalate (Bio-PET) market analysis- manufacture, advantages, disadvantages and applications. 305
- Table 71. Bio-based Polyethylene terephthalate (PET) producers and production capacities, 305
- Table 72. Polytrimethylene terephthalate (PTT) market analysis-manufacture, advantages, disadvantages and applications. 306
- Table 73. Production capacities of Polytrimethylene terephthalate (PTT), by leading producers. 307
- Table 74. Polyethylene furanoate (PEF) market analysis-manufacture, advantages, disadvantages and applications. 308
- Table 75. PEF vs. PET. 309
- Table 76. FDCA and PEF producers. 310
- Table 77. Bio-based polyamides (Bio-PA) market analysis - manufacture, advantages, disadvantages and applications. 311
- Table 78. Leading Bio-PA producers production capacities. 312
- Table 79. Poly(butylene adipate-co-terephthalate) (PBAT) market analysis- manufacture, advantages, disadvantages and applications. 313
- Table 80. Leading PBAT producers, production capacities and brands. 314
- Table 81. Bio-PBS market analysis-manufacture, advantages, disadvantages and applications. 316
- Table 82. Leading PBS producers and production capacities. 316
- Table 83. Bio-based Polyethylene (Bio-PE) market analysis- manufacture, advantages, disadvantages and applications. 317
- Table 84. Leading Bio-PE producers. 318
- Table 85. Bio-PP market analysis- manufacture, advantages, disadvantages and applications. 319
- Table 86. Leading Bio-PP producers and capacities. 320
- Table 87.Types of PHAs and properties. 323
- Table 88. Comparison of the physical properties of different PHAs with conventional petroleum-based polymers. 325
- Table 89. Polyhydroxyalkanoate (PHA) extraction methods. 327
- Table 90. Polyhydroxyalkanoates (PHA) market analysis. 328
- Table 91. Commercially available PHAs. 329
- Table 92. Markets and applications for PHAs. 330
- Table 93. Applications, advantages and disadvantages of PHAs in packaging. 331
- Table 94. Polyhydroxyalkanoates (PHA) producers. 334
- Table 95. Microfibrillated cellulose (MFC) market analysis-manufacture, advantages, disadvantages and applications. 335
- Table 96. Leading MFC producers and capacities. 336
- Table 97. Synthesis methods for cellulose nanocrystals (CNC). 338
- Table 98. CNC sources, size and yield. 338
- Table 99. CNC properties. 339
- Table 100. Mechanical properties of CNC and other reinforcement materials. 339
- Table 101. Applications of nanocrystalline cellulose (NCC). 341
- Table 102. Cellulose nanocrystals analysis. 341
- Table 103: Cellulose nanocrystal production capacities and production process, by producer. 343
- Table 104. Applications of cellulose nanofibers (CNF). 344
- Table 105. Cellulose nanofibers market analysis. 345
- Table 106. CNF production capacities (by type, wet or dry) and production process, by producer, metric tonnes. 346
- Table 107. Applications of bacterial nanocellulose (BNC). 349
- Table 108. Types of protein based-bioplastics, applications and companies. 351
- Table 109. Types of algal and fungal based-bioplastics, applications and companies. 352
- Table 110. Overview of alginate-description, properties, application and market size. 352
- Table 111. Companies developing algal-based bioplastics. 354
- Table 112. Overview of mycelium fibers-description, properties, drawbacks and applications. 354
- Table 113. Companies developing mycelium-based bioplastics. 356
- Table 114. Overview of chitosan-description, properties, drawbacks and applications. 357
- Table 115. Applications of Bio-rubber. 358
- Table 116. Production of Bio-Rubber from Residues and Recycled Materials. 359
- Table 117. Raw Material Sourcing and Selection. 360
- Table 118. Production Methods and Processing Techniques. 361
- Table 119. Material Properties and Testing. 362
- Table 120. Physical and Mechanical Properties of Bio-Rubber. 363
- Table 121. Comparison with Conventional Rubber. 363
- Table 122. Implemented Projects in Construction. 364
- Table 123. Applications of Bio-Rubber in Automotive Industry. 364
- Table 124. Performance Analysis in Vehicle Durability and Safety. 365
- Table 125.Automotive Bio-Rubber Market Analysis 366
- Table 126. Applications of Bio-rubber in Personal Protective Equipment (PPE). 366
- Table 127. Standards Compliance and Health Implications. 367
- Table 128. Challenges and Limitations. 368
- Table 129. Technological Challenges in Bio-Rubber Production. 368
- Table 130. Regulatory and Safety Concerns. 370
- Table 131. Bio-rubber Sustainability and Environmental Impact Analysis 370
- Table 132. Innovations and Emerging Technologies in Bio-Rubber. 371
- Table 133. Summary of Applications and Industry Impact 372
- Table 134. Production and Properties. 373
- Table 135. Raw Material Sourcing. 373
- Table 136. Manufacturing Processes and Techniques. 374
- Table 137. Material Properties Analysis. 374
- Table 138. Case Studies in Sustainable Packaging. 376
- Table 139. Bio-Plastic in Face Shields, Gloves, and Masks. 377
- Table 140. Biodegradability and Safety Standards. 377
- Table 141. Market Trends in Eco-Friendly PPE. 378
- Table 142. Sterility, Safety, and Bio-Compatibility Standards. 379
- Table 143.Bio-Plastic in Mulch Films, Plant Pots, and Seed Coatings. 380
- Table 144. Biodegradable Solutions in Agriculture and Environmental Impact. 381
- Table 145. Case Studies of Bio-Plastic Adoption in Farming. 381
- Table 146. Bio-Plastic in Cosmetic Jars, Food Containers, and Wraps. 382
- Table 147. Demand Trends for Sustainable Cosmetic and Food Packaging. 383
- Table 148. Bio-Plastic Automotive Interior Components. 384
- Table 149. Performance and Durability Standards. 385
- Table 150. Global production of bioplastics in 2019-2035, by region, 1,000 tonnes. 387
- Table 151. Biobased and sustainable plastics producers in North America. 387
- Table 152. Biobased and sustainable plastics producers in Europe. 387
- Table 153. Biobased and sustainable plastics producers in Asia-Pacific. 389
- Table 154. Biobased and sustainable plastics producers in Latin America. 389
- Table 155. Processes for bioplastics in packaging. 392
- Table 156. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging. 393
- Table 157. Typical applications for bioplastics in flexible packaging. 394
- Table 158. Typical applications for bioplastics in rigid packaging. 396
- Table 159. Technical lignin types and applications. 409
- Table 160. Classification of technical lignins. 411
- Table 161. Lignin content of selected biomass. 411
- Table 162. Properties of lignins and their applications. 412
- Table 163. Example markets and applications for lignin. 414
- Table 164. Processes for lignin production. 416
- Table 165. Biorefinery feedstocks. 422
- Table 166. Comparison of pulping and biorefinery lignins. 422
- Table 167. Commercial and pre-commercial biorefinery lignin production facilities and processes 423
- Table 168. Market drivers and trends for lignin. 427
- Table 169. Production capacities of technical lignin producers. 427
- Table 170. Production capacities of biorefinery lignin producers. 428
- Table 171. Estimated consumption of lignin, by type, 2019-2035 (000 MT). 429
- Table 172. Estimated consumption of lignin, by market, 2019-2034 (000 MT). 431
- Table 173. Prices of benzene, toluene, xylene and their derivatives. 434
- Table 174. Application of lignin in plastics and polymers. 435
- Table 175. Lactips plastic pellets. 622
- Table 176. Oji Holdings CNF products. 687
- Table 177. Types of natural fibers. 809
- Table 178. Markets and applications for natural fibers. 812
- Table 179. Commercially available natural fiber products. 814
- Table 180. Market drivers for natural fibers. 817
- Table 181. Typical properties of natural fibers. 820
- Table 182. Overview of kapok fibers-description, properties, drawbacks and applications. 821
- Table 183. Overview of luffa fibers-description, properties, drawbacks and applications. 822
- Table 184. Overview of jute fibers-description, properties, drawbacks and applications. 824
- Table 185. Overview of hemp fibers-description, properties, drawbacks and applications. 825
- Table 186. Overview of flax fibers-description, properties, drawbacks and applications. 826
- Table 187. Overview of ramie fibers-description, properties, drawbacks and applications. 827
- Table 188. Overview of kenaf fibers-description, properties, drawbacks and applications. 828
- Table 189. Overview of sisal fibers-description, properties, drawbacks and applications. 829
- Table 190. Overview of abaca fibers-description, properties, drawbacks and applications. 830
- Table 191. Overview of coir fibers-description, properties, drawbacks and applications. 831
- Table 192. Overview of banana fibers-description, properties, drawbacks and applications. 832
- Table 193. Overview of pineapple fibers-description, properties, drawbacks and applications. 832
- Table 194. Overview of rice fibers-description, properties, drawbacks and applications. 834
- Table 195. Overview of corn fibers-description, properties, drawbacks and applications. 834
