The Global Market for Advanced Carbon Materials

0

Published August 2021 | 602 pages, 73 tables, 80 figures

Advanced Carbon Materials such as carbon fiber, carbon foams, graphene, carbon nanotubes, etc., possess unique mechanical, electrical, biological and chemical properties that have led to a variety of applications in electronics, energy storage, catalysis, filtration and sensing. Advanced Carbon Materials covered include: 

  • Carbon fibers.
  • Iso-graphite.
  • Graphene.
  • Carbon nanotubes.
  • 2D materials.
  • Fullerenes.
  • Nanodiamonds.
  • Graphene quantum dots.
  • Carbon Foam.
  • Diamond-like carbon (DLC) coatings.

 

Report contents include:

  • Market drivers and trends.
  • Properties and synthesis methods.
  • Market segment analysis. Markets covered include composites, electrochemical energy storage devices (batteries and supercapacitors), sensors, thermal management, adsorption, electromagnetic shielding, catalyst support, sensors and more. 
  • Price and price drivers.
  • Market consumption of advanced carbon materials, by type. 
  • More than 300 company profiles. Companies profiled include Hexcel Corporation, Mitsubishi Chemical Carbon Fiber and Composites, Inc., Carbitex, LLC, Teijin, UMATEX, Ibiden Co., Ltd., Mersen, Nippon Techno-Carbon Co., Ltd., Cabot Corporation, Graphenea, Haydale Graphene Industries, Nanocyl SA, OCSiAl and many more. 

 

1              THE ADVANCED CARBON MATERIALS MARKET   27

 

2              CARBON FIBERS 28

  • 2.1          Market drivers and trends            28
  • 2.2          Markets for carbon fibers             29
    • 2.2.1      Composites        30
      • 2.2.1.1   Aerospace          30
      • 2.2.1.2   Wind energy      30
      • 2.2.1.3   Sports   30
      • 2.2.1.4   Automotive        30
      • 2.2.1.5   Pressure vessels               31
  • 2.3          Carbon fiber producers 31
    • 2.3.1      Production capacities     31
  • 2.4          Global demand 2018-2031, metric tonnes            33
  • 2.5          Company profiles             35  (17 company profiles)

 

3              ISOSTATIC/ISOTROPIC GRAPHITE (ISO-GRPAHITE)              50

  • 3.1          Properties           50
  • 3.2          Applications       52
  • 3.3          Production capacities     53
  • 3.4          Global demand 2018-2031, metric tonnes            53
  • 3.5          Company profiles             54 (16 company profiles)

 

4              GRAPHENE         66

  • 4.1          Types of graphene           66
  • 4.2          Properties           67
  • 4.3          Graphene market challenges      68
  • 4.4          Graphene producers      69
    • 4.4.1      Production capacities     70
  • 4.5          Price and price drivers   72
    • 4.5.1      Pristine graphene flakes pricing/CVD graphene  75
    • 4.5.2      Few-Layer graphene pricing        76
    • 4.5.3      Graphene nanoplatelets pricing 77
    • 4.5.4      Graphene oxide (GO) and reduced Graphene Oxide (rGO) pricing               78
    • 4.5.5      Multilayer graphene (MLG) pricing           80
    • 4.5.6      Graphene ink     80
  • 4.6          Global demand 2018-2031, tons 81
    • 4.6.1      By market           83
    • 4.6.2      By region             84
      • 4.6.2.1   Asia-Pacific         84
      • 4.6.2.2   North America   87
      • 4.6.2.3   Europe 89
  • 4.7          Company profiles             91 (280 company profiles)

 