- Table 196. Overview of switch grass fibers-description, properties and applications. 835
- Table 197. Overview of sugarcane fibers-description, properties, drawbacks and application and market size. 836
- Table 198. Overview of bamboo fibers-description, properties, drawbacks and applications. 837
- Table 199. Overview of mycelium fibers-description, properties, drawbacks and applications. 839
- Table 200. Overview of chitosan fibers-description, properties, drawbacks and applications. 841
- Table 201. Overview of alginate-description, properties, application and market size. 842
- Table 202. Overview of silk fibers-description, properties, application and market size. 843
- Table 203. Next-gen silk producers. 844
- Table 204. Companies developing cellulose fibers for application in plastic composites. 844
- Table 205. Microfibrillated cellulose (MFC) market analysis. 846
- Table 206. Leading MFC producers and capacities. 846
- Table 207. Cellulose nanocrystals market overview. 847
- Table 208. Cellulose nanocrystal production capacities and production process, by producer. 848
- Table 209. Cellulose nanofibers market analysis. 849
- Table 210. CNF production capacities and production process, by producer, in metric tons. 850
- Table 211. Processing and treatment methods for natural fibers used in plastic composites. 851
- Table 212. Application, manufacturing method, and matrix materials of natural fibers. 853
- Table 213. Properties of natural fiber-bio-based polymer compounds. 855
- Table 214. Typical properties of short natural fiber-thermoplastic composites. 855
- Table 215. Properties of non-woven natural fiber mat composites. 856
- Table 216. Applications of natural fibers in plastics. 859
- Table 217. Applications of natural fibers in the automotive industry. 862
- Table 218. Natural fiber-reinforced polymer composite in the automotive market. 863
- Table 219. Applications of natural fibers in packaging. 866
- Table 220. Applications of natural fibers in construction. 869
- Table 221. Applications of natural fibers in the appliances market. 871
- Table 222. Applications of natural fibers in the consumer electronics market. 874
- Table 223. Key Applications and Market Potential in Wood Composites. 878
- Table 224. Wood Composite Production and Material Properties. 880
- Table 225. Types of Wood Composite Materials. 881
- Table 226. Production Technologies 881
- Table 227. Performance Characteristics: Durability, Strength, and Cost-Efficiency. 882
- Table 228. Performance in Sliding Bearing Applications. 883
- Table 229. Case studies of wood composites in tools and applicances. 884
- Table 230. Industry Trends in Wood Composite Tool Components. 884
- Table 231. Benefits in Construction: Strength, Insulation, and Aesthetics. 885
- Table 232. Fire Resistance and Weather Durability for Exterior Applications. 885
- Table 233. Case Studies in Commercial and Residential Construction. 886
- Table 234. Trends and Innovations in Wood Composite for Automotive and Machinery Engines. 888
- Table 235. Technological Barriers in Wood Composite Production. 888
- Table 236. Environmental impact and sustainability. 889
- Table 237. Emerging Technologies in Wood Composite Manufacturing. 889
- Table 238. Global market for natural fiber based plastics, 2018-2035, by end use sector (Billion USD). 892
- Table 239. Global market for natural fiber based plastics, 2018-2035, by material type (Billion USD). 893
- Table 240. Global market for natural fiber based plastics, 2018-2035, by plastic type (Billion USD). 894
- Table 241. Global market for natural fiber based plastics, 2018-2035, by region (Billion USD). 895
- Table 242. Granbio Nanocellulose Processes. 930
- Table 243. Oji Holdings CNF products. 948
- Table 244. Global trends and drivers in sustainable construction materials. 966
- Table 245. Global revenues in sustainable construction materials, by materials type, 2020-2035 (millions USD). 968
- Table 246. Global revenues in sustainable construction materials, by market, 2020-2035 (millions USD). 971
- Table 247. Established bio-based construction materials. 974
- Table 248. Types of self-healing concrete. 981
- Table 249. General properties and value of aerogels. 992
- Table 250. Key properties of silica aerogels. 994
- Table 251. Chemical precursors used to synthesize silica aerogels. 994
- Table 252. Commercially available aerogel-enhanced blankets. 998
- Table 253. Main manufacturers of silica aerogels and product offerings. 1001
- Table 254. Typical structural properties of metal oxide aerogels. 1003
- Table 255. Polymer aerogels companies. 1005
- Table 256. Types of biobased aerogels. 1006
- Table 257. Carbon aerogel companies. 1013
- Table 258. Conversion pathway for CO2-derived building materials. 1018
- Table 259. Carbon capture technologies and projects in the cement sector 1022
- Table 260. Carbonation of recycled concrete companies. 1027
- Table 261. Current and projected costs for some key CO2 utilization applications in the construction industry. 1028
- Table 262. Market challenges for CO2 utilization in construction materials. 1028
- Table 263. Global Decarbonization Targets and Policies related to Green Steel. 1032
- Table 264. Estimated cost for iron and steel industry under the Carbon Border Adjustment Mechanism (CBAM). 1034
- Table 265. Hydrogen-based steelmaking technologies. 1036
- Table 266. Comparison of green steel production technologies. 1036
- Table 267. Advantages and disadvantages of each potential hydrogen carrier. 1038
- Table 268. CCUS in green steel production. 1040
- Table 269. Biochar in steel and metal. 1042
- Table 270. Hydrogen blast furnace schematic. 1043
- Table 271. Applications of microwave processing in green steelmaking. 1047
- Table 272. Applications of additive manufacturing (AM) in steelmaking. 1048
- Table 273. Technology readiness level (TRL) for key green steel production technologies. 1048
- Table 274. Properties of Green steels. 1049
- Table 275. Applications of green steel in the construction industry. 1050
- Table 276. Market trends in bio-based and sustainable packaging 1172
- Table 277. Drivers for recent growth in the bioplastics and biopolymers markets. 1173
- Table 278. Challenges for bio-based and sustainable packaging. 1173
- Table 279. Types of bio-based plastics and fossil-fuel-based plastics 1176
- Table 280. Comparison of synthetic fossil-based and bio-based polymers. 1181
- Table 281. Processes for bioplastics in packaging. 1182
- Table 282. PLA properties for packaging applications. 1183
- Table 283. Applications, advantages and disadvantages of PHAs in packaging. 1203
- Table 284. Major polymers found in the extracellular covering of different algae. 1209
- Table 285. Market overview for cellulose microfibers (microfibrillated cellulose) in paperboard and packaging-market age, key benefits, applications and producers. 1210
- Table 286. Applications of nanocrystalline cellulose (CNC). 1212
- Table 287. Market overview for cellulose nanofibers in packaging. 1214
- Table 288. Types of protein based-bioplastics, applications and companies. 1223
- Table 289. Overview of alginate-description, properties, application and market size. 1226
- Table 290. Companies developing algal-based bioplastics. 1227
- Table 291. Overview of mycelium fibers-description, properties, drawbacks and applications. 1228
- Table 292. Overview of chitosan-description, properties, drawbacks and applications. 1231
- Table 293. Bio-based naphtha markets and applications. 1232
- Table 294. Bio-naphtha market value chain. 1233
- Table 295. Pros and cons of different type of food packaging materials. 1234
- Table 296. Active Biodegradable Films films and their food applications. 1241
- Table 297. Intelligent Biodegradable Films. 1241
- Table 298. Edible films and coatings market summary. 1245
- Table 299. Summary of barrier films and coatings for packaging. 1248
- Table 300. Types of polyols. 1250
- Table 301. Polyol producers. 1251
- Table 302. Bio-based polyurethane coating products. 1251
- Table 303. Bio-based acrylate resin products. 1253
- Table 304. Polylactic acid (PLA) market analysis. 1253
- Table 305. Commercially available PHAs. 1256
- Table 306. Market overview for cellulose nanofibers in paints and coatings. 1258
- Table 307. Companies developing cellulose nanofibers products in paints and coatings. 1259
- Table 308. Types of protein based-biomaterials, applications and companies. 1263
- Table 309. CO2 utilization and removal pathways. 1265
- Table 310. CO2 utilization products developed by chemical and plastic producers. 1267
- Table 311. Comparison of bioplastics’ (PLA and PHAs) properties to other common polymers used in product packaging. 1269
- Table 312. Typical applications for bioplastics in flexible packaging. 1270
- Table 313. Typical applications for bioplastics in rigid packaging. 1272
- Table 314. Market revenues for bio-based coatings, 2018-2035 (billions USD), high estimate. 1274
- Table 315. Lactips plastic pellets. 1372
- Table 316. Oji Holdings CNF products. 1396
- Table 317. Properties and applications of the main natural fibres 1446
- Table 318. Types of sustainable alternative leathers. 1452
- Table 319. Properties of bio-based leathers. 1454
- Table 320. Comparison with conventional leathers. 1456
- Table 321. Price of commercially available sustainable alternative leather products. 1458
- Table 322. Comparative analysis of sustainable alternative leathers. 1459
- Table 323. Key processing steps involved in transforming plant fibers into leather materials. 1460
- Table 324. Current and emerging plant-based leather products. 1462
- Table 325. Companies developing plant-based leather products. 1463
- Table 326. Overview of mycelium-description, properties, drawbacks and applications. 1465
- Table 327. Companies developing mycelium-based leather products. 1469
- Table 328. Types of microbial-derived leather alternative. 1472
- Table 329. Companies developing microbial leather products. 1475
- Table 330. Companies developing plant-based leather products. 1478
- Table 331. Types of protein-based leather alternatives. 1478
- Table 332. Companies developing protein based leather. 1480
- Table 333. Companies developing sustainable coatings and dyes for leather - 1482
- Table 334. Markets and applications for bio-based textiles and leather. 1483
- Table 335. Applications of biobased leather in furniture and upholstery. 1486
- Table 336. Global revenues for bio-based textiles by type, 2018-2035 (millions USD). 1487
- Table 337. Global revenues for bio-based and sustainable textiles by end use market, 2018-2035 (millions USD). 1489
- Table 338. Market drivers and trends in bio-based and sustainable coatings. 1548
- Table 339. Example envinronmentally friendly coatings, advantages and disadvantages. 1549
- Table 340. Plant Waxes. 1555
- Table 341. Types of alkyd resins and properties. 1560
- Table 342. Market summary for bio-based alkyd coatings-raw materials, advantages, disadvantages, applications and producers. 1561
- Table 343. Bio-based alkyd coating products. 1562
- Table 344. Types of polyols. 1563
- Table 345. Polyol producers. 1564
- Table 346. Bio-based polyurethane coating products. 1565
- Table 347. Market summary for bio-based epoxy resins. 1566
- Table 348. Bio-based polyurethane coating products. 1568
- Table 349. Bio-based acrylate resin products. 1569
- Table 350. Polylactic acid (PLA) market analysis. 1570
- Table 351. PLA producers and production capacities. 1571
- Table 352. Polyhydroxyalkanoates (PHA) market analysis. 1573
- Table 353.Types of PHAs and properties. 1576
- Table 354. Polyhydroxyalkanoates (PHA) producers. 1577
- Table 355. Commercially available PHAs. 1578
- Table 356. Properties of micro/nanocellulose, by type. 1581
- Table 357: Types of nanocellulose. 1583
- Table 358. Microfibrillated Cellulose (MFC) production capacities in metric tons and production process, by producer, metric tons. 1585
- Table 359. Commercially available Microfibrillated Cellulose products. 1586
- Table 360. Market overview for cellulose nanofibers in paints and coatings. 1587
- Table 361. Market assessment for cellulose nanofibers in paints and coatings-application, key benefits and motivation for use, megatrends, market drivers, technology drawbacks, competing materials, material loading, main global paints and coatings OEMs. 1589
- Table 362. Companies developing CNF products in paints and coatings, applications targeted and stage of commercialization. 1591
- Table 363. CNC properties. 1592
- Table 364: Cellulose nanocrystal capacities (by type, wet or dry) and production process, by producer, metric tonnes. 1594
- Table 365. Applications of bacterial nanocellulose (BNC). 1594
- Table 366. Edible films and coatings market summary. 1597
- Table 367. Types of protein based-biomaterials, applications and companies. 1603
- Table 368. Overview of algal coatings-description, properties, application and market size. 1604
- Table 369. Companies developing algal-based plastics. 1606
- Table 370. Market revenues for bio-based coatings by market, 2018-2035 (billions USD), conservative estimate. 1607
- Table 371. Lactips plastic pellets. 1682
- Table 372. Oji Holdings CNF products. 1706
- Table 373. Market drivers for biofuels. 1748
- Table 374. Market challenges for biofuels. 1749
- Table 375. Liquid biofuels market 2020-2035, by type and production. 1751
- Table 376. Comparison of biofuels. 1752
- Table 377. Comparison of biofuel costs (USD/liter) 2023, by type. 1757
- Table 378. Categories and examples of solid biofuel. 1758
- Table 379. Comparison of biofuels and e-fuels to fossil and electricity. 1760
- Table 380. Classification of biomass feedstock. 1761
- Table 381. Biorefinery feedstocks. 1762
- Table 382. Feedstock conversion pathways. 1762
- Table 383. First-Generation Feedstocks. 1763
- Table 384. Lignocellulosic ethanol plants and capacities. 1765
- Table 385. Comparison of pulping and biorefinery lignins. 1766
- Table 386. Commercial and pre-commercial biorefinery lignin production facilities and processes 1767
- Table 387. Operating and planned lignocellulosic biorefineries and industrial flue gas-to-ethanol. 1768
- Table 388. Properties of microalgae and macroalgae. 1771
- Table 389. Yield of algae and other biodiesel crops. 1772
- Table 390. Advantages and disadvantages of biofuels, by generation. 1773
- Table 391. Biodiesel by generation. 1782
- Table 392. Biodiesel production techniques. 1785
- Table 393. Summary of pyrolysis technique under different operating conditions. 1786
- Table 394. Biomass materials and their bio-oil yield. 1787
- Table 395. Biofuel production cost from the biomass pyrolysis process. 1787
- Table 396. Properties of vegetable oils in comparison to diesel. 1789
- Table 397. Main producers of HVO and capacities. 1790
- Table 398. Example commercial Development of BtL processes. 1791
- Table 399. Pilot or demo projects for biomass to liquid (BtL) processes. 1792
- Table 400. Global biodiesel consumption, 2010-2035 (M litres/year). 1796
- Table 401. Global renewable diesel consumption, 2010-2035 (M litres/year). 1800
- Table 402. Renewable diesel price ranges. 1801
- Table 403. Advantages and disadvantages of Bio-aviation fuel. 1802
- Table 404. Production pathways for Bio-aviation fuel. 1804
- Table 405. Current and announced Bio-aviation fuel facilities and capacities. 1806
- Table 406. Global bio-jet fuel consumption 2019-2035 (Million litres/year). 1807
- Table 407. Bio-based naphtha markets and applications. 1810
- Table 408. Bio-naphtha market value chain. 1810
- Table 409. Bio-naphtha pricing against petroleum-derived naphtha and related fuel products. 1812
- Table 410. Bio-based Naphtha production capacities, by producer. 1812
- Table 411. Comparison of biogas, biomethane and natural gas. 1817
- Table 412. Processes in bioethanol production. 1824
- Table 413. Microorganisms used in CBP for ethanol production from biomass lignocellulosic. 1825
- Table 414. Ethanol consumption 2010-2035 (million litres). 1826
- Table 415. Biogas feedstocks. 1831
- Table 416. Existing and planned bio-LNG production plants. 1838
- Table 417. Methods for capturing carbon dioxide from biogas. 1839
- Table 418. Comparison of different Bio-H2 production pathways. 1843
- Table 419. Markets and applications for biohydrogen. 1845
- Table 420. Summary of gasification technologies. 1851
- Table 421. Overview of hydrothermal cracking for advanced chemical recycling. 1856
- Table 422. Applications of e-fuels, by type. 1860
- Table 423. Overview of e-fuels. 1861
- Table 424. Benefits of e-fuels. 1861
- Table 425. eFuel production facilities, current and planned. 1866
- Table 426. Main characteristics of different electrolyzer technologies. 1867
- Table 427. Market challenges for e-fuels. 1871
- Table 428. E-fuels companies. 1872
- Table 429. Algae-derived biofuel producers. 1877
- Table 430. Green ammonia projects (current and planned). 1880
- Table 431. Blue ammonia projects. 1883
- Table 432. Ammonia fuel cell technologies. 1884
- Table 433. Market overview of green ammonia in marine fuel. 1885
- Table 434. Summary of marine alternative fuels. 1886
- Table 435. Estimated costs for different types of ammonia. 1887
- Table 436. Main players in green ammonia. 1888
- Table 437. Market overview for CO2 derived fuels. 1890
- Table 438. Point source examples. 1893
- Table 439. Advantages and disadvantages of DAC. 1896
- Table 440. Companies developing airflow equipment integration with DAC. 1902
- Table 441. Companies developing Passive Direct Air Capture (PDAC) technologies. 1902
- Table 442. Companies developing regeneration methods for DAC technologies. 1903
- Table 443. DAC companies and technologies. 1904
- Table 444. DAC technology developers and production. 1906
- Table 445. DAC projects in development. 1909
- Table 446. Markets for DAC. 1911
- Table 447. Costs summary for DAC. 1911
- Table 448. Cost estimates of DAC. 1914
- Table 449. Challenges for DAC technology. 1916
- Table 450. DAC companies and technologies. 1916