5              CARBON NANOTUBES    320

  • 5.1          Properties           321
    • 5.1.1      Comparative properties of CNTs 322
  • 5.2          Multi-walled carbon nanotubes (MWCNTs)          322
    • 5.2.1      Applications       323
    • 5.2.2      Producers           327
      • 5.2.2.1   Production capacities     327
    • 5.2.3      Price and price drivers   328
    • 5.2.4      Global demand 2018-2031, tons 330
    • 5.2.5     Company profiles             332  (110 company profiles)
  • 5.3          Single-walled carbon nanotubes (SWCNTs)           417
    • 5.3.1      Properties           417
    • 5.3.2      Applications       418
      • 5.3.2.1   Production capacities     420
    • 5.3.3      Global market demand, tonnes 421
    • 5.3.4      Company profiles             421 (12 company profiles)
  • 5.4          Other types        435
    • 5.4.1      Double-walled carbon nanotubes (DWNTs)          435
      • 5.4.1.1   Properties           435
      • 5.4.1.2   Applications       435
    • 5.4.2      Vertically aligned CNTs (VACNTs)              436
      • 5.4.2.1   Properties           436
      • 5.4.2.2   Applications       436
    • 5.4.3      Few-walled carbon nanotubes (FWNTs) 437
      • 5.4.3.1   Properties           437
      • 5.4.3.2   Applications       437
    • 5.4.4      Carbon Nanohorns (CNHs)           437
      • 5.4.4.1   Properties           437
      • 5.4.4.2   Applications       438
    • 5.4.5      Carbon Onions  438
      • 5.4.5.1   Properties           438
      • 5.4.5.2   Applications       439
    • 5.4.6      Boron Nitride nanotubes (BNNTs)            440
      • 5.4.6.1   Properties           440
      • 5.4.6.2   Applications       441
      • 5.4.6.3   Production          441

 

6              OTHER 2D MATERIALS   442

  • 6.1          2D MATERIALS PRODUCTION METHODS 444
    • 6.1.1      Top-down exfoliation     444
    • 6.1.2      Bottom-up synthesis      445
  • 6.2          HEXAGONAL BORON-NITRIDE (h-BN)      445
    • 6.2.1      Properties           446
    • 6.2.2      Applications and markets             446
      • 6.2.2.1   Electronics          446
      • 6.2.2.2   Fuel cells              447
      • 6.2.2.3   Adsorbents        447
      • 6.2.2.4   Photodetectors 447
      • 6.2.2.5   Textiles 447
      • 6.2.2.6   Biomedical          448
  • 6.3          MXENES               448
    • 6.3.1      Properties           448
    • 6.3.2      Applications       449
      • 6.3.2.1   Catalysts              449
      • 6.3.2.2   Hydrogels            449
      • 6.3.2.3   Energy storage devices  450
      • 6.3.2.4   Gas Separation  450
      • 6.3.2.5   Liquid Separation             450
      • 6.3.2.6   Antibacterials    451
  • 6.4          TRANSITION METAL DICHALCOGENIDES (TMDC) 451
    • 6.4.1      Properties           452
      • 6.4.1.1   Molybdenum disulphide (MoS2)               452
      • 6.4.1.2   Tungsten ditelluride (WTe2)        453
    • 6.4.2      Applications       453
      • 6.4.2.1   Electronics          453
      • 6.4.2.2   Biomedical          454
      • 6.4.2.3   Photovoltaics     454
      • 6.4.2.4   Piezoelectrics    454
      • 6.4.2.5   Sensors 455
      • 6.4.2.6   Filtration              455
      • 6.4.2.7   Batteries and supercapacitors    455
      • 6.4.2.8   Fiber lasers         455
  • 6.5          BOROPHENE      456
    • 6.5.1      Properties           456
    • 6.5.2      Applications       456
      • 6.5.2.1   Energy storage  456
      • 6.5.2.2   Hydrogen storage            457
      • 6.5.2.3   Sensors 457