- Table 451. Market overview for CO2 derived fuels. 1918
- Table 452. Main production routes and processes for manufacturing fuels from captured carbon dioxide. 1921
- Table 453. CO₂-derived fuels projects. 1922
- Table 454. Thermochemical methods to produce methanol from CO2. 1926
- Table 455. pilot plants for CO2-to-methanol conversion. 1929
- Table 456. Microalgae products and prices. 1931
- Table 457. Main Solar-Driven CO2 Conversion Approaches. 1933
- Table 458. Market challenges for CO2 derived fuels. 1933
- Table 459. Companies in CO2-derived fuel products. 1935
- Table 460. Typical composition and physicochemical properties reported for bio-oils and heavy petroleum-derived oils. 1938
- Table 461. Properties and characteristics of pyrolysis liquids derived from biomass versus a fuel oil. 1938
- Table 462. Main techniques used to upgrade bio-oil into higher-quality fuels. 1940
- Table 463. Markets and applications for bio-oil. 1941
- Table 464. Bio-oil producers. 1942
- Table 465. Key resource recovery technologies 1943
- Table 466. Markets and end uses for refuse-derived fuels (RDF). 1945
- Table 467. Granbio Nanocellulose Processes. 2010
- Table 468. Key factors driving adoption of green electronics. 2098
- Table 469. Key circular economy strategies for electronics. 2100
- Table 470. Regulations pertaining to green electronics. 2102
- Table 471. Companies developing bio-based batteries for application in sustainable electronics. 2103
- Table 472. Benefits of Green Electronics Manufacturing 2105
- Table 473. Challenges in adopting Green Electronics manufacturing. 2106
- Table 474. Major chipmakers' renewable energy road maps. 2111
- Table 475. Energy efficiency in sustainable electronics manufacturing. 2111
- Table 476. Composition of plastic waste streams. 2114
- Table 477. Comparison of mechanical and advanced chemical recycling. 2115
- Table 478. Example chemically recycled plastic products. 2116
- Table 479. Bio-based and non-toxic materials in sustainable electronics. 2117
- Table 480. Key focus areas for enabling greener and ethically responsible electronics supply chains. 2119
- Table 481. Sustainability programs and disclosure from major electronics brands. 2122
- Table 482. PCB manufacturing process. 2124
- Table 483. Challenges in PCB manufacturing. 2124
- Table 484. 3D PCB manufacturing. 2127
- Table 485. Comparison of some sustainable PCB alternatives against conventional options in terms of key performance factors. 2128
- Table 486. Sustainable PCB supply chain. 2129
- Table 487. Key areas where the PCB industry can improve sustainability. 2129
- Table 488. Improving sustainability of PCB design. 2131
- Table 489. PCB design options for sustainability. 2132
- Table 490. Sustainability benefits and challenges associated with 3D printing. 2134
- Table 491. Conductive ink producers. 2137
- Table 492. Green and lead-free solder companies. 2138
- Table 493. Biodegradable substrates for PCBs. 2139
- Table 494. Overview of mycelium fibers-description, properties, drawbacks and applications. 2140
- Table 495. Application of lignin in composites. 2142
- Table 496. Properties of lignins and their applications. 2142
- Table 497. Properties of flexible electronics‐cellulose nanofiber film (nanopaper). 2144
- Table 498. Companies developing cellulose nanofibers for electronics. 2145
- Table 499. Commercially available PHAs. 2147
- Table 500. Main limitations of the FR4 material system used for manufacturing printed circuit boards (PCBs). 2149
- Table 501. Halogen-free FR4 companies. 2151
- Table 502. Properties of biobased PCBs. 2152
- Table 503. Applications of flexible (bio) polyimide PCBs. 2154
- Table 504. Main patterning and metallization steps in PCB fabrication and sustainable options. 2156
- Table 505. Sustainability issues with conventional metallization processes. 2157
- Table 506. Benefits of print-and-plate. 2158
- Table 507. Sustainable alternative options to standard plating resists used in printed circuit board (PCB) fabrication. 2161
- Table 508. Applications for laser induced forward transfer 2163
- Table 509. Copper versus silver inks in laser-induced forward transfer (LIFT) for electronics fabrication. 2163
- Table 510. Approaches for in-situ oxidation prevention. 2164
- Table 511. Market readiness and maturity of different lead-free solders and electrically conductive adhesives (ECAs) for electronics manufacturing. 2166
- Table 512. Advantages of green electroless plating. 2166
- Table 513. Comparison of component attachment materials. 2170
- Table 514. Comparison between sustainable and conventional component attachment materials for printed circuit boards 2171
- Table 515. Comparison between the SMAs and SMPs. 2173
- Table 516. Comparison of conductive biopolymers versus conventional materials for printed circuit board fabrication. 2175
- Table 517. Comparison of curing and reflow processes used for attaching components in electronics assembly. 2175
- Table 518. Low temperature solder alloys. 2177
- Table 519. Thermally sensitive substrate materials. 2177
- Table 520. Limitations of existing IC production. 2182
- Table 521. Strategies for improving sustainability in integrated circuit (IC) manufacturing. 2182
- Table 522. Comparison of oxidation methods and level of sustainability. 2186
- Table 523. Stage of commercialization for oxides. 2186
- Table 524. Alternative doping techniques. 2189
- Table 525. Metal content mg / Kg in Printed Circuit Boards (PCBs) from waste desktop computers. 2195
- Table 526. Chemical recycling methods for handling electronic waste. 2196
- Table 527. Electrochemical processes for recycling metals from electronic waste 2197
- Table 528. Thermal recycling processes for electronic waste. 2197
- Table 529. Global PCB revenues 2018-2035 (billions USD), by substrate types. 2199
- Table 530. Global sustainable PCB revenues 2018-2035, by type (millions USD). 2200
- Table 531. Global sustainable ICs revenues 2018-2035, by type (millions USD). 2203
- Table 532. Oji Holdings CNF products. 2234
- Table 533. Global market revenues for bio-based adhesives & sealants, by types, 2018-2035 (millions USD). 2260
- Table 534. Global market revenues for bio-based adhesives & sealants, by market, 2018-2035 (millions USD). 2262
List of Figures
- Figure 1. Schematic of biorefinery processes. 110
- Figure 2. Global production of starch for biobased chemicals and intermediates, 2018-2035 (million metric tonnes). 115
- Figure 3. Global production of biobased lysine, 2018-2035 (metric tonnes). 117
- Figure 4. Global glucose production for bio-based chemicals and intermediates 2018-2035 (million metric tonnes). 118
- Figure 5. Global production volumes of bio-HMDA, 2018 to 2035 in metric tonnes. 120
- Figure 6. Global production of bio-based DN5, 2018-2035 (metric tonnes). 122
- Figure 7. Global production of bio-based isosorbide, 2018-2035 (metric tonnes). 124
- Figure 8. L-lactic acid (L-LA) production, 2018-2035 (metric tonnes). 125
- Figure 9. Global lactide production, 2018-2035 (metric tonnes). 127
- Figure 10. Global production of bio-itaconic acid, 2018-2035 (metric tonnes). 129
- Figure 11. Global production of 3-HP, 2018-2035 (metric tonnes). 131
- Figure 12. Global production of bio-based acrylic acid, 2018-2035 (metric tonnes). 132
- Figure 13. Global production of bio-based 1,3-Propanediol (1,3-PDO), 2018-2035 (metric tonnes). 134
- Figure 14. Global production of bio-based Succinic acid, 2018-2035 (metric tonnes). 136
- Figure 15. Global production of 1,4-Butanediol (BDO), 2018-2035 (metric tonnes). 137
- Figure 16. Global production of bio-based tetrahydrofuran (THF), 2018-2035 (metric tonnes). 139
- Figure 17. Overview of Toray process. 140
- Figure 18. Global production of bio-based caprolactam, 2018-2035 (metric tonnes). 142
- Figure 19. Global production of bio-based isobutanol, 2018-2035 (metric tonnes). 144
- Figure 20. Global production of bio-based p-xylene, 2018-2035 (metric tonnes). 146
- Figure 21. Global production of biobased terephthalic acid (TPA), 2018-2035 (metric tonnes). 147
- Figure 22. Global production of biobased 1,3 Proppanediol, 2018-2035 (metric tonnes). 148
- Figure 23. Global production of biobased MEG, 2018-2035 (metric tonnes). 150
- Figure 24. Global production of biobased ethanol, 2018-2035 (million metric tonnes). 152
- Figure 25. Global production of biobased ethylene, 2018-2035 (million metric tonnes). 153
- Figure 26. Global production of biobased propylene, 2018-2035 (metric tonnes). 155
- Figure 27. Global production of biobased vinyl chloride, 2018-2035 (metric tonnes). 156
- Figure 28. Global production of bio-based Methly methacrylate, 2018-2035 (metric tonnes). 158
- Figure 29. Global production of biobased aniline, 2018-2035 (metric tonnes). 160
- Figure 30. Global production of biobased fructose, 2018-2035 (metric tonnes). 161
- Figure 31. Global production of biobased 5-Hydroxymethylfurfural (5-HMF), 2018-2035 (metric tonnes). 162
- Figure 32. Global production of biobased 5-(Chloromethyl)furfural (CMF), 2018-2035 (metric tonnes). 164