      • 6.5.2.4   Electronics          457
  • 6.6          PHOSPHORENE 457
    • 6.6.1      Properties           458
      • 6.6.1.1   Fabrication methods      459
      • 6.6.1.2   Challenges for the use of phosphorene in devices              460
    • 6.6.2      Applications       460
      • 6.6.2.1   Electronics          460
      • 6.6.2.2   Field effect transistors   460
      • 6.6.2.3   Thermoelectrics               461
      • 6.6.2.4   Batteries              461
      • 6.6.2.5   Supercapacitors 462
      • 6.6.2.6   Photodetectors 462
      • 6.6.2.7   Sensors 462
  • 6.7          GRAPHITIC CARBON NITRIDE (g-C3N4)    463
    • 6.7.1      Properties           463
    • 6.7.2      Synthesis             463
    • 6.7.3      C2N        464
    • 6.7.4      Applications       464
      • 6.7.4.1   Electronics          464
      • 6.7.4.2   Filtration membranes    464
      • 6.7.4.3   Photocatalysts  465
      • 6.7.4.4   Batteries              465
      • 6.7.4.5   Sensors 465
  • 6.8          GERMANENE     465
    • 6.8.1      Properties           465
    • 6.8.2      Applications       466
    • 6.8.2.1   Electronics          466
    • 6.8.2.2   Batteries              466
  • 6.9          GRAPHDIYNE     466
    • 6.9.1      Properties           467
    • 6.9.2      Applications       467
      • 6.9.2.1   Electronics          467
      • 6.9.2.2   Batteries              468
      • 6.9.2.3   Separation membranes 468
      • 6.9.2.4   Water filtration 468
      • 6.9.2.5   Photocatalysts  468
      • 6.9.2.6   Photovoltaics     468
  • 6.10        GRAPHANE         469
    • 6.10.1    Properties           469
    • 6.10.2    Applications       469
      • 6.10.2.1                Electronics          469
      • 6.10.2.2                Hydrogen storage            470
  • 6.11        RHENIUM DISULFIDE (ReS2) AND DISELENIDE (ReSe2)     470
    • 6.11.1    Properties           470
    • 6.11.2    Applications       471
      • 6.11.2.1                Electronics          471
  • 6.12        SILICENE              471
    • 6.12.1    Properties           471
    • 6.12.2    Applications       472
      • 6.12.2.1                Electronics          472
      • 6.12.2.2                Photovoltaics     473
      • 6.12.2.3                Thermoelectrics               473
      • 6.12.2.4                Batteries              473
      • 6.12.2.5                Sensors 473
  • 6.13        STANENE/TINENE            474
    • 6.13.1    Properties           474
    • 6.13.2    Applications       475
      • 6.13.2.1                Electronics          475
  • 6.14        ANTIMONENE   475
    • 6.14.1    Properties           475
    • 6.14.2    Applications       475
  • 6.15        INDIUM SELENIDE            476
    • 6.15.1    Properties           476
    • 6.15.2    Applications       476
      • 6.15.2.1                Electronics          476
  • 6.16        LAYERED DOUBLE HYDROXIDES (LDH)     477
    • 6.16.1    Properties           477
    • 6.16.2    Applications       477
      • 6.16.2.1                Adsorbent          477
      • 6.16.2.2                Catalyst 477
      • 6.16.2.3                Sensors 477
      • 6.16.2.4                Electrodes           478
      • 6.16.2.5                Flame Retardants            478
      • 6.16.2.6                Biosensors          478
      • 6.16.2.7                Tissue engineering          479
      • 6.16.2.8                Anti-Microbials 479
      • 6.16.2.9                Drug Delivery     479
  • 6.17        2D MATERIALS PRODUCER AND SUPPLIER PROFILES         480 (7 company profiles)