- Figure 33. Global production of biobased Levulinic acid, 2018-2035 (metric tonnes). 165
- Figure 34. Global production of biobased FDME, 2018-2035 (metric tonnes). 167
- Figure 35. Global production of biobased Furan-2,5-dicarboxylic acid (FDCA), 2018-2035 (metric tonnes). 168
- Figure 36. Global production projections for bio-based levoglucosenone from 2018 to 2035 in metric tonnes: 169
- Figure 37. Global production of hemicellulose, 2018-2035 (metric tonnes). 171
- Figure 38. Global production of biobased furfural, 2018-2035 (metric tonnes). 172
- Figure 39. Global production of biobased furfuryl alcohol, 2018-2035 (metric tonnes). 174
- Figure 40. Schematic of WISA plywood home. 177
- Figure 41. Global production of biobased lignin, 2018-2035 (metric tonnes). 179
- Figure 42. Global production of biobased glycerol, 2018-2035 (metric tonnes). 181
- Figure 43. Global production of Bio-MPG, 2018-2035 (metric tonnes). 183
- Figure 44. Global production of biobased ECH, 2018-2035 (metric tonnes). 184
- Figure 45. Global production of biobased fatty acids, 2018-2035 (million metric tonnes). 186
- Figure 46. Global production of biobased sebacic acid, 2018-2035 (metric tonnes). 187
- Figure 47. Global production of biobased 11-Aminoundecanoic acid (11-AA), 2018-2035 (metric tonnes). 188
- Figure 48. Global production of biobased Dodecanedioic acid (DDDA), 2018-2035 (metric tonnes). 190
- Figure 49. Global production of biobased Pentamethylene diisocyanate, 2018-2035 (metric tonnes). 191
- Figure 50. Global production of biobased casein, 2018-2035 (metric tonnes). 193
- Figure 51. Global production of food waste for biochemicals, 2018-2035 (million metric tonnes). 195
- Figure 52. Global production of agricultural waste for biochemicals, 2018-2035 (million metric tonnes). 196
- Figure 53. Global production of forestry waste for biochemicals, 2018-2035 (million metric tonnes). 197
- Figure 54. Global production of aquaculture/fishing waste for biochemicals, 2018-2035 (million metric tonnes). 199
- Figure 55. Global production of municipal solid waste for biochemicals, 2018-2035 (million metric tonnes). 200
- Figure 56. Global production of waste oils for biochemicals, 2018-2035 (million metric tonnes). 202
- Figure 57. Global microalgae production, 2018-2035 (million metric tonnes). 203
- Figure 58. Global macroalgae production, 2018-2035 (million metric tonnes). 205
- Figure 59. Global production of biogas, 2018-2035 (billion m3). 208
- Figure 60. Global production of syngas, 2018-2035 (billion m3). 210
- Figure 61. formicobio™ technology. 230
- Figure 62. Domsjö process. 235
- Figure 63. TMP-Bio Process. 242
- Figure 64. Lignin gel. 262
- Figure 65. BioFlex process. 265
- Figure 66. LX Process. 267
- Figure 67. METNIN™ Lignin refining technology. 270
- Figure 68. Enfinity cellulosic ethanol technology process. 276
- Figure 69. Precision Photosynthesis™ technology. 278
- Figure 70. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 279
- Figure 71. UPM biorefinery process. 289
- Figure 72. The Proesa® Process. 290
- Figure 73. Goldilocks process and applications. 292
- Figure 74. Coca-Cola PlantBottle®. 295
- Figure 75. Interrelationship between conventional, bio-based and biodegradable plastics. 295
- Figure 76. Polylactic acid (Bio-PLA) production 2019-2035 (1,000 tonnes). 304
- Figure 77. Polyethylene terephthalate (Bio-PET) production 2019-2035 (1,000 tonnes) 306
- Figure 78. Polytrimethylene terephthalate (PTT) production 2019-2035 (1,000 tonnes). 308
- Figure 79. Production capacities of Polyethylene furanoate (PEF) to 2025. 310
- Figure 80. Polyethylene furanoate (Bio-PEF) production 2019-2035 (1,000 tonnes). 311
- Figure 81. Polyamides (Bio-PA) production 2019-2035 (1,000 tonnes). 313
- Figure 82. Poly(butylene adipate-co-terephthalate) (Bio-PBAT) production 2019-2035 (1,000 tonnes). 315
- Figure 83. Polybutylene succinate (PBS) production 2019-2035 (1,000 tonnes). 317
- Figure 84. Polyethylene (Bio-PE) production 2019-2035 (1,000 tonnes). 319
- Figure 85. Polypropylene (Bio-PP) production capacities 2019-2035 (1,000 tonnes). 320
- Figure 86. PHA family. 323
- Figure 87. TEM image of cellulose nanocrystals. 337
- Figure 88. CNC preparation. 337
- Figure 89. Extracting CNC from trees. 338
- Figure 90. CNC slurry. 340
- Figure 91. CNF gel. 343
- Figure 92. Bacterial nanocellulose shapes 348
- Figure 93. BLOOM masterbatch from Algix. 353
- Figure 94. Typical structure of mycelium-based foam. 355
- Figure 95. Commercial mycelium composite construction materials. 356
- Figure 96. Global production capacities for bioplastics by region 2019-2035, 1,000 tonnes. 386
- Figure 97. Global production capacities for bioplastics by end user market 2019-2035, 1,000 tonnes. 391
- Figure 98. PHA bioplastics products. 393
- Figure 99. The global market for biobased and biodegradable plastics for flexible packaging 2019–2033 (‘000 tonnes). 395
- Figure 100. Production volumes for bioplastics for rigid packaging, 2019–2033 (‘000 tonnes). 397
- Figure 101. Global production for biobased and biodegradable plastics in consumer products 2019-2035, in 1,000 tonnes. 398
- Figure 102. Global production capacities for biobased and biodegradable plastics in automotive 2019-2035, in 1,000 tonnes. 400
- Figure 103. Global production volumes for biobased and biodegradable plastics in building and construction 2019-2035, in 1,000 tonnes. 401
- Figure 104. Global production volumes for biobased and biodegradable plastics in textiles 2019-2035, in 1,000 tonnes. 404
- Figure 105. Global production volumes for biobased and biodegradable plastics in electronics 2019-2035, in 1,000 tonnes. 405
- Figure 106. Biodegradable mulch films. 406
- Figure 107. Global production volulmes for biobased and biodegradable plastics in agriculture 2019-2035, in 1,000 tonnes. 406
- Figure 108. High purity lignin. 407
- Figure 109. Lignocellulose architecture. 408
- Figure 110. Extraction processes to separate lignin from lignocellulosic biomass and corresponding technical lignins. 409
- Figure 111. The lignocellulose biorefinery. 414
- Figure 112. LignoBoost process. 418
- Figure 113. LignoForce system for lignin recovery from black liquor. 419
- Figure 114. Sequential liquid-lignin recovery and purification (SLPR) system. 420
- Figure 115. A-Recovery+ chemical recovery concept. 421
- Figure 116. Schematic of a biorefinery for production of carriers and chemicals. 423
- Figure 117. Organosolv lignin. 425
- Figure 118. Hydrolytic lignin powder. 426
- Figure 119. Estimated consumption of lignin, by type, 2019-2035 (000 MT). 430
- Figure 120. Estimated consumption of lignin, by market, 2019-2035 (000 MT). 432
- Figure 121. Pluumo. 439
- Figure 122. ANDRITZ Lignin Recovery process. 448
- Figure 123. Anpoly cellulose nanofiber hydrogel. 450
- Figure 124. MEDICELLU™. 450
- Figure 125. Asahi Kasei CNF fabric sheet. 458
- Figure 126. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric. 459
- Figure 127. CNF nonwoven fabric. 460
- Figure 128. Roof frame made of natural fiber. 469
- Figure 129. Beyond Leather Materials product. 472
- Figure 130. BIOLO e-commerce mailer bag made from PHA. 478
- Figure 131. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc. 479
- Figure 132. Fiber-based screw cap. 491
- Figure 133. formicobio™ technology. 510
- Figure 134. nanoforest-S. 512
- Figure 135. nanoforest-PDP. 512
- Figure 136. nanoforest-MB. 513
- Figure 137. sunliquid® production process. 520
- Figure 138. CuanSave film. 523
- Figure 139. Celish. 524
- Figure 140. Trunk lid incorporating CNF. 526
- Figure 141. ELLEX products. 527
- Figure 142. CNF-reinforced PP compounds. 528
- Figure 143. Kirekira! toilet wipes. 528
- Figure 144. Color CNF. 529
- Figure 145. Rheocrysta spray. 535
- Figure 146. DKS CNF products. 535
- Figure 147. Domsjö process. 537
- Figure 148. Mushroom leather. 546
- Figure 149. CNF based on citrus peel. 548
- Figure 150. Citrus cellulose nanofiber. 548
- Figure 151. Filler Bank CNC products. 559
- Figure 152. Fibers on kapok tree and after processing. 561
- Figure 153. TMP-Bio Process. 564
- Figure 154. Flow chart of the lignocellulose biorefinery pilot plant in Leuna. 565
- Figure 155. Water-repellent cellulose. 567
- Figure 156. Cellulose Nanofiber (CNF) composite with polyethylene (PE). 568
- Figure 157. PHA production process. 569
- Figure 158. CNF products from Furukawa Electric. 570
- Figure 159. AVAPTM process. 580
- Figure 160. GreenPower+™ process. 581
- Figure 161. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials. 583
- Figure 162. Non-aqueous CNF dispersion "Senaf" (Photo shows 5% of plasticizer). 585
- Figure 163. CNF gel. 592
- Figure 164. Block nanocellulose material. 593
- Figure 165. CNF products developed by Hokuetsu. 593
- Figure 166. Marine leather products. 596
- Figure 167. Inner Mettle Milk products. 599
- Figure 168. Kami Shoji CNF products. 611
- Figure 169. Dual Graft System. 613
- Figure 170. Engine cover utilizing Kao CNF composite resins. 614