 

7              FULLERENES       486

  • 7.1          Properties           486
  • 7.2          Products              487
  • 7.3          Markets and applications              488
  • 7.4          Technology Readiness Level (TRL)             489
  • 7.5          Global consumption in metric tonnes, 2010-2031               489
  • 7.6          Prices    493
  • 7.7          Producers           494 (20 company profiles)

 

8              NANODIAMONDS            506

  • 8.1          Types    506
    • 8.1.1      Fluorescent nanodiamonds (FNDs)          510
  • 8.2          Applications       510
  • 8.3          Price and price drivers   514
  • 8.4          Global demand 2018-2031, tonnes          515
  • 8.5          Company profiles             517 (30 company profiles)

 

9              GRAPHENE QUANTUM DOTS      546

  • 9.1          Comparison to quantum dots     547
  • 9.2          Properties           548
  • 9.3          Synthesis             548
    • 9.3.1      Top-down method          548
    • 9.3.2      Bottom-up method         549
  • 9.4          Applications       551
  • 9.5          Graphene quantum dots pricing 552
  • 9.6          Graphene quantum dot producers           553 (9 company profiles)

 

10           CARBON FOAM 562

  • 10.1        Types    562
    • 10.1.1    Carbon aerogels               562
      • 10.1.1.1                Carbon-based aerogel composites           563
  • 10.2        Properties           563
  • 10.3        Applications       565
  • 10.4        Company profiles             566 (9 company profiles)

 

11           DIAMOND-LIKE CARBON (DLC) COATINGS             575

  • 11.1        Properties           576
  • 11.2        Applications and markets             577
  • 11.3        Global market size           578
  • 11.4        Company profiles             580 (9 company profiles)

 

12           RESEARCH METHODOLOGY         587

 

13           REFERENCES       588

 

List of Tables

  • Table 1. The advanced carbon materials market. 27
  • Table 2. Market drivers and trends in carbon fibers.         28
  • Table 3. Summary of markets and applications for carbon fibers. 29
  • Table 4. Comparison of CFRP to competing materials.      30
  • Table 5. Production capacities of carbon fiber producers, in metric tonnes.            31
  • Table 6. Global demand for carbon fibers 2018-2031, by market (thousand metric tonnes).            33
  • Table 7. Main Toray production sites and capacities.         47
  • Table 8. Properties of isotropic graphite.               51
  • Table 9. Main markets and applications of isostatic graphite.        52
  • Table 10. Current or planned production capacities for iso-graphite, by type. Metric tonnes.          53
  • Table 11. Properties of graphene, properties of competing materials, applications thereof.            67
  • Table 12. Graphene market challenges. 68
  • Table 13. Main graphene producers by country, annual production capacities, types and main markets they sell into 2020.     70
  • Table 14. Types of graphene and typical prices.   73
  • Table 15. Pristine graphene flakes pricing by producer.   75
  • Table 16. Few-layer graphene pricing by producer.           76
  • Table 17. Graphene nanoplatelets pricing by producer.   77
  • Table 18. Graphene oxide and reduced graphene oxide pricing, by producer.        78
  • Table 19. Multi-layer graphene pricing by producer.         80
  • Table 20. Graphene ink pricing by producer.        80
  • Table 21. Demand for graphene (metric tonnes), 2018-2031.         82
  • Table 22. Main graphene producers in North America.    88
  • Table 23. Main graphene producers in Europe.   89
  • Table 24. Performance criteria of energy storage devices.              316
  • Table 25. Typical properties of SWCNT and MWCNT.        321
  • Table 26. Properties of CNTs and comparable materials. 322
  • Table 27. Applications of MWCNTs.          323
  • Table 28. Annual production capacity of the key MWCNT producers.        327
  • Table 29. Carbon nanotubes pricing (MWCNTS, SWCNT etc.) by producer.              328
  • Table 30. MWCNT global market demand (metric tonnes), 2018-2031.      330
  • Table 31. Properties of carbon nanotube paper. 407
  • Table 32. Comparative properties of MWCNT and SWCNT.            417
  • Table 33. Markets, benefits and applications of Single-Walled Carbon Nanotubes.              418
  • Table 34. Annual production capacity of SWCNT producers.          420
  • Table 35. SWCNT market demand forecast (tonnes), 2018-2031. 421
  • Table 36. Chasm SWCNT products.           422
  • Table 37. Toray CNF printed RFID.             433
  • Table 38. Comparative properties of BNNTs and CNTs.    440
  • Table 39. Applications of BNNTs.               441
  • Table 40. 2D materials types.      443
  • Table 41. Comparison of  top-down exfoliation methods to produce 2D materials.              444
  • Table 42. Comparison of the bottom-up synthesis methods to produce 2D materials.        445
  • Table 43. Electronic and mechanical properties of monolayer phosphorene, graphene and MoS2.               459
  • Table 44. Market overview for fullerenes-Selling grade particle diameter, usage, advantages, average price/ton, high volume applications, low volume applications and novel applications.      486
  • Table 45. Types of fullerenes and applications.    487
  • Table 46. Products incorporating fullerenes.        487
  • Table 47. Markets, benefits and applications of fullerenes.            488
  • Table 48. Global consumption of fullerenes in metric tonnes, 2010-2031.                489
  • Table 49. Fullerenes Market Share 2020 (MT).    491
  • Table 50. Fullerenes Market Share 2031 (MT).    492
  • Table 51. Example prices of fullerenes.   493
  • Table 52. Properties of nanodiamonds.  508
  • Table 53. Summary of types of NDS and production methods-advantages and disadvantages.       509
  • Table 54. Markets, benefits and applications of nanodiamonds.  510
  • Table 55. Pricing of nanodiamonds, by producer/distributor.        514
  • Table 56. Demand for nanodiamonds (metric tonnes), 2018-2031.              515
  • Table 57. Production methods, by main ND producers.   517
  • Table 58. Adamas Nanotechnologies, Inc. nanodiamond product list.        519
  • Table 59. Carbodeon Ltd. Oy nanodiamond product list.  524
  • Table 60. Daicel nanodiamond product list.           526
  • Table 61. FND Biotech Nanodiamond product list.              528
  • Table 62. JSC Sinta nanodiamond product list.     533
  • Table 63. Plasmachem product list and applications.         541
  • Table 64. Ray-Techniques Ltd. nanodiamonds product list.             542
  • Table 65. Comparison of ND produced by detonation and laser synthesis.              543
  • Table 66. Comparison of graphene QDs and semiconductor QDs. 547
  • Table 67. Advantages and disadvantages of methods for preparing GQDs.              550
  • Table 68. Applications of graphene quantum dots.            551
  • Table 69. Prices for graphene quantum dots.       552
  • Table 70. Properties of carbon foam materials.   564
  • Table 71. Applications of carbon foams. 565
  • Table 72. Properties of Diamond-like carbon (DLC) coatings.         576
  • Table 73. Applications and markets for Diamond-like carbon (DLC) coatings.          577