- Figure 171. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended). 614
- Figure 172. Kel Labs yarn. 615
- Figure 173. 0.3% aqueous dispersion of sulfated esterified CNF and dried transparent film (front side). 619
- Figure 174. Lignin gel. 627
- Figure 175. BioFlex process. 631
- Figure 176. Nike Algae Ink graphic tee. 632
- Figure 177. LX Process. 636
- Figure 178. Made of Air's HexChar panels. 638
- Figure 179. TransLeather. 640
- Figure 180. Chitin nanofiber product. 644
- Figure 181. Marusumi Paper cellulose nanofiber products. 645
- Figure 182. FibriMa cellulose nanofiber powder. 646
- Figure 183. METNIN™ Lignin refining technology. 650
- Figure 184. IPA synthesis method. 653
- Figure 185. MOGU-Wave panels. 656
- Figure 186. CNF slurries. 657
- Figure 187. Range of CNF products. 657
- Figure 188. Reishi. 661
- Figure 189. Compostable water pod. 677
- Figure 190. Leather made from leaves. 678
- Figure 191. Nike shoe with beLEAF™. 678
- Figure 192. CNF clear sheets. 687
- Figure 193. Oji Holdings CNF polycarbonate product. 689
- Figure 194. Enfinity cellulosic ethanol technology process. 702
- Figure 195. Fabric consisting of 70 per cent wool and 30 per cent Qmilk. 707
- Figure 196. XCNF. 714
- Figure 197: Plantrose process. 715
- Figure 198. LOVR hemp leather. 718
- Figure 199. CNF insulation flat plates. 720
- Figure 200. Hansa lignin. 726
- Figure 201. Manufacturing process for STARCEL. 730
- Figure 202. Manufacturing process for STARCEL. 734
- Figure 203. 3D printed cellulose shoe. 741
- Figure 204. Lyocell process. 744
- Figure 205. North Face Spiber Moon Parka. 748
- Figure 206. PANGAIA LAB NXT GEN Hoodie. 749
- Figure 207. Spider silk production. 750
- Figure 208. Stora Enso lignin battery materials. 754
- Figure 209. 2 wt.% CNF suspension. 755
- Figure 210. BiNFi-s Dry Powder. 756
- Figure 211. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet. 756
- Figure 212. Silk nanofiber (right) and cocoon of raw material. 757
- Figure 213. Sulapac cosmetics containers. 758
- Figure 214. Sulzer equipment for PLA polymerization processing. 759
- Figure 215. Solid Novolac Type lignin modified phenolic resins. 760
- Figure 216. Teijin bioplastic film for door handles. 769
- Figure 217. Corbion FDCA production process. 776
- Figure 218. Comparison of weight reduction effect using CNF. 777
- Figure 219. CNF resin products. 781
- Figure 220. UPM biorefinery process. 783
- Figure 221. Vegea production process. 787
- Figure 222. The Proesa® Process. 789
- Figure 223. Goldilocks process and applications. 790
- Figure 224. Visolis’ Hybrid Bio-Thermocatalytic Process. 793
- Figure 225. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test. 795
- Figure 226. Worn Again products. 800
- Figure 227. Zelfo Technology GmbH CNF production process. 804
- Figure 228. Absolut natural based fiber bottle cap. 814
- Figure 229. Adidas algae-ink tees. 814
- Figure 230. Carlsberg natural fiber beer bottle. 815
- Figure 231. Miratex watch bands. 815
- Figure 232. Adidas Made with Nature Ultraboost 22. 815
- Figure 233. PUMA RE:SUEDE sneaker 816
- Figure 234. Types of natural fibers. 820
- Figure 235. Luffa cylindrica fiber. 823
- Figure 236. Pineapple fiber. 833
- Figure 237. Typical structure of mycelium-based foam. 839
- Figure 238. Commercial mycelium composite construction materials. 839
- Figure 239. SEM image of microfibrillated cellulose. 845
- Figure 240. Hemp fibers combined with PP in car door panel. 858
- Figure 241. Car door produced from Hemp fiber. 861
- Figure 242. Natural fiber composites in the BMW M4 GT4 racing car. 863
- Figure 243. Mercedes-Benz components containing natural fibers. 863
- Figure 244. SWOT analysis: natural fibers in the automotive market. 865
- Figure 245. SWOT analysis: natural fibers in the packaging market. 869
- Figure 246. SWOT analysis: natural fibers in the appliances market. 871
- Figure 247. SWOT analysis: natural fibers in the appliances market. 873
- Figure 248. SWOT analysis: natural fibers in the consumer electronics market. 877
- Figure 249. SWOT analysis: natural fibers in the furniture market. 878
- Figure 250. Global market for natural fiber based plastics, 2018-2035, by market (Billion USD). 893
- Figure 251. Global market for natural fiber based plastics, 2018-2035, by material type (Billion USD). 894
- Figure 252. Global market for natural fiber based plastics, 2018-2035, by plastic type (Billion USD). 895
- Figure 253. Global market for natural fiber based plastics, 2018-2035, by region (Billion USD). 896
- Figure 254. Asahi Kasei CNF fabric sheet. 901
- Figure 255. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric. 901
- Figure 256. CNF nonwoven fabric. 902
- Figure 257. Roof frame made of natural fiber. 904
- Figure 258.Tras Rei chair incorporating ampliTex fibers. 907
- Figure 259. Natural fibres racing seat. 907
- Figure 260. Porche Cayman GT4 Clubsport incorporating BComp flax fibers. 907
- Figure 261. Fiber-based screw cap. 911
- Figure 262. Cellugy materials. 916
- Figure 263. CuanSave film. 919
- Figure 264. Trunk lid incorporating CNF. 920
- Figure 265. ELLEX products. 921
- Figure 266. CNF-reinforced PP compounds. 922
- Figure 267. Kirekira! toilet wipes. 922
- Figure 268. DKS CNF products. 925
- Figure 269. Cellulose Nanofiber (CNF) composite with polyethylene (PE). 928
- Figure 270. CNF products from Furukawa Electric. 929
- Figure 271. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials. 932
- Figure 272. CNF gel. 934
- Figure 273. Block nanocellulose material. 934
- Figure 274. CNF products developed by Hokuetsu. 935
- Figure 275. Dual Graft System. 936
- Figure 276. Engine cover utilizing Kao CNF composite resins. 937
- Figure 277. Acrylic resin blended with modified CNF (fluid) and its molded product (transparent film), and image obtained with AFM (CNF 10wt% blended). 937
- Figure 278. Cellulomix production process. 941
- Figure 279. Nanobase versus conventional products. 941
- Figure 280. MOGU-Wave panels. 943
- Figure 281. CNF clear sheets. 948
- Figure 282. Oji Holdings CNF polycarbonate product. 949
- Figure 283. A vacuum cleaner part made of cellulose fiber (left) and the assembled vacuum cleaner. 950
- Figure 284. XCNF. 953
- Figure 285. Manufacturing process for STARCEL. 955
- Figure 286. 2 wt.% CNF suspension. 957
- Figure 287. Sulapac cosmetics containers. 959
- Figure 288. Comparison of weight reduction effect using CNF. 962
- Figure 289. CNF resin products. 963
- Figure 290. Global revenues in sustainable construction materials, by materials type, 2020-2035 (millions USD). 970
- Figure 291. Global revenues in sustainable construction materials, by market, 2020-2035 (millions USD). 972
- Figure 292. Luum Temple, constructed from Bamboo. 973
- Figure 293. Typical structure of mycelium-based foam. 977
- Figure 294. Commercial mycelium composite construction materials. 977
- Figure 295. Self-healing concrete test study with cracked concrete (left) and self-healed concrete after 28 days (right). 980
- Figure 296. Self-healing bacteria crack filler for concrete. 982
- Figure 297. Self-healing bio concrete. 982
- Figure 298. Microalgae based biocement masonry bloc. 984
- Figure 299. Classification of aerogels. 991
- Figure 300. Flower resting on a piece of silica aerogel suspended in mid air by the flame of a bunsen burner. 993
- Figure 301. Monolithic aerogel. 995
- Figure 302. Aerogel granules. 996
- Figure 303. Internal aerogel granule applications. 997
- Figure 304. 3D printed aerogels. 1000
- Figure 305. Lignin-based aerogels. 1009
- Figure 306. Fabrication routes for starch-based aerogels. 1011
- Figure 307. Graphene aerogel. 1014
- Figure 308. Schematic of CCUS in cement sector. 1019
- Figure 309. Carbon8 Systems’ ACT process. 1024
- Figure 310. CO2 utilization in the Carbon Cure process. 1025
- Figure 311. Share of (a) production, (b) energy consumption and (c) CO2 emissions from different steel making routes. 1030
- Figure 312. Transition to hydrogen-based production. 1031
- Figure 313. CO2 emissions from steelmaking (tCO2/ton crude steel). 1032
- Figure 314. CO2 emissions of different process routes for liquid steel. 1034
- Figure 315. Hydrogen Direct Reduced Iron (DRI) process. 1038
- Figure 316. Molten oxide electrolysis process. 1040
- Figure 317. Steelmaking with CCS. 1041
- Figure 318. Flash ironmaking process. 1045
- Figure 319. Hydrogen Plasma Iron Ore Reduction process. 1046
- Figure 320. Aizawa self-healing concrete. 1059
- Figure 321. ArcelorMittal decarbonization strategy. 1069
- Figure 322. Thermal Conductivity Performance of ArmaGel HT. 1071
- Figure 323. SLENTEX® roll (piece). 1074
- Figure 324. Biozeroc Biocement. 1078
- Figure 325. Carbon Re’s DeltaZero dashboard. 1090
- Figure 326. Neustark modular plant. 1130
- Figure 327. HIP AERO paint. 1137
- Figure 328. Sunthru Aerogel pane. 1146
- Figure 329. Quartzene®. 1148
- Figure 330. Schematic of HyREX technology. 1154
- Figure 331. EAF Quantum. 1156
- Figure 332. CNF insulation flat plates. 1158
- Figure 333. Global packaging market by material type. 1171