 

List of Figures

  • Figure 1. Global market share of carbon fiber market, by capacity, 2021.  32
  • Figure 2. Global demand for carbon fibers 2018-2031, by market (thousand metric tonnes).          34
  • Figure 3. Isostatic pressed graphite.         51
  • Figure 4. Global demand for iso graphite, 2018-2031 (1,000 metric tonnes).          53
  • Figure 5. Graphene and its descendants: top right: graphene; top left: graphite = stacked graphene; bottom right: nanotube=rolled graphene; bottom left: fullerene=wrapped graphene.   66
  • Figure 6. Demand for graphene, 2018-2031, metric tonnes.          82
  • Figure 7. Global graphene demand by market, 2018-2031 (tons). 84
  • Figure 8. Demand for graphene in China, by market, 2020.             84
  • Figure 9. Demand for graphene in Asia-Pacific, by market, 2020.  85
  • Figure 10. Main graphene producers in Asia-Pacific.          86
  • Figure 11. Demand for graphene in North America, by market, 2020.         89
  • Figure 12. Demand for graphene in Europe, by market, 2020.        90
  • Figure 13. AIKA Black-T. 102
  • Figure 14. Brain Scientific electrode schematic.   125
  • Figure 15.  InP/ZnS, perovskite quantum dots and silicon resin composite under UV illumination. 206
  • Figure 16. MWCNT global market demand forecast (tonnes), 2018-2030. 331
  • Figure 17. AWN Nanotech water harvesting prototype.  335
  • Figure 18. Cup Stacked Type Carbon Nano Tubes schematic.         358
  • Figure 19. CSCNT composite dispersion. 358
  • Figure 20. Flexible CNT CMOS integrated circuits with sub-10 nanoseconds stage delays. 361
  • Figure 21. Koatsu Gas Kogyo Co. Ltd CNT product.             365
  • Figure 22. Hybrid battery powered electrical motorbike concept.               382
  • Figure 23. NAWAStitch integrated into carbon fiber composite.  384
  • Figure 24. Schematic illustration of three-chamber system for SWCNH production.            385
  • Figure 25. TEM images of carbon nanobrush.      386
  • Figure 26. CNT film.         388
  • Figure 27. Schematic of a fluidized bed reactor which is able to scale up the generation of SWNTs using the CoMoCAT process.               423
  • Figure 28. Carbon nanotube paint product.           426
  • Figure 29. HiPCO® Reactor.          430
  • Figure 30. Double-walled carbon nanotube bundle cross-section micrograph and model. 435
  • Figure 31. Schematic of a vertically aligned carbon nanotube (VACNT) membrane used for water treatment.         437
  • Figure 32. TEM image of FWNTs.               437
  • Figure 33. Schematic representation of carbon nanohorns.           438
  • Figure 34. TEM image of carbon onion.   439
  • Figure 35. Schematic of Boron Nitride nanotubes (BNNTs). Alternating B and N atoms are shown in blue and red. 440
  • Figure 36. Conceptual diagram of single-walled carbon nanotube (SWCNT) (A) and multi-walled carbon nanotubes (MWCNT) (B) showing typical dimensions of length, width, and separation distance between graphene layers in MWCNTs (Source: JNM).              441
  • Figure 37. Schematic of 2-D materials.    442
  • Figure 38. Structure of hexagonal boron nitride. 446
  • Figure 39. BN nanosheet textiles application.       448
  • Figure 40. Structure diagram of Ti3C2Tx.                449
  • Figure 41.  Types and applications of 2D TMDCs. 451
  • Figure 42. Left: Molybdenum disulphide (MoS2). Right: Tungsten ditelluride (WTe2)          452
  • Figure 43. SEM image of MoS2.  453
  • Figure 44. Atomic force microscopy image of a representative MoS2 thin-film transistor. 454
  • Figure 45. Schematic of the molybdenum disulfide (MoS2) thin-film sensor with the deposited molecules that create additional charge.            455
  • Figure 46. Borophene schematic.              456
  • Figure 47. Black phosphorus structure.   458
  • Figure 48. Black Phosphorus crystal.        459
  • Figure 49. Bottom gated flexible few-layer phosphorene transistors with the hydrophobic dielectric encapsulation.                461
  • Figure 50: Graphitic carbon nitride.          463
  • Figure 51. Structural difference between graphene and C2N-h2D crystal: (a) graphene; (b) C2N-h2D crystal. Credit: Ulsan National Institute of Science and Technology.         464
  • Figure 52. Schematic of germanene.       465
  • Figure 53. Graphdiyne structure.              467
  • Figure 54. Schematic of Graphane crystal.             469
  • Figure 55. Schematic of a monolayer of rhenium disulfide.            470
  • Figure 56. Silicene structure.       471
  • Figure 57. Monolayer silicene on a silver (111) substrate.               472
  • Figure 58. Silicene transistor.      473
  • Figure 59. Crystal structure for stanene. 474
  • Figure 60. Atomic structure model for the 2D stanene on Bi2Te3(111).     475
  • Figure 61. Schematic of Indium Selenide (InSe). 476
  • Figure 62. Application of Li-Al LDH as CO2 sensor.             478
  • Figure 63. Technology Readiness Level (TRL) for fullerenes.           489
  • Figure 64. Global consumption of fullerenes in metric tonnes, 2010-2031.               490
  • Figure 65. Fullerenes Market Share 2020 (%).      491
  • Figure 66. Fullerenes Market Share 2031 (%).      492
  • Figure 67. Detonation Nanodiamond.     506
  • Figure 68. DND primary particles and properties.               507
  • Figure 69. Functional groups of Nanodiamonds. 508
  • Figure 70. NBD battery. 536
  • Figure 71. Neomond dispersions.             538
  • Figure 72. Green-fluorescing graphene quantum dots.    546
  • Figure 73. Schematic of (a) CQDs and (c) GQDs. HRTEM images of (b) C-dots and (d) GQDs showing combination of zigzag and armchair edges (positions marked as 1–4).      547
  • Figure 74. Graphene quantum dots.        549
  • Figure 75. Top-down and bottom-up methods.   550
  • Figure 76. Dotz Nano GQD products.       553
  • Figure 77.  InP/ZnS, perovskite quantum dots and silicon resin composite under UV illumination. 557
  • Figure 78. Quantag GQDs and sensor.     559
  • Figure 79. Schematic of typical microstructure of carbon foam: (a) open-cell, (b) closed-cell.          562
  • Figure 80. Classification of DLC coatings. 576
  • Figure 81. Global revenues for DLC coatings, 2018-2031 (Billion USD).      579

 

 

The Global Market for Advanced Carbon Materials
The Global Market for Advanced Carbon Materials
PDF download and by email.

The Global Market for Advanced Carbon Materials
The Global Market for Advanced Carbon Materials
Print edition (including tracked delivery).

The Global Market for Advanced Carbon Materials
The Global Market for Advanced Carbon Materials
PDF and print edition (including tracked delivery).

To purchase by invoice (bank transfer or cheque) please select this option after Add to Cart, or contact info@futuremarketsinc.com or use our Order Form.