- Figure 334. Routes for synthesizing polymers from fossil-based and bio-based resources. 1180
- Figure 335. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms. 1207
- Figure 336. Biosynthesis of (a) wood cellulose (b) tunicate cellulose and (c) BC. 1208
- Figure 337. Cellulose microfibrils and nanofibrils. 1210
- Figure 338. TEM image of cellulose nanocrystals. 1211
- Figure 339. CNC slurry. 1212
- Figure 340. CNF gel. 1213
- Figure 341. Bacterial nanocellulose shapes 1221
- Figure 342. BLOOM masterbatch from Algix. 1226
- Figure 343. Typical structure of mycelium-based foam. 1229
- Figure 344. Commercial mycelium composite construction materials. 1230
- Figure 345. Types of bio-based materials used for antimicrobial food packaging application. 1243
- Figure 346. Schematic of gas barrier properties of nanoclay film. 1248
- Figure 347. Hefcel-coated wood (left) and untreated wood (right) after 30 seconds flame test. 1261
- Figure 348. Applications for CO2. 1264
- Figure 349. Life cycle of CO2-derived products and services. 1266
- Figure 350. Conversion pathways for CO2-derived polymeric materials 1267
- Figure 351. Bioplastics for flexible packaging by bioplastic material type, 2019–2035 (‘000 tonnes). 1271
- Figure 352. Bioplastics for rigid packaging by bioplastic material type, 2019–2035 (‘000 tonnes). 1273
- Figure 353. Market revenues for bio-based coatings, 2018-2035 (billions USD), conservative estimate. 1274
- Figure 354. Pluumo. 1278
- Figure 355. Anpoly cellulose nanofiber hydrogel. 1285
- Figure 356. MEDICELLU™. 1285
- Figure 357. Asahi Kasei CNF fabric sheet. 1292
- Figure 358. Properties of Asahi Kasei cellulose nanofiber nonwoven fabric. 1293
- Figure 359. CNF nonwoven fabric. 1294
- Figure 360. Passionfruit wrapped in Xgo Circular packaging. 1299
- Figure 361. BIOLO e-commerce mailer bag made from PHA. 1304
- Figure 362. Reusable and recyclable foodservice cups, lids, and straws from Joinease Hong Kong Ltd., made with plant-based NuPlastiQ BioPolymer from BioLogiQ, Inc. 1305
- Figure 363. Fiber-based screw cap. 1314
- Figure 364. CuanSave film. 1327
- Figure 365. ELLEX products. 1329
- Figure 366. CNF-reinforced PP compounds. 1330
- Figure 367. Kirekira! toilet wipes. 1330
- Figure 368. Rheocrysta spray. 1334
- Figure 369. DKS CNF products. 1334
- Figure 370. Photograph (a) and micrograph (b) of mineral/ MFC composite showing the high viscosity and fibrillar structure. 1345
- Figure 371. PHA production process. 1350
- Figure 372. AVAPTM process. 1354
- Figure 373. GreenPower+™ process. 1355
- Figure 374. Cutlery samples (spoon, knife, fork) made of nano cellulose and biodegradable plastic composite materials. 1357
- Figure 375. CNF gel. 1359
- Figure 376. Block nanocellulose material. 1360
- Figure 377. CNF products developed by Hokuetsu. 1360
- Figure 378. Kami Shoji CNF products. 1366
- Figure 379. IPA synthesis method. 1383
- Figure 380. Compostable water pod. 1391
- Figure 381. XCNF. 1407
- Figure 382: Innventia AB movable nanocellulose demo plant. 1408
- Figure 383. Shellworks packaging containers. 1412
- Figure 384. Thales packaging incorporating Fibrease. 1418
- Figure 385. Sulapac cosmetics containers. 1420
- Figure 386. Sulzer equipment for PLA polymerization processing. 1421
- Figure 387. Silver / CNF composite dispersions. 1427
- Figure 388. CNF/nanosilver powder. 1428
- Figure 389. Corbion FDCA production process. 1429
- Figure 390. UPM biorefinery process. 1431
- Figure 391. Vegea production process. 1434
- Figure 392. Worn Again products. 1438
- Figure 393. S-CNF in powder form. 1440
- Figure 394. AlgiKicks sneaker, made with the Algiknit biopolymer gel. 1451
- Figure 395. Conceptual landscape of next-gen leather materials. 1452
- Figure 396. Typical structure of mycelium-based foam. 1466
- Figure 397. Hermès bag made of MycoWorks' mycelium leather. 1469
- Figure 398. Ganni blazer made from bacterial cellulose. 1474
- Figure 399. Bou Bag by GANNI and Modern Synthesis. 1475
- Figure 400. Global revenues for bio-based textiles by type, 2018-2035 (millions USD). 1488
- Figure 401. Global revenues for bio-based and sustainable textiles by end use market, 2018-2035 (millions USD). 1490
- Figure 402. Beyond Leather Materials product. 1496
- Figure 403. Treekind. 1498
- Figure 404. Examples of Stella McCartney and Adidas products made using leather alternative Mylo. 1500
- Figure 405. Mushroom leather. 1503
- Figure 406. Ecovative Design Forager Hides. 1504
- Figure 407. LUNA® leather. 1509
- Figure 408. TransLeather. 1512
- Figure 409. Reishi. 1518
- Figure 410. AirCarbon Pellets and AirCarbon Leather. 1522
- Figure 411. Leather made from leaves. 1526
- Figure 412. Nike shoe with beLEAF™. 1527
- Figure 413. Persiskin leather. 1530
- Figure 414. LOVR hemp leather. 1534
- Figure 415. North Face Spiber Moon Parka. 1537
- Figure 416. PANGAIA LAB NXT GEN Hoodie. 1538
- Figure 417. Ultrasuede headrest covers. 1540
- Figure 418. Vegea production process. 1542
- Figure 419. Schematic of production of powder coatings. 1551
- Figure 420. Organization and morphology of cellulose synthesizing terminal complexes (TCs) in different organisms. 1554
- Figure 421. PHA family. 1576
- Figure 422: Schematic diagram of partial molecular structure of cellulose chain with numbering for carbon atoms and n= number of cellobiose repeating unit. 1580
- Figure 423: Scale of cellulose materials. 1580
- Figure 424. Nanocellulose preparation methods and resulting materials. 1581
- Figure 425: Relationship between different kinds of nanocelluloses. 1583
- Figure 426. SEM image of microfibrillated cellulose. 1585
- Figure 427. Applications of cellulose nanofibers in paints and coatings. 1589
- Figure 428: CNC slurry. 1593
- Figure 429. Types of bio-based materials used for antimicrobial food packaging application. 1599
- Figure 430. BLOOM masterbatch from Algix. 1605
- Figure 431. Market revenues for bio-based coatings by market, 2018-2035 (billions USD), conservative estimate. 1608
- Figure 432. Dulux Better Living Air Clean Bio-based. 1611
- Figure 433. NCCTM Process. 1635
- Figure 434. CNC produced at Tech Futures’ pilot plant; cloudy suspension (1 wt.%), gel-like (10 wt.%), flake-like crystals, and very fine powder. Product advantages include: 1636
- Figure 435. Cellugy materials. 1637
- Figure 436. EcoLine® 3690 (left) vs Solvent-Based Competitor Coating (right). 1642
- Figure 437. Rheocrysta spray. 1648
- Figure 438. DKS CNF products. 1649
- Figure 439. Domsjö process. 1650
- Figure 440. CNF gel. 1669
- Figure 441. Block nanocellulose material. 1669
- Figure 442. CNF products developed by Hokuetsu. 1670
- Figure 443. VIVAPUR® MCC Spheres. 1675
- Figure 444. BioFlex process. 1686
- Figure 445. Marusumi Paper cellulose nanofiber products. 1689
- Figure 446. Melodea CNC barrier coating packaging. 1691
- Figure 447. Fluorene cellulose ® powder. 1710
- Figure 448. XCNF. 1718
- Figure 449. Plantrose process. 1719
- Figure 450. Spider silk production. 1729
- Figure 451. CNF dispersion and powder from Starlite. 1731
- Figure 452. 2 wt.% CNF suspension. 1734
- Figure 453. BiNFi-s Dry Powder. 1735
- Figure 454. BiNFi-s Dry Powder and Propylene (PP) Complex Pellet. 1735
- Figure 455. Silk nanofiber (right) and cocoon of raw material. 1736
- Figure 456. traceless® hooks. 1739
- Figure 457. HefCel-coated wood (left) and untreated wood (right) after 30 seconds flame test. 1741
- Figure 458. Bio-based barrier bags prepared from Tempo-CNF coated bio-HDPE film. 1742
- Figure 459. Bioalkyd products. 1746
- Figure 460. Liquid biofuel production and consumption (in thousands of m3), 2000-2022. 1750
- Figure 461. Distribution of global liquid biofuel production in 2023. 1751
- Figure 462. Diesel and gasoline alternatives and blends. 1755
- Figure 463. SWOT analysis for biofuels. 1757
- Figure 464. Schematic of a biorefinery for production of carriers and chemicals. 1767
- Figure 465. Hydrolytic lignin powder. 1770
- Figure 466. SWOT analysis for energy crops in biofuels. 1775
- Figure 467. SWOT analysis for agricultural residues in biofuels. 1777
- Figure 468. SWOT analysis for Manure, sewage sludge and organic waste in biofuels. 1779
- Figure 469. SWOT analysis for forestry and wood waste in biofuels. 1780
- Figure 470. Range of biomass cost by feedstock type. 1781
- Figure 471. Regional production of biodiesel (billion litres). 1782
- Figure 472. SWOT analysis for biodiesel. 1784
- Figure 473. Flow chart for biodiesel production. 1788
- Figure 474. Biodiesel (B20) average prices, current and historical, USD/litre. 1794
- Figure 475. Global biodiesel consumption, 2010-2035 (M litres/year). 1796
- Figure 476. SWOT analysis for renewable iesel. 1799
- Figure 477. Global renewable diesel consumption, 2010-2035 (M litres/year). 1800
- Figure 478. SWOT analysis for Bio-aviation fuel. 1803
- Figure 479. Global bio-jet fuel consumption to 2019-2035 (Million litres/year). 1807
- Figure 480. SWOT analysis for bio-naphtha. 1810
- Figure 481. Bio-based naphtha production capacities, 2018-2035 (tonnes). 1813
- Figure 482. SWOT analysis biomethanol. 1815
- Figure 483. Renewable Methanol Production Processes from Different Feedstocks. 1816
- Figure 484. Production of biomethane through anaerobic digestion and upgrading. 1817
- Figure 485. Production of biomethane through biomass gasification and methanation. 1818
- Figure 486. Production of biomethane through the Power to methane process. 1818
- Figure 487. SWOT analysis for ethanol. 1820
- Figure 488. Ethanol consumption 2010-2035 (million litres). 1826
- Figure 489. Properties of petrol and biobutanol. 1828
- Figure 490. Biobutanol production route. 1828
- Figure 491. Biogas and biomethane pathways. 1830
- Figure 492. Overview of biogas utilization. 1832
- Figure 493. Biogas and biomethane pathways. 1833
- Figure 494. Schematic overview of anaerobic digestion process for biomethane production. 1834
- Figure 495. Schematic overview of biomass gasification for biomethane production. 1835
- Figure 496. SWOT analysis for biogas. 1836
- Figure 497. Total syngas market by product in MM Nm³/h of Syngas, 2021. 1840
- Figure 498. SWOT analysis for biohydrogen. 1843
- Figure 499. Waste plastic production pathways to (A) diesel and (B) gasoline 1848
- Figure 500. Schematic for Pyrolysis of Scrap Tires. 1849
- Figure 501. Used tires conversion process. 1850
- Figure 502. Total syngas market by product in MM Nm³/h of Syngas, 2021. 1852
- Figure 503. Overview of biogas utilization. 1854
- Figure 504. Biogas and biomethane pathways. 1855
- Figure 505. SWOT analysis for chemical recycling of biofuels. 1858
- Figure 506. Process steps in the production of electrofuels. 1859
- Figure 507. Mapping storage technologies according to performance characteristics. 1860
- Figure 508. Production process for green hydrogen. 1862
- Figure 509. SWOT analysis for E-fuels. 1863
- Figure 510. E-liquids production routes. 1864
- Figure 511. Fischer-Tropsch liquid e-fuel products. 1865
- Figure 512. Resources required for liquid e-fuel production. 1865
- Figure 513. Levelized cost and fuel-switching CO2 prices of e-fuels. 1869
- Figure 514. Cost breakdown for e-fuels. 1871
- Figure 515. Pathways for algal biomass conversion to biofuels. 1873
- Figure 516. SWOT analysis for algae-derived biofuels. 1874
- Figure 517. Algal biomass conversion process for biofuel production. 1875
- Figure 518. Classification and process technology according to carbon emission in ammonia production. 1878
- Figure 519. Green ammonia production and use. 1879
- Figure 520. Schematic of the Haber Bosch ammonia synthesis reaction. 1881
- Figure 521. Schematic of hydrogen production via steam methane reformation. 1881
- Figure 522. SWOT analysis for green ammonia. 1883
- Figure 523. Estimated production cost of green ammonia. 1887
- Figure 524. Projected annual ammonia production, million tons. 1888
- Figure 525. CO2 capture and separation technology. 1890
- Figure 526. Conversion route for CO2-derived fuels and chemical intermediates. 1891
- Figure 527. Conversion pathways for CO2-derived methane, methanol and diesel. 1892
- Figure 528. SWOT analysis for biofuels from carbon capture. 1894
- Figure 529. CO2 captured from air using liquid and solid sorbent DAC plants, storage, and reuse. 1895
- Figure 530. Global CO2 capture from biomass and DAC in the Net Zero Scenario. 1896
- Figure 531. DAC technologies. 1898
- Figure 532. Schematic of Climeworks DAC system. 1899
- Figure 533. Climeworks’ first commercial direct air capture (DAC) plant, based in Hinwil, Switzerland. 1900
- Figure 534. Flow diagram for solid sorbent DAC. 1900
- Figure 535. Direct air capture based on high temperature liquid sorbent by Carbon Engineering. 1901
- Figure 536. Global capacity of direct air capture facilities. 1905
- Figure 537. Global map of DAC and CCS plants. 1910
- Figure 538. Schematic of costs of DAC technologies. 1913
- Figure 539. DAC cost breakdown and comparison. 1913
- Figure 540. Operating costs of generic liquid and solid-based DAC systems. 1915
- Figure 541. Conversion route for CO2-derived fuels and chemical intermediates. 1920
- Figure 542. Conversion pathways for CO2-derived methane, methanol and diesel. 1921
- Figure 543. CO2 feedstock for the production of e-methanol. 1928
- Figure 544. Schematic illustration of (a) biophotosynthetic, (b) photothermal, (c) microbial-photoelectrochemical, (d) photosynthetic and photocatalytic (PS/PC), (e) photoelectrochemical (PEC), and (f) photovoltaic plus electrochemical (PV+EC) approaches for CO2. 1932
- Figure 545. SWOT analysis: CO2 utilization in fuels. 1934
- Figure 546. Audi synthetic fuels. 1935
- Figure 547. Bio-oil upgrading/fractionation techniques. 1939
- Figure 548. SWOT analysis for bio-oils. 1941
- Figure 549. ANDRITZ Lignin Recovery process. 1952
- Figure 550. ChemCyclingTM prototypes. 1958
- Figure 551. ChemCycling circle by BASF. 1959
- Figure 552. FBPO process 1969
- Figure 553. Direct Air Capture Process. 1974
- Figure 554. CRI process. 1976
- Figure 555. Cassandra Oil process. 1979
- Figure 556. Colyser process. 1986
- Figure 557. ECFORM electrolysis reactor schematic. 1991
- Figure 558. Dioxycle modular electrolyzer. 1992
- Figure 559. Domsjö process. 1993
- Figure 560. FuelPositive system. 2004
- Figure 561. INERATEC unit. 2020
- Figure 562. Infinitree swing method. 2021
- Figure 563. Audi/Krajete unit. 2027
- Figure 564. Enfinity cellulosic ethanol technology process. 2054
- Figure 565: Plantrose process. 2061
- Figure 566. Sunfire process for Blue Crude production. 2077
- Figure 567. Takavator. 2080
- Figure 568. O12 Reactor. 2084
- Figure 569. Sunglasses with lenses made from CO2-derived materials. 2084
- Figure 570. CO2 made car part. 2084
- Figure 571. The Velocys process. 2087
- Figure 572. Goldilocks process and applications. 2090
- Figure 573. The Proesa® Process. 2091
- Figure 574. Closed-loop manufacturing. 2108
- Figure 575. Sustainable supply chain for electronics. 2119
- Figure 576. Flexible PCB. 2126
- Figure 577. Vapor degreasing. 2130
- Figure 578. Multi-layered PCB. 2132
- Figure 579. 3D printed PCB. 2134
- Figure 580. In-mold electronics prototype devices and products. 2135
- Figure 581. Silver nanocomposite ink after sintering and resin bonding of discrete electronic components. 2136
- Figure 582. Typical structure of mycelium-based foam. 2141
- Figure 583. Flexible electronic substrate made from CNF. 2145
- Figure 584. CNF composite. 2145
- Figure 585. Oji CNF transparent sheets. 2146
- Figure 586. Electronic components using cellulose nanofibers as insulating materials. 2146
- Figure 587. BLOOM masterbatch from Algix. 2147
- Figure 588. Dell's Concept Luna laptop. 2154
- Figure 589. Direct-write, precision dispensing, and 3D printing platform for 3D printed electronics. 2160
- Figure 590. 3D printed circuit boards from Nano Dimension. 2160
- Figure 591. Photonic sintering. 2161
- Figure 592. Laser-induced forward transfer (LIFT). 2163
- Figure 593. Material jetting 3d printing. 2168
- Figure 594. Material jetting 3d printing product. 2169
- Figure 595. The molecular mechanism of the shape memory effect under different stimuli. 2174
- Figure 596. Supercooled Soldering™ Technology. 2178
- Figure 597. Reflow soldering schematic. 2179
- Figure 598. Schematic diagram of induction heating reflow. 2180
- Figure 599. Fully-printed organic thin-film transistors and circuitry on one-micron-thick polymer films. 2185
- Figure 600. Types of PCBs after dismantling waste computers and monitors. 2194
- Figure 601. Global PCB revenues 2018-2035 (billions USD), by substrate types. 2200
- Figure 602. Global sustainable PCB revenues 2018-2035, by type (millions USD). 2202
- Figure 603. Global sustainable ICs revenues 2018-2035, by type (millions USD). 2203
- Figure 604. Piezotech® FC. 2209
- Figure 605. PowerCoat® paper. 2210
- Figure 606. BeFC® biofuel cell and digital platform. 2211
- Figure 607. DPP-360 machine. 2214
- Figure 608. P-Flex® Flexible Circuit. 2216
- Figure 609. Fairphone 4. 2218
- Figure 610. In2tec’s fully recyclable flexible circuit board assembly. 2223
- Figure 611. C.L.A.D. system. 2225
- Figure 612. Soluboard immersed in water. 2227
- Figure 613. Infineon PCB before and after immersion. 2227
- Figure 614. Nano OPS Nanoscale wafer printing system. 2230
- Figure 615. Stora Enso lignin battery materials. 2241
- Figure 616. 3D printed electronics. 2243
- Figure 617. Tactotek IME device. 2244
- Figure 618. TactoTek® IMSE® SiP - System In Package. 2245
- Figure 619. Verde Bio-based resins. 2248
- Figure 620. Global market revenues for bio-based adhesives & sealants, by types, 2018-2035 (millions USD). 2261
- Figure 621. Global market revenues for bio-based adhesives & sealants, by market, 2018-2035 (millions USD). 2263
- Figure 622. sunliquid® production process. 2268
- Figure 623. Spider silk production. 2273
Payment methods: Visa, Mastercard, American Express, Paypal, Bank Transfer. To order by Bank Transfer (Invoice) select this option from the payment methods menu after adding to cart, or contact info@futuremarketsinc.